卷积神经网络在车辆识别中的应用

TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 12; no. 2; pp. 282 - 291
Main Authors 彭清, 季桂树, 谢林江, 张少波
Format Journal Article
LanguageChinese
Published 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083 2018
湖南科技大学计算机科学与工程学院,湖南湘潭411201
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1704055

Cover

Abstract TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究指明了方向.
AbstractList TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究指明了方向.
Abstract_FL Aiming at the problems of excessive calculation and complex feature extraction of existing vehicle recognition methods,this paper proposes a vehicle recognition method based on convolutional neural network (CNN).Firstly,this paper constructs a convolutional neural network model,which is trained with different size of convolution kernel,different number of network layers and different number of feature maps.Secondly,this paper obtains the optimal model through 100 iterations learns,from which to extract all features of hidden layer and combined with support vector machines (SVM) to proceed with recognition.Finally,this paper systematically analyzes the influence of different parameters on the accuracy and mean square error.The experimental results show that in vehicle recognition CNN+SVM had a high accuracy rate as compared to the traditional CNN,PCA+SVM,HOG+SVM and Wavelet+SVM,whose accuracy rate is 97.00%.This paper focuses on analyzing the cause for errors in samples and necessary modifications to be done hereafter.
Author 谢林江
张少波
彭清
季桂树
AuthorAffiliation 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083;湖南科技大学计算机科学与工程学院,湖南湘潭411201
AuthorAffiliation_xml – name: 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083;湖南科技大学计算机科学与工程学院,湖南湘潭411201
Author_FL PENG Qing
JI Guishu
XIE Linjiang
ZHANG Shaobo
Author_FL_xml – sequence: 1
  fullname: PENG Qing
– sequence: 2
  fullname: JI Guishu
– sequence: 3
  fullname: XIE Linjiang
– sequence: 4
  fullname: ZHANG Shaobo
Author_xml – sequence: 1
  fullname: 彭清
– sequence: 2
  fullname: 季桂树
– sequence: 3
  fullname: 谢林江
– sequence: 4
  fullname: 张少波
BookMark eNo9jj1LAzEcxjNUsNZ-B1eHO_PPJZdklOIbFFy6l7w00lNSMIq6S3ERETpJcVMLIh0VS_00HrmP4YHi8jzwG57fs4YafuQHCG0ATjPOxVaRDkPwKeQ8SyQFkQLHFDPWQM1_toraIQw1ZpQS4LlooqS8fY8v8_j0GBd3cXkfF9NyOquWz9XXuJqPy5vX74-3-HBdfk7iZLaOVpw6CYP2X7dQb3en19lPuod7B53tbmJygIQSyo1zBttMObBacmyFtIwDw1Q6y0FrJ4kxilKQTBGpFRBhLBW8PqmzFtr8nb1Q3il_1C9G56e-FvaLUBxfXp0FgkHgOiD7Ab-OWX8
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1704055
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application of Convolutional Neural Network in Vehicle Recognition
EndPage 291
ExternalDocumentID jsjkxyts201802011
GrantInformation_xml – fundername: The National Natural Science Foundation of China under Grant Nos.61632009,61472451,61402161
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-c611-4247cffc0d3af1db970d89d5715049fd71bbf92cca44195a29ba128cd487418b3
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
特征提取
convolutional neural network (CNN)
support vector machine (SVM)
深度学习
卷积神经网络(CNN)
支持向量机(SVM)
vehicle recognition
车辆识别
feature extracting
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c611-4247cffc0d3af1db970d89d5715049fd71bbf92cca44195a29ba128cd487418b3
PageCount 10
ParticipantIDs wanfang_journals_jsjkxyts201802011
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2018
Publisher 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083
湖南科技大学计算机科学与工程学院,湖南湘潭411201
Publisher_xml – name: 湖南科技大学计算机科学与工程学院,湖南湘潭411201
– name: 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.1018183
Snippet TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural...
SourceID wanfang
SourceType Aggregation Database
StartPage 282
Title 卷积神经网络在车辆识别中的应用
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201802011
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1NaxNBdKnx0osoKn5TxDlu3PnamTnuJhuKUE8Reiv7kVUqRDApaA-epHgREXqS4k0tiPSoWOqvMWx-hu_NbjabaqF6EsLw9s2b9zEvmfdmMx-OcydNDDcyUS6eNeYKmDK72veEa2Ia80xoSu31bWv3_dUH4t66XF9qLTdWLW2Nk3a6_cd9Jf_iVcCBX3GX7F94tmYKCIDBv1CCh6E8lY9JJInuklCRSJEAPj0LSGIiBMKQaIsJu8TQCmM62ArKQJNIY1XgWyAi2gLABAHgDHBIIkFCALrY3AREC6wKA2KExQjg00xwLYeIBFYcAAZ081EcNCmVRE0kMkS5lrmOkAbKgFklgWe95tlK61r5vqWVzRrkwrEG5GlmAY8YOicBuzzL1sc-KZUJKTG9Bf4dbIaAZ7UDEj5ToXohUo3e-OVt9IjtfWQKmgi0bcGwnu0FMIzOHHOS8RJdCG5DGsCEDRpDjEEDWMfCEtmiggzxrCPw1CROmPx_tCpVagQ7X3EXsHohGrLGr541Q1t5SVSVJbHSl8cDMFdK2wCMAtq1gDZVECzK85iPHW--Odp8_Oz5eISe9DAbPeOcZUpRXJ679iKap5LAwDSnwvgsFvZkQ-5dxxa8F8GX89QcHrn2_Dp1l5Qr_MuxfhYCJuflztmZ1uXCPzTp7kkG2a1-wzwePmxkpf3zzrlqOrkSlGPDBWdp-9FFx528_lp8Oig-vC8O3xRHb4vDvcne_vTo4_THzvRgZ_Lq889vX4p3Lyffd4vd_UtOvxf1O6tudS2Km_qUuoIJleZ56mU8zmmWGOVl2mQSugxm-3mmaJLkhsHIDDMdI2NmkhiS0BQGXjypKuGXndbwyXBwxVkRsUdzn6W-N9BC8FyLXIKMTKlUZ8mAXXVuV9ZtVKPeaOM3f107DdF1Zxnh8t3lDac1fro1uAnZ_Di5Zd38C2hnqis
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%9C%A8%E8%BD%A6%E8%BE%86%E8%AF%86%E5%88%AB%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E5%BD%AD%E6%B8%85&rft.au=%E5%AD%A3%E6%A1%82%E6%A0%91&rft.au=%E8%B0%A2%E6%9E%97%E6%B1%9F&rft.au=%E5%BC%A0%E5%B0%91%E6%B3%A2&rft.date=2018&rft.pub=%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99%2C410083%25%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99410083&rft.issn=1673-9418&rft.volume=12&rft.issue=2&rft.spage=282&rft.epage=291&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1704055&rft.externalDocID=jsjkxyts201802011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg