基于非局部总广义变分的图像去噪

TP391.1; 针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型.新模型充分利用了图像的全局信息进行去噪.实验结果显示了该模型的有效性和优越性....

Full description

Saved in:
Bibliographic Details
Published in计算机工程与科学 Vol. 39; no. 8; pp. 1520 - 1524
Main Author 王小玉 郭晓中
Format Journal Article
LanguageChinese
Published 哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨,150080 2017
Subjects
Online AccessGet full text
ISSN1007-130X
DOI10.3969/j.issn.1007-130X.2017.08.021

Cover

Abstract TP391.1; 针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型.新模型充分利用了图像的全局信息进行去噪.实验结果显示了该模型的有效性和优越性.
AbstractList TP391.1; 针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型.新模型充分利用了图像的全局信息进行去噪.实验结果显示了该模型的有效性和优越性.
针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型。新模型充分利用了图像的全局信息进行去噪。实验结果显示了该模型的有效性和优越性。
Abstract_FL The total variation model can remove noise effectively,however,it also brings in staircase effect.To overcome this shortcoming,we use the second order total generalized variation (TGV) as the regularization term in the new denoising model.The TGV model can not only eliminate the staircase effect,but also preserve structures such as edges and textures better.The nonlocal differential operators which are constructed based on the idea of the nonlocal means filtering algorithm are applied to the TGV model,and the new method makes good use of the global information of the image to remove noise.Experimental results demonstrate the validity and superiority of the proposed method.
Author 王小玉 郭晓中
AuthorAffiliation 哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080
AuthorAffiliation_xml – name: 哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨,150080
Author_FL WANG Xiao-yu
GUO Xiao-zhong
Author_FL_xml – sequence: 1
  fullname: WANG Xiao-yu
– sequence: 2
  fullname: GUO Xiao-zhong
Author_xml – sequence: 1
  fullname: 王小玉 郭晓中
BookMark eNo9jz1Lw0Acxm-oYK39EuLikPi_XHJ3GaX4BgWXDm7l8m8SE_WiCaLdCpWiS7v6grqKm2Nb0C_TU_otjFScHnj48Tz8VkhFZzokZJ2CzXzub6Z2UhTapgDCogwObQeosEHa4NAKqf73y6ReFEkAwD0uPUGrxDIvk9lkOH96Nu-9ef_1qzc148_Z-NaM7szN4Pvh2jx-mP7IDKfm_m2VLEXqpAjrf1kjrZ3tVmPPah7s7je2mhZySi30UQYuoOtiRzgghMtYiJ6U4HHqexhK5E7ohAgBdnzGSwMFEedMKQci5KxGNhazl0pHSsftNLvIdXnYTos0xu7x1a8fyNKuZNcWLB5lOj5PSvosT05V3m1zwcpHoJL9ALJbZHI
ClassificationCodes TP391.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1007-130X.2017.08.021
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate An image denoising method based on nonlocal total generalized variation
DocumentTitle_FL An image denoising method based on nonlocal total generalized variation
EndPage 1524
ExternalDocumentID jsjgcykx201708021
673056018
GrantInformation_xml – fundername: 黑龙江省教育厅科学技术项目
  funderid: (12541177)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c611-c9c8b40c44cd72077433ec588056195ce8c62e2ec0bcd936969a0f663aa20fc63
ISSN 1007-130X
IngestDate Thu May 29 04:04:00 EDT 2025
Wed Feb 14 09:57:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 图像去噪
全变分模型
总广义变分
total generalized variation
非局部均值滤波
nonlocal means filtering
非局部微分算子
total variational model
image denoising
nonlocal differential operators
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c611-c9c8b40c44cd72077433ec588056195ce8c62e2ec0bcd936969a0f663aa20fc63
Notes total variational model; total generalized variation ; nonlocal means filtering ; nonlocal differential operators ;image denoising
The total variation model can remove noise effectively, however, it also brings in staircase effect. To overcome this shortco regularization term in the new d effect, which model ming, we use the second order total generalized variation (TGV) as the enoising model. The TGV model can not only eliminate the staircase also preserve structures are constructed based on , and the new method ma perimental results demonstrate such as edges and textures better. The nonlocal differential operators idea of the nonlocal means filtering algorithm are applied to the TGV good use of the global information of the image to remove noise. Exvalidity and superiority of the proposed method.
43-1258/TP
WANG Xiao-yu,GUO Xiao-zhong (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
PageCount 5
ParticipantIDs wanfang_journals_jsjgcykx201708021
chongqing_primary_673056018
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机工程与科学
PublicationTitleAlternate Computer Engineering & Science
PublicationTitle_FL Computer Engineering and Science
PublicationYear 2017
Publisher 哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨,150080
Publisher_xml – name: 哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨,150080
SSID ssib006568571
ssib017479296
ssib001050383
ssib015938883
ssib001102936
ssib051375740
ssib023646326
ssib036438059
ssib000459496
Score 2.0608225
Snippet ...
TP391.1;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1520
SubjectTerms 全变分模型
图像去噪
总广义变分
非局部均值滤波
非局部微分算子
Title 基于非局部总广义变分的图像去噪
URI http://lib.cqvip.com/qk/94293X/201708/673056018.html
https://d.wanfangdata.com.cn/periodical/jsjgcykx201708021
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdGi3IF5EUbFWpUjnmJqPSTLvmOxmKWK9uMLelmSabamwrXYL2lOhIvXSXv1AvYo3j21B_0yj9F_43iTNDrUs1cswefP2fcxLdt6bzHthbK5PL8PyPLUgw0YIP7RSjJqtDITo02swBZTvvPg4WHgqHnb97sTkrnFqaXOYzautc_NK_seqCEO7UpbsP1i2JooA7KN9sUULY3shG_PE59DmccQTQa1MeAIcWhwSGoodOseAEOnxSPIkoMs41kPA47b-FY4CQWSbg9QdyWXAk5ADEhSaRcxjTRDpIBp1kooOAI8i08HlieRRwiOHKGAHQuILTS0k8kWgr4eQS6wFkFpshCBHh3CiFo_q_UIawXFZSm1r_iUERiilhi3NCfX3KrpVqclqT6NM3tT3n5bcI01LoiDop6gRzRKKYesZqKVFkQSJdyrbWB3PKmLoiPMfaYto5Kht4ICeSRdveOqjJEQBaNoRTrI5ZOgxYrtN9Lnt8nNV1SJD28P4jHTNVags6VQ9bdJYUtDBsg33BC_FeUufBwHopY9YzNcs6PBiqIvUlonoZ4qLr26sLqtXz14SFmVdO5Nsyg1Dx2-wqai1-OiJ6fqDMEozOrqQkJmTbaPnOBrHOEH6o1ADvWZPyhE-BsIheuY1Pn3HIDBCCbz0pOH6-44X-mGZ33yq2yU2Vyn-YJzaVDVlZW2w_Bx9QZ2aN-ing2XDi-xcZVeq8G82Kp_la2xia-U6s4ovh8eHeyefPhfft092vv7aPioOfh4fvC323xW7b35_eF18_FHs7Bd7R8X7bzdYp510mgtW9RkTSwWOYylQMhO2EkItha6N4Zbn5crHdRNDF_BVLlXg5m6u7Ewt6c9rQmr3MRBIU9fuq8C7yRqDtUF-i80G4DpBoFIVeiAyJaCfKheyACTSVlk-zWZqTXvrZbUaOrhp07aLnGb3K9171X_YRu8v-9--CNIMu0z9cifyDmsMX2zmd9E3H2b3qtvmD8pHo-w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9D%9E%E5%B1%80%E9%83%A8%E6%80%BB%E5%B9%BF%E4%B9%89%E5%8F%98%E5%88%86%E7%9A%84%E5%9B%BE%E5%83%8F%E5%8E%BB%E5%99%AA&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E4%B8%8E%E7%A7%91%E5%AD%A6&rft.au=%E7%8E%8B%E5%B0%8F%E7%8E%89&rft.au=%E9%83%AD%E6%99%93%E4%B8%AD&rft.date=2017&rft.pub=%E5%93%88%E5%B0%94%E6%BB%A8%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E9%BB%91%E9%BE%99%E6%B1%9F%E5%93%88%E5%B0%94%E6%BB%A8%2C150080&rft.issn=1007-130X&rft.volume=39&rft.issue=8&rft.spage=1520&rft.epage=1524&rft_id=info:doi/10.3969%2Fj.issn.1007-130X.2017.08.021&rft.externalDocID=jsjgcykx201708021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94293X%2F94293X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgcykx%2Fjsjgcykx.jpg