Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering

Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hyd...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4925 - 14
Main Authors Ling, Chen, Peabody, George L., Salvachúa, Davinia, Kim, Young-Mo, Kneucker, Colin M., Calvey, Christopher H., Monninger, Michela A., Munoz, Nathalie Munoz, Poirier, Brenton C., Ramirez, Kelsey J., St. John, Peter C., Woodworth, Sean P., Magnuson, Jon K., Burnum-Johnson, Kristin E., Guss, Adam M., Johnson, Christopher W., Beckham, Gregg T.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H + symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L −1 muconate at 0.18 g L −1 h −1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
AbstractList Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L−1 muconate at 0.18 g L−1 h−1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H + symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L −1 muconate at 0.18 g L −1 h −1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.
Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies.
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H + symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L −1 muconate at 0.18 g L −1 h −1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.
ArticleNumber 4925
Author Burnum-Johnson, Kristin E.
Ling, Chen
Kneucker, Colin M.
Salvachúa, Davinia
Ramirez, Kelsey J.
St. John, Peter C.
Magnuson, Jon K.
Woodworth, Sean P.
Peabody, George L.
Munoz, Nathalie Munoz
Kim, Young-Mo
Johnson, Christopher W.
Poirier, Brenton C.
Beckham, Gregg T.
Calvey, Christopher H.
Monninger, Michela A.
Guss, Adam M.
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0003-1760-9544
  surname: Ling
  fullname: Ling, Chen
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 2
  givenname: George L.
  surname: Peabody
  fullname: Peabody, George L.
  organization: Agile BioFoundry, Biosciences Division, Oak Ridge National Laboratory
– sequence: 3
  givenname: Davinia
  surname: Salvachúa
  fullname: Salvachúa, Davinia
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 4
  givenname: Young-Mo
  orcidid: 0000-0002-8972-7593
  surname: Kim
  fullname: Kim, Young-Mo
  organization: Agile BioFoundry, Pacific Northwest National Laboratory
– sequence: 5
  givenname: Colin M.
  surname: Kneucker
  fullname: Kneucker, Colin M.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 6
  givenname: Christopher H.
  orcidid: 0000-0002-7330-4983
  surname: Calvey
  fullname: Calvey, Christopher H.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory
– sequence: 7
  givenname: Michela A.
  surname: Monninger
  fullname: Monninger, Michela A.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 8
  givenname: Nathalie Munoz
  orcidid: 0000-0002-2723-3512
  surname: Munoz
  fullname: Munoz, Nathalie Munoz
  organization: Agile BioFoundry, Pacific Northwest National Laboratory
– sequence: 9
  givenname: Brenton C.
  surname: Poirier
  fullname: Poirier, Brenton C.
  organization: Agile BioFoundry, Pacific Northwest National Laboratory
– sequence: 10
  givenname: Kelsey J.
  orcidid: 0000-0002-5114-742X
  surname: Ramirez
  fullname: Ramirez, Kelsey J.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 11
  givenname: Peter C.
  orcidid: 0000-0002-7928-3722
  surname: St. John
  fullname: St. John, Peter C.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 12
  givenname: Sean P.
  orcidid: 0000-0003-3792-9553
  surname: Woodworth
  fullname: Woodworth, Sean P.
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 13
  givenname: Jon K.
  orcidid: 0000-0001-7712-7024
  surname: Magnuson
  fullname: Magnuson, Jon K.
  organization: Agile BioFoundry, Pacific Northwest National Laboratory
– sequence: 14
  givenname: Kristin E.
  orcidid: 0000-0002-2722-4149
  surname: Burnum-Johnson
  fullname: Burnum-Johnson, Kristin E.
  organization: Agile BioFoundry, Pacific Northwest National Laboratory
– sequence: 15
  givenname: Adam M.
  orcidid: 0000-0001-5823-5329
  surname: Guss
  fullname: Guss, Adam M.
  email: gussam@ornl.gov
  organization: Agile BioFoundry, Biosciences Division, Oak Ridge National Laboratory
– sequence: 16
  givenname: Christopher W.
  orcidid: 0000-0002-2979-4751
  surname: Johnson
  fullname: Johnson, Christopher W.
  email: christopher.johnson@nrel.gov
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
– sequence: 17
  givenname: Gregg T.
  orcidid: 0000-0002-3480-212X
  surname: Beckham
  fullname: Beckham, Gregg T.
  email: gregg.beckham@nrel.gov
  organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry
BackLink https://www.osti.gov/servlets/purl/1883309$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAQjVARLaV_gFMEFy4Bf8b2BQlVtFQqggOcLceebL1K7MVOVuy_x9kUQXuoL2N53nsznnkvq5MQA1TVa4zeY0Tlh8wwa0WDCGkoIaptDs-qM4IYbrAg9OS_-2l1kfMWlUMVloy9qE4pV4oLRc6q8etsY_C2Nta7epeim-3kY6j7FMd6M5RshtoEV_8-DMvVh_p7htnFMQaT6908eWfqvTc17OMwH7kLfITJdHEoyhA2PgAkHzavque9GTJc3Mfz6ufV5x-XX5rbb9c3l59uG9tiNDWdwkRyZXtmuJNKSMqQEaInwnXMsh61knQgQJrOcAs9KhHblvQGK7A9oufVzarrotnqXfKjSQcdjdfHh5g22qTJ2wF0xyUjPe6wKsqWI4mdc7jrOiYAc6KK1sdVazd3IzgLYUpmeCD6MBP8nd7EvVZUcU5ZEXizCsQ8eZ2tn8DelaEHsJPGUlKKlirv7quk-GuGPOnRZwvDYALEOWsiEBecSEIL9O0j6DbOKZR5HlGEINrigpIryqaYc4Jel8JmWU9p0g8aI734SK8-0sVH-ugjfShU8oj697NPkuhKyrtl05D-dfUE6w_eht32
CitedBy_id crossref_primary_10_1038_s41467_024_44997_7
crossref_primary_10_1016_j_biortech_2023_128762
crossref_primary_10_1016_j_enzmictec_2025_110590
crossref_primary_10_1016_j_synbio_2023_08_001
crossref_primary_10_1016_j_ymben_2023_11_004
crossref_primary_10_1016_j_ymben_2024_02_003
crossref_primary_10_1016_j_wasman_2024_11_035
crossref_primary_10_1016_j_ymben_2024_02_005
crossref_primary_10_1016_j_algal_2023_103300
crossref_primary_10_1021_acs_jafc_3c07658
crossref_primary_10_1016_j_copbio_2024_103255
crossref_primary_10_1016_j_cej_2024_153375
crossref_primary_10_1039_D4GC03424D
crossref_primary_10_1128_msystems_00942_23
crossref_primary_10_1080_07388551_2024_2433998
crossref_primary_10_1016_j_crmicr_2024_100274
crossref_primary_10_1021_acssynbio_3c00195
crossref_primary_10_1016_j_scenv_2024_100154
crossref_primary_10_3390_app132111691
crossref_primary_10_1016_j_bcab_2023_102852
crossref_primary_10_1016_j_ymben_2024_10_011
crossref_primary_10_1021_acs_jafc_4c10205
crossref_primary_10_3390_molecules30010201
crossref_primary_10_3389_finmi_2023_1319774
crossref_primary_10_1016_j_engmic_2024_100148
crossref_primary_10_1021_acssynbio_4c00366
crossref_primary_10_1007_s12275_024_00136_x
crossref_primary_10_1093_jimb_kuae024
crossref_primary_10_18412_1816_0387_2024_3_73_82
crossref_primary_10_1002_anie_202421540
crossref_primary_10_1016_j_ymben_2024_12_007
crossref_primary_10_1039_D4GC00528G
crossref_primary_10_1016_j_biortech_2025_132062
crossref_primary_10_1002_ange_202411249
crossref_primary_10_1016_j_heliyon_2024_e36113
crossref_primary_10_1007_s00253_023_12977_4
crossref_primary_10_1016_j_ymben_2022_10_016
crossref_primary_10_1016_j_tibtech_2022_10_005
crossref_primary_10_1021_jacs_3c05120
crossref_primary_10_1186_s44314_024_00010_5
crossref_primary_10_1021_acs_jafc_3c09651
crossref_primary_10_1016_j_jclepro_2024_143210
crossref_primary_10_1128_aem_00890_24
crossref_primary_10_3390_ijms251910245
crossref_primary_10_1002_ange_202421540
crossref_primary_10_1007_s11426_024_2080_8
crossref_primary_10_1038_s41929_024_01205_5
crossref_primary_10_1016_j_jbiosc_2024_07_016
crossref_primary_10_1002_cssc_202401070
crossref_primary_10_1146_annurev_chembioeng_100522_115850
crossref_primary_10_3390_fermentation9020137
crossref_primary_10_1016_j_biortech_2025_132056
crossref_primary_10_1109_TCBB_2023_3307363
crossref_primary_10_1093_nar_gkad1117
crossref_primary_10_1016_j_biotechadv_2024_108380
crossref_primary_10_1016_j_copbio_2025_103270
crossref_primary_10_1038_s41564_023_01529_1
crossref_primary_10_1007_s43393_023_00215_x
crossref_primary_10_1016_j_copbio_2023_102949
crossref_primary_10_1016_j_jbiotec_2024_09_015
crossref_primary_10_1002_anie_202411249
crossref_primary_10_1038_s41467_024_46812_9
crossref_primary_10_1016_j_str_2023_08_019
crossref_primary_10_1039_D4GC00395K
crossref_primary_10_1146_annurev_arplant_062923_022602
crossref_primary_10_1016_j_enzmictec_2023_110230
crossref_primary_10_1016_j_biotechadv_2022_108076
Cites_doi 10.1016/j.ymben.2015.01.005
10.1016/j.jbiosc.2010.08.001
10.1039/C4EE03230F
10.1016/S0021-9258(18)33582-8
10.1016/j.biortech.2020.124239
10.1002/anie.201509653
10.1186/s40168-020-00817-w
10.1074/jbc.M111.337501
10.1039/C8EE00460A
10.1039/C5GC02844B
10.1038/nrg3117
10.1186/1752-0509-7-74
10.1074/jbc.M115.687749
10.1039/D0GC02108C
10.1016/j.ymben.2018.05.019
10.1038/nrmicro2652
10.1021/ja00080a057
10.1038/nature11524
10.1016/j.meteno.2016.04.002
10.1039/C5EE03718B
10.1128/AEM.00859-13
10.1093/nar/gkaa829
10.1039/C7GC00320J
10.1039/C9GC04161C
10.1002/anie.201509149
10.1016/j.biotechadv.2014.04.001
10.1016/j.ymben.2020.01.001
10.1016/j.joule.2019.05.011
10.1038/nbt1183-784
10.1128/aem.63.2.761-762.1997
10.1016/0006-291X(74)90358-1
10.1016/j.ymben.2014.12.007
10.1038/s41467-019-14024-1
10.1146/annurev-chembioeng-061010-114205
10.1016/j.mimet.2005.06.001
10.1016/j.joule.2019.01.018
10.1021/ac9019522
10.1016/j.meteno.2014.09.001
10.1038/s41421-019-0082-1
10.1039/C8GC02519C
10.1021/acssynbio.7b00331
10.1016/j.ymben.2021.02.005
10.1021/acssuschemeng.9b03908
10.1021/acssuschemeng.6b00679
10.1016/S0021-9258(18)64279-6
10.1016/j.ymben.2020.08.001
10.1002/yea.3025
10.3389/fbioe.2019.00480
10.1038/s41598-018-36320-4
10.1021/acssynbio.8b00465
10.1016/j.cell.2019.05.004
10.1016/j.ymben.2018.03.011
10.1038/nprot.2008.73
10.1021/ac802689c
10.1021/acssuschemeng.6b01820
10.1039/C7GC00296C
10.1002/cssc.201402092
10.1039/C7GC00658F
10.1016/j.ymben.2014.02.009
10.3389/fbioe.2018.00032
10.5281/zenodo.6360544.
10.1101/139121
10.1128/mSystems.00043-16
10.1021/acssuschemeng.1c03765
10.2172/1561511
10.1038/s41578-021-00363-3
10.1021/bk-2018-1310.ch022
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
CorporateAuthor_xml – sequence: 0
  name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– sequence: 0
  name: National Renewable Energy Laboratory (NREL), Golden, CO (United States)
– sequence: 0
  name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-022-32296-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_b5842f1b194c4c5081ddd1bbb47e1529
PMC9395534
1883309
10_1038_s41467_022_32296_y
GrantInformation_xml – fundername: US Department of Energy Bioenergy Technologies Office funded this work, as stated in the manuscript. The grant numbers are listed therein as well.
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c610t-b912859cf4a5d8978340a77f27db4c4f0682be7e8aba5cef0aba1c62fa19ecf03
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:03 EDT 2025
Thu Aug 21 14:09:37 EDT 2025
Thu Dec 05 06:29:21 EST 2024
Fri Jul 11 00:43:27 EDT 2025
Wed Aug 13 07:02:31 EDT 2025
Tue Jul 01 00:58:23 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Fri Feb 21 02:38:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-b912859cf4a5d8978340a77f27db4c4f0682be7e8aba5cef0aba1c62fa19ecf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PNNL-SA-168423; NREL/JA-2A00-81804
AC05-76RL01830; AC36-08GO28308; AC05-00OR22725
USDOE Office of Science (SC), Biological and Environmental Research (BER)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Bioenergy Technologies Office
ORCID 0000-0002-5114-742X
0000-0002-2722-4149
0000-0002-8972-7593
0000-0002-7330-4983
0000-0002-2723-3512
0000-0002-2979-4751
0000-0002-7928-3722
0000-0003-1760-9544
0000-0002-3480-212X
0000-0003-3792-9553
0000-0001-7712-7024
0000-0001-5823-5329
0000000273304983
000000023480212X
0000000337929553
000000025114742X
0000000227233512
0000000317609544
0000000158235329
0000000227224149
0000000229794751
0000000289727593
0000000177127024
0000000279283722
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32296-y
PMID 35995792
PQID 2705220361
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b5842f1b194c4c5081ddd1bbb47e1529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9395534
osti_scitechconnect_1883309
proquest_miscellaneous_2705752823
proquest_journals_2705220361
crossref_citationtrail_10_1038_s41467_022_32296_y
crossref_primary_10_1038_s41467_022_32296_y
springer_journals_10_1038_s41467_022_32296_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-22
PublicationDateYYYYMMDD 2022-08-22
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang, Nomura (CR62) 2010; 110
Sharon (CR69) 2019; 177
Rorrer, Vardon, Dorgan, Gjersing, Beckham (CR23) 2017; 19
Dahms (CR40) 1974; 60
CR37
Salvachúa (CR7) 2018; 20
Rorrer (CR24) 2019; 3
Dvorak, de Lorenzo (CR34) 2018; 48
CR30
Schmittgen, Livak (CR63) 2008; 3
Wynands (CR46) 2018; 47
Jha (CR41) 2019; 8
Bentley (CR32) 2020; 59
Kind (CR67) 2009; 81
Carraher, Pfennig, Rao, Shanks, Tessonnier (CR17) 2017; 19
Johnson, Beckham (CR52) 2015; 28
Simon, Priefer, Pühler (CR55) 1983; 1
Kikuchi, Tsujimoto, Kurahashi (CR70) 1997; 63
Chundawat, Beckham, Himmel, Dale (CR2) 2011; 2
Chen (CR56) 2016; 9
Vardon (CR9) 2015; 8
Choi, Song, Shin, Lee (CR1) 2015; 28
Thompson, Pugh, Machas, Nielsen (CR25) 2018; 7
Sun, Lin, Yuan, Yan (CR28) 2014; 7
CR43
Jayakody (CR54) 2018; 11
Lu (CR14) 2016; 55
Kim (CR65) 2015; 6
Fuchs, Boll, Heider (CR4) 2011; 9
Carraher (CR18) 2020; 22
Lee (CR31) 2018; 8
Kim (CR12) 2019; 7
Shanks, Keeling (CR13) 2017; 19
Matthiesen, Carraher, Vasiliu, Dixon, Tessonnier (CR21) 2016; 4
Johnson (CR33) 2016; 3
Khalil, Quintens, Junkers, Dusselier (CR6) 2020; 22
Rorrer (CR22) 2016; 4
Draths, Frost (CR5) 1994; 116
Li, Ye (CR45) 2021; 319
Jiang (CR49) 2019; 5
Prodanov, Bansal (CR50) 2020; 48
Xie, Liang, Huang, Xu (CR10) 2014; 32
Winter, Averesch, Nunez-Bernal, Krömer (CR47) 2014; 31
CR19
Mao (CR68) 2020; 8
CR16
Whitaker, Fiske, Jensen (CR44) 1982; 257
CR58
Fujiwara, Noda, Tanaka, Kondo (CR11) 2020; 11
CR57
Treangen, Salzberg (CR51) 2012; 13
Vardon (CR15) 2016; 18
Weimberg (CR39) 1961; 236
Nikel, Chavarria, Fuhrer, Sauer, de Lorenzo (CR42) 2015; 290
Meijnen, de Winde, Ruijssenaars (CR38) 2012; 287
Johnson (CR3) 2019; 3
Lin, Sun, Yuan, Yan (CR26) 2014; 23
Elmore (CR35) 2020; 62
Bator, Wittgens, Rosenau, Tiso, Blank (CR36) 2019; 7
Choi, Kumar, Schweizer (CR53) 2006; 64
Notonier (CR61) 2021; 65
Ebrahim, Lerman, Palsson, Hyduke (CR59) 2013; 7
Suastegui (CR8) 2016; 55
Hiller (CR66) 2009; 81
CR20
CR64
CR60
Sun, Lin, Huang, Yuan, Yan (CR27) 2013; 79
Averesch, Kromer (CR29) 2014; 1
Sun (CR48) 2012; 490
PI Nikel (32296_CR42) 2015; 290
32296_CR20
32296_CR64
G Sharon (32296_CR69) 2019; 177
A Ebrahim (32296_CR59) 2013; 7
NA Rorrer (32296_CR24) 2019; 3
CW Johnson (32296_CR52) 2015; 28
32296_CR60
G Fuchs (32296_CR4) 2011; 9
DR Vardon (32296_CR9) 2015; 8
G Winter (32296_CR47) 2014; 31
BH Shanks (32296_CR13) 2017; 19
KH Choi (32296_CR53) 2006; 64
P Dvorak (32296_CR34) 2018; 48
CW Johnson (32296_CR3) 2019; 3
T Prodanov (32296_CR50) 2020; 48
JM Carraher (32296_CR18) 2020; 22
32296_CR19
32296_CR58
D Salvachúa (32296_CR7) 2018; 20
32296_CR57
32296_CR16
S Choi (32296_CR1) 2015; 28
RJ Whitaker (32296_CR44) 1982; 257
JH Mao (32296_CR68) 2020; 8
NZ Xie (32296_CR10) 2014; 32
TJ Treangen (32296_CR51) 2012; 13
DR Vardon (32296_CR15) 2016; 18
X Chen (32296_CR56) 2016; 9
HN Lee (32296_CR31) 2018; 8
R Weimberg (32296_CR39) 1961; 236
CW Johnson (32296_CR33) 2016; 3
S Notonier (32296_CR61) 2021; 65
J Li (32296_CR45) 2021; 319
I Bator (32296_CR36) 2019; 7
NA Rorrer (32296_CR23) 2017; 19
Y Kikuchi (32296_CR70) 1997; 63
X Sun (32296_CR28) 2014; 7
32296_CR43
T Kind (32296_CR67) 2009; 81
YM Kim (32296_CR65) 2015; 6
NA Rorrer (32296_CR22) 2016; 4
B Wynands (32296_CR46) 2018; 47
R Fujiwara (32296_CR11) 2020; 11
M Suastegui (32296_CR8) 2016; 55
R Simon (32296_CR55) 1983; 1
SP Chundawat (32296_CR2) 2011; 2
JP Meijnen (32296_CR38) 2012; 287
KM Draths (32296_CR5) 1994; 116
L Sun (32296_CR48) 2012; 490
B Thompson (32296_CR25) 2018; 7
TD Schmittgen (32296_CR63) 2008; 3
32296_CR37
HT Kim (32296_CR12) 2019; 7
JE Matthiesen (32296_CR21) 2016; 4
32296_CR30
X Jiang (32296_CR49) 2019; 5
JM Carraher (32296_CR17) 2017; 19
NJH Averesch (32296_CR29) 2014; 1
Q Wang (32296_CR62) 2010; 110
AS Dahms (32296_CR40) 1974; 60
R Lu (32296_CR14) 2016; 55
RK Jha (32296_CR41) 2019; 8
GJ Bentley (32296_CR32) 2020; 59
LN Jayakody (32296_CR54) 2018; 11
K Hiller (32296_CR66) 2009; 81
Y Lin (32296_CR26) 2014; 23
JR Elmore (32296_CR35) 2020; 62
I Khalil (32296_CR6) 2020; 22
X Sun (32296_CR27) 2013; 79
References_xml – volume: 28
  start-page: 240
  year: 2015
  end-page: 247
  ident: CR52
  article-title: Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.01.005
– volume: 110
  start-page: 653
  year: 2010
  end-page: 659
  ident: CR62
  article-title: Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in KT2440 grown on different carbon sources
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2010.08.001
– volume: 8
  start-page: 617
  year: 2015
  end-page: 628
  ident: CR9
  article-title: Adipic acid production from lignin
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03230F
– volume: 257
  start-page: 12789
  year: 1982
  end-page: 12794
  ident: CR44
  article-title: possesses two novel regulatory isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33582-8
– volume: 319
  start-page: 124239
  year: 2021
  ident: CR45
  article-title: Metabolic engineering of KT2440 for high-yield production of protocatechuic acid
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124239
– ident: CR16
– volume: 55
  start-page: 2368
  year: 2016
  end-page: 2373
  ident: CR8
  article-title: Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509653
– volume: 8
  year: 2020
  ident: CR68
  article-title: Genetic and metabolic links between the murine microbiome and memory
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00817-w
– volume: 287
  start-page: 14606
  year: 2012
  end-page: 14614
  ident: CR38
  article-title: Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered S12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.337501
– volume: 11
  start-page: 1625
  year: 2018
  end-page: 1638
  ident: CR54
  article-title: Thermochemical wastewater valorization via enhanced microbial toxicity tolerance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00460A
– volume: 18
  start-page: 3397
  year: 2016
  end-page: 3413
  ident: CR15
  article-title: -Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
  publication-title: Green. Chem.
  doi: 10.1039/C5GC02844B
– volume: 13
  start-page: 36
  year: 2012
  end-page: 46
  ident: CR51
  article-title: Repetitive DNA and next-generation sequencing: computational challenges and solutions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3117
– volume: 7
  start-page: 74
  year: 2013
  ident: CR59
  article-title: COBRApy: COnstraints-based reconstruction and analysis for Python
  publication-title: BMC Syst. Bio.
  doi: 10.1186/1752-0509-7-74
– volume: 290
  start-page: 25920
  year: 2015
  end-page: 25932
  ident: CR42
  article-title: KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.687749
– volume: 22
  start-page: 6444
  year: 2020
  end-page: 6454
  ident: CR18
  article-title: Solvent-driven isomerization of -muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers
  publication-title: Green. Chem.
  doi: 10.1039/D0GC02108C
– ident: CR58
– volume: 48
  start-page: 94
  year: 2018
  end-page: 108
  ident: CR34
  article-title: Refactoring the upper sugar metabolism of for co-utilization of cellobiose, xylose, and glucose
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.05.019
– volume: 9
  start-page: 803
  year: 2011
  end-page: 816
  ident: CR4
  article-title: Microbial degradation of aromatic compounds—from one strategy to four
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2652
– volume: 116
  start-page: 399
  year: 1994
  end-page: 400
  ident: CR5
  article-title: Environmentally compatible synthesis of adipic acid from D-glucose
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00080a057
– volume: 490
  start-page: 361
  year: 2012
  end-page: 366
  ident: CR48
  article-title: Crystal structure of a bacterial homologue of glucose transporters GLUT1-4
  publication-title: Nature
  doi: 10.1038/nature11524
– volume: 3
  start-page: 111
  year: 2016
  end-page: 119
  ident: CR33
  article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.meteno.2016.04.002
– ident: CR19
– volume: 9
  start-page: 1237
  year: 2016
  end-page: 1245
  ident: CR56
  article-title: DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L ) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03718B
– volume: 79
  start-page: 4024
  year: 2013
  end-page: 4030
  ident: CR27
  article-title: A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00859-13
– volume: 48
  start-page: e114
  year: 2020
  ident: CR50
  article-title: Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa829
– volume: 6
  start-page: 209
  year: 2015
  ident: CR65
  article-title: Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms
  publication-title: Front. Microbiol.
– volume: 19
  start-page: 2812
  year: 2017
  end-page: 2825
  ident: CR23
  article-title: Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00320J
– volume: 22
  start-page: 1517
  year: 2020
  end-page: 1541
  ident: CR6
  article-title: Muconic acid isomers as platform chemicals and monomers in the biobased economy
  publication-title: Green. Chem.
  doi: 10.1039/C9GC04161C
– volume: 55
  start-page: 249
  year: 2016
  end-page: 253
  ident: CR14
  article-title: Production of diethyl terephthalate from biomass-derived muconic acid
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509149
– volume: 32
  start-page: 615
  year: 2014
  end-page: 622
  ident: CR10
  article-title: Biotechnological production of muconic acid: current status and future prospects
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.04.001
– volume: 59
  start-page: 64
  year: 2020
  end-page: 75
  ident: CR32
  article-title: Engineering glucose metabolism for enhanced muconic acid production in KT2440
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.01.001
– ident: CR57
– volume: 3
  start-page: 1523
  year: 2019
  end-page: 1537
  ident: CR3
  article-title: Innovative chemicals and materials from bacterial aromatic catabolic pathways
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.011
– ident: CR60
– volume: 1
  start-page: 784
  year: 1983
  end-page: 791
  ident: CR55
  article-title: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria
  publication-title: Bio/Technol.
  doi: 10.1038/nbt1183-784
– volume: 63
  start-page: 761
  year: 1997
  end-page: 762
  ident: CR70
  article-title: Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.2.761-762.1997
– ident: CR64
– volume: 60
  start-page: 1433
  year: 1974
  end-page: 1439
  ident: CR40
  article-title: 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(74)90358-1
– volume: 28
  start-page: 223
  year: 2015
  end-page: 239
  ident: CR1
  article-title: Biorefineries for the production of top building block chemicals and their derivatives
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.12.007
– volume: 11
  year: 2020
  ident: CR11
  article-title: Metabolic engineering of for shikimate pathway derivative production from glucose-xylose co-substrate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14024-1
– volume: 2
  start-page: 121
  year: 2011
  end-page: 145
  ident: CR2
  article-title: Deconstruction of lignocellulosic biomass to fuels and chemicals
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-061010-114205
– volume: 64
  start-page: 391
  year: 2006
  end-page: 397
  ident: CR53
  article-title: A 10-min method for preparation of highly electrocompetent cells: application for DNA fragment transfer between chromosomes and plasmid transformation
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2005.06.001
– ident: CR43
– volume: 3
  start-page: 1006
  year: 2019
  end-page: 1027
  ident: CR24
  article-title: Combining reclaimed PET with bio-based monomers enables plastics upcycling
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.018
– volume: 81
  start-page: 10038
  year: 2009
  end-page: 10048
  ident: CR67
  article-title: FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac9019522
– volume: 1
  start-page: 19
  year: 2014
  end-page: 28
  ident: CR29
  article-title: Tailoring strain construction strategies for muconic acid production in and
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.meteno.2014.09.001
– ident: CR37
– ident: CR30
– volume: 5
  start-page: 14
  year: 2019
  ident: CR49
  article-title: Engineered XylE as a tool for mechanistic investigation and ligand discovery of the glucose transporters GLUTs
  publication-title: Cell Discov.
  doi: 10.1038/s41421-019-0082-1
– volume: 20
  start-page: 5007
  year: 2018
  end-page: 5019
  ident: CR7
  article-title: Bioprocess development for muconic acid production from aromatic compounds and lignin
  publication-title: Green. Chem.
  doi: 10.1039/C8GC02519C
– volume: 7
  start-page: 565
  year: 2018
  end-page: 575
  ident: CR25
  article-title: Muconic acid production via alternative pathways and a synthetic “metabolic funnel”
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00331
– volume: 65
  start-page: 111
  year: 2021
  end-page: 122
  ident: CR61
  article-title: Metabolism of syringyl lignin-derived compounds in enables convergent production of 2-pyrone-4,6-dicarboxylic acid
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2021.02.005
– volume: 7
  start-page: 19396
  year: 2019
  end-page: 19406
  ident: CR12
  article-title: Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03908
– volume: 4
  start-page: 3575
  year: 2016
  end-page: 3585
  ident: CR21
  article-title: Electrochemical conversion of muconic acid to biobased diacid monomers
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00679
– volume: 236
  start-page: 629
  year: 1961
  end-page: 635
  ident: CR39
  article-title: Pentose oxidation by
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64279-6
– volume: 62
  start-page: 62
  year: 2020
  end-page: 71
  ident: CR35
  article-title: Engineered simultaneously catabolizes five major components of corn stover lignocellulose: glucose, xylose, arabinose, -coumaric acid, and acetic acid
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.08.001
– volume: 31
  start-page: 333
  year: 2014
  end-page: 341
  ident: CR47
  article-title: In vivo instability of chorismate causes substrate loss during fermentative production of aromatics
  publication-title: Yeast
  doi: 10.1002/yea.3025
– volume: 7
  start-page: 480
  year: 2019
  ident: CR36
  article-title: Comparison of three xylose pathways in KT2440 for the synthesis of valuable products
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00480
– volume: 8
  year: 2018
  ident: CR31
  article-title: Corynebacterium cell factory design and culture process optimization for muconic acid biosynthesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36320-4
– volume: 8
  start-page: 775
  year: 2019
  end-page: 786
  ident: CR41
  article-title: Sensor-enabled alleviation of product inhibition in chorismate pyruvate-lyase
  publication-title: Acs. Synth. Biol.
  doi: 10.1021/acssynbio.8b00465
– volume: 177
  start-page: 1600
  year: 2019
  end-page: 1618 e1617
  ident: CR69
  article-title: Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.004
– volume: 47
  start-page: 121
  year: 2018
  end-page: 133
  ident: CR46
  article-title: Metabolic engineering of VLB120 with minimal genomic modifications for high-yield phenol production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.03.011
– volume: 3
  start-page: 1101
  year: 2008
  end-page: 1108
  ident: CR63
  article-title: Analyzing real-time PCR data by the comparative C method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 81
  start-page: 3429
  year: 2009
  end-page: 3439
  ident: CR66
  article-title: MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac802689c
– volume: 4
  start-page: 6867
  year: 2016
  end-page: 6876
  ident: CR22
  article-title: Renewable unsaturated polyesters from muconic acid
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01820
– volume: 19
  start-page: 3177
  year: 2017
  end-page: 3185
  ident: CR13
  article-title: Bioprivileged molecules: creating value from biomass
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00296C
– volume: 7
  start-page: 2478
  year: 2014
  end-page: 2481
  ident: CR28
  article-title: Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402092
– volume: 19
  start-page: 3042
  year: 2017
  end-page: 3050
  ident: CR17
  article-title: -Muconic acid isomerization and catalytic conversion to biobased cyclic-C −1,4-diacid monomers
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00658F
– ident: CR20
– volume: 23
  start-page: 62
  year: 2014
  end-page: 69
  ident: CR26
  article-title: Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.02.009
– volume: 19
  start-page: 3042
  year: 2017
  ident: 32296_CR17
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00658F
– ident: 32296_CR43
– ident: 32296_CR20
– volume: 64
  start-page: 391
  year: 2006
  ident: 32296_CR53
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2005.06.001
– volume: 9
  start-page: 803
  year: 2011
  ident: 32296_CR4
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2652
– volume: 177
  start-page: 1600
  year: 2019
  ident: 32296_CR69
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.004
– volume: 236
  start-page: 629
  year: 1961
  ident: 32296_CR39
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64279-6
– volume: 8
  year: 2018
  ident: 32296_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36320-4
– ident: 32296_CR30
  doi: 10.3389/fbioe.2018.00032
– volume: 4
  start-page: 6867
  year: 2016
  ident: 32296_CR22
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01820
– volume: 3
  start-page: 1006
  year: 2019
  ident: 32296_CR24
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.018
– volume: 1
  start-page: 784
  year: 1983
  ident: 32296_CR55
  publication-title: Bio/Technol.
  doi: 10.1038/nbt1183-784
– volume: 11
  year: 2020
  ident: 32296_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14024-1
– volume: 4
  start-page: 3575
  year: 2016
  ident: 32296_CR21
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00679
– volume: 47
  start-page: 121
  year: 2018
  ident: 32296_CR46
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.03.011
– ident: 32296_CR57
  doi: 10.5281/zenodo.6360544.
– volume: 5
  start-page: 14
  year: 2019
  ident: 32296_CR49
  publication-title: Cell Discov.
  doi: 10.1038/s41421-019-0082-1
– volume: 3
  start-page: 1101
  year: 2008
  ident: 32296_CR63
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 3
  start-page: 1523
  year: 2019
  ident: 32296_CR3
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.011
– volume: 116
  start-page: 399
  year: 1994
  ident: 32296_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00080a057
– ident: 32296_CR58
  doi: 10.1101/139121
– volume: 6
  start-page: 209
  year: 2015
  ident: 32296_CR65
  publication-title: Front. Microbiol.
– volume: 22
  start-page: 6444
  year: 2020
  ident: 32296_CR18
  publication-title: Green. Chem.
  doi: 10.1039/D0GC02108C
– volume: 7
  start-page: 565
  year: 2018
  ident: 32296_CR25
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00331
– volume: 257
  start-page: 12789
  year: 1982
  ident: 32296_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33582-8
– volume: 81
  start-page: 10038
  year: 2009
  ident: 32296_CR67
  publication-title: Anal. Chem.
  doi: 10.1021/ac9019522
– volume: 13
  start-page: 36
  year: 2012
  ident: 32296_CR51
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3117
– volume: 59
  start-page: 64
  year: 2020
  ident: 32296_CR32
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.01.001
– volume: 7
  start-page: 74
  year: 2013
  ident: 32296_CR59
  publication-title: BMC Syst. Bio.
  doi: 10.1186/1752-0509-7-74
– volume: 490
  start-page: 361
  year: 2012
  ident: 32296_CR48
  publication-title: Nature
  doi: 10.1038/nature11524
– volume: 319
  start-page: 124239
  year: 2021
  ident: 32296_CR45
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124239
– volume: 65
  start-page: 111
  year: 2021
  ident: 32296_CR61
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2021.02.005
– ident: 32296_CR64
  doi: 10.1128/mSystems.00043-16
– volume: 55
  start-page: 2368
  year: 2016
  ident: 32296_CR8
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509653
– volume: 62
  start-page: 62
  year: 2020
  ident: 32296_CR35
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.08.001
– volume: 8
  start-page: 775
  year: 2019
  ident: 32296_CR41
  publication-title: Acs. Synth. Biol.
  doi: 10.1021/acssynbio.8b00465
– volume: 7
  start-page: 19396
  year: 2019
  ident: 32296_CR12
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03908
– volume: 287
  start-page: 14606
  year: 2012
  ident: 32296_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.337501
– volume: 60
  start-page: 1433
  year: 1974
  ident: 32296_CR40
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(74)90358-1
– volume: 19
  start-page: 2812
  year: 2017
  ident: 32296_CR23
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00320J
– ident: 32296_CR37
  doi: 10.1021/acssuschemeng.1c03765
– volume: 11
  start-page: 1625
  year: 2018
  ident: 32296_CR54
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00460A
– volume: 19
  start-page: 3177
  year: 2017
  ident: 32296_CR13
  publication-title: Green. Chem.
  doi: 10.1039/C7GC00296C
– volume: 28
  start-page: 240
  year: 2015
  ident: 32296_CR52
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.01.005
– ident: 32296_CR60
  doi: 10.2172/1561511
– volume: 22
  start-page: 1517
  year: 2020
  ident: 32296_CR6
  publication-title: Green. Chem.
  doi: 10.1039/C9GC04161C
– volume: 32
  start-page: 615
  year: 2014
  ident: 32296_CR10
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.04.001
– volume: 31
  start-page: 333
  year: 2014
  ident: 32296_CR47
  publication-title: Yeast
  doi: 10.1002/yea.3025
– volume: 9
  start-page: 1237
  year: 2016
  ident: 32296_CR56
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03718B
– volume: 110
  start-page: 653
  year: 2010
  ident: 32296_CR62
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2010.08.001
– volume: 8
  year: 2020
  ident: 32296_CR68
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00817-w
– ident: 32296_CR19
  doi: 10.1038/s41578-021-00363-3
– volume: 1
  start-page: 19
  year: 2014
  ident: 32296_CR29
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.meteno.2014.09.001
– volume: 48
  start-page: e114
  year: 2020
  ident: 32296_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa829
– volume: 55
  start-page: 249
  year: 2016
  ident: 32296_CR14
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509149
– volume: 290
  start-page: 25920
  year: 2015
  ident: 32296_CR42
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.687749
– ident: 32296_CR16
  doi: 10.1021/bk-2018-1310.ch022
– volume: 23
  start-page: 62
  year: 2014
  ident: 32296_CR26
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.02.009
– volume: 7
  start-page: 480
  year: 2019
  ident: 32296_CR36
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00480
– volume: 7
  start-page: 2478
  year: 2014
  ident: 32296_CR28
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402092
– volume: 63
  start-page: 761
  year: 1997
  ident: 32296_CR70
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.2.761-762.1997
– volume: 2
  start-page: 121
  year: 2011
  ident: 32296_CR2
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-061010-114205
– volume: 18
  start-page: 3397
  year: 2016
  ident: 32296_CR15
  publication-title: Green. Chem.
  doi: 10.1039/C5GC02844B
– volume: 8
  start-page: 617
  year: 2015
  ident: 32296_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03230F
– volume: 48
  start-page: 94
  year: 2018
  ident: 32296_CR34
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.05.019
– volume: 28
  start-page: 223
  year: 2015
  ident: 32296_CR1
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.12.007
– volume: 79
  start-page: 4024
  year: 2013
  ident: 32296_CR27
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00859-13
– volume: 3
  start-page: 111
  year: 2016
  ident: 32296_CR33
  publication-title: Metab. Eng. Commun.
  doi: 10.1016/j.meteno.2016.04.002
– volume: 20
  start-page: 5007
  year: 2018
  ident: 32296_CR7
  publication-title: Green. Chem.
  doi: 10.1039/C8GC02519C
– volume: 81
  start-page: 3429
  year: 2009
  ident: 32296_CR66
  publication-title: Anal. Chem.
  doi: 10.1021/ac802689c
SSID ssj0000391844
Score 2.6104994
Snippet Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged...
Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4925
SubjectTerms 09 BIOMASS FUELS
3-Dehydroquinate synthase
631/326/2522
631/61/252/318
631/61/318
Acid production
Acids
applied microbiology
Carbohydrates
Engineering
Evolution
Glucose
Humanities and Social Sciences
Hydrolysates
Laboratories
Lignocellulose
Metabolic engineering
Metabolism
Muconic acid
multidisciplinary
Mutation
performance advantaged bioproducts
Petrochemicals
Pseudomonas putida
Science
Science (multidisciplinary)
shikimate
Sugar
Xylose
Xylose isomerase
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBF_MR6p0TwTcsladKkjyoeh3Digwf3FvKJC3fdxe0e7n_vJO3uXQ_UF59aNuk2zPySmWkmvwF4m7SKVDlWu5zhKjora92Ftu5Q4RgdhMBLOZ-zr-3pufhyIS9ulfrKOWEjPfAouGOHFpIn5jDY9sKjO8FCCMw5J1RE21OO7qHNuxVMlTUYX6SFmE7J0EYfr0VZE0ryOuc4ru3MEhXCfrwscWLNnM27qZJ39kuLGTp5BA8n_5F8GMf9GO7F_gncHytKbp_C1dnGZ7JbYv0ikNVI54qiJ_kYCZny04ntA_mFkTreLnrybR03YYlwtGuyQhwGS64XlsTrCZWl-1UcEC6X-M_xhsHwGZyffP7-6bSeKirUHt2kARXCMmGdT8LKoPNXH0GtUomr4FC8ibaau6iits5KHxPFK_MtT5Z10SfaPIeDftnHF0CcklGnpnUYwAnupW10Stah4LvWOR8qYDvpGj_RjeeqF5embHs32owaMagRUzRithW82z-zGsk2_tr7Y1bavmcmyi4_IHzMBB_zL_hUcJhVbtDfyKS5PmcX-cGwXIOZYuvRDglmmttrwxVFpxUtP6vgzb4ZZ2XearF9XG7GPkpiONtUoGYImg133tIvfhR-767ppGxEBe93WLt5-Z_F8fJ_iOMQHvA8RSgun_wIDoafm_gKva7BvS4T7Dd5ESrH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EfRBdCqrmyOCb1rWpGmTPonK7oYw8cHB3kI-9cLWXtfe4f3vPUlz77WD7amlSZu05yO_JKe_g9B7L7gruCa5DhGurFFVLhpb5w0IHGYH1tKYzufse316zr5dVBdpwa1PYZVrnxgdte1MWCM_orwAqAD-lnxa_MlD1qiwu5pSaDxEjwiMNCGkS8xONmssgf1cMJb-lSlKcdSz6BliCDul0LvVZDyKtP1w6MC8JpDzdsDkrV3TOBjNnqNnCUXiz6PYX6AHrt1Fj8e8kqtd9PQ_lsGX6OpsaQIBLlZmbvFipHgFceDwawlOMetYtRb_hdk7nM5b_KN3S9vBO6seL0A3rcI3c4XdTdLUWP3KDaBCl_Bkt23vFTqfHf_8epqnLAu5Aeg0gJBIILEznqnKirASxArFuafcamaYL2pBteNOKK0q43wBR2Jq6hVpnPFF-RrttF3r9hDWvHLCl7WGSR2jplKl8F5pEENTa21shsj6W0uTKMhDJoxLGbfCSyFH-UiQj4zykasMfdjcsxgJOO6t_SWIcFMzkGfHC931L5lsUWoAXdQTTRp4PwMIlVhridaacQdwpsnQflAACRgkEOmaEHFkBklCXuYCSg_WeiGTvfdyq50ZercpBksN2y-qdd1yrMMrmOKWGeITfZp0d1rSzn9Hzu-mbKqqZBn6uNa8beN3f4439_d1Hz2hwRQKcJb0AO0M10v3FjDWoA-jIf0DDAomsA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66lsFeRveLee2GBnvbzCxZtuTHdKyUQMdgK_RN6OcWaO3QJGX573eS7RSXbbAnh-jsOLrvrE_W6TuAd0EKXwhDcxMzXHmjq1w2rs4bdDjODpxjqZzP-Zf67ILPL6vLPWDjXpiUtJ8kLdNjeswO-7jiKaRT7jljeNntAziIUu2I7YPZbP5tvnuzEjXPJefDDpmilH84eTIKJbF-PHQYVBOieT9N8t5aaRqCTg_h8cAdyay_2yew59un8LCvJrl9BtfnGxuFbom2C0eWvZQrdjuJW0jIkJtOdOvIL5yl48dFS76u_MZ1CEW9IkvEoNPkdqGJvx0Qmcyv_RqhcoVX9nfqhc_h4vTz909n-VBNIbdIkdboDBrF6mzgunIyvvHhhRYiMOEMtzwUtWTGCy-10ZX1ocAjtTULmjbehqJ8Aftt1_qXQIyovAxlbXDyxpmtdClD0AY7vqmNsS4DOvausoPUeKx4caXSkncpVe8RhR5RySNqm8H73TnLXmjjn9Yn0Wk7yyiSnb7obn6oATTKILligRra4P-zyESpc44aY7jwSFuaDI6iyxVyjSiYa2NmkV0rGusvF9h6PCJBDXG9UkwUSFhx1KcZvN01Y0TGZRbd-m7T24gKp7JlBmKCoMntTlvaxc-k7d2UTVWVPIMPI9bufvzv3fHq_8yP4BGLwVDgQ5Idw_76ZuNfI7damzdDMP0GLqkh9A
  priority: 102
  providerName: Springer Nature
Title Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering
URI https://link.springer.com/article/10.1038/s41467-022-32296-y
https://www.proquest.com/docview/2705220361
https://www.proquest.com/docview/2705752823
https://www.osti.gov/servlets/purl/1883309
https://pubmed.ncbi.nlm.nih.gov/PMC9395534
https://doaj.org/article/b5842f1b194c4c5081ddd1bbb47e1529
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBa9MNjL2JV57YIGe9u8WbJsyQ9jpKVZCaSUbYG8CV27QOpkuZTm3-9IdlJSusFeomDJlq1zjvUd6-g7CL33gruMa5LqEOHKKlWkorJlWoHAwTuwlsZ0PoOL8nzI-qNitIc26Y7aAVw86NqFfFLD-eTT7e_1VzD4L82WcfF5waK5x7h0SqHL9T46hJmJh4wGgxbuxzczdC9ifleaMZJCg7zdR_PwZXbmqkjpD8UUTG8Hjt4Ppry3ohonqt5T9KRFmLjbqMQztOfq5-hRk3Ny_QJdD1Ym0OFiZcYWzxrCVxAODhtNcBvBjlVt8S348vB3XOPLhVvZKSisWuAZaKpV-GassLtp9TY2v3ZLUKgJXNndcRy-RMPe2c_T87TNuZAaAFJLEBkJlHbGM1VYEb4LsUxx7im3mhnms1JQ7bgTSqvCOJ9BSUxJvSKVMz7LX6GDelq71whrXjjh81KDi8eoKVQuvFcahFCVWhubILIZXWlaQvKQF2Mi48J4LmQjEQkSkVEicp2gD9tzZg0dxz9bnwShbVsGKu14YDq_kq1lSg0QjHqiSQXPZwCvEmst0Voz7gDcVAk6CiKXgEgCra4J8UdmKUnI0pxB7fFGE-RGeSXlGcBawAYkQe-21WC3YTFG1W66atrwAhzePEF8R4N2bne3ph7_igzgVV4VRc4S9HGja3ed_3043vzX4B2hxzTYQgZvUnqMDpbzlXsLAGypO2ifjzj8it63Djrsdvs_-lCenF1cfoejp-VpJ37a6ETr-wO7szJe
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEAIOCAaIsAFGghNEix0nTg4I8VU6tk4cNmk340-o1CVlbQf5p_gbeXaSlk5it50SxU7svC8_28-_h9ALV3CbcEVi5SNcWSmzuChNHpfAcJgdGENDOp_RYT48Zl9OspMN9Kc_C-PDKnubGAy1qbVfI9-lPAFXAewteTv9GfusUX53tU-h0YrFvm1-wZRt9mbvI_D3JaWDT0cfhnGXVSDW4CrMoVPEg7Zpx2RmCr_ywRLJuaPcKKaZS_KCKsttIZXMtHUJXInOqZOktNolKXz3GrrOUhjJ_cn0weflmo5HWy8Y687mJGmxO2PBEoWQeUqBGs3a-BfSBMClBnVec3EvBmhe2KUNg9_gLrrTea34XStm99CGrbbQjTaPZbOFbv-DangfnY4W2gPuYqnHBk9bSFlgP_ZHWXAXI49lZfDvZuJvxxX-OrMLUwON5QxPQReMxOdjie15pxmh-qmdg8hO4Mt21d4DdHwl9H-INqu6so8QVjyzhUtzBZNIRnUm08I5qYANZa6UNhEiPa2F7iDPfeaNiQhb72khWv4I4I8I_BFNhF4t35m2gB-X1n7vWbis6cG6w4P67LvodF8ocPKoI4qU8H8aPGJijCFKKcYtuE9lhLa9AAjweTxwr_YRTnouiM8DnUDpTi8XorMvM7HShgg9XxaDZfDbPbKy9aKtwzOYUqcR4mvytNbd9ZJq_CNgjJdpmWUpi9DrXvJWjf-fHI8v7-szdHN4NDoQB3uH-9voFvVqkYChpjtoc362sE_Av5urp0GpMPp21Vr8F8HrZTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUDwgGCACBtgJHiCqonjxMkDQoyt2hirKsSkvXm-QqUuKWs76F_j13GcS0snsbc9pardxPW55Dv28XcAXruM25CrqKt8hivLZdLNcpN2cxQ4RgfG0Kqcz_EgPThhn0-T0w34056F8WmVrU-sHLUptV8j71EeIlRAfxv1XJMWMdzrf5j87PoKUn6ntS2nUavIkV38wvBt-v5wD2X9htL-_rdPB92mwkBXI2yY4QAjT-CmHZOJyfwqCAsl545yo5hmLkwzqiy3mVQy0daFeI10Sp2McqtdGON9b8Em91FRBzZ39wfDr8sVHs-9njHWnNQJ46w3ZZVfqhLoKcW5Way9DauiAXgp0bjXAO_VdM0re7bVq7D_AO43GJZ8rJXuIWzYYgtu11UtF1tw7x-Ow0dwfjzXnn6XSD0yZFITzKIyEH-whTQZ80QWhvxejP3HUUGGUzs3Jc6ynJIJWoaR5HIkib1s7KTqfm5nqMBjvLNdPe8xnNyIBJ5ApygL-xSI4onNXJwqDCkZ1YmMM-ekQjHkqVLaBBC1cy10Q4Du63CMRbURH2eilo9A-YhKPmIRwNvlbyY1_ce1vXe9CJc9PXV39UV58V00nkAohHzURSrK8f9pxMeRMSZSSjFuEUzlAWx7BRCIgDyNr_b5TnomIl8VOsTWnVYvRONtpmJlGwG8Wjajn_CbP7Kw5bzuwxMMsOMA-Jo-rQ13vaUY_agYx_M4T5KYBfCu1bzVw_8_Hc-uH-tLuIMWLL4cDo624S71VhGi16Y70JldzO1zBHsz9aKxKgJnN23IfwEtXGrK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muconic+acid+production+from+glucose+and+xylose+in+Pseudomonas+putida+via+evolution+and+metabolic+engineering&rft.jtitle=Nature+communications&rft.au=Ling%2C+Chen&rft.au=Peabody%2C+George+L.&rft.au=Salvach%C3%BAa%2C+Davinia&rft.au=Kim%2C+Young-Mo&rft.date=2022-08-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-32296-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_32296_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon