Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion

Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion....

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 30; no. 2; pp. 171 - 180
Main Authors Bazarian, Jeffrey J., Zhu, Tong, Blyth, Brian, Borrino, Allyson, Zhong, Jianhui
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. The percentage of WM voxels with significant ( p<.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
AbstractList Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. The percentage of WM voxels with significant ( p<.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. The percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Background and Purpose Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. Materials and Methods: A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. Results: The percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%+/-.15%) and lowest for controls (mean 0.28%+/-.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%+/-.17%) and lowest for controls (mean 0.48%+/-.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. Conclusions: Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Abstract Background and Purpose Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion. Materials and Methods A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason. Results The percentage of WM voxels with significant ( p <.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus. Conclusions Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.BACKGROUND AND PURPOSECurrent approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.MATERIALS AND METHODSA prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.The percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.RESULTSThe percentage of WM voxels with significant (p<.05) pre-post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.CONCLUSIONSWild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.
Author Blyth, Brian
Borrino, Allyson
Zhong, Jianhui
Zhu, Tong
Bazarian, Jeffrey J.
Author_xml – sequence: 1
  givenname: Jeffrey J.
  surname: Bazarian
  fullname: Bazarian, Jeffrey J.
  email: jeff_bazarian@urmc.rochester.edu
  organization: Emergency Medicine, Neurology, Neurosurgery, Community and Preventive Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
– sequence: 2
  givenname: Tong
  surname: Zhu
  fullname: Zhu, Tong
  email: tong_zhu@urmc.rochester.edu
  organization: Imaging Sciences, University of Rochester School of Medicine, Rochester, NY 14642, USA
– sequence: 3
  givenname: Brian
  surname: Blyth
  fullname: Blyth, Brian
  email: brian_blyth@urmc.rochester.edu
  organization: Emergency Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
– sequence: 4
  givenname: Allyson
  surname: Borrino
  fullname: Borrino, Allyson
  email: allyson_borrino@urmc.rochester.edu
  organization: Sports Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
– sequence: 5
  givenname: Jianhui
  surname: Zhong
  fullname: Zhong, Jianhui
  email: jianhui_zhong@urmc.rochester.edu
  organization: Imaging Science, Biomedical Engineering, and Physics, University of Rochester School of Medicine, Rochester, NY 14642, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22079073$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rFDEUDVKx2-oP8EXmzadZ8zkfCAUp2goFH6rgW8hk7uxmnE3WJFPpv_cO24oWbAnk85yTwz33hBz54IGQ14yuGWXVu3G9i27NKWN4XlPKnpEVa2pRqqaVR2RFa0HLmqvvx-QkpZFSqrhQL8gx57Ru8XVFxuu5G8HmMu3BusHZwm6N30AqnC-6aHD-tXUZip3JGWIRfNG7YZiTw10Gn0Is3M5snN8UZlgQaR9iTmWEyWToCxu8ndMCf0meD2ZK8OpuPSXfPn38en5ZXn25-Hz-4aq0FaO57Bs-ABWqbZpeVT23RhnZcVk1oqPSsloyZbhUlah727WdkdzgUF3XczXwQZySs4Pufu520FvwOZpJ7yP6jLc6GKf_ffFuqzfhRguuZEMrFHh7JxDDzxlS1juXLEyT8RDmpFsuWFs1UjyNZEo0EqNC5Ju_Tf1xc58EAuoDwMaQUoRBW5dNxrqhRzdpRvWSuR41Zq6XzJcrzByZ7AHzXvwxzvsDBzCIGwdRJ-vAW-hdxG7QfXCPss8esO3kvLNm-gG3kMYwR48Ja6YT11RfL324tCFjlGI9FAq0_xd44vPfK3julA
CitedBy_id crossref_primary_10_1007_s11682_025_00970_6
crossref_primary_10_1146_annurev_psych_010213_115103
crossref_primary_10_1080_14763141_2020_1754450
crossref_primary_10_3171_2012_10_FOCUS12284
crossref_primary_10_1089_neu_2012_2628
crossref_primary_10_1089_neu_2013_3213
crossref_primary_10_1002_jnr_24727
crossref_primary_10_1089_neu_2016_4960
crossref_primary_10_1089_neu_2021_0141
crossref_primary_10_1093_braincomms_fcac208
crossref_primary_10_1177_0363546514560876
crossref_primary_10_1016_j_spen_2019_03_018
crossref_primary_10_1212_WNL_0000000000009821
crossref_primary_10_1371_journal_pone_0056805
crossref_primary_10_1007_s11916_016_0573_9
crossref_primary_10_1016_j_neubiorev_2014_11_016
crossref_primary_10_1080_87565641_2015_1020945
crossref_primary_10_1002_glia_22690
crossref_primary_10_1007_s10439_024_03583_0
crossref_primary_10_1016_j_eswa_2020_113372
crossref_primary_10_1038_s41598_020_70604_y
crossref_primary_10_1089_neu_2013_3320
crossref_primary_10_1038_s41598_017_14867_y
crossref_primary_10_1002_hbm_23919
crossref_primary_10_1007_s10439_014_1193_3
crossref_primary_10_1038_s41598_019_54874_9
crossref_primary_10_1093_brain_awy317
crossref_primary_10_1080_02699052_2022_2109732
crossref_primary_10_1002_hbm_23278
crossref_primary_10_1007_s11916_016_0569_5
crossref_primary_10_1016_j_jbiomech_2024_112370
crossref_primary_10_1007_s13760_024_02695_7
crossref_primary_10_1016_j_nic_2017_09_004
crossref_primary_10_3389_fneur_2016_00074
crossref_primary_10_3109_02699052_2013_794968
crossref_primary_10_1212_WNL_0000000000001893
crossref_primary_10_2214_AJR_14_13228
crossref_primary_10_3174_ajnr_A4181
crossref_primary_10_3389_fneur_2019_00690
crossref_primary_10_1148_radiol_2017162403
crossref_primary_10_1080_02699052_2021_1895313
crossref_primary_10_1007_s13273_019_0039_3
crossref_primary_10_1016_j_jbiomech_2018_02_023
crossref_primary_10_1088_1361_665X_accc1b
crossref_primary_10_1089_neu_2017_5541
crossref_primary_10_1007_s11682_016_9509_6
crossref_primary_10_1007_s11682_021_00489_6
crossref_primary_10_1186_alzrt239
crossref_primary_10_1089_neu_2020_7170
crossref_primary_10_1080_10255842_2020_1805442
crossref_primary_10_1089_neu_2014_3655
crossref_primary_10_1007_s10439_016_1680_9
crossref_primary_10_1136_bjsports_2013_092362
crossref_primary_10_1089_neu_2017_5218
crossref_primary_10_1093_brain_awv139
crossref_primary_10_3389_fneur_2020_602586
crossref_primary_10_1016_j_nicl_2016_02_009
crossref_primary_10_1016_j_jocn_2018_11_022
crossref_primary_10_1089_neu_2018_5699
crossref_primary_10_1007_s10439_017_1888_3
crossref_primary_10_1016_j_ijpsycho_2018_01_007
crossref_primary_10_1016_j_nicl_2019_101651
crossref_primary_10_1371_journal_pone_0080296
crossref_primary_10_1007_s40279_017_0847_3
crossref_primary_10_1080_21622965_2016_1220860
crossref_primary_10_14789_jmj_62_s70
crossref_primary_10_1089_neu_2012_2818
crossref_primary_10_1227_NEU_0000000000000491
crossref_primary_10_1016_j_pmr_2016_01_002
crossref_primary_10_1038_jcbfm_2014_6
crossref_primary_10_1007_s11682_017_9752_5
crossref_primary_10_1080_14763141_2023_2186941
crossref_primary_10_1080_10255842_2021_2003345
crossref_primary_10_1080_26941899_2024_2376535
crossref_primary_10_1016_j_nicl_2019_101669
crossref_primary_10_1089_neu_2013_3233
crossref_primary_10_1097_HTR_0b013e318256d3d3
crossref_primary_10_1097_JSM_0000000000000346
crossref_primary_10_1080_00913847_2015_1064301
crossref_primary_10_1162_imag_a_00147
crossref_primary_10_1089_neu_2013_2941
crossref_primary_10_1590_S1980_57642014DN81000003
crossref_primary_10_1111_bpa_12249
crossref_primary_10_1016_j_nicl_2018_02_011
crossref_primary_10_1136_bjsports_2018_099571
crossref_primary_10_1136_bjsports_2013_092256
crossref_primary_10_1136_bjsports_2013_092498
crossref_primary_10_3390_ijerph20136274
crossref_primary_10_1097_JSM_0000000000000578
crossref_primary_10_3174_ajnr_A5489
crossref_primary_10_1016_j_neuron_2012_11_021
crossref_primary_10_1007_s11682_012_9167_2
crossref_primary_10_1097_JSA_0000000000000117
crossref_primary_10_1007_s10439_020_02662_2
crossref_primary_10_1111_jlme_12148
crossref_primary_10_1089_neu_2014_3337
crossref_primary_10_1111_jlme_12147
crossref_primary_10_1002_hbm_22563
crossref_primary_10_1007_s11682_017_9672_4
crossref_primary_10_1089_neu_2014_3339
crossref_primary_10_1089_neu_2013_3050
crossref_primary_10_1089_neu_2013_3171
crossref_primary_10_1089_neu_2014_3577
crossref_primary_10_1089_neu_2014_3450
crossref_primary_10_1089_neu_2023_0307
crossref_primary_10_1007_s11065_013_9237_2
crossref_primary_10_1016_j_wneu_2013_10_020
crossref_primary_10_1016_j_asmr_2023_02_014
crossref_primary_10_1371_journal_pone_0229978
crossref_primary_10_1016_j_ijpsycho_2017_09_006
crossref_primary_10_1016_j_ijpsycho_2017_09_005
crossref_primary_10_1080_13803395_2020_1813257
crossref_primary_10_3171_2013_7_JNS121822
crossref_primary_10_1016_j_neuroimage_2020_117182
crossref_primary_10_1038_nrneurol_2013_33
crossref_primary_10_1007_s40279_019_01200_y
crossref_primary_10_1371_journal_pone_0125748
crossref_primary_10_3174_ajnr_A4254
crossref_primary_10_1136_bjsports_2016_096134
crossref_primary_10_1089_neu_2017_5002
crossref_primary_10_1093_brain_awaa447
crossref_primary_10_3171_2013_12_JNS132092
crossref_primary_10_3171_2013_12_JNS132090
crossref_primary_10_3389_fneur_2015_00273
crossref_primary_10_1097_HTR_0000000000000286
crossref_primary_10_1016_j_bbrc_2016_07_123
crossref_primary_10_3171_2017_12_JNS172035
crossref_primary_10_1093_brain_awu236
crossref_primary_10_1038_s41598_021_85518_6
crossref_primary_10_1089_neu_2017_5158
crossref_primary_10_3171_2016_1_FOCUS15607
crossref_primary_10_1249_MSS_0b013e3182798758
crossref_primary_10_3109_02699052_2016_1160152
crossref_primary_10_1002_hbm_26811
crossref_primary_10_1097_HTR_0000000000000030
crossref_primary_10_1093_arclin_acu060
crossref_primary_10_1089_neu_2018_5634
crossref_primary_10_1007_s40279_013_0134_x
crossref_primary_10_1177_17543371241290896
crossref_primary_10_1089_neu_2019_6377
crossref_primary_10_1177_0883073814538504
crossref_primary_10_1089_neu_2014_3368
crossref_primary_10_1089_neu_2013_3268
crossref_primary_10_1002_hbm_24500
crossref_primary_10_1097_HTR_0000000000000381
crossref_primary_10_5507_bp_2023_013
crossref_primary_10_1080_21622965_2015_1052813
crossref_primary_10_4085_1062_6050_49_1_07
crossref_primary_10_1016_j_pediatrneurol_2015_04_003
crossref_primary_10_1017_S1355617715000740
crossref_primary_10_1136_bmjsem_2018_000464
crossref_primary_10_1089_neu_2015_4239
crossref_primary_10_1115_1_4046363
crossref_primary_10_4085_1062_6050_52_1_14
crossref_primary_10_1007_s42979_023_01773_6
crossref_primary_10_1016_j_csm_2017_05_002
crossref_primary_10_3389_fneur_2018_00468
crossref_primary_10_1177_1759091420922929
crossref_primary_10_3389_fnhum_2022_976013
crossref_primary_10_1016_j_pscychresns_2020_111137
crossref_primary_10_1097_HTR_0000000000000138
crossref_primary_10_1177_0363546513502458
crossref_primary_10_1089_neu_2014_3822
crossref_primary_10_1016_j_nicl_2019_101930
crossref_primary_10_3171_2016_1_FOCUS15617
crossref_primary_10_3171_2021_10_PEDS21355
crossref_primary_10_1098_rsif_2015_0331
crossref_primary_10_1080_02699052_2022_2034181
crossref_primary_10_1371_journal_pone_0094734
crossref_primary_10_1177_1747954119833477
crossref_primary_10_1038_s41598_021_85811_4
crossref_primary_10_3389_fneur_2021_681467
crossref_primary_10_1097_JSM_0000000000000272
crossref_primary_10_1016_j_jalz_2014_04_003
crossref_primary_10_1371_journal_pone_0102181
crossref_primary_10_1016_j_spen_2019_03_008
crossref_primary_10_4085_1062_6050_52_6_01
crossref_primary_10_3171_2012_10_FOCUS12303
crossref_primary_10_1089_neu_2018_5725
crossref_primary_10_3171_2012_10_FOCUS12305
crossref_primary_10_1016_j_neuroscience_2022_06_025
crossref_primary_10_1371_journal_pone_0150215
crossref_primary_10_1007_s10439_021_02786_z
crossref_primary_10_1177_1941738116678615
crossref_primary_10_3171_2017_12_JNS171597
crossref_primary_10_1007_s12160_014_9636_5
crossref_primary_10_1016_j_mri_2013_07_016
crossref_primary_10_1007_s00415_016_8141_0
crossref_primary_10_1080_09638288_2024_2391108
crossref_primary_10_1016_j_jmbbm_2019_103380
crossref_primary_10_1089_neu_2015_3930
crossref_primary_10_1089_neu_2020_7259
crossref_primary_10_1016_j_expneurol_2012_01_013
crossref_primary_10_1002_hbm_23859
crossref_primary_10_1027_0269_8803_a000213
crossref_primary_10_3233_JAD_180287
crossref_primary_10_2217_cnc_2020_0023
crossref_primary_10_1017_S1355617721001491
crossref_primary_10_1089_neu_2018_6365
crossref_primary_10_1016_j_neubiorev_2012_03_007
Cites_doi 10.1111/j.1460-9568.2010.07573.x
10.1089/neu.2007.0241
10.1212/01.wnl.0000305961.68029.54
10.1002/jmri.1076
10.3174/ajnr.A0970
10.1016/j.neuroimage.2008.01.016
10.1002/mrm.1910340111
10.1093/brain/awl361
10.1089/neu.2006.0136
10.1523/JNEUROSCI.3647-07.2007
10.1016/j.neuroimage.2005.02.013
10.1177/088307380101600203
10.1002/hbm.1058
10.1006/nimg.2000.0582
10.1089/neu.2006.0211
10.1002/hbm.20395
10.1002/mrm.21014
10.1097/00042752-200307000-00005
10.1227/01.NEU.0000163407.92769.ED
10.1227/01.neu.0000318162.67472.ad
10.1097/00001199-200501000-00008
10.1080/13554790701399254
10.1097/00001199-199804000-00005
10.1016/j.expneurol.2008.09.009
10.1080/13554790903329174
10.1097/HTR.0b013e3181c15600
10.3171/jns.2005.103.2.0298
10.1097/00001199-199804000-00003
10.1212/WNL.0b013e3181d0ccdd
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
2011 Elsevier Inc. All rights reserved. 2011
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2011 Elsevier Inc. All rights reserved. 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
7TS
8FD
FR3
P64
5PM
DOI 10.1016/j.mri.2011.10.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE

Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 180
ExternalDocumentID PMC3254806
22079073
10_1016_j_mri_2011_10_001
S0730725X11003845
1_s2_0_S0730725X11003845
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 1R01HD051865
– fundername: University of Rochester Health Sciences Center For Computational Innovation
– fundername: NICHD NIH HHS
  grantid: K24 HD064754
– fundername: NICHD NIH HHS
  grantid: R01 HD051865
– fundername: NICHD NIH HHS
  grantid: 1R01HD051865
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
G8K
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
7TS
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c610t-d82fe035988d56d2ca5a4b24683b04c17415a245637dcb9ba42a2a25bbd25f2f3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Aug 21 18:18:42 EDT 2025
Fri Jul 11 01:51:12 EDT 2025
Mon Jul 21 10:26:23 EDT 2025
Mon Jul 21 06:07:24 EDT 2025
Tue Jul 01 02:41:11 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Fri Feb 23 02:27:51 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Aug 26 16:37:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-d82fe035988d56d2ca5a4b24683b04c17415a245637dcb9ba42a2a25bbd25f2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22079073
PQID 915384016
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3254806
proquest_miscellaneous_923196843
proquest_miscellaneous_915384016
pubmed_primary_22079073
crossref_citationtrail_10_1016_j_mri_2011_10_001
crossref_primary_10_1016_j_mri_2011_10_001
elsevier_sciencedirect_doi_10_1016_j_mri_2011_10_001
elsevier_clinicalkeyesjournals_1_s2_0_S0730725X11003845
elsevier_clinicalkey_doi_10_1016_j_mri_2011_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Povlishock, Katz (bb0025) 2005; 20
Whitcher, Tuch, Wisco, Sorensen, Wang (bb0055) 2008; 29
Ashburner, Friston (bb0050) 2000; 11
Langburt, Cohen, Akhthar (bb0160) 2001; 16
Bazarian, Zhong, Blyth, Zhu, Kavcic, Peterson (bb0040) 2007; 24
Bazarian, Cernak, Noble-Haeusslein, Potolicchio, Temkin (bb0015) 2009; 24
Pasco, Lemaire, Franconi, Lefur, Noury, Saint-Andre (bb0135) 2007; 24
Collins, Iverson, Lovell, McKeag, Norwig, Maroon (bb0080) 2003; 13
Jones, Symms, Cercignani, Howard (bb0085) 2005; 26
Shinoura, Suzuki, Tsukadac, Katsukic, Yamadaa, Tabeia (bb0115) 2007; 13
Mayer, Ling, Mannell, Gasparovic, Phillips, Doezema (bb0120) 2010; 74
Liu, Maldjian, Bagley, Sinson, Grossman (bb0095) 1999; 20
Li, Li, Feng, Gu (bb0145) 2011; 33
Mandonnet, Nouet, Gatignol, Capelle, Duffau (bb0105) 2007; 130
Greenwald, Gwin, Chu, Crisco (bb0155) 2008; 62
Efron (bb0065) 1993
Le Bihan, Poupon, Clark, Pappata, Molko, Chabriat (bb0150) 2001; 13
Faul, Wald, Coronado (bb0005) 2010
Mac Donald, Dikranian, Bayly Holtzman, Brody (bb0125) 2007; 27
O'Gorman, Jones (bb0070) 2006; 56
McCrea, Kelly, Randolph, Kluge, Bartolic, Finn (bb0075) 1998; 13
Thurman, Branche, Sniezek (bb0010) 1998; 13
Arfanakis, Haughton, Carew, Rogers, Dempsey, Meyerand (bb0030) 2002; 23
Shinouraa, Suzukib, Tsukadac, Yoshidad, Yamadaa, Tabeia (bb0110) 2010; 16
Obenaus, Robbins, Blanco, Galloway, Snissarenko, Gillard (bb0130) 2007; 24
Inglese, Makani, Johnson, Cohen, Silver, Gonen (bb0035) 2005; 103
Wilde, McCauley, Hunter, Bigler, Chu, Wang (bb0045) 2008; 70
Zhu, Liu, Connelly, Zhong, Zhu, Liu (bb0060) 2008; 40
Omalu, DeKosky, Minster RL Kamboh, Hamilton, Wecht (bb0020) 2005; 57
Niogi, Mukherjee, Ghajar, Johnson, Kolster, Sarkar (bb0100) 2008; 29
Immonen, Kharatishvili, Niskanen, Grohn, Pitkanen, Grohn (bb0140) 2009; 215
Jezzard, Balaban (bb0165) 1995; 34
Nichols, Holmes (bb0090) 2002; 15
Liu (10.1016/j.mri.2011.10.001_bb0095) 1999; 20
Zhu (10.1016/j.mri.2011.10.001_bb0060) 2008; 40
Pasco (10.1016/j.mri.2011.10.001_bb0135) 2007; 24
Jones (10.1016/j.mri.2011.10.001_bb0085) 2005; 26
Immonen (10.1016/j.mri.2011.10.001_bb0140) 2009; 215
Collins (10.1016/j.mri.2011.10.001_bb0080) 2003; 13
Greenwald (10.1016/j.mri.2011.10.001_bb0155) 2008; 62
Arfanakis (10.1016/j.mri.2011.10.001_bb0030) 2002; 23
Ashburner (10.1016/j.mri.2011.10.001_bb0050) 2000; 11
Inglese (10.1016/j.mri.2011.10.001_bb0035) 2005; 103
Shinoura (10.1016/j.mri.2011.10.001_bb0115) 2007; 13
Niogi (10.1016/j.mri.2011.10.001_bb0100) 2008; 29
Jezzard (10.1016/j.mri.2011.10.001_bb0165) 1995; 34
Bazarian (10.1016/j.mri.2011.10.001_bb0040) 2007; 24
Thurman (10.1016/j.mri.2011.10.001_bb0010) 1998; 13
Whitcher (10.1016/j.mri.2011.10.001_bb0055) 2008; 29
Shinouraa (10.1016/j.mri.2011.10.001_bb0110) 2010; 16
Obenaus (10.1016/j.mri.2011.10.001_bb0130) 2007; 24
Li (10.1016/j.mri.2011.10.001_bb0145) 2011; 33
Bazarian (10.1016/j.mri.2011.10.001_bb0015) 2009; 24
Faul (10.1016/j.mri.2011.10.001_bb0005) 2010
Wilde (10.1016/j.mri.2011.10.001_bb0045) 2008; 70
Mayer (10.1016/j.mri.2011.10.001_bb0120) 2010; 74
Omalu (10.1016/j.mri.2011.10.001_bb0020) 2005; 57
Nichols (10.1016/j.mri.2011.10.001_bb0090) 2002; 15
Mac Donald (10.1016/j.mri.2011.10.001_bb0125) 2007; 27
Le Bihan (10.1016/j.mri.2011.10.001_bb0150) 2001; 13
O'Gorman (10.1016/j.mri.2011.10.001_bb0070) 2006; 56
Efron (10.1016/j.mri.2011.10.001_bb0065) 1993
Langburt (10.1016/j.mri.2011.10.001_bb0160) 2001; 16
Povlishock (10.1016/j.mri.2011.10.001_bb0025) 2005; 20
Mandonnet (10.1016/j.mri.2011.10.001_bb0105) 2007; 130
McCrea (10.1016/j.mri.2011.10.001_bb0075) 1998; 13
References_xml – volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bb0090
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 11869
  year: 2007
  end-page: 11876
  ident: bb0125
  article-title: Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury
  publication-title: J Neurosci
– volume: 57
  start-page: 128
  year: 2005
  end-page: 134
  ident: bb0020
  article-title: Chronic traumatic encephalopathy in a National Football League player
  publication-title: Neurosurgery
– volume: 40
  start-page: 1144
  year: 2008
  end-page: 1156
  ident: bb0060
  article-title: An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain
  publication-title: Neuroimage
– volume: 16
  start-page: 135
  year: 2010
  end-page: 139
  ident: bb0110
  article-title: Deficits in the left inferior longitudinal fasciculus results in impairments in object naming
  publication-title: Neurocase
– volume: 103
  start-page: 298
  year: 2005
  end-page: 303
  ident: bb0035
  article-title: Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study
  publication-title: J Neurosurg
– volume: 16
  start-page: 83
  year: 2001
  end-page: 85
  ident: bb0160
  article-title: Incidence of concussion in high school football players of Ohio and Pennsylvania
  publication-title: J Child Neurol
– volume: 56
  start-page: 884
  year: 2006
  end-page: 890
  ident: bb0070
  publication-title: Magn Reson Med
– volume: 33
  start-page: 933
  year: 2011
  end-page: 945
  ident: bb0145
  article-title: Quantitative evaluation of microscopic injury with diffusion. tensor imaging in a rat model of diffuse axonal injury
  publication-title: Eur J Neurosci
– volume: 74
  start-page: 643
  year: 2010
  end-page: 650
  ident: bb0120
  article-title: A prospective diffusion tensor imaging study in mild traumatic brain injury
  publication-title: Neurology
– volume: 215
  start-page: 29
  year: 2009
  end-page: 40
  ident: bb0140
  article-title: Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat — 11 months follow-up
  publication-title: Exp Neurol
– volume: 24
  start-page: 1447
  year: 2007
  end-page: 1459
  ident: bb0040
  article-title: Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study
  publication-title: J Neurotrauma
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  ident: bb0165
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
– volume: 20
  start-page: 1636
  year: 1999
  end-page: 1641
  ident: bb0095
  article-title: Traumatic brain injury: diffusion-weighted MR imaging findings
  publication-title: AJNR Am J Neuroradiol
– volume: 13
  start-page: 1
  year: 1998
  end-page: 8
  ident: bb0010
  article-title: The epidemiology of sports-related traumatic brain injuries in the United States: recent developments
  publication-title: J Head Trauma Rehab
– volume: 29
  start-page: 967
  year: 2008
  end-page: 973
  ident: bb0100
  article-title: Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury
  publication-title: AJNR: Am J Neuroradiol
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0050
  article-title: Voxel-based morphometry — the methods
  publication-title: Neuroimage
– volume: 29
  start-page: 346
  year: 2008
  end-page: 362
  ident: bb0055
  article-title: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging
  publication-title: Hum Brain Mapp
– volume: 62
  start-page: 789
  year: 2008
  end-page: 798
  ident: bb0155
  article-title: Head impact severity measures for evaluating mild traumatic brain injury risk exposure
  publication-title: Neurosurgery
– volume: 23
  start-page: 794
  year: 2002
  end-page: 802
  ident: bb0030
  article-title: Diffusion tensor MR imaging in diffuse axonal injury
  publication-title: AJNR Am J Neuroradiol
– volume: 24
  start-page: 1147
  year: 2007
  end-page: 1160
  ident: bb0130
  article-title: Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma
  publication-title: J Neurotrauma
– volume: 13
  start-page: 127
  year: 2007
  end-page: 130
  ident: bb0115
  article-title: Impairment of inferior longitudinal fasciculus plays a role in visual memory disturbance
  publication-title: Neurocase
– volume: 13
  start-page: 222
  year: 2003
  end-page: 229
  ident: bb0080
  article-title: On-field predictors of neuropsychological and symptom deficit following sports-related concussion
  publication-title: Clin J Sport Med
– year: 1993
  ident: bb0065
  article-title: An introduction to the bootstrap
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  ident: bb0150
  article-title: Diffusion tensor imaging:concepts and applications
  publication-title: J Magn Reson Imaging
– volume: 20
  start-page: 76
  year: 2005
  end-page: 94
  ident: bb0025
  article-title: Update of neuropathology and neurological recovery after traumatic brain injury
  publication-title: J Head Trauma Rehab
– volume: 24
  start-page: 439
  year: 2009
  end-page: 451
  ident: bb0015
  article-title: Long-term neurologic outcomes after traumatic brain injury
  publication-title: J Head Trauma Rehab
– volume: 130
  start-page: 623
  year: 2007
  end-page: 629
  ident: bb0105
  article-title: Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study
  publication-title: Brain
– volume: 24
  start-page: 1321
  year: 2007
  end-page: 1330
  ident: bb0135
  article-title: Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging
  publication-title: J Neurotrauma
– volume: 26
  start-page: 546
  year: 2005
  end-page: 554
  ident: bb0085
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: Neuroimage
– year: 2010
  ident: bb0005
  article-title: Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006
– volume: 13
  start-page: 27
  year: 1998
  end-page: 35
  ident: bb0075
  article-title: Standardized assessment of concussion (SAC): on-site mental status evaluation of the athlete
  publication-title: J Head Trauma Rehab
– volume: 70
  start-page: 948
  year: 2008
  end-page: 955
  ident: bb0045
  article-title: Diffusion tensor imaging of acute mild traumatic brain injury in adolescents
  publication-title: Neurology
– volume: 33
  start-page: 933
  year: 2011
  ident: 10.1016/j.mri.2011.10.001_bb0145
  article-title: Quantitative evaluation of microscopic injury with diffusion. tensor imaging in a rat model of diffuse axonal injury
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2010.07573.x
– volume: 24
  start-page: 1447
  issue: 9
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0040
  article-title: Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2007.0241
– volume: 70
  start-page: 948
  issue: 12
  year: 2008
  ident: 10.1016/j.mri.2011.10.001_bb0045
  article-title: Diffusion tensor imaging of acute mild traumatic brain injury in adolescents
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000305961.68029.54
– volume: 13
  start-page: 534
  issue: 4
  year: 2001
  ident: 10.1016/j.mri.2011.10.001_bb0150
  article-title: Diffusion tensor imaging:concepts and applications
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.1076
– volume: 29
  start-page: 967
  issue: 5
  year: 2008
  ident: 10.1016/j.mri.2011.10.001_bb0100
  article-title: Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury
  publication-title: AJNR: Am J Neuroradiol
  doi: 10.3174/ajnr.A0970
– volume: 20
  start-page: 1636
  issue: 9
  year: 1999
  ident: 10.1016/j.mri.2011.10.001_bb0095
  article-title: Traumatic brain injury: diffusion-weighted MR imaging findings
  publication-title: AJNR Am J Neuroradiol
– volume: 40
  start-page: 1144
  issue: 3
  year: 2008
  ident: 10.1016/j.mri.2011.10.001_bb0060
  article-title: An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.016
– volume: 34
  start-page: 65
  issue: 1
  year: 1995
  ident: 10.1016/j.mri.2011.10.001_bb0165
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340111
– volume: 130
  start-page: 623
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0105
  article-title: Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study
  publication-title: Brain
  doi: 10.1093/brain/awl361
– volume: 24
  start-page: 1321
  issue: 8
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0135
  article-title: Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.0136
– volume: 27
  start-page: 11869
  issue: 44
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0125
  article-title: Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3647-07.2007
– volume: 26
  start-page: 546
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2011.10.001_bb0085
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.013
– volume: 16
  start-page: 83
  issue: 2
  year: 2001
  ident: 10.1016/j.mri.2011.10.001_bb0160
  article-title: Incidence of concussion in high school football players of Ohio and Pennsylvania
  publication-title: J Child Neurol
  doi: 10.1177/088307380101600203
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.mri.2011.10.001_bb0090
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1058
– year: 2010
  ident: 10.1016/j.mri.2011.10.001_bb0005
– volume: 11
  start-page: 805
  issue: 6 Pt 1
  year: 2000
  ident: 10.1016/j.mri.2011.10.001_bb0050
  article-title: Voxel-based morphometry — the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 23
  start-page: 794
  issue: 5
  year: 2002
  ident: 10.1016/j.mri.2011.10.001_bb0030
  article-title: Diffusion tensor MR imaging in diffuse axonal injury
  publication-title: AJNR Am J Neuroradiol
– volume: 24
  start-page: 1147
  issue: 7
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0130
  article-title: Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2006.0211
– volume: 29
  start-page: 346
  issue: 3
  year: 2008
  ident: 10.1016/j.mri.2011.10.001_bb0055
  article-title: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20395
– volume: 56
  start-page: 884
  issue: 4
  year: 2006
  ident: 10.1016/j.mri.2011.10.001_bb0070
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21014
– volume: 13
  start-page: 222
  issue: 4
  year: 2003
  ident: 10.1016/j.mri.2011.10.001_bb0080
  article-title: On-field predictors of neuropsychological and symptom deficit following sports-related concussion
  publication-title: Clin J Sport Med
  doi: 10.1097/00042752-200307000-00005
– volume: 57
  start-page: 128
  issue: 1
  year: 2005
  ident: 10.1016/j.mri.2011.10.001_bb0020
  article-title: Chronic traumatic encephalopathy in a National Football League player
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000163407.92769.ED
– volume: 62
  start-page: 789
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2011.10.001_bb0155
  article-title: Head impact severity measures for evaluating mild traumatic brain injury risk exposure
  publication-title: Neurosurgery
  doi: 10.1227/01.neu.0000318162.67472.ad
– volume: 20
  start-page: 76
  issue: 1
  year: 2005
  ident: 10.1016/j.mri.2011.10.001_bb0025
  article-title: Update of neuropathology and neurological recovery after traumatic brain injury
  publication-title: J Head Trauma Rehab
  doi: 10.1097/00001199-200501000-00008
– volume: 13
  start-page: 127
  year: 2007
  ident: 10.1016/j.mri.2011.10.001_bb0115
  article-title: Impairment of inferior longitudinal fasciculus plays a role in visual memory disturbance
  publication-title: Neurocase
  doi: 10.1080/13554790701399254
– year: 1993
  ident: 10.1016/j.mri.2011.10.001_bb0065
– volume: 13
  start-page: 27
  issue: 2
  year: 1998
  ident: 10.1016/j.mri.2011.10.001_bb0075
  article-title: Standardized assessment of concussion (SAC): on-site mental status evaluation of the athlete
  publication-title: J Head Trauma Rehab
  doi: 10.1097/00001199-199804000-00005
– volume: 215
  start-page: 29
  issue: 1
  year: 2009
  ident: 10.1016/j.mri.2011.10.001_bb0140
  article-title: Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat — 11 months follow-up
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2008.09.009
– volume: 16
  start-page: 135
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2011.10.001_bb0110
  article-title: Deficits in the left inferior longitudinal fasciculus results in impairments in object naming
  publication-title: Neurocase
  doi: 10.1080/13554790903329174
– volume: 24
  start-page: 439
  issue: 6
  year: 2009
  ident: 10.1016/j.mri.2011.10.001_bb0015
  article-title: Long-term neurologic outcomes after traumatic brain injury
  publication-title: J Head Trauma Rehab
  doi: 10.1097/HTR.0b013e3181c15600
– volume: 103
  start-page: 298
  issue: 2
  year: 2005
  ident: 10.1016/j.mri.2011.10.001_bb0035
  article-title: Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study
  publication-title: J Neurosurg
  doi: 10.3171/jns.2005.103.2.0298
– volume: 13
  start-page: 1
  issue: 2
  year: 1998
  ident: 10.1016/j.mri.2011.10.001_bb0010
  article-title: The epidemiology of sports-related traumatic brain injuries in the United States: recent developments
  publication-title: J Head Trauma Rehab
  doi: 10.1097/00001199-199804000-00003
– volume: 74
  start-page: 643
  issue: 8
  year: 2010
  ident: 10.1016/j.mri.2011.10.001_bb0120
  article-title: A prospective diffusion tensor imaging study in mild traumatic brain injury
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181d0ccdd
SSID ssj0005235
Score 2.4646
Snippet Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the...
Abstract Background and Purpose Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI...
Background and Purpose Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms Adolescent
Athletic Injuries - pathology
Brain Concussion - pathology
Diffusion Magnetic Resonance Imaging - methods
Female
Head Injuries, Closed - pathology
Humans
Male
Nerve Fibers, Myelinated - pathology
Radiology
Reproducibility of Results
Sensitivity and Specificity
Young Adult
Title Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X11003845
https://www.clinicalkey.es/playcontent/1-s2.0-S0730725X11003845
https://dx.doi.org/10.1016/j.mri.2011.10.001
https://www.ncbi.nlm.nih.gov/pubmed/22079073
https://www.proquest.com/docview/915384016
https://www.proquest.com/docview/923196843
https://pubmed.ncbi.nlm.nih.gov/PMC3254806
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWX0ne3j6BDTwV1ZXn8OobQsG1JLm1gb0IvU4euN6x3yS2_PRrZXrJNu4Xi03pnsC2NRiPpm28APiA6m3gX1ia61hxRF1wL4TiWFZZGOCtq2tA_O89nF_h1ns0P4GTMhSFY5eD7e58evfVwZzq05vSqaabfyTgLmc2J9CwtkRLNEQuy8k83d2EefZHNIMxJejzZjBivxarpWTwjwCv529x0P_b8HUJ5Z046fQKPh2CSHffv-xQOfPsMHp4Nx-XP4TK4Bdpn4ZRPSZgg1uf5dqxpmaHiEOyajhHYIrJssmXLqGDKhnbQGEHblyvWLGIdIxaLibO4CO54zIDxjoXFtN0QjrZ9ARenn3-czPhQXIHbEDGtuStl7SN_X-my3EmrM41GYl6mRqBNKNLQdCqaFs6aymiUOlyZMU5mtazTl3DYLlv_GpjQVuZl7Twaj5Io3U1VmyIJSrXViBMQY7MqOzCPUwGMX2qEmF2q0BOKeoJuhZ6YwMetylVPu7FPWI59pcZ80uABVZgU9ikVf1Ly3TCGO5WoTiqh7tnZBHCruWOq_3ogG81IhSFM5zK69ctNpyqadcI6N98jIslVlphO4FVveNtmkVIUVXjH8EE7JrkVIALx3X_a5mckEk8lsf3lb_7vg97Co_BL9hD2d3C4Xm38-xChrc1RHIJH8OD4y7fZ-S3gWj1l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2Kbp32m7TYacBRmRZfh2LYkW6NrmsBXIT9DLmonGKOMH-fkVZDpp1y4DBN1uEbYmiKPHjR4AvnBsdW-P2JrKSEecyjySlJuJFyQtFjaYVHuhPptn4hn-fpbM9OOtzYRBWGWx_Z9O9tQ53RqE3R_d1PfqBypmzdIakZ0nB02ewj-xU6QD2Ty8ux9NHSI-uzqZrH6FAH9z0MK_5su6IPD3GK_7b8vTU_fwdRfloWTo_hIPgT5LT7pNfwZ5tXsPzSYiYv4FbZxnwqCXClEqEBZEu1bcldUMU1ocgvzCSQOaeaJMsGoI1U9Z4iEYQ3b5YknruSxkRX0-c-H1wG_kkGGuI20_rNUJpm7dwc_7t-mwchfoKkXZO0yoyBausp_ArTJoZpmUquWI8KxJFuY7R2ZAYGE1yo1WpJGfSXalShqUVq5J3MGgWjf0AhErNsqIylivLGbK6q7JSeeyEKi05HwLtu1XoQD6ONTDuRI8yuxVuJASOBN5yIzGErxuR-455Y1dj1o-V6FNKnREUbl3YJZT_Sci2YRq3IhYtE1Q8UbUh8I3klrb-64WkVyPhZjGGZmRjF-tWlLjwuK1utqMJQ2tZ8GQI7zvF23QLYzQv3Te6H9pSyU0D5BDfftLUPz2XeMKQ8C87-r8f-gwvxteTK3F1Mb08hpfuCesQ7ScwWC3X9qNz2FbqU5iQD5puQBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+changes+in+brain+white+matter+on+diffusion+tensor+imaging+after+sports-related+concussion&rft.jtitle=Magnetic+resonance+imaging&rft.au=Bazarian%2C+Jeffrey+J.&rft.au=Zhu%2C+Tong&rft.au=Blyth%2C+Brian&rft.au=Borrino%2C+Allyson&rft.date=2012-02-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.volume=30&rft.issue=2&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1016%2Fj.mri.2011.10.001&rft.externalDocID=S0730725X11003845
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0730725X%2FS0730725X11X00127%2Fcov150h.gif