4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement
The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 11; pp. 4967 - 4972 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.03.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0913774107 |
Cover
Abstract | The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ~95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. |
---|---|
AbstractList | The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC’s unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ∼95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC’s cellular substrate specificity. The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ...5 - 10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ...95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. (ProQuest: ... denotes formulae/symbols omitted.) The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-Å resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-Å resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Cα backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed ~95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity. |
Author | Batth, Tanveer S Redding-Johanson, Alyssa M Frydman, Judith Woolford, David Kumar, Ramya N Chiu, Wah Reissmann, Stefanie Miller, Erik J Baker, Matthew L Cong, Yao Ludtke, Steven J Jakana, Joanita Mukhopadhyay, Aindrila |
Author_xml | – sequence: 1 fullname: Cong, Yao – sequence: 2 fullname: Baker, Matthew L – sequence: 3 fullname: Jakana, Joanita – sequence: 4 fullname: Woolford, David – sequence: 5 fullname: Miller, Erik J – sequence: 6 fullname: Reissmann, Stefanie – sequence: 7 fullname: Kumar, Ramya N – sequence: 8 fullname: Redding-Johanson, Alyssa M – sequence: 9 fullname: Batth, Tanveer S – sequence: 10 fullname: Mukhopadhyay, Aindrila – sequence: 11 fullname: Ludtke, Steven J – sequence: 12 fullname: Frydman, Judith – sequence: 13 fullname: Chiu, Wah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20194787$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksuKFDEUhgsZcS66dqUWLnRV3blfNoI04wVGBG3XIZVOdaepSnqS1MA8gE_mi5mie2wdGCGQ23f-_CfnnFcnPnhbVc8hmEHA8XzndZoBCTHnpBw8qs5g2TWMSHBSnQGAeCMIIqfVeUpbAICkAjypThGAknDBz6pAZqD59bOONoV-zC742sTb0Fx-qVOOo8ljtHXo6ryx9aCHQfdOF2SjdzYG73y9_OYW88ViWRRurO5T7XKqR--uR1unsS2rXOsYtV_bwfr8tHrcFco-O8wX1fLD5XLxqbn6-vHz4v1VYxgEuWlli6HGknIoETbSGgyo5tjSTtMVFXjFGNGdWK0QNbDlTAICEePWkBZIhi-qd3vZ3dgOdmXKy1H3ahfdoOOtCtqpf2-826h1uFFIECiEKAJvDwIxlFRSVoNLxva99jaMSXGMy0CEFPLNf0nCqEBQTJ5e3wO3YYy-_IIq9SAYcoAK9PJv438c31WsAHQPmBhSirZTxmU9Fa7k4XoFgZo6Q02doY6dUeLm9-LupB-OeHWwMl0caa4gVESyiXixJ7Yph3j0SktxJARHhU4HpdfRJfXje8mEAQCFpEg8SOACQCYQwb8BOi3h4Q |
CitedBy_id | crossref_primary_10_1016_j_abb_2011_09_010 crossref_primary_10_1016_j_mocell_2024_100012 crossref_primary_10_1038_srep33742 crossref_primary_10_1038_emboj_2011_366 crossref_primary_10_1016_j_jsb_2011_11_032 crossref_primary_10_1016_j_ultramic_2011_08_007 crossref_primary_10_3389_fmed_2022_861371 crossref_primary_10_1073_pnas_2018127118 crossref_primary_10_1016_j_jsb_2010_12_005 crossref_primary_10_1016_j_jsb_2010_06_010 crossref_primary_10_1038_nsmb_3459 crossref_primary_10_1146_annurev_biochem_060208_092442 crossref_primary_10_3389_fcell_2022_906530 crossref_primary_10_1073_pnas_1218836109 crossref_primary_10_1016_j_str_2013_01_017 crossref_primary_10_1038_s41419_024_07001_0 crossref_primary_10_1042_BCJ20170378 crossref_primary_10_1016_j_str_2012_01_023 crossref_primary_10_1002_bip_22065 crossref_primary_10_7554_eLife_01963 crossref_primary_10_1016_j_jsb_2011_04_012 crossref_primary_10_1371_journal_pgen_1008121 crossref_primary_10_1038_srep34174 crossref_primary_10_1002_jemt_20963 crossref_primary_10_1146_annurev_matsci_070511_155004 crossref_primary_10_1007_s12192_013_0413_3 crossref_primary_10_1016_j_jmb_2018_03_026 crossref_primary_10_1007_s12192_019_01028_5 crossref_primary_10_3390_v12050519 crossref_primary_10_1016_j_ceb_2011_11_002 crossref_primary_10_1016_j_molcel_2019_06_036 crossref_primary_10_1016_j_str_2023_10_013 crossref_primary_10_1111_febs_13521 crossref_primary_10_1016_j_jsb_2013_08_005 crossref_primary_10_1016_j_bpj_2011_04_018 crossref_primary_10_1038_nature13899 crossref_primary_10_1016_j_jprot_2019_103536 crossref_primary_10_1016_j_cell_2022_11_014 crossref_primary_10_1016_j_str_2012_03_007 crossref_primary_10_1038_s41598_017_03825_3 crossref_primary_10_1371_journal_pbio_1001844 crossref_primary_10_55959_10_55959_MSU0137_0952_16_78_3S_7 crossref_primary_10_1016_j_tibs_2011_05_003 crossref_primary_10_3390_ijms26031193 crossref_primary_10_1242_jcs_220905 crossref_primary_10_1007_s12192_018_0949_3 crossref_primary_10_1016_j_str_2012_01_008 crossref_primary_10_1093_jmicro_dft026 crossref_primary_10_1016_j_jmb_2010_06_037 crossref_primary_10_1016_j_pep_2011_11_010 crossref_primary_10_3389_fcell_2023_1225628 crossref_primary_10_1016_j_jsb_2010_05_006 crossref_primary_10_1007_s11427_013_4476_2 crossref_primary_10_1038_srep27701 crossref_primary_10_4061_2011_843206 crossref_primary_10_1016_j_cell_2010_12_017 crossref_primary_10_1038_emboj_2011_208 crossref_primary_10_1038_nprot_2010_126 crossref_primary_10_1016_j_str_2012_02_017 crossref_primary_10_1038_s41598_017_18962_y crossref_primary_10_1371_journal_pone_0021470 crossref_primary_10_1016_j_jsb_2010_09_019 crossref_primary_10_1073_pnas_1917906117 crossref_primary_10_1093_nar_gku484 crossref_primary_10_1038_s41467_018_03484_6 crossref_primary_10_1002_bbb_1417 crossref_primary_10_18632_oncotarget_19369 crossref_primary_10_1007_s00468_013_0967_9 crossref_primary_10_1016_j_jmb_2015_04_013 crossref_primary_10_1016_j_jsb_2012_07_009 crossref_primary_10_1002_anie_201608432 crossref_primary_10_1016_j_micron_2011_08_004 crossref_primary_10_1016_j_cbi_2017_12_023 crossref_primary_10_1109_TCBB_2014_2302803 crossref_primary_10_1016_j_str_2012_05_004 crossref_primary_10_1038_nsmb_3309 crossref_primary_10_1128_iai_00234_24 crossref_primary_10_1128_JB_00317_16 crossref_primary_10_1007_s12192_012_0357_z crossref_primary_10_1016_j_ceca_2014_08_002 crossref_primary_10_1016_j_febslet_2015_06_019 crossref_primary_10_1016_j_jsb_2011_05_004 crossref_primary_10_1038_nature09372 crossref_primary_10_1016_j_jsb_2014_09_008 crossref_primary_10_1042_BSR20170203 crossref_primary_10_1007_s13238_012_2088_4 crossref_primary_10_1128_AAC_00669_20 crossref_primary_10_1080_15548627_2024_2379099 crossref_primary_10_1093_bioinformatics_btv270 crossref_primary_10_1073_pnas_1119472109 crossref_primary_10_1167_iovs_62_15_26 crossref_primary_10_1016_j_sbi_2019_03_002 crossref_primary_10_1371_journal_pone_0102985 crossref_primary_10_1371_journal_pone_0176054 crossref_primary_10_1089_cmb_2015_0120 crossref_primary_10_1016_j_jsb_2011_01_015 crossref_primary_10_1111_febs_12078 crossref_primary_10_1038_nsmb_1971 crossref_primary_10_1016_j_sbi_2013_02_008 crossref_primary_10_3103_S0096392523700219 crossref_primary_10_1016_j_str_2011_03_005 crossref_primary_10_1016_j_str_2018_03_004 crossref_primary_10_1073_pnas_1603020113 crossref_primary_10_1038_nmicrobiol_2016_68 crossref_primary_10_1016_j_ultramic_2013_06_004 crossref_primary_10_1126_sciadv_ade1207 crossref_primary_10_1073_pnas_1903976116 crossref_primary_10_1038_s41467_024_47732_4 crossref_primary_10_3390_jof10030229 crossref_primary_10_1093_jmicro_dfs094 crossref_primary_10_7554_eLife_00218 crossref_primary_10_1074_jbc_M112_443929 crossref_primary_10_1096_fj_201701061R crossref_primary_10_1038_s41594_022_00755_1 crossref_primary_10_1038_s42003_023_04915_x crossref_primary_10_1038_srep30909 |
Cites_doi | 10.1016/j.jsb.2006.05.009 10.1016/j.semcdb.2003.12.008 10.1074/jbc.M201229200 10.1006/jsbi.2001.4353 10.1016/S0092-8674(00)81152-6 10.1016/j.molcel.2006.09.003 10.1006/jsbi.2001.4380 10.1006/jmbi.1999.3008 10.1016/j.str.2009.03.005 10.1038/nsmb1236 10.1110/ps.052001606 10.1016/S0960-9822(00)00432-2 10.1016/j.jsb.2003.09.017 10.1038/sj.embor.7400894 10.1101/gad.1657108 10.1038/nsmb.1591 10.1016/S0092-8674(03)00307-6 10.1006/jsbi.1999.4174 10.1074/jbc.M504110200 10.1093/emboj/20.15.4065 10.1111/j.1365-2958.2006.05324.x 10.1038/ncb1477 10.1093/nar/gkm216 10.1016/j.jsb.2008.05.010 10.1038/nsmb.1515 10.1016/j.jmb.2009.07.008 10.1016/S0022-2836(02)00190-0 10.1038/nsmb901 10.1146/annurev.biochem.70.1.603 10.1016/j.jsb.2005.08.006 10.1006/jmbi.2001.5133 10.1038/ncb1478 10.1016/j.str.2008.02.007 10.1093/emboj/16.14.4311 10.1038/41944 10.1093/oso/9780198510512.001.0001 10.1016/j.tcb.2004.09.015 10.1016/S0014-5793(02)03180-0 10.1146/annurev.cellbio.23.090506.123555 10.1038/nsmb.1436 10.1016/j.jmb.2003.07.013 10.1016/j.cell.2006.04.027 10.1016/j.molcel.2006.08.017 10.1074/jbc.M400839200 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 16, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 16, 2010 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0913774107 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4972 |
ExternalDocumentID | PMC2841888 1988011711 20194787 10_1073_pnas_0913774107 107_11_4967 25664910 US201600189528 US201301816824 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM080139 – fundername: NEI NIH HHS grantid: PN1EY016525 – fundername: NEI NIH HHS grantid: 5PN2EY016525 – fundername: NCRR NIH HHS grantid: P41 RR002250 – fundername: NEI NIH HHS grantid: PN2 EY016525 – fundername: NEI NIH HHS grantid: PN1 EY016525 – fundername: NCRR NIH HHS grantid: P41RR02250 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ABPTK ADZLD AFDAS ASUFR DNJUQ DOOOF DWIUU F20 JSODD RHF VQA XFK ZA5 ADXHL - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c610t-b9b31a39571923c9ec305a73e5fa5d583d664af8dd25c1b769041267ec4b0963 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:23:43 EDT 2025 Fri Sep 05 05:41:35 EDT 2025 Thu Sep 04 23:39:41 EDT 2025 Mon Jun 30 08:40:02 EDT 2025 Sat May 31 02:10:42 EDT 2025 Tue Jul 01 00:46:51 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Wed Nov 11 00:30:43 EST 2020 Thu May 29 08:41:00 EDT 2025 Wed Dec 27 19:05:13 EST 2023 Thu Apr 03 09:45:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c610t-b9b31a39571923c9ec305a73e5fa5d583d664af8dd25c1b769041267ec4b0963 |
Notes | http://dx.doi.org/10.1073/pnas.0913774107 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 2Present address: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany D-35043. Author contributions: Y.C., J.F., and W.C. designed research; Y.C., M.L.B., J.J., E.J.M., S.R., R.N.K., A.M.R.-J., T.S.B., and A.M. performed research; Y.C., D.W., and S.J.L. contributed new reagents/analytic tools; Y.C., M.L.B., E.J.M., A.M., S.J.L., J.F., and W.C. analyzed data; Y.C., M.L.B., E.J.M., A.M., S.J.L., J.F., and W.C. wrote the paper. Communicated by Michael Levitt, Stanford University School of Medicine, Stanford, CA, December 7, 2009 (received for review October 21, 2009) |
OpenAccessLink | http://doi.org/10.1073/pnas.0913774107 |
PMID | 20194787 |
PQID | 201431702 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_0913774107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2841888 proquest_miscellaneous_46582186 jstor_primary_25664910 fao_agris_US201301816824 crossref_citationtrail_10_1073_pnas_0913774107 pnas_primary_107_11_4967 proquest_miscellaneous_733733244 pubmed_primary_20194787 proquest_journals_201431702 fao_agris_US201600189528 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-16 |
PublicationDateYYYYMMDD | 2010-03-16 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Davis IW (e_1_3_4_48_2) 2007; 35 Tam S (e_1_3_4_8_2) 2006; 8 Ludtke SJ (e_1_3_4_43_2) 2001; 314 Martin-Benito J (e_1_3_4_26_2) 2007; 8 Gutsche I (e_1_3_4_16_2) 1999; 293 Miller EJ (e_1_3_4_38_2) 2006; 15 Meyer AS (e_1_3_4_14_2) 2003; 113 Ditzel L (e_1_3_4_19_2) 1998; 93 Tang YC (e_1_3_4_40_2) 2006; 125 Cong Y (e_1_3_4_44_2) 2009; 17 Kitamura A (e_1_3_4_7_2) 2006; 8 Behrends C (e_1_3_4_6_2) 2006; 23 Ludtke SJ (e_1_3_4_28_2) 2008; 16 Rosenthal PB (e_1_3_4_46_2) 2003; 333 Ludtke SJ (e_1_3_4_27_2) 1999; 128 Nadeau OW (e_1_3_4_30_2) 2005 Yam AY (e_1_3_4_10_2) 2008; 15 DiMaio F (e_1_3_4_33_2) 2009; 392 Ferreyra RG (e_1_3_4_42_2) 2000; 140 Kapatai G (e_1_3_4_20_2) 2006; 61 Etchells SA (e_1_3_4_22_2) 2005; 280 Rivenzon-Segal D (e_1_3_4_39_2) 2005; 12 Dunn AY (e_1_3_4_9_2) 2001; 135 Blow D (e_1_3_4_32_2) 2002 Morimoto RI (e_1_3_4_2_2) 2008; 22 Tang G (e_1_3_4_35_2) 2007; 157 Harauz G (e_1_3_4_45_2) 1986; 73 Horwich AL (e_1_3_4_41_2) 2007; 23 Xu Z (e_1_3_4_18_2) 1997; 388 Booth CR (e_1_3_4_13_2) 2008; 15 Archibald JM (e_1_3_4_17_2) 2001; 135 Llorca O (e_1_3_4_25_2) 2001; 20 Spiess C (e_1_3_4_23_2) 2006; 24 Spiess C (e_1_3_4_12_2) 2004; 14 Dobson CM (e_1_3_4_3_2) 2004; 15 Scott MD (e_1_3_4_1_2) 2003; 232 Rice NA (e_1_3_4_31_2) 2002; 277 Reissmann S (e_1_3_4_15_2) 2007; 14 Valpuesta JM (e_1_3_4_21_2) 2002; 529 Liou AK (e_1_3_4_24_2) 1997; 16 Pappenberger G (e_1_3_4_34_2) 2002; 318 Leroux MR (e_1_3_4_11_2) 2000; 10 Frydman J (e_1_3_4_4_2) 2001; 70 Fernandez JJ (e_1_3_4_47_2) 2008; 164 Iizuka R (e_1_3_4_29_2) 2004; 279 Cong Y (e_1_3_4_36_2) 2003; 144 Hartl FU (e_1_3_4_5_2) 2009; 16 Cong Y (e_1_3_4_37_2) 2005; 152 |
References_xml | – volume: 157 start-page: 38 year: 2007 ident: e_1_3_4_35_2 article-title: EMAN2: An extensible image processing suite for electron microscopy publication-title: J Struct Biol doi: 10.1016/j.jsb.2006.05.009 – volume: 15 start-page: 3 year: 2004 ident: e_1_3_4_3_2 article-title: Principles of protein folding, misfolding and aggregation publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2003.12.008 – volume: 277 start-page: 14681 year: 2002 ident: e_1_3_4_31_2 article-title: The calmodulin-binding domain of the catalytic γ subunit of phosphorylase kinase interacts with its inhibitory alpha subunit: Evidence for a Ca2+ sensitive network of quaternary interactions publication-title: J Biol Chem doi: 10.1074/jbc.M201229200 – volume: 135 start-page: 157 year: 2001 ident: e_1_3_4_17_2 article-title: Gene duplication and the evolution of group II chaperonins: Implications for structure and function publication-title: J Struct Biol doi: 10.1006/jsbi.2001.4353 – volume: 93 start-page: 125 year: 1998 ident: e_1_3_4_19_2 article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT publication-title: Cell doi: 10.1016/S0092-8674(00)81152-6 – volume: 24 start-page: 25 year: 2006 ident: e_1_3_4_23_2 article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins publication-title: Mol Cell doi: 10.1016/j.molcel.2006.09.003 – volume: 135 start-page: 176 year: 2001 ident: e_1_3_4_9_2 article-title: Review: Cellular substrates of the eukaryotic chaperonin TRiC/CCT publication-title: J Struct Biol doi: 10.1006/jsbi.2001.4380 – volume: 293 start-page: 295 year: 1999 ident: e_1_3_4_16_2 article-title: Group II chaperonins: New TRiC(k)s and turns of a protein folding machine publication-title: J Mol Biol doi: 10.1006/jmbi.1999.3008 – volume: 17 start-page: 749 year: 2009 ident: e_1_3_4_44_2 article-title: Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy publication-title: Structure doi: 10.1016/j.str.2009.03.005 – volume: 14 start-page: 432 year: 2007 ident: e_1_3_4_15_2 article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1236 – volume: 15 start-page: 1522 year: 2006 ident: e_1_3_4_38_2 article-title: Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC publication-title: Protein Sci doi: 10.1110/ps.052001606 – volume: 10 start-page: R260 year: 2000 ident: e_1_3_4_11_2 article-title: Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00432-2 – volume: 144 start-page: 51 year: 2003 ident: e_1_3_4_36_2 article-title: 2D fast rotational matching for image processing of biophysical data publication-title: J Struct Biol doi: 10.1016/j.jsb.2003.09.017 – volume: 140 start-page: 153 year: 2000 ident: e_1_3_4_42_2 article-title: Purification of the cytosolic chaperonin TRiC from bovine testis publication-title: Method Mol Biol – volume: 8 start-page: 252 year: 2007 ident: e_1_3_4_26_2 article-title: The inter-ring arrangement of the cytosolic chaperonin CCT publication-title: EMBO Rep doi: 10.1038/sj.embor.7400894 – volume: 22 start-page: 1427 year: 2008 ident: e_1_3_4_2_2 article-title: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging publication-title: Genes Dev doi: 10.1101/gad.1657108 – volume: 16 start-page: 574 year: 2009 ident: e_1_3_4_5_2 article-title: Converging concepts of protein folding in vitro and in vivo publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1591 – volume: 113 start-page: 369 year: 2003 ident: e_1_3_4_14_2 article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis publication-title: Cell doi: 10.1016/S0092-8674(03)00307-6 – volume: 128 start-page: 82 year: 1999 ident: e_1_3_4_27_2 article-title: EMAN: Semiautomated software for high-resolution single-particle reconstructions publication-title: J Struct Biol doi: 10.1006/jsbi.1999.4174 – volume: 280 start-page: 28118 year: 2005 ident: e_1_3_4_22_2 article-title: The cotranslational contacts between ribosome-bound nascent polypeptides and the subunits of the hetero-oligomeric chaperonin TRiC probed by photocross-linking publication-title: J Biol Chem doi: 10.1074/jbc.M504110200 – volume: 20 start-page: 4065 year: 2001 ident: e_1_3_4_25_2 article-title: The “sequential allosteric ring” mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin publication-title: EMBO J doi: 10.1093/emboj/20.15.4065 – volume: 73 start-page: 146 year: 1986 ident: e_1_3_4_45_2 article-title: Exact filters for general geometry three dimensional reconstruction publication-title: Optik – start-page: 105 volume-title: Protein–Protein Interactions: A Molecular Cloning Manual year: 2005 ident: e_1_3_4_30_2 – volume: 61 start-page: 1583 year: 2006 ident: e_1_3_4_20_2 article-title: All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05324.x – volume: 8 start-page: 1155 year: 2006 ident: e_1_3_4_8_2 article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions publication-title: Nat Cell Biol doi: 10.1038/ncb1477 – volume: 35 start-page: W375 year: 2007 ident: e_1_3_4_48_2 article-title: MolProbity: All-atom contacts and structure validation for proteins and nucleic acids publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm216 – volume: 164 start-page: 170 year: 2008 ident: e_1_3_4_47_2 article-title: Sharpening high resolution information in single particle electron cryomicroscopy publication-title: J Struct Biol doi: 10.1016/j.jsb.2008.05.010 – volume: 15 start-page: 1255 year: 2008 ident: e_1_3_4_10_2 article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1515 – volume: 392 start-page: 181 year: 2009 ident: e_1_3_4_33_2 article-title: Refinement of protein structures into low-resolution density maps using rosetta publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.07.008 – volume: 318 start-page: 1367 year: 2002 ident: e_1_3_4_34_2 article-title: Crystal structure of the CCTgamma apical domain: Implications for substrate binding to the eukaryotic cytosolic chaperonin publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)00190-0 – volume: 12 start-page: 233 year: 2005 ident: e_1_3_4_39_2 article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb901 – volume: 70 start-page: 603 year: 2001 ident: e_1_3_4_4_2 article-title: Folding of newly translated proteins in vivo: The role of molecular chaperones publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.70.1.603 – volume: 232 start-page: 67 year: 2003 ident: e_1_3_4_1_2 article-title: Aberrant protein folding as the molecular basis of cancer publication-title: Method Mol Biol – volume: 152 start-page: 104 year: 2005 ident: e_1_3_4_37_2 article-title: Fast rotational matching of single-particle images publication-title: J Struct Biol doi: 10.1016/j.jsb.2005.08.006 – volume: 314 start-page: 253 year: 2001 ident: e_1_3_4_43_2 article-title: A 11.5 A single particle reconstruction of GroEL using EMAN publication-title: J Mol Biol doi: 10.1006/jmbi.2001.5133 – volume: 8 start-page: 1163 year: 2006 ident: e_1_3_4_7_2 article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state publication-title: Nat Cell Biol doi: 10.1038/ncb1478 – volume: 16 start-page: 441 year: 2008 ident: e_1_3_4_28_2 article-title: De novo backbone trace of GroEL from single particle electron cryomicroscopy publication-title: Structure doi: 10.1016/j.str.2008.02.007 – volume: 16 start-page: 4311 year: 1997 ident: e_1_3_4_24_2 article-title: Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes publication-title: EMBO J doi: 10.1093/emboj/16.14.4311 – volume: 388 start-page: 741 year: 1997 ident: e_1_3_4_18_2 article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex publication-title: Nature doi: 10.1038/41944 – start-page: 191 volume-title: Outline of Crystallography for Biologists year: 2002 ident: e_1_3_4_32_2 doi: 10.1093/oso/9780198510512.001.0001 – volume: 14 start-page: 598 year: 2004 ident: e_1_3_4_12_2 article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2004.09.015 – volume: 529 start-page: 11 year: 2002 ident: e_1_3_4_21_2 article-title: Structure and function of a protein folding machine: The eukaryotic cytosolic chaperonin CCT publication-title: FEBS Lett doi: 10.1016/S0014-5793(02)03180-0 – volume: 23 start-page: 115 year: 2007 ident: e_1_3_4_41_2 article-title: Two families of chaperonin: Physiology and mechanism publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.23.090506.123555 – volume: 15 start-page: 746 year: 2008 ident: e_1_3_4_13_2 article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1436 – volume: 333 start-page: 721 year: 2003 ident: e_1_3_4_46_2 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J Mol Biol doi: 10.1016/j.jmb.2003.07.013 – volume: 125 start-page: 903 year: 2006 ident: e_1_3_4_40_2 article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein publication-title: Cell doi: 10.1016/j.cell.2006.04.027 – volume: 23 start-page: 887 year: 2006 ident: e_1_3_4_6_2 article-title: Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers publication-title: Mol Cell doi: 10.1016/j.molcel.2006.08.017 – volume: 279 start-page: 18834 year: 2004 ident: e_1_3_4_29_2 article-title: Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin publication-title: J Biol Chem doi: 10.1074/jbc.M400839200 |
SSID | ssj0009580 |
Score | 2.3679116 |
Snippet | The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ~5-10% of the cellular... The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ∼5–10% of the cellular... The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the... The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of ...5 - 10% of the cellular... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4967 |
SubjectTerms | Aggregation Amino Acid Sequence Animals Biochemistry Biological Sciences Cattle Cells Chaperonin Containing TCP-1 - chemistry Chaperonins Chemical properties Cryoelectron Microscopy Crystal structure Crystallography, X-Ray Disease models Mammals Models, Molecular Molecular Sequence Data Molecular structure physicochemical properties Prokaryotes prokaryotic cells Protein folding Protein Structure, Secondary Protein Subunits - chemistry proteome Proteomics Reproducibility of Results sequence homology Static Electricity substrate specificity Surface Properties Symmetry Ungulates |
Title | 4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement |
URI | https://www.jstor.org/stable/25664910 http://www.pnas.org/content/107/11/4967.abstract https://www.ncbi.nlm.nih.gov/pubmed/20194787 https://www.proquest.com/docview/201431702 https://www.proquest.com/docview/46582186 https://www.proquest.com/docview/733733244 https://pubmed.ncbi.nlm.nih.gov/PMC2841888 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFUaA0lIcPHIqibBvnYedYVoWqolUFW1FOkZM4bdVuUu3jAHd-GX-DH8NM7DjZPiRAWkWrPGwn82XGE898Q8jbXLIw4ir2ZCTBQRGF8rIiiD1e-kEuE8U1XdPhUbx_Eh6cRqeDwe9e1NJing3zH3fmlfyPVGEfyBWzZP9BsrZR2AH_Qb6wBQnD9q9kHA53PFzpFpELXrPpys2n32tv79DV1LC4QGDiACZyMtGfNfJziQThSKw6_nwxQpLc0RjTWBSyKeNawkITu84WGfybu3I6xSwEGyZjprPH1vzN2k6O2q-Lu12uilEgM9dzj4-6ysffZI0Zh2fdV_Gm9rj7aei-l5dd2PBBjRwd0j2Ql7KyZqSJxne_1vUVxuf3v17gwnvg6eTKPvm3HpMdTV9hMzCioU6zHiqto2GK48WhrjJqlbiundui1e_p5DDRBT9uGQvQbljhuJKzIbKjwkTYtNKDzvWkwQ4MPUEao85qtpECN4ypDXGEpsC7SrHzFfKAcd4EEXw89XuU0EInSJlbbImneLB9Y0zIWG0GsDR9Will3cbRIjkvXHWXo3Qz3rc3gRo_Jo-M50N3NYzXyEBVT8haKwy6ZQjQ3z0lNeL610_aYZoaTFOLaVqXFMBCLaZph2mKmN4GRFODaAqIphrR1CCa9hD9jIw_7I1H-54pDOLlMNufe1mSBb7EFWb0T_JE5WC1JA9UVMqoiERQxHEoS1EULMr9jMcJssrFXOVhBi57sE5Wq7pSG4RmSVgwaEnwQoWlipJSBBmDaW_GSpaw2CHD9nGnuSHNx9otV2kTvMGDFB962onKIVv2gmvNF3P_qRsgv1SegTVPT74wjCHwsQwOC28fQr9EJBETDllv5G1bB58FXgZ_B65pOuh6tQB0yGYLitSor1nKkNnT5zvMIW_sUbAtuGAoK1UvZmkYYxq9gKdA7zmDBwH8wEVwyHONsW5cBrEO4Uvosycgsf3ykerivCG4hymzL4R4cf8dbZKHnTZ5SVYBfOoVeAfz7HXzkv0B_A8KRw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4.0-%C3%85+resolution+cryo-EM+structure+of+the+mammalian+chaperonin+TRiC%2FCCT+reveals+its+unique+subunit+arrangement&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yao+Cong&rft.au=Matthew+L.+Baker&rft.au=Joanita+Jakana&rft.au=David+Woolford&rft.date=2010-03-16&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=11&rft.spage=4967&rft_id=info:doi/10.1073%2Fpnas.0913774107&rft_id=info%3Apmid%2F20194787&rft.externalDBID=n%2Fa&rft.externalDocID=107_11_4967 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F11.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F11.cover.gif |