4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement

The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 11; pp. 4967 - 4972
Main Authors Cong, Yao, Baker, Matthew L, Jakana, Joanita, Woolford, David, Miller, Erik J, Reissmann, Stefanie, Kumar, Ramya N, Redding-Johanson, Alyssa M, Batth, Tanveer S, Mukhopadhyay, Aindrila, Ludtke, Steven J, Frydman, Judith, Chiu, Wah
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.03.2010
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0913774107

Cover

Abstract The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ~95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.
AbstractList The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC’s unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ∼95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC’s cellular substrate specificity.
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ...5 - 10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ...95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. (ProQuest: ... denotes formulae/symbols omitted.)
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ~95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.
Author Batth, Tanveer S
Redding-Johanson, Alyssa M
Frydman, Judith
Woolford, David
Kumar, Ramya N
Chiu, Wah
Reissmann, Stefanie
Miller, Erik J
Baker, Matthew L
Cong, Yao
Ludtke, Steven J
Jakana, Joanita
Mukhopadhyay, Aindrila
Author_xml – sequence: 1
  fullname: Cong, Yao
– sequence: 2
  fullname: Baker, Matthew L
– sequence: 3
  fullname: Jakana, Joanita
– sequence: 4
  fullname: Woolford, David
– sequence: 5
  fullname: Miller, Erik J
– sequence: 6
  fullname: Reissmann, Stefanie
– sequence: 7
  fullname: Kumar, Ramya N
– sequence: 8
  fullname: Redding-Johanson, Alyssa M
– sequence: 9
  fullname: Batth, Tanveer S
– sequence: 10
  fullname: Mukhopadhyay, Aindrila
– sequence: 11
  fullname: Ludtke, Steven J
– sequence: 12
  fullname: Frydman, Judith
– sequence: 13
  fullname: Chiu, Wah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20194787$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuKFDEUhgsZcS66dqUWLnRV3blfNoI04wVGBG3XIZVOdaepSnqS1MA8gE_mi5mie2wdGCGQ23f-_CfnnFcnPnhbVc8hmEHA8XzndZoBCTHnpBw8qs5g2TWMSHBSnQGAeCMIIqfVeUpbAICkAjypThGAknDBz6pAZqD59bOONoV-zC742sTb0Fx-qVOOo8ljtHXo6ryx9aCHQfdOF2SjdzYG73y9_OYW88ViWRRurO5T7XKqR--uR1unsS2rXOsYtV_bwfr8tHrcFco-O8wX1fLD5XLxqbn6-vHz4v1VYxgEuWlli6HGknIoETbSGgyo5tjSTtMVFXjFGNGdWK0QNbDlTAICEePWkBZIhi-qd3vZ3dgOdmXKy1H3ahfdoOOtCtqpf2-826h1uFFIECiEKAJvDwIxlFRSVoNLxva99jaMSXGMy0CEFPLNf0nCqEBQTJ5e3wO3YYy-_IIq9SAYcoAK9PJv438c31WsAHQPmBhSirZTxmU9Fa7k4XoFgZo6Q02doY6dUeLm9-LupB-OeHWwMl0caa4gVESyiXixJ7Yph3j0SktxJARHhU4HpdfRJfXje8mEAQCFpEg8SOACQCYQwb8BOi3h4Q
CitedBy_id crossref_primary_10_1016_j_abb_2011_09_010
crossref_primary_10_1016_j_mocell_2024_100012
crossref_primary_10_1038_srep33742
crossref_primary_10_1038_emboj_2011_366
crossref_primary_10_1016_j_jsb_2011_11_032
crossref_primary_10_1016_j_ultramic_2011_08_007
crossref_primary_10_3389_fmed_2022_861371
crossref_primary_10_1073_pnas_2018127118
crossref_primary_10_1016_j_jsb_2010_12_005
crossref_primary_10_1016_j_jsb_2010_06_010
crossref_primary_10_1038_nsmb_3459
crossref_primary_10_1146_annurev_biochem_060208_092442
crossref_primary_10_3389_fcell_2022_906530
crossref_primary_10_1073_pnas_1218836109
crossref_primary_10_1016_j_str_2013_01_017
crossref_primary_10_1038_s41419_024_07001_0
crossref_primary_10_1042_BCJ20170378
crossref_primary_10_1016_j_str_2012_01_023
crossref_primary_10_1002_bip_22065
crossref_primary_10_7554_eLife_01963
crossref_primary_10_1016_j_jsb_2011_04_012
crossref_primary_10_1371_journal_pgen_1008121
crossref_primary_10_1038_srep34174
crossref_primary_10_1002_jemt_20963
crossref_primary_10_1146_annurev_matsci_070511_155004
crossref_primary_10_1007_s12192_013_0413_3
crossref_primary_10_1016_j_jmb_2018_03_026
crossref_primary_10_1007_s12192_019_01028_5
crossref_primary_10_3390_v12050519
crossref_primary_10_1016_j_ceb_2011_11_002
crossref_primary_10_1016_j_molcel_2019_06_036
crossref_primary_10_1016_j_str_2023_10_013
crossref_primary_10_1111_febs_13521
crossref_primary_10_1016_j_jsb_2013_08_005
crossref_primary_10_1016_j_bpj_2011_04_018
crossref_primary_10_1038_nature13899
crossref_primary_10_1016_j_jprot_2019_103536
crossref_primary_10_1016_j_cell_2022_11_014
crossref_primary_10_1016_j_str_2012_03_007
crossref_primary_10_1038_s41598_017_03825_3
crossref_primary_10_1371_journal_pbio_1001844
crossref_primary_10_55959_10_55959_MSU0137_0952_16_78_3S_7
crossref_primary_10_1016_j_tibs_2011_05_003
crossref_primary_10_3390_ijms26031193
crossref_primary_10_1242_jcs_220905
crossref_primary_10_1007_s12192_018_0949_3
crossref_primary_10_1016_j_str_2012_01_008
crossref_primary_10_1093_jmicro_dft026
crossref_primary_10_1016_j_jmb_2010_06_037
crossref_primary_10_1016_j_pep_2011_11_010
crossref_primary_10_3389_fcell_2023_1225628
crossref_primary_10_1016_j_jsb_2010_05_006
crossref_primary_10_1007_s11427_013_4476_2
crossref_primary_10_1038_srep27701
crossref_primary_10_4061_2011_843206
crossref_primary_10_1016_j_cell_2010_12_017
crossref_primary_10_1038_emboj_2011_208
crossref_primary_10_1038_nprot_2010_126
crossref_primary_10_1016_j_str_2012_02_017
crossref_primary_10_1038_s41598_017_18962_y
crossref_primary_10_1371_journal_pone_0021470
crossref_primary_10_1016_j_jsb_2010_09_019
crossref_primary_10_1073_pnas_1917906117
crossref_primary_10_1093_nar_gku484
crossref_primary_10_1038_s41467_018_03484_6
crossref_primary_10_1002_bbb_1417
crossref_primary_10_18632_oncotarget_19369
crossref_primary_10_1007_s00468_013_0967_9
crossref_primary_10_1016_j_jmb_2015_04_013
crossref_primary_10_1016_j_jsb_2012_07_009
crossref_primary_10_1002_anie_201608432
crossref_primary_10_1016_j_micron_2011_08_004
crossref_primary_10_1016_j_cbi_2017_12_023
crossref_primary_10_1109_TCBB_2014_2302803
crossref_primary_10_1016_j_str_2012_05_004
crossref_primary_10_1038_nsmb_3309
crossref_primary_10_1128_iai_00234_24
crossref_primary_10_1128_JB_00317_16
crossref_primary_10_1007_s12192_012_0357_z
crossref_primary_10_1016_j_ceca_2014_08_002
crossref_primary_10_1016_j_febslet_2015_06_019
crossref_primary_10_1016_j_jsb_2011_05_004
crossref_primary_10_1038_nature09372
crossref_primary_10_1016_j_jsb_2014_09_008
crossref_primary_10_1042_BSR20170203
crossref_primary_10_1007_s13238_012_2088_4
crossref_primary_10_1128_AAC_00669_20
crossref_primary_10_1080_15548627_2024_2379099
crossref_primary_10_1093_bioinformatics_btv270
crossref_primary_10_1073_pnas_1119472109
crossref_primary_10_1167_iovs_62_15_26
crossref_primary_10_1016_j_sbi_2019_03_002
crossref_primary_10_1371_journal_pone_0102985
crossref_primary_10_1371_journal_pone_0176054
crossref_primary_10_1089_cmb_2015_0120
crossref_primary_10_1016_j_jsb_2011_01_015
crossref_primary_10_1111_febs_12078
crossref_primary_10_1038_nsmb_1971
crossref_primary_10_1016_j_sbi_2013_02_008
crossref_primary_10_3103_S0096392523700219
crossref_primary_10_1016_j_str_2011_03_005
crossref_primary_10_1016_j_str_2018_03_004
crossref_primary_10_1073_pnas_1603020113
crossref_primary_10_1038_nmicrobiol_2016_68
crossref_primary_10_1016_j_ultramic_2013_06_004
crossref_primary_10_1126_sciadv_ade1207
crossref_primary_10_1073_pnas_1903976116
crossref_primary_10_1038_s41467_024_47732_4
crossref_primary_10_3390_jof10030229
crossref_primary_10_1093_jmicro_dfs094
crossref_primary_10_7554_eLife_00218
crossref_primary_10_1074_jbc_M112_443929
crossref_primary_10_1096_fj_201701061R
crossref_primary_10_1038_s41594_022_00755_1
crossref_primary_10_1038_s42003_023_04915_x
crossref_primary_10_1038_srep30909
Cites_doi 10.1016/j.jsb.2006.05.009
10.1016/j.semcdb.2003.12.008
10.1074/jbc.M201229200
10.1006/jsbi.2001.4353
10.1016/S0092-8674(00)81152-6
10.1016/j.molcel.2006.09.003
10.1006/jsbi.2001.4380
10.1006/jmbi.1999.3008
10.1016/j.str.2009.03.005
10.1038/nsmb1236
10.1110/ps.052001606
10.1016/S0960-9822(00)00432-2
10.1016/j.jsb.2003.09.017
10.1038/sj.embor.7400894
10.1101/gad.1657108
10.1038/nsmb.1591
10.1016/S0092-8674(03)00307-6
10.1006/jsbi.1999.4174
10.1074/jbc.M504110200
10.1093/emboj/20.15.4065
10.1111/j.1365-2958.2006.05324.x
10.1038/ncb1477
10.1093/nar/gkm216
10.1016/j.jsb.2008.05.010
10.1038/nsmb.1515
10.1016/j.jmb.2009.07.008
10.1016/S0022-2836(02)00190-0
10.1038/nsmb901
10.1146/annurev.biochem.70.1.603
10.1016/j.jsb.2005.08.006
10.1006/jmbi.2001.5133
10.1038/ncb1478
10.1016/j.str.2008.02.007
10.1093/emboj/16.14.4311
10.1038/41944
10.1093/oso/9780198510512.001.0001
10.1016/j.tcb.2004.09.015
10.1016/S0014-5793(02)03180-0
10.1146/annurev.cellbio.23.090506.123555
10.1038/nsmb.1436
10.1016/j.jmb.2003.07.013
10.1016/j.cell.2006.04.027
10.1016/j.molcel.2006.08.017
10.1074/jbc.M400839200
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 16, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Mar 16, 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0913774107
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE



Virology and AIDS Abstracts

AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4972
ExternalDocumentID PMC2841888
1988011711
20194787
10_1073_pnas_0913774107
107_11_4967
25664910
US201600189528
US201301816824
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM080139
– fundername: NEI NIH HHS
  grantid: PN1EY016525
– fundername: NEI NIH HHS
  grantid: 5PN2EY016525
– fundername: NCRR NIH HHS
  grantid: P41 RR002250
– fundername: NEI NIH HHS
  grantid: PN2 EY016525
– fundername: NEI NIH HHS
  grantid: PN1 EY016525
– fundername: NCRR NIH HHS
  grantid: P41RR02250
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ABPTK
ADZLD
AFDAS
ASUFR
DNJUQ
DOOOF
DWIUU
F20
JSODD
RHF
VQA
XFK
ZA5
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c610t-b9b31a39571923c9ec305a73e5fa5d583d664af8dd25c1b769041267ec4b0963
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:23:43 EDT 2025
Fri Sep 05 05:41:35 EDT 2025
Thu Sep 04 23:39:41 EDT 2025
Mon Jun 30 08:40:02 EDT 2025
Sat May 31 02:10:42 EDT 2025
Tue Jul 01 00:46:51 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Wed Nov 11 00:30:43 EST 2020
Thu May 29 08:41:00 EDT 2025
Wed Dec 27 19:05:13 EST 2023
Thu Apr 03 09:45:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c610t-b9b31a39571923c9ec305a73e5fa5d583d664af8dd25c1b769041267ec4b0963
Notes http://dx.doi.org/10.1073/pnas.0913774107
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
2Present address: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany D-35043.
Author contributions: Y.C., J.F., and W.C. designed research; Y.C., M.L.B., J.J., E.J.M., S.R., R.N.K., A.M.R.-J., T.S.B., and A.M. performed research; Y.C., D.W., and S.J.L. contributed new reagents/analytic tools; Y.C., M.L.B., E.J.M., A.M., S.J.L., J.F., and W.C. analyzed data; Y.C., M.L.B., E.J.M., A.M., S.J.L., J.F., and W.C. wrote the paper.
Communicated by Michael Levitt, Stanford University School of Medicine, Stanford, CA, December 7, 2009 (received for review October 21, 2009)
OpenAccessLink http://doi.org/10.1073/pnas.0913774107
PMID 20194787
PQID 201431702
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_0913774107
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841888
proquest_miscellaneous_46582186
jstor_primary_25664910
fao_agris_US201301816824
crossref_citationtrail_10_1073_pnas_0913774107
pnas_primary_107_11_4967
proquest_miscellaneous_733733244
pubmed_primary_20194787
proquest_journals_201431702
fao_agris_US201600189528
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-16
PublicationDateYYYYMMDD 2010-03-16
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Davis IW (e_1_3_4_48_2) 2007; 35
Tam S (e_1_3_4_8_2) 2006; 8
Ludtke SJ (e_1_3_4_43_2) 2001; 314
Martin-Benito J (e_1_3_4_26_2) 2007; 8
Gutsche I (e_1_3_4_16_2) 1999; 293
Miller EJ (e_1_3_4_38_2) 2006; 15
Meyer AS (e_1_3_4_14_2) 2003; 113
Ditzel L (e_1_3_4_19_2) 1998; 93
Tang YC (e_1_3_4_40_2) 2006; 125
Cong Y (e_1_3_4_44_2) 2009; 17
Kitamura A (e_1_3_4_7_2) 2006; 8
Behrends C (e_1_3_4_6_2) 2006; 23
Ludtke SJ (e_1_3_4_28_2) 2008; 16
Rosenthal PB (e_1_3_4_46_2) 2003; 333
Ludtke SJ (e_1_3_4_27_2) 1999; 128
Nadeau OW (e_1_3_4_30_2) 2005
Yam AY (e_1_3_4_10_2) 2008; 15
DiMaio F (e_1_3_4_33_2) 2009; 392
Ferreyra RG (e_1_3_4_42_2) 2000; 140
Kapatai G (e_1_3_4_20_2) 2006; 61
Etchells SA (e_1_3_4_22_2) 2005; 280
Rivenzon-Segal D (e_1_3_4_39_2) 2005; 12
Dunn AY (e_1_3_4_9_2) 2001; 135
Blow D (e_1_3_4_32_2) 2002
Morimoto RI (e_1_3_4_2_2) 2008; 22
Tang G (e_1_3_4_35_2) 2007; 157
Harauz G (e_1_3_4_45_2) 1986; 73
Horwich AL (e_1_3_4_41_2) 2007; 23
Xu Z (e_1_3_4_18_2) 1997; 388
Booth CR (e_1_3_4_13_2) 2008; 15
Archibald JM (e_1_3_4_17_2) 2001; 135
Llorca O (e_1_3_4_25_2) 2001; 20
Spiess C (e_1_3_4_23_2) 2006; 24
Spiess C (e_1_3_4_12_2) 2004; 14
Dobson CM (e_1_3_4_3_2) 2004; 15
Scott MD (e_1_3_4_1_2) 2003; 232
Rice NA (e_1_3_4_31_2) 2002; 277
Reissmann S (e_1_3_4_15_2) 2007; 14
Valpuesta JM (e_1_3_4_21_2) 2002; 529
Liou AK (e_1_3_4_24_2) 1997; 16
Pappenberger G (e_1_3_4_34_2) 2002; 318
Leroux MR (e_1_3_4_11_2) 2000; 10
Frydman J (e_1_3_4_4_2) 2001; 70
Fernandez JJ (e_1_3_4_47_2) 2008; 164
Iizuka R (e_1_3_4_29_2) 2004; 279
Cong Y (e_1_3_4_36_2) 2003; 144
Hartl FU (e_1_3_4_5_2) 2009; 16
Cong Y (e_1_3_4_37_2) 2005; 152
References_xml – volume: 157
  start-page: 38
  year: 2007
  ident: e_1_3_4_35_2
  article-title: EMAN2: An extensible image processing suite for electron microscopy
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.05.009
– volume: 15
  start-page: 3
  year: 2004
  ident: e_1_3_4_3_2
  article-title: Principles of protein folding, misfolding and aggregation
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2003.12.008
– volume: 277
  start-page: 14681
  year: 2002
  ident: e_1_3_4_31_2
  article-title: The calmodulin-binding domain of the catalytic γ subunit of phosphorylase kinase interacts with its inhibitory alpha subunit: Evidence for a Ca2+ sensitive network of quaternary interactions
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M201229200
– volume: 135
  start-page: 157
  year: 2001
  ident: e_1_3_4_17_2
  article-title: Gene duplication and the evolution of group II chaperonins: Implications for structure and function
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2001.4353
– volume: 93
  start-page: 125
  year: 1998
  ident: e_1_3_4_19_2
  article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81152-6
– volume: 24
  start-page: 25
  year: 2006
  ident: e_1_3_4_23_2
  article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.09.003
– volume: 135
  start-page: 176
  year: 2001
  ident: e_1_3_4_9_2
  article-title: Review: Cellular substrates of the eukaryotic chaperonin TRiC/CCT
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.2001.4380
– volume: 293
  start-page: 295
  year: 1999
  ident: e_1_3_4_16_2
  article-title: Group II chaperonins: New TRiC(k)s and turns of a protein folding machine
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1999.3008
– volume: 17
  start-page: 749
  year: 2009
  ident: e_1_3_4_44_2
  article-title: Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy
  publication-title: Structure
  doi: 10.1016/j.str.2009.03.005
– volume: 14
  start-page: 432
  year: 2007
  ident: e_1_3_4_15_2
  article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1236
– volume: 15
  start-page: 1522
  year: 2006
  ident: e_1_3_4_38_2
  article-title: Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC
  publication-title: Protein Sci
  doi: 10.1110/ps.052001606
– volume: 10
  start-page: R260
  year: 2000
  ident: e_1_3_4_11_2
  article-title: Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00432-2
– volume: 144
  start-page: 51
  year: 2003
  ident: e_1_3_4_36_2
  article-title: 2D fast rotational matching for image processing of biophysical data
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2003.09.017
– volume: 140
  start-page: 153
  year: 2000
  ident: e_1_3_4_42_2
  article-title: Purification of the cytosolic chaperonin TRiC from bovine testis
  publication-title: Method Mol Biol
– volume: 8
  start-page: 252
  year: 2007
  ident: e_1_3_4_26_2
  article-title: The inter-ring arrangement of the cytosolic chaperonin CCT
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400894
– volume: 22
  start-page: 1427
  year: 2008
  ident: e_1_3_4_2_2
  article-title: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
  publication-title: Genes Dev
  doi: 10.1101/gad.1657108
– volume: 16
  start-page: 574
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Converging concepts of protein folding in vitro and in vivo
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1591
– volume: 113
  start-page: 369
  year: 2003
  ident: e_1_3_4_14_2
  article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00307-6
– volume: 128
  start-page: 82
  year: 1999
  ident: e_1_3_4_27_2
  article-title: EMAN: Semiautomated software for high-resolution single-particle reconstructions
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1999.4174
– volume: 280
  start-page: 28118
  year: 2005
  ident: e_1_3_4_22_2
  article-title: The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M504110200
– volume: 20
  start-page: 4065
  year: 2001
  ident: e_1_3_4_25_2
  article-title: The “sequential allosteric ring” mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin
  publication-title: EMBO J
  doi: 10.1093/emboj/20.15.4065
– volume: 73
  start-page: 146
  year: 1986
  ident: e_1_3_4_45_2
  article-title: Exact filters for general geometry three dimensional reconstruction
  publication-title: Optik
– start-page: 105
  volume-title: Protein–Protein Interactions: A Molecular Cloning Manual
  year: 2005
  ident: e_1_3_4_30_2
– volume: 61
  start-page: 1583
  year: 2006
  ident: e_1_3_4_20_2
  article-title: All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05324.x
– volume: 8
  start-page: 1155
  year: 2006
  ident: e_1_3_4_8_2
  article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1477
– volume: 35
  start-page: W375
  year: 2007
  ident: e_1_3_4_48_2
  article-title: MolProbity: All-atom contacts and structure validation for proteins and nucleic acids
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm216
– volume: 164
  start-page: 170
  year: 2008
  ident: e_1_3_4_47_2
  article-title: Sharpening high resolution information in single particle electron cryomicroscopy
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2008.05.010
– volume: 15
  start-page: 1255
  year: 2008
  ident: e_1_3_4_10_2
  article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1515
– volume: 392
  start-page: 181
  year: 2009
  ident: e_1_3_4_33_2
  article-title: Refinement of protein structures into low-resolution density maps using rosetta
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.07.008
– volume: 318
  start-page: 1367
  year: 2002
  ident: e_1_3_4_34_2
  article-title: Crystal structure of the CCTgamma apical domain: Implications for substrate binding to the eukaryotic cytosolic chaperonin
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00190-0
– volume: 12
  start-page: 233
  year: 2005
  ident: e_1_3_4_39_2
  article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb901
– volume: 70
  start-page: 603
  year: 2001
  ident: e_1_3_4_4_2
  article-title: Folding of newly translated proteins in vivo: The role of molecular chaperones
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.70.1.603
– volume: 232
  start-page: 67
  year: 2003
  ident: e_1_3_4_1_2
  article-title: Aberrant protein folding as the molecular basis of cancer
  publication-title: Method Mol Biol
– volume: 152
  start-page: 104
  year: 2005
  ident: e_1_3_4_37_2
  article-title: Fast rotational matching of single-particle images
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2005.08.006
– volume: 314
  start-page: 253
  year: 2001
  ident: e_1_3_4_43_2
  article-title: A 11.5 A single particle reconstruction of GroEL using EMAN
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5133
– volume: 8
  start-page: 1163
  year: 2006
  ident: e_1_3_4_7_2
  article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1478
– volume: 16
  start-page: 441
  year: 2008
  ident: e_1_3_4_28_2
  article-title: De novo backbone trace of GroEL from single particle electron cryomicroscopy
  publication-title: Structure
  doi: 10.1016/j.str.2008.02.007
– volume: 16
  start-page: 4311
  year: 1997
  ident: e_1_3_4_24_2
  article-title: Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes
  publication-title: EMBO J
  doi: 10.1093/emboj/16.14.4311
– volume: 388
  start-page: 741
  year: 1997
  ident: e_1_3_4_18_2
  article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
  publication-title: Nature
  doi: 10.1038/41944
– start-page: 191
  volume-title: Outline of Crystallography for Biologists
  year: 2002
  ident: e_1_3_4_32_2
  doi: 10.1093/oso/9780198510512.001.0001
– volume: 14
  start-page: 598
  year: 2004
  ident: e_1_3_4_12_2
  article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2004.09.015
– volume: 529
  start-page: 11
  year: 2002
  ident: e_1_3_4_21_2
  article-title: Structure and function of a protein folding machine: The eukaryotic cytosolic chaperonin CCT
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(02)03180-0
– volume: 23
  start-page: 115
  year: 2007
  ident: e_1_3_4_41_2
  article-title: Two families of chaperonin: Physiology and mechanism
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.23.090506.123555
– volume: 15
  start-page: 746
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1436
– volume: 333
  start-page: 721
  year: 2003
  ident: e_1_3_4_46_2
  article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2003.07.013
– volume: 125
  start-page: 903
  year: 2006
  ident: e_1_3_4_40_2
  article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.027
– volume: 23
  start-page: 887
  year: 2006
  ident: e_1_3_4_6_2
  article-title: Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.08.017
– volume: 279
  start-page: 18834
  year: 2004
  ident: e_1_3_4_29_2
  article-title: Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M400839200
SSID ssj0009580
Score 2.3679116
Snippet The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular...
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular...
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the...
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ...5 - 10% of the cellular...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4967
SubjectTerms Aggregation
Amino Acid Sequence
Animals
Biochemistry
Biological Sciences
Cattle
Cells
Chaperonin Containing TCP-1 - chemistry
Chaperonins
Chemical properties
Cryoelectron Microscopy
Crystal structure
Crystallography, X-Ray
Disease models
Mammals
Models, Molecular
Molecular Sequence Data
Molecular structure
physicochemical properties
Prokaryotes
prokaryotic cells
Protein folding
Protein Structure, Secondary
Protein Subunits - chemistry
proteome
Proteomics
Reproducibility of Results
sequence homology
Static Electricity
substrate specificity
Surface Properties
Symmetry
Ungulates
Title 4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
URI https://www.jstor.org/stable/25664910
http://www.pnas.org/content/107/11/4967.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20194787
https://www.proquest.com/docview/201431702
https://www.proquest.com/docview/46582186
https://www.proquest.com/docview/733733244
https://pubmed.ncbi.nlm.nih.gov/PMC2841888
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFUaA0lIcPHIqibBvnYedYVoWqolUFW1FOkZM4bdVuUu3jAHd-GX-DH8NM7DjZPiRAWkWrPGwn82XGE898Q8jbXLIw4ir2ZCTBQRGF8rIiiD1e-kEuE8U1XdPhUbx_Eh6cRqeDwe9e1NJing3zH3fmlfyPVGEfyBWzZP9BsrZR2AH_Qb6wBQnD9q9kHA53PFzpFpELXrPpys2n32tv79DV1LC4QGDiACZyMtGfNfJziQThSKw6_nwxQpLc0RjTWBSyKeNawkITu84WGfybu3I6xSwEGyZjprPH1vzN2k6O2q-Lu12uilEgM9dzj4-6ysffZI0Zh2fdV_Gm9rj7aei-l5dd2PBBjRwd0j2Ql7KyZqSJxne_1vUVxuf3v17gwnvg6eTKPvm3HpMdTV9hMzCioU6zHiqto2GK48WhrjJqlbiundui1e_p5DDRBT9uGQvQbljhuJKzIbKjwkTYtNKDzvWkwQ4MPUEao85qtpECN4ypDXGEpsC7SrHzFfKAcd4EEXw89XuU0EInSJlbbImneLB9Y0zIWG0GsDR9Will3cbRIjkvXHWXo3Qz3rc3gRo_Jo-M50N3NYzXyEBVT8haKwy6ZQjQ3z0lNeL610_aYZoaTFOLaVqXFMBCLaZph2mKmN4GRFODaAqIphrR1CCa9hD9jIw_7I1H-54pDOLlMNufe1mSBb7EFWb0T_JE5WC1JA9UVMqoiERQxHEoS1EULMr9jMcJssrFXOVhBi57sE5Wq7pSG4RmSVgwaEnwQoWlipJSBBmDaW_GSpaw2CHD9nGnuSHNx9otV2kTvMGDFB962onKIVv2gmvNF3P_qRsgv1SegTVPT74wjCHwsQwOC28fQr9EJBETDllv5G1bB58FXgZ_B65pOuh6tQB0yGYLitSor1nKkNnT5zvMIW_sUbAtuGAoK1UvZmkYYxq9gKdA7zmDBwH8wEVwyHONsW5cBrEO4Uvosycgsf3ykerivCG4hymzL4R4cf8dbZKHnTZ5SVYBfOoVeAfz7HXzkv0B_A8KRw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4.0-%C3%85+resolution+cryo-EM+structure+of+the+mammalian+chaperonin+TRiC%2FCCT+reveals+its+unique+subunit+arrangement&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yao+Cong&rft.au=Matthew+L.+Baker&rft.au=Joanita+Jakana&rft.au=David+Woolford&rft.date=2010-03-16&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=11&rft.spage=4967&rft_id=info:doi/10.1073%2Fpnas.0913774107&rft_id=info%3Apmid%2F20194787&rft.externalDBID=n%2Fa&rft.externalDocID=107_11_4967
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F11.cover.gif