卷积神经网络在车辆识别中的应用
TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究...
Saved in:
Published in | 计算机科学与探索 Vol. 12; no. 2; pp. 282 - 291 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083
2018
湖南科技大学计算机科学与工程学院,湖南湘潭411201 |
Subjects | |
Online Access | Get full text |
ISSN | 1673-9418 |
DOI | 10.3778/j.issn.1673-9418.1704055 |
Cover
Abstract | TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究指明了方向. |
---|---|
AbstractList | TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的车辆识别方法.构建卷积神经网络模型,分别使用不同的卷积核、网络层数、特征图数对网络进行训练;通过100次迭代的学习结果得到最优模型,提取隐含层所有特征,并结合支持向量机进行识别;系统分析了不同参数对测试正确率和样本均方误差的影响.实验结果显示,CNN+SVM在车辆识别中的准确率明显优于传统CNN、PCA+SVM、HOG+SVM、Wavelet+SVM,正确率为97.00%,分析了样本识别错误的原因以及今后需要改进的地方,为以后的研究指明了方向. |
Abstract_FL | Aiming at the problems of excessive calculation and complex feature extraction of existing vehicle recognition methods,this paper proposes a vehicle recognition method based on convolutional neural network (CNN).Firstly,this paper constructs a convolutional neural network model,which is trained with different size of convolution kernel,different number of network layers and different number of feature maps.Secondly,this paper obtains the optimal model through 100 iterations learns,from which to extract all features of hidden layer and combined with support vector machines (SVM) to proceed with recognition.Finally,this paper systematically analyzes the influence of different parameters on the accuracy and mean square error.The experimental results show that in vehicle recognition CNN+SVM had a high accuracy rate as compared to the traditional CNN,PCA+SVM,HOG+SVM and Wavelet+SVM,whose accuracy rate is 97.00%.This paper focuses on analyzing the cause for errors in samples and necessary modifications to be done hereafter. |
Author | 谢林江 张少波 彭清 季桂树 |
AuthorAffiliation | 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083;湖南科技大学计算机科学与工程学院,湖南湘潭411201 |
AuthorAffiliation_xml | – name: 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083;湖南科技大学计算机科学与工程学院,湖南湘潭411201 |
Author_FL | PENG Qing JI Guishu XIE Linjiang ZHANG Shaobo |
Author_FL_xml | – sequence: 1 fullname: PENG Qing – sequence: 2 fullname: JI Guishu – sequence: 3 fullname: XIE Linjiang – sequence: 4 fullname: ZHANG Shaobo |
Author_xml | – sequence: 1 fullname: 彭清 – sequence: 2 fullname: 季桂树 – sequence: 3 fullname: 谢林江 – sequence: 4 fullname: 张少波 |
BookMark | eNo9jj1LAzEcxjNUsNZ-B1eHO_PPJZdklOIbFFy6l7w00lNSMIq6S3ERETpJcVMLIh0VS_00HrmP4YHi8jzwG57fs4YafuQHCG0ATjPOxVaRDkPwKeQ8SyQFkQLHFDPWQM1_toraIQw1ZpQS4LlooqS8fY8v8_j0GBd3cXkfF9NyOquWz9XXuJqPy5vX74-3-HBdfk7iZLaOVpw6CYP2X7dQb3en19lPuod7B53tbmJygIQSyo1zBttMObBacmyFtIwDw1Q6y0FrJ4kxilKQTBGpFRBhLBW8PqmzFtr8nb1Q3il_1C9G56e-FvaLUBxfXp0FgkHgOiD7Ab-OWX8 |
ClassificationCodes | TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1673-9418.1704055 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Application of Convolutional Neural Network in Vehicle Recognition |
EndPage | 291 |
ExternalDocumentID | jsjkxyts201802011 |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China under Grant Nos.61632009,61472451,61402161 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
ID | FETCH-LOGICAL-c611-4247cffc0d3af1db970d89d5715049fd71bbf92cca44195a29ba128cd487418b3 |
ISSN | 1673-9418 |
IngestDate | Thu May 29 04:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning 特征提取 convolutional neural network (CNN) support vector machine (SVM) 深度学习 卷积神经网络(CNN) 支持向量机(SVM) vehicle recognition 车辆识别 feature extracting |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c611-4247cffc0d3af1db970d89d5715049fd71bbf92cca44195a29ba128cd487418b3 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_jsjkxyts201802011 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 计算机科学与探索 |
PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
PublicationYear | 2018 |
Publisher | 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083 湖南科技大学计算机科学与工程学院,湖南湘潭411201 |
Publisher_xml | – name: 湖南科技大学计算机科学与工程学院,湖南湘潭411201 – name: 中南大学信息科学与工程学院,长沙,410083%中南大学信息科学与工程学院,长沙410083 |
SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
Score | 2.1018183 |
Snippet | TP391.41; 针对现有车辆识别方法计算量大,提取特征复杂等问题,提出一种基于卷积神经网络(convolutional neural... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 282 |
Title | 卷积神经网络在车辆识别中的应用 |
URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201802011 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1NaxNBdKnx0osoKn5TxDlu3PnamTnuJhuKUE8Reiv7kVUqRDApaA-epHgREXqS4k0tiPSoWOqvMWx-hu_NbjabaqF6EsLw9s2b9zEvmfdmMx-OcydNDDcyUS6eNeYKmDK72veEa2Ia80xoSu31bWv3_dUH4t66XF9qLTdWLW2Nk3a6_cd9Jf_iVcCBX3GX7F94tmYKCIDBv1CCh6E8lY9JJInuklCRSJEAPj0LSGIiBMKQaIsJu8TQCmM62ArKQJNIY1XgWyAi2gLABAHgDHBIIkFCALrY3AREC6wKA2KExQjg00xwLYeIBFYcAAZ081EcNCmVRE0kMkS5lrmOkAbKgFklgWe95tlK61r5vqWVzRrkwrEG5GlmAY8YOicBuzzL1sc-KZUJKTG9Bf4dbIaAZ7UDEj5ToXohUo3e-OVt9IjtfWQKmgi0bcGwnu0FMIzOHHOS8RJdCG5DGsCEDRpDjEEDWMfCEtmiggzxrCPw1CROmPx_tCpVagQ7X3EXsHohGrLGr541Q1t5SVSVJbHSl8cDMFdK2wCMAtq1gDZVECzK85iPHW--Odp8_Oz5eISe9DAbPeOcZUpRXJ679iKap5LAwDSnwvgsFvZkQ-5dxxa8F8GX89QcHrn2_Dp1l5Qr_MuxfhYCJuflztmZ1uXCPzTp7kkG2a1-wzwePmxkpf3zzrlqOrkSlGPDBWdp-9FFx528_lp8Oig-vC8O3xRHb4vDvcne_vTo4_THzvRgZ_Lq889vX4p3Lyffd4vd_UtOvxf1O6tudS2Km_qUuoIJleZ56mU8zmmWGOVl2mQSugxm-3mmaJLkhsHIDDMdI2NmkhiS0BQGXjypKuGXndbwyXBwxVkRsUdzn6W-N9BC8FyLXIKMTKlUZ8mAXXVuV9ZtVKPeaOM3f107DdF1Zxnh8t3lDac1fro1uAnZ_Di5Zd38C2hnqis |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%9C%A8%E8%BD%A6%E8%BE%86%E8%AF%86%E5%88%AB%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E5%BD%AD%E6%B8%85&rft.au=%E5%AD%A3%E6%A1%82%E6%A0%91&rft.au=%E8%B0%A2%E6%9E%97%E6%B1%9F&rft.au=%E5%BC%A0%E5%B0%91%E6%B3%A2&rft.date=2018&rft.pub=%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99%2C410083%25%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%95%BF%E6%B2%99410083&rft.issn=1673-9418&rft.volume=12&rft.issue=2&rft.spage=282&rft.epage=291&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1704055&rft.externalDocID=jsjkxyts201802011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |