Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering
Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hyd...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4925 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.08.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study,
Pseudomonas putida
KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H
+
symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of
aroB
encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L
−1
muconate at 0.18 g L
−1
h
−1
and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.
Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered
Pseudomonas putida
strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies. |
---|---|
AbstractList | Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L−1 muconate at 0.18 g L−1 h−1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies. Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H + symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L −1 muconate at 0.18 g L −1 h −1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies. Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by engineered Pseudomonas putida strain using adaptive laboratory evolution, metabolic modeling, and rational strain engineering strategies. Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H + symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L −1 muconate at 0.18 g L −1 h −1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars. |
ArticleNumber | 4925 |
Author | Burnum-Johnson, Kristin E. Ling, Chen Kneucker, Colin M. Salvachúa, Davinia Ramirez, Kelsey J. St. John, Peter C. Magnuson, Jon K. Woodworth, Sean P. Peabody, George L. Munoz, Nathalie Munoz Kim, Young-Mo Johnson, Christopher W. Poirier, Brenton C. Beckham, Gregg T. Calvey, Christopher H. Monninger, Michela A. Guss, Adam M. |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0003-1760-9544 surname: Ling fullname: Ling, Chen organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 2 givenname: George L. surname: Peabody fullname: Peabody, George L. organization: Agile BioFoundry, Biosciences Division, Oak Ridge National Laboratory – sequence: 3 givenname: Davinia surname: Salvachúa fullname: Salvachúa, Davinia organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 4 givenname: Young-Mo orcidid: 0000-0002-8972-7593 surname: Kim fullname: Kim, Young-Mo organization: Agile BioFoundry, Pacific Northwest National Laboratory – sequence: 5 givenname: Colin M. surname: Kneucker fullname: Kneucker, Colin M. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 6 givenname: Christopher H. orcidid: 0000-0002-7330-4983 surname: Calvey fullname: Calvey, Christopher H. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory – sequence: 7 givenname: Michela A. surname: Monninger fullname: Monninger, Michela A. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 8 givenname: Nathalie Munoz orcidid: 0000-0002-2723-3512 surname: Munoz fullname: Munoz, Nathalie Munoz organization: Agile BioFoundry, Pacific Northwest National Laboratory – sequence: 9 givenname: Brenton C. surname: Poirier fullname: Poirier, Brenton C. organization: Agile BioFoundry, Pacific Northwest National Laboratory – sequence: 10 givenname: Kelsey J. orcidid: 0000-0002-5114-742X surname: Ramirez fullname: Ramirez, Kelsey J. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 11 givenname: Peter C. orcidid: 0000-0002-7928-3722 surname: St. John fullname: St. John, Peter C. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 12 givenname: Sean P. orcidid: 0000-0003-3792-9553 surname: Woodworth fullname: Woodworth, Sean P. organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 13 givenname: Jon K. orcidid: 0000-0001-7712-7024 surname: Magnuson fullname: Magnuson, Jon K. organization: Agile BioFoundry, Pacific Northwest National Laboratory – sequence: 14 givenname: Kristin E. orcidid: 0000-0002-2722-4149 surname: Burnum-Johnson fullname: Burnum-Johnson, Kristin E. organization: Agile BioFoundry, Pacific Northwest National Laboratory – sequence: 15 givenname: Adam M. orcidid: 0000-0001-5823-5329 surname: Guss fullname: Guss, Adam M. email: gussam@ornl.gov organization: Agile BioFoundry, Biosciences Division, Oak Ridge National Laboratory – sequence: 16 givenname: Christopher W. orcidid: 0000-0002-2979-4751 surname: Johnson fullname: Johnson, Christopher W. email: christopher.johnson@nrel.gov organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry – sequence: 17 givenname: Gregg T. orcidid: 0000-0002-3480-212X surname: Beckham fullname: Beckham, Gregg T. email: gregg.beckham@nrel.gov organization: Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Agile BioFoundry |
BackLink | https://www.osti.gov/servlets/purl/1883309$$D View this record in Osti.gov |
BookMark | eNp9Uk1v1DAQjVARLaV_gFMEFy4Bf8b2BQlVtFQqggOcLceebL1K7MVOVuy_x9kUQXuoL2N53nsznnkvq5MQA1TVa4zeY0Tlh8wwa0WDCGkoIaptDs-qM4IYbrAg9OS_-2l1kfMWlUMVloy9qE4pV4oLRc6q8etsY_C2Nta7epeim-3kY6j7FMd6M5RshtoEV_8-DMvVh_p7htnFMQaT6908eWfqvTc17OMwH7kLfITJdHEoyhA2PgAkHzavque9GTJc3Mfz6ufV5x-XX5rbb9c3l59uG9tiNDWdwkRyZXtmuJNKSMqQEaInwnXMsh61knQgQJrOcAs9KhHblvQGK7A9oufVzarrotnqXfKjSQcdjdfHh5g22qTJ2wF0xyUjPe6wKsqWI4mdc7jrOiYAc6KK1sdVazd3IzgLYUpmeCD6MBP8nd7EvVZUcU5ZEXizCsQ8eZ2tn8DelaEHsJPGUlKKlirv7quk-GuGPOnRZwvDYALEOWsiEBecSEIL9O0j6DbOKZR5HlGEINrigpIryqaYc4Jel8JmWU9p0g8aI734SK8-0sVH-ugjfShU8oj697NPkuhKyrtl05D-dfUE6w_eht32 |
CitedBy_id | crossref_primary_10_1038_s41467_024_44997_7 crossref_primary_10_1016_j_biortech_2023_128762 crossref_primary_10_1016_j_enzmictec_2025_110590 crossref_primary_10_1016_j_synbio_2023_08_001 crossref_primary_10_1016_j_ymben_2023_11_004 crossref_primary_10_1016_j_ymben_2024_02_003 crossref_primary_10_1016_j_wasman_2024_11_035 crossref_primary_10_1016_j_ymben_2024_02_005 crossref_primary_10_1016_j_algal_2023_103300 crossref_primary_10_1021_acs_jafc_3c07658 crossref_primary_10_1016_j_copbio_2024_103255 crossref_primary_10_1016_j_cej_2024_153375 crossref_primary_10_1039_D4GC03424D crossref_primary_10_1128_msystems_00942_23 crossref_primary_10_1080_07388551_2024_2433998 crossref_primary_10_1016_j_crmicr_2024_100274 crossref_primary_10_1021_acssynbio_3c00195 crossref_primary_10_1016_j_scenv_2024_100154 crossref_primary_10_3390_app132111691 crossref_primary_10_1016_j_bcab_2023_102852 crossref_primary_10_1016_j_ymben_2024_10_011 crossref_primary_10_1021_acs_jafc_4c10205 crossref_primary_10_3390_molecules30010201 crossref_primary_10_3389_finmi_2023_1319774 crossref_primary_10_1016_j_engmic_2024_100148 crossref_primary_10_1021_acssynbio_4c00366 crossref_primary_10_1007_s12275_024_00136_x crossref_primary_10_1093_jimb_kuae024 crossref_primary_10_18412_1816_0387_2024_3_73_82 crossref_primary_10_1002_anie_202421540 crossref_primary_10_1016_j_ymben_2024_12_007 crossref_primary_10_1039_D4GC00528G crossref_primary_10_1016_j_biortech_2025_132062 crossref_primary_10_1002_ange_202411249 crossref_primary_10_1016_j_heliyon_2024_e36113 crossref_primary_10_1007_s00253_023_12977_4 crossref_primary_10_1016_j_ymben_2022_10_016 crossref_primary_10_1016_j_tibtech_2022_10_005 crossref_primary_10_1021_jacs_3c05120 crossref_primary_10_1186_s44314_024_00010_5 crossref_primary_10_1021_acs_jafc_3c09651 crossref_primary_10_1016_j_jclepro_2024_143210 crossref_primary_10_1128_aem_00890_24 crossref_primary_10_3390_ijms251910245 crossref_primary_10_1002_ange_202421540 crossref_primary_10_1007_s11426_024_2080_8 crossref_primary_10_1038_s41929_024_01205_5 crossref_primary_10_1016_j_jbiosc_2024_07_016 crossref_primary_10_1002_cssc_202401070 crossref_primary_10_1146_annurev_chembioeng_100522_115850 crossref_primary_10_3390_fermentation9020137 crossref_primary_10_1016_j_biortech_2025_132056 crossref_primary_10_1109_TCBB_2023_3307363 crossref_primary_10_1093_nar_gkad1117 crossref_primary_10_1016_j_biotechadv_2024_108380 crossref_primary_10_1016_j_copbio_2025_103270 crossref_primary_10_1038_s41564_023_01529_1 crossref_primary_10_1007_s43393_023_00215_x crossref_primary_10_1016_j_copbio_2023_102949 crossref_primary_10_1016_j_jbiotec_2024_09_015 crossref_primary_10_1002_anie_202411249 crossref_primary_10_1038_s41467_024_46812_9 crossref_primary_10_1016_j_str_2023_08_019 crossref_primary_10_1039_D4GC00395K crossref_primary_10_1146_annurev_arplant_062923_022602 crossref_primary_10_1016_j_enzmictec_2023_110230 crossref_primary_10_1016_j_biotechadv_2022_108076 |
Cites_doi | 10.1016/j.ymben.2015.01.005 10.1016/j.jbiosc.2010.08.001 10.1039/C4EE03230F 10.1016/S0021-9258(18)33582-8 10.1016/j.biortech.2020.124239 10.1002/anie.201509653 10.1186/s40168-020-00817-w 10.1074/jbc.M111.337501 10.1039/C8EE00460A 10.1039/C5GC02844B 10.1038/nrg3117 10.1186/1752-0509-7-74 10.1074/jbc.M115.687749 10.1039/D0GC02108C 10.1016/j.ymben.2018.05.019 10.1038/nrmicro2652 10.1021/ja00080a057 10.1038/nature11524 10.1016/j.meteno.2016.04.002 10.1039/C5EE03718B 10.1128/AEM.00859-13 10.1093/nar/gkaa829 10.1039/C7GC00320J 10.1039/C9GC04161C 10.1002/anie.201509149 10.1016/j.biotechadv.2014.04.001 10.1016/j.ymben.2020.01.001 10.1016/j.joule.2019.05.011 10.1038/nbt1183-784 10.1128/aem.63.2.761-762.1997 10.1016/0006-291X(74)90358-1 10.1016/j.ymben.2014.12.007 10.1038/s41467-019-14024-1 10.1146/annurev-chembioeng-061010-114205 10.1016/j.mimet.2005.06.001 10.1016/j.joule.2019.01.018 10.1021/ac9019522 10.1016/j.meteno.2014.09.001 10.1038/s41421-019-0082-1 10.1039/C8GC02519C 10.1021/acssynbio.7b00331 10.1016/j.ymben.2021.02.005 10.1021/acssuschemeng.9b03908 10.1021/acssuschemeng.6b00679 10.1016/S0021-9258(18)64279-6 10.1016/j.ymben.2020.08.001 10.1002/yea.3025 10.3389/fbioe.2019.00480 10.1038/s41598-018-36320-4 10.1021/acssynbio.8b00465 10.1016/j.cell.2019.05.004 10.1016/j.ymben.2018.03.011 10.1038/nprot.2008.73 10.1021/ac802689c 10.1021/acssuschemeng.6b01820 10.1039/C7GC00296C 10.1002/cssc.201402092 10.1039/C7GC00658F 10.1016/j.ymben.2014.02.009 10.3389/fbioe.2018.00032 10.5281/zenodo.6360544. 10.1101/139121 10.1128/mSystems.00043-16 10.1021/acssuschemeng.1c03765 10.2172/1561511 10.1038/s41578-021-00363-3 10.1021/bk-2018-1310.ch022 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) National Renewable Energy Laboratory (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – sequence: 0 name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) – sequence: 0 name: National Renewable Energy Laboratory (NREL), Golden, CO (United States) – sequence: 0 name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-022-32296-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_b5842f1b194c4c5081ddd1bbb47e1529 PMC9395534 1883309 10_1038_s41467_022_32296_y |
GrantInformation_xml | – fundername: US Department of Energy Bioenergy Technologies Office funded this work, as stated in the manuscript. The grant numbers are listed therein as well. – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c610t-b912859cf4a5d8978340a77f27db4c4f0682be7e8aba5cef0aba1c62fa19ecf03 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:03 EDT 2025 Thu Aug 21 14:09:37 EDT 2025 Thu Dec 05 06:29:21 EST 2024 Fri Jul 11 00:43:27 EDT 2025 Wed Aug 13 07:02:31 EDT 2025 Tue Jul 01 00:58:23 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Fri Feb 21 02:38:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c610t-b912859cf4a5d8978340a77f27db4c4f0682be7e8aba5cef0aba1c62fa19ecf03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PNNL-SA-168423; NREL/JA-2A00-81804 AC05-76RL01830; AC36-08GO28308; AC05-00OR22725 USDOE Office of Science (SC), Biological and Environmental Research (BER) USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Bioenergy Technologies Office |
ORCID | 0000-0002-5114-742X 0000-0002-2722-4149 0000-0002-8972-7593 0000-0002-7330-4983 0000-0002-2723-3512 0000-0002-2979-4751 0000-0002-7928-3722 0000-0003-1760-9544 0000-0002-3480-212X 0000-0003-3792-9553 0000-0001-7712-7024 0000-0001-5823-5329 0000000273304983 000000023480212X 0000000337929553 000000025114742X 0000000227233512 0000000317609544 0000000158235329 0000000227224149 0000000229794751 0000000289727593 0000000177127024 0000000279283722 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32296-y |
PMID | 35995792 |
PQID | 2705220361 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5842f1b194c4c5081ddd1bbb47e1529 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9395534 osti_scitechconnect_1883309 proquest_miscellaneous_2705752823 proquest_journals_2705220361 crossref_citationtrail_10_1038_s41467_022_32296_y crossref_primary_10_1038_s41467_022_32296_y springer_journals_10_1038_s41467_022_32296_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-22 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – sequence: 0 name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang, Nomura (CR62) 2010; 110 Sharon (CR69) 2019; 177 Rorrer, Vardon, Dorgan, Gjersing, Beckham (CR23) 2017; 19 Dahms (CR40) 1974; 60 CR37 Salvachúa (CR7) 2018; 20 Rorrer (CR24) 2019; 3 Dvorak, de Lorenzo (CR34) 2018; 48 CR30 Schmittgen, Livak (CR63) 2008; 3 Wynands (CR46) 2018; 47 Jha (CR41) 2019; 8 Bentley (CR32) 2020; 59 Kind (CR67) 2009; 81 Carraher, Pfennig, Rao, Shanks, Tessonnier (CR17) 2017; 19 Johnson, Beckham (CR52) 2015; 28 Simon, Priefer, Pühler (CR55) 1983; 1 Kikuchi, Tsujimoto, Kurahashi (CR70) 1997; 63 Chundawat, Beckham, Himmel, Dale (CR2) 2011; 2 Chen (CR56) 2016; 9 Vardon (CR9) 2015; 8 Choi, Song, Shin, Lee (CR1) 2015; 28 Thompson, Pugh, Machas, Nielsen (CR25) 2018; 7 Sun, Lin, Yuan, Yan (CR28) 2014; 7 CR43 Jayakody (CR54) 2018; 11 Lu (CR14) 2016; 55 Kim (CR65) 2015; 6 Fuchs, Boll, Heider (CR4) 2011; 9 Carraher (CR18) 2020; 22 Lee (CR31) 2018; 8 Kim (CR12) 2019; 7 Shanks, Keeling (CR13) 2017; 19 Matthiesen, Carraher, Vasiliu, Dixon, Tessonnier (CR21) 2016; 4 Johnson (CR33) 2016; 3 Khalil, Quintens, Junkers, Dusselier (CR6) 2020; 22 Rorrer (CR22) 2016; 4 Draths, Frost (CR5) 1994; 116 Li, Ye (CR45) 2021; 319 Jiang (CR49) 2019; 5 Prodanov, Bansal (CR50) 2020; 48 Xie, Liang, Huang, Xu (CR10) 2014; 32 Winter, Averesch, Nunez-Bernal, Krömer (CR47) 2014; 31 CR19 Mao (CR68) 2020; 8 CR16 Whitaker, Fiske, Jensen (CR44) 1982; 257 CR58 Fujiwara, Noda, Tanaka, Kondo (CR11) 2020; 11 CR57 Treangen, Salzberg (CR51) 2012; 13 Vardon (CR15) 2016; 18 Weimberg (CR39) 1961; 236 Nikel, Chavarria, Fuhrer, Sauer, de Lorenzo (CR42) 2015; 290 Meijnen, de Winde, Ruijssenaars (CR38) 2012; 287 Johnson (CR3) 2019; 3 Lin, Sun, Yuan, Yan (CR26) 2014; 23 Elmore (CR35) 2020; 62 Bator, Wittgens, Rosenau, Tiso, Blank (CR36) 2019; 7 Choi, Kumar, Schweizer (CR53) 2006; 64 Notonier (CR61) 2021; 65 Ebrahim, Lerman, Palsson, Hyduke (CR59) 2013; 7 Suastegui (CR8) 2016; 55 Hiller (CR66) 2009; 81 CR20 CR64 CR60 Sun, Lin, Huang, Yuan, Yan (CR27) 2013; 79 Averesch, Kromer (CR29) 2014; 1 Sun (CR48) 2012; 490 PI Nikel (32296_CR42) 2015; 290 32296_CR20 32296_CR64 G Sharon (32296_CR69) 2019; 177 A Ebrahim (32296_CR59) 2013; 7 NA Rorrer (32296_CR24) 2019; 3 CW Johnson (32296_CR52) 2015; 28 32296_CR60 G Fuchs (32296_CR4) 2011; 9 DR Vardon (32296_CR9) 2015; 8 G Winter (32296_CR47) 2014; 31 BH Shanks (32296_CR13) 2017; 19 KH Choi (32296_CR53) 2006; 64 P Dvorak (32296_CR34) 2018; 48 CW Johnson (32296_CR3) 2019; 3 T Prodanov (32296_CR50) 2020; 48 JM Carraher (32296_CR18) 2020; 22 32296_CR19 32296_CR58 D Salvachúa (32296_CR7) 2018; 20 32296_CR57 32296_CR16 S Choi (32296_CR1) 2015; 28 RJ Whitaker (32296_CR44) 1982; 257 JH Mao (32296_CR68) 2020; 8 NZ Xie (32296_CR10) 2014; 32 TJ Treangen (32296_CR51) 2012; 13 DR Vardon (32296_CR15) 2016; 18 X Chen (32296_CR56) 2016; 9 HN Lee (32296_CR31) 2018; 8 R Weimberg (32296_CR39) 1961; 236 CW Johnson (32296_CR33) 2016; 3 S Notonier (32296_CR61) 2021; 65 J Li (32296_CR45) 2021; 319 I Bator (32296_CR36) 2019; 7 NA Rorrer (32296_CR23) 2017; 19 Y Kikuchi (32296_CR70) 1997; 63 X Sun (32296_CR28) 2014; 7 32296_CR43 T Kind (32296_CR67) 2009; 81 YM Kim (32296_CR65) 2015; 6 NA Rorrer (32296_CR22) 2016; 4 B Wynands (32296_CR46) 2018; 47 R Fujiwara (32296_CR11) 2020; 11 M Suastegui (32296_CR8) 2016; 55 R Simon (32296_CR55) 1983; 1 SP Chundawat (32296_CR2) 2011; 2 JP Meijnen (32296_CR38) 2012; 287 KM Draths (32296_CR5) 1994; 116 L Sun (32296_CR48) 2012; 490 B Thompson (32296_CR25) 2018; 7 TD Schmittgen (32296_CR63) 2008; 3 32296_CR37 HT Kim (32296_CR12) 2019; 7 JE Matthiesen (32296_CR21) 2016; 4 32296_CR30 X Jiang (32296_CR49) 2019; 5 JM Carraher (32296_CR17) 2017; 19 NJH Averesch (32296_CR29) 2014; 1 Q Wang (32296_CR62) 2010; 110 AS Dahms (32296_CR40) 1974; 60 R Lu (32296_CR14) 2016; 55 RK Jha (32296_CR41) 2019; 8 GJ Bentley (32296_CR32) 2020; 59 LN Jayakody (32296_CR54) 2018; 11 K Hiller (32296_CR66) 2009; 81 Y Lin (32296_CR26) 2014; 23 JR Elmore (32296_CR35) 2020; 62 I Khalil (32296_CR6) 2020; 22 X Sun (32296_CR27) 2013; 79 |
References_xml | – volume: 28 start-page: 240 year: 2015 end-page: 247 ident: CR52 article-title: Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.01.005 – volume: 110 start-page: 653 year: 2010 end-page: 659 ident: CR62 article-title: Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in KT2440 grown on different carbon sources publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.08.001 – volume: 8 start-page: 617 year: 2015 end-page: 628 ident: CR9 article-title: Adipic acid production from lignin publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03230F – volume: 257 start-page: 12789 year: 1982 end-page: 12794 ident: CR44 article-title: possesses two novel regulatory isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33582-8 – volume: 319 start-page: 124239 year: 2021 ident: CR45 article-title: Metabolic engineering of KT2440 for high-yield production of protocatechuic acid publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124239 – ident: CR16 – volume: 55 start-page: 2368 year: 2016 end-page: 2373 ident: CR8 article-title: Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509653 – volume: 8 year: 2020 ident: CR68 article-title: Genetic and metabolic links between the murine microbiome and memory publication-title: Microbiome doi: 10.1186/s40168-020-00817-w – volume: 287 start-page: 14606 year: 2012 end-page: 14614 ident: CR38 article-title: Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered S12 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.337501 – volume: 11 start-page: 1625 year: 2018 end-page: 1638 ident: CR54 article-title: Thermochemical wastewater valorization via enhanced microbial toxicity tolerance publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00460A – volume: 18 start-page: 3397 year: 2016 end-page: 3413 ident: CR15 article-title: -Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization publication-title: Green. Chem. doi: 10.1039/C5GC02844B – volume: 13 start-page: 36 year: 2012 end-page: 46 ident: CR51 article-title: Repetitive DNA and next-generation sequencing: computational challenges and solutions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3117 – volume: 7 start-page: 74 year: 2013 ident: CR59 article-title: COBRApy: COnstraints-based reconstruction and analysis for Python publication-title: BMC Syst. Bio. doi: 10.1186/1752-0509-7-74 – volume: 290 start-page: 25920 year: 2015 end-page: 25932 ident: CR42 article-title: KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.687749 – volume: 22 start-page: 6444 year: 2020 end-page: 6454 ident: CR18 article-title: Solvent-driven isomerization of -muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers publication-title: Green. Chem. doi: 10.1039/D0GC02108C – ident: CR58 – volume: 48 start-page: 94 year: 2018 end-page: 108 ident: CR34 article-title: Refactoring the upper sugar metabolism of for co-utilization of cellobiose, xylose, and glucose publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.05.019 – volume: 9 start-page: 803 year: 2011 end-page: 816 ident: CR4 article-title: Microbial degradation of aromatic compounds—from one strategy to four publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2652 – volume: 116 start-page: 399 year: 1994 end-page: 400 ident: CR5 article-title: Environmentally compatible synthesis of adipic acid from D-glucose publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00080a057 – volume: 490 start-page: 361 year: 2012 end-page: 366 ident: CR48 article-title: Crystal structure of a bacterial homologue of glucose transporters GLUT1-4 publication-title: Nature doi: 10.1038/nature11524 – volume: 3 start-page: 111 year: 2016 end-page: 119 ident: CR33 article-title: Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity publication-title: Metab. Eng. Commun. doi: 10.1016/j.meteno.2016.04.002 – ident: CR19 – volume: 9 start-page: 1237 year: 2016 end-page: 1245 ident: CR56 article-title: DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L ) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03718B – volume: 79 start-page: 4024 year: 2013 end-page: 4030 ident: CR27 article-title: A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00859-13 – volume: 48 start-page: e114 year: 2020 ident: CR50 article-title: Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa829 – volume: 6 start-page: 209 year: 2015 ident: CR65 article-title: Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms publication-title: Front. Microbiol. – volume: 19 start-page: 2812 year: 2017 end-page: 2825 ident: CR23 article-title: Biomass-derived monomers for performance-differentiated fiber reinforced polymer composites publication-title: Green. Chem. doi: 10.1039/C7GC00320J – volume: 22 start-page: 1517 year: 2020 end-page: 1541 ident: CR6 article-title: Muconic acid isomers as platform chemicals and monomers in the biobased economy publication-title: Green. Chem. doi: 10.1039/C9GC04161C – volume: 55 start-page: 249 year: 2016 end-page: 253 ident: CR14 article-title: Production of diethyl terephthalate from biomass-derived muconic acid publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509149 – volume: 32 start-page: 615 year: 2014 end-page: 622 ident: CR10 article-title: Biotechnological production of muconic acid: current status and future prospects publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.04.001 – volume: 59 start-page: 64 year: 2020 end-page: 75 ident: CR32 article-title: Engineering glucose metabolism for enhanced muconic acid production in KT2440 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2020.01.001 – ident: CR57 – volume: 3 start-page: 1523 year: 2019 end-page: 1537 ident: CR3 article-title: Innovative chemicals and materials from bacterial aromatic catabolic pathways publication-title: Joule doi: 10.1016/j.joule.2019.05.011 – ident: CR60 – volume: 1 start-page: 784 year: 1983 end-page: 791 ident: CR55 article-title: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria publication-title: Bio/Technol. doi: 10.1038/nbt1183-784 – volume: 63 start-page: 761 year: 1997 end-page: 762 ident: CR70 article-title: Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.2.761-762.1997 – ident: CR64 – volume: 60 start-page: 1433 year: 1974 end-page: 1439 ident: CR40 article-title: 3-Deoxy-D-pentulosonic acid aldolase and its role in a new pathway of D-xylose degradation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(74)90358-1 – volume: 28 start-page: 223 year: 2015 end-page: 239 ident: CR1 article-title: Biorefineries for the production of top building block chemicals and their derivatives publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.12.007 – volume: 11 year: 2020 ident: CR11 article-title: Metabolic engineering of for shikimate pathway derivative production from glucose-xylose co-substrate publication-title: Nat. Commun. doi: 10.1038/s41467-019-14024-1 – volume: 2 start-page: 121 year: 2011 end-page: 145 ident: CR2 article-title: Deconstruction of lignocellulosic biomass to fuels and chemicals publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-061010-114205 – volume: 64 start-page: 391 year: 2006 end-page: 397 ident: CR53 article-title: A 10-min method for preparation of highly electrocompetent cells: application for DNA fragment transfer between chromosomes and plasmid transformation publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2005.06.001 – ident: CR43 – volume: 3 start-page: 1006 year: 2019 end-page: 1027 ident: CR24 article-title: Combining reclaimed PET with bio-based monomers enables plastics upcycling publication-title: Joule doi: 10.1016/j.joule.2019.01.018 – volume: 81 start-page: 10038 year: 2009 end-page: 10048 ident: CR67 article-title: FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac9019522 – volume: 1 start-page: 19 year: 2014 end-page: 28 ident: CR29 article-title: Tailoring strain construction strategies for muconic acid production in and publication-title: Metab. Eng. Commun. doi: 10.1016/j.meteno.2014.09.001 – ident: CR37 – ident: CR30 – volume: 5 start-page: 14 year: 2019 ident: CR49 article-title: Engineered XylE as a tool for mechanistic investigation and ligand discovery of the glucose transporters GLUTs publication-title: Cell Discov. doi: 10.1038/s41421-019-0082-1 – volume: 20 start-page: 5007 year: 2018 end-page: 5019 ident: CR7 article-title: Bioprocess development for muconic acid production from aromatic compounds and lignin publication-title: Green. Chem. doi: 10.1039/C8GC02519C – volume: 7 start-page: 565 year: 2018 end-page: 575 ident: CR25 article-title: Muconic acid production via alternative pathways and a synthetic “metabolic funnel” publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00331 – volume: 65 start-page: 111 year: 2021 end-page: 122 ident: CR61 article-title: Metabolism of syringyl lignin-derived compounds in enables convergent production of 2-pyrone-4,6-dicarboxylic acid publication-title: Metab. Eng. doi: 10.1016/j.ymben.2021.02.005 – volume: 7 start-page: 19396 year: 2019 end-page: 19406 ident: CR12 article-title: Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03908 – volume: 4 start-page: 3575 year: 2016 end-page: 3585 ident: CR21 article-title: Electrochemical conversion of muconic acid to biobased diacid monomers publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00679 – volume: 236 start-page: 629 year: 1961 end-page: 635 ident: CR39 article-title: Pentose oxidation by publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64279-6 – volume: 62 start-page: 62 year: 2020 end-page: 71 ident: CR35 article-title: Engineered simultaneously catabolizes five major components of corn stover lignocellulose: glucose, xylose, arabinose, -coumaric acid, and acetic acid publication-title: Metab. Eng. doi: 10.1016/j.ymben.2020.08.001 – volume: 31 start-page: 333 year: 2014 end-page: 341 ident: CR47 article-title: In vivo instability of chorismate causes substrate loss during fermentative production of aromatics publication-title: Yeast doi: 10.1002/yea.3025 – volume: 7 start-page: 480 year: 2019 ident: CR36 article-title: Comparison of three xylose pathways in KT2440 for the synthesis of valuable products publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00480 – volume: 8 year: 2018 ident: CR31 article-title: Corynebacterium cell factory design and culture process optimization for muconic acid biosynthesis publication-title: Sci. Rep. doi: 10.1038/s41598-018-36320-4 – volume: 8 start-page: 775 year: 2019 end-page: 786 ident: CR41 article-title: Sensor-enabled alleviation of product inhibition in chorismate pyruvate-lyase publication-title: Acs. Synth. Biol. doi: 10.1021/acssynbio.8b00465 – volume: 177 start-page: 1600 year: 2019 end-page: 1618 e1617 ident: CR69 article-title: Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice publication-title: Cell doi: 10.1016/j.cell.2019.05.004 – volume: 47 start-page: 121 year: 2018 end-page: 133 ident: CR46 article-title: Metabolic engineering of VLB120 with minimal genomic modifications for high-yield phenol production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.03.011 – volume: 3 start-page: 1101 year: 2008 end-page: 1108 ident: CR63 article-title: Analyzing real-time PCR data by the comparative C method publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 81 start-page: 3429 year: 2009 end-page: 3439 ident: CR66 article-title: MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis publication-title: Anal. Chem. doi: 10.1021/ac802689c – volume: 4 start-page: 6867 year: 2016 end-page: 6876 ident: CR22 article-title: Renewable unsaturated polyesters from muconic acid publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01820 – volume: 19 start-page: 3177 year: 2017 end-page: 3185 ident: CR13 article-title: Bioprivileged molecules: creating value from biomass publication-title: Green. Chem. doi: 10.1039/C7GC00296C – volume: 7 start-page: 2478 year: 2014 end-page: 2481 ident: CR28 article-title: Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase publication-title: ChemSusChem doi: 10.1002/cssc.201402092 – volume: 19 start-page: 3042 year: 2017 end-page: 3050 ident: CR17 article-title: -Muconic acid isomerization and catalytic conversion to biobased cyclic-C −1,4-diacid monomers publication-title: Green. Chem. doi: 10.1039/C7GC00658F – ident: CR20 – volume: 23 start-page: 62 year: 2014 end-page: 69 ident: CR26 article-title: Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.02.009 – volume: 19 start-page: 3042 year: 2017 ident: 32296_CR17 publication-title: Green. Chem. doi: 10.1039/C7GC00658F – ident: 32296_CR43 – ident: 32296_CR20 – volume: 64 start-page: 391 year: 2006 ident: 32296_CR53 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2005.06.001 – volume: 9 start-page: 803 year: 2011 ident: 32296_CR4 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2652 – volume: 177 start-page: 1600 year: 2019 ident: 32296_CR69 publication-title: Cell doi: 10.1016/j.cell.2019.05.004 – volume: 236 start-page: 629 year: 1961 ident: 32296_CR39 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64279-6 – volume: 8 year: 2018 ident: 32296_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36320-4 – ident: 32296_CR30 doi: 10.3389/fbioe.2018.00032 – volume: 4 start-page: 6867 year: 2016 ident: 32296_CR22 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01820 – volume: 3 start-page: 1006 year: 2019 ident: 32296_CR24 publication-title: Joule doi: 10.1016/j.joule.2019.01.018 – volume: 1 start-page: 784 year: 1983 ident: 32296_CR55 publication-title: Bio/Technol. doi: 10.1038/nbt1183-784 – volume: 11 year: 2020 ident: 32296_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14024-1 – volume: 4 start-page: 3575 year: 2016 ident: 32296_CR21 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00679 – volume: 47 start-page: 121 year: 2018 ident: 32296_CR46 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.03.011 – ident: 32296_CR57 doi: 10.5281/zenodo.6360544. – volume: 5 start-page: 14 year: 2019 ident: 32296_CR49 publication-title: Cell Discov. doi: 10.1038/s41421-019-0082-1 – volume: 3 start-page: 1101 year: 2008 ident: 32296_CR63 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 3 start-page: 1523 year: 2019 ident: 32296_CR3 publication-title: Joule doi: 10.1016/j.joule.2019.05.011 – volume: 116 start-page: 399 year: 1994 ident: 32296_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00080a057 – ident: 32296_CR58 doi: 10.1101/139121 – volume: 6 start-page: 209 year: 2015 ident: 32296_CR65 publication-title: Front. Microbiol. – volume: 22 start-page: 6444 year: 2020 ident: 32296_CR18 publication-title: Green. Chem. doi: 10.1039/D0GC02108C – volume: 7 start-page: 565 year: 2018 ident: 32296_CR25 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00331 – volume: 257 start-page: 12789 year: 1982 ident: 32296_CR44 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33582-8 – volume: 81 start-page: 10038 year: 2009 ident: 32296_CR67 publication-title: Anal. Chem. doi: 10.1021/ac9019522 – volume: 13 start-page: 36 year: 2012 ident: 32296_CR51 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3117 – volume: 59 start-page: 64 year: 2020 ident: 32296_CR32 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2020.01.001 – volume: 7 start-page: 74 year: 2013 ident: 32296_CR59 publication-title: BMC Syst. Bio. doi: 10.1186/1752-0509-7-74 – volume: 490 start-page: 361 year: 2012 ident: 32296_CR48 publication-title: Nature doi: 10.1038/nature11524 – volume: 319 start-page: 124239 year: 2021 ident: 32296_CR45 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124239 – volume: 65 start-page: 111 year: 2021 ident: 32296_CR61 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2021.02.005 – ident: 32296_CR64 doi: 10.1128/mSystems.00043-16 – volume: 55 start-page: 2368 year: 2016 ident: 32296_CR8 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509653 – volume: 62 start-page: 62 year: 2020 ident: 32296_CR35 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2020.08.001 – volume: 8 start-page: 775 year: 2019 ident: 32296_CR41 publication-title: Acs. Synth. Biol. doi: 10.1021/acssynbio.8b00465 – volume: 7 start-page: 19396 year: 2019 ident: 32296_CR12 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03908 – volume: 287 start-page: 14606 year: 2012 ident: 32296_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.337501 – volume: 60 start-page: 1433 year: 1974 ident: 32296_CR40 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(74)90358-1 – volume: 19 start-page: 2812 year: 2017 ident: 32296_CR23 publication-title: Green. Chem. doi: 10.1039/C7GC00320J – ident: 32296_CR37 doi: 10.1021/acssuschemeng.1c03765 – volume: 11 start-page: 1625 year: 2018 ident: 32296_CR54 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00460A – volume: 19 start-page: 3177 year: 2017 ident: 32296_CR13 publication-title: Green. Chem. doi: 10.1039/C7GC00296C – volume: 28 start-page: 240 year: 2015 ident: 32296_CR52 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.01.005 – ident: 32296_CR60 doi: 10.2172/1561511 – volume: 22 start-page: 1517 year: 2020 ident: 32296_CR6 publication-title: Green. Chem. doi: 10.1039/C9GC04161C – volume: 32 start-page: 615 year: 2014 ident: 32296_CR10 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.04.001 – volume: 31 start-page: 333 year: 2014 ident: 32296_CR47 publication-title: Yeast doi: 10.1002/yea.3025 – volume: 9 start-page: 1237 year: 2016 ident: 32296_CR56 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03718B – volume: 110 start-page: 653 year: 2010 ident: 32296_CR62 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2010.08.001 – volume: 8 year: 2020 ident: 32296_CR68 publication-title: Microbiome doi: 10.1186/s40168-020-00817-w – ident: 32296_CR19 doi: 10.1038/s41578-021-00363-3 – volume: 1 start-page: 19 year: 2014 ident: 32296_CR29 publication-title: Metab. Eng. Commun. doi: 10.1016/j.meteno.2014.09.001 – volume: 48 start-page: e114 year: 2020 ident: 32296_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa829 – volume: 55 start-page: 249 year: 2016 ident: 32296_CR14 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509149 – volume: 290 start-page: 25920 year: 2015 ident: 32296_CR42 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.687749 – ident: 32296_CR16 doi: 10.1021/bk-2018-1310.ch022 – volume: 23 start-page: 62 year: 2014 ident: 32296_CR26 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.02.009 – volume: 7 start-page: 480 year: 2019 ident: 32296_CR36 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00480 – volume: 7 start-page: 2478 year: 2014 ident: 32296_CR28 publication-title: ChemSusChem doi: 10.1002/cssc.201402092 – volume: 63 start-page: 761 year: 1997 ident: 32296_CR70 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.2.761-762.1997 – volume: 2 start-page: 121 year: 2011 ident: 32296_CR2 publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-061010-114205 – volume: 18 start-page: 3397 year: 2016 ident: 32296_CR15 publication-title: Green. Chem. doi: 10.1039/C5GC02844B – volume: 8 start-page: 617 year: 2015 ident: 32296_CR9 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03230F – volume: 48 start-page: 94 year: 2018 ident: 32296_CR34 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.05.019 – volume: 28 start-page: 223 year: 2015 ident: 32296_CR1 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.12.007 – volume: 79 start-page: 4024 year: 2013 ident: 32296_CR27 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00859-13 – volume: 3 start-page: 111 year: 2016 ident: 32296_CR33 publication-title: Metab. Eng. Commun. doi: 10.1016/j.meteno.2016.04.002 – volume: 20 start-page: 5007 year: 2018 ident: 32296_CR7 publication-title: Green. Chem. doi: 10.1039/C8GC02519C – volume: 81 start-page: 3429 year: 2009 ident: 32296_CR66 publication-title: Anal. Chem. doi: 10.1021/ac802689c |
SSID | ssj0000391844 |
Score | 2.6104994 |
Snippet | Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged... Muconic acid is a platform chemical with wide industrial applicability. Here, the authors report efficient muconate production from glucose and xylose by... |
SourceID | doaj pubmedcentral osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4925 |
SubjectTerms | 09 BIOMASS FUELS 3-Dehydroquinate synthase 631/326/2522 631/61/252/318 631/61/318 Acid production Acids applied microbiology Carbohydrates Engineering Evolution Glucose Humanities and Social Sciences Hydrolysates Laboratories Lignocellulose Metabolic engineering Metabolism Muconic acid multidisciplinary Mutation performance advantaged bioproducts Petrochemicals Pseudomonas putida Science Science (multidisciplinary) shikimate Sugar Xylose Xylose isomerase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQPBF_MR6p0TwTcsladKkjyoeh3Digwf3FvKJC3fdxe0e7n_vJO3uXQ_UF59aNuk2zPySmWkmvwF4m7SKVDlWu5zhKjora92Ftu5Q4RgdhMBLOZ-zr-3pufhyIS9ulfrKOWEjPfAouGOHFpIn5jDY9sKjO8FCCMw5J1RE21OO7qHNuxVMlTUYX6SFmE7J0EYfr0VZE0ryOuc4ru3MEhXCfrwscWLNnM27qZJ39kuLGTp5BA8n_5F8GMf9GO7F_gncHytKbp_C1dnGZ7JbYv0ikNVI54qiJ_kYCZny04ntA_mFkTreLnrybR03YYlwtGuyQhwGS64XlsTrCZWl-1UcEC6X-M_xhsHwGZyffP7-6bSeKirUHt2kARXCMmGdT8LKoPNXH0GtUomr4FC8ibaau6iits5KHxPFK_MtT5Z10SfaPIeDftnHF0CcklGnpnUYwAnupW10Stah4LvWOR8qYDvpGj_RjeeqF5embHs32owaMagRUzRithW82z-zGsk2_tr7Y1bavmcmyi4_IHzMBB_zL_hUcJhVbtDfyKS5PmcX-cGwXIOZYuvRDglmmttrwxVFpxUtP6vgzb4ZZ2XearF9XG7GPkpiONtUoGYImg133tIvfhR-767ppGxEBe93WLt5-Z_F8fJ_iOMQHvA8RSgun_wIDoafm_gKva7BvS4T7Dd5ESrH priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EfRBdCqrmyOCb1rWpGmTPonK7oYw8cHB3kI-9cLWXtfe4f3vPUlz77WD7amlSZu05yO_JKe_g9B7L7gruCa5DhGurFFVLhpb5w0IHGYH1tKYzufse316zr5dVBdpwa1PYZVrnxgdte1MWCM_orwAqAD-lnxa_MlD1qiwu5pSaDxEjwiMNCGkS8xONmssgf1cMJb-lSlKcdSz6BliCDul0LvVZDyKtP1w6MC8JpDzdsDkrV3TOBjNnqNnCUXiz6PYX6AHrt1Fj8e8kqtd9PQ_lsGX6OpsaQIBLlZmbvFipHgFceDwawlOMetYtRb_hdk7nM5b_KN3S9vBO6seL0A3rcI3c4XdTdLUWP3KDaBCl_Bkt23vFTqfHf_8epqnLAu5Aeg0gJBIILEznqnKirASxArFuafcamaYL2pBteNOKK0q43wBR2Jq6hVpnPFF-RrttF3r9hDWvHLCl7WGSR2jplKl8F5pEENTa21shsj6W0uTKMhDJoxLGbfCSyFH-UiQj4zykasMfdjcsxgJOO6t_SWIcFMzkGfHC931L5lsUWoAXdQTTRp4PwMIlVhridaacQdwpsnQflAACRgkEOmaEHFkBklCXuYCSg_WeiGTvfdyq50ZercpBksN2y-qdd1yrMMrmOKWGeITfZp0d1rSzn9Hzu-mbKqqZBn6uNa8beN3f4439_d1Hz2hwRQKcJb0AO0M10v3FjDWoA-jIf0DDAomsA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66lsFeRveLee2GBnvbzCxZtuTHdKyUQMdgK_RN6OcWaO3QJGX573eS7RSXbbAnh-jsOLrvrE_W6TuAd0EKXwhDcxMzXHmjq1w2rs4bdDjODpxjqZzP-Zf67ILPL6vLPWDjXpiUtJ8kLdNjeswO-7jiKaRT7jljeNntAziIUu2I7YPZbP5tvnuzEjXPJefDDpmilH84eTIKJbF-PHQYVBOieT9N8t5aaRqCTg_h8cAdyay_2yew59un8LCvJrl9BtfnGxuFbom2C0eWvZQrdjuJW0jIkJtOdOvIL5yl48dFS76u_MZ1CEW9IkvEoNPkdqGJvx0Qmcyv_RqhcoVX9nfqhc_h4vTz909n-VBNIbdIkdboDBrF6mzgunIyvvHhhRYiMOEMtzwUtWTGCy-10ZX1ocAjtTULmjbehqJ8Aftt1_qXQIyovAxlbXDyxpmtdClD0AY7vqmNsS4DOvausoPUeKx4caXSkncpVe8RhR5RySNqm8H73TnLXmjjn9Yn0Wk7yyiSnb7obn6oATTKILligRra4P-zyESpc44aY7jwSFuaDI6iyxVyjSiYa2NmkV0rGusvF9h6PCJBDXG9UkwUSFhx1KcZvN01Y0TGZRbd-m7T24gKp7JlBmKCoMntTlvaxc-k7d2UTVWVPIMPI9bufvzv3fHq_8yP4BGLwVDgQ5Idw_76ZuNfI7damzdDMP0GLqkh9A priority: 102 providerName: Springer Nature |
Title | Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering |
URI | https://link.springer.com/article/10.1038/s41467-022-32296-y https://www.proquest.com/docview/2705220361 https://www.proquest.com/docview/2705752823 https://www.osti.gov/servlets/purl/1883309 https://pubmed.ncbi.nlm.nih.gov/PMC9395534 https://doaj.org/article/b5842f1b194c4c5081ddd1bbb47e1529 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBa9MNjL2JV57YIGe9u8WbJsyQ9jpKVZCaSUbYG8CV27QOpkuZTm3-9IdlJSusFeomDJlq1zjvUd6-g7CL33gruMa5LqEOHKKlWkorJlWoHAwTuwlsZ0PoOL8nzI-qNitIc26Y7aAVw86NqFfFLD-eTT7e_1VzD4L82WcfF5waK5x7h0SqHL9T46hJmJh4wGgxbuxzczdC9ifleaMZJCg7zdR_PwZXbmqkjpD8UUTG8Hjt4Ppry3ohonqt5T9KRFmLjbqMQztOfq5-hRk3Ny_QJdD1Ym0OFiZcYWzxrCVxAODhtNcBvBjlVt8S348vB3XOPLhVvZKSisWuAZaKpV-GassLtp9TY2v3ZLUKgJXNndcRy-RMPe2c_T87TNuZAaAFJLEBkJlHbGM1VYEb4LsUxx7im3mhnms1JQ7bgTSqvCOJ9BSUxJvSKVMz7LX6GDelq71whrXjjh81KDi8eoKVQuvFcahFCVWhubILIZXWlaQvKQF2Mi48J4LmQjEQkSkVEicp2gD9tzZg0dxz9bnwShbVsGKu14YDq_kq1lSg0QjHqiSQXPZwCvEmst0Voz7gDcVAk6CiKXgEgCra4J8UdmKUnI0pxB7fFGE-RGeSXlGcBawAYkQe-21WC3YTFG1W66atrwAhzePEF8R4N2bne3ph7_igzgVV4VRc4S9HGja3ed_3043vzX4B2hxzTYQgZvUnqMDpbzlXsLAGypO2ifjzj8it63Djrsdvs_-lCenF1cfoejp-VpJ37a6ETr-wO7szJe |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEAIOCAaIsAFGghNEix0nTg4I8VU6tk4cNmk340-o1CVlbQf5p_gbeXaSlk5it50SxU7svC8_28-_h9ALV3CbcEVi5SNcWSmzuChNHpfAcJgdGENDOp_RYT48Zl9OspMN9Kc_C-PDKnubGAy1qbVfI9-lPAFXAewteTv9GfusUX53tU-h0YrFvm1-wZRt9mbvI_D3JaWDT0cfhnGXVSDW4CrMoVPEg7Zpx2RmCr_ywRLJuaPcKKaZS_KCKsttIZXMtHUJXInOqZOktNolKXz3GrrOUhjJ_cn0weflmo5HWy8Y687mJGmxO2PBEoWQeUqBGs3a-BfSBMClBnVec3EvBmhe2KUNg9_gLrrTea34XStm99CGrbbQjTaPZbOFbv-DangfnY4W2gPuYqnHBk9bSFlgP_ZHWXAXI49lZfDvZuJvxxX-OrMLUwON5QxPQReMxOdjie15pxmh-qmdg8hO4Mt21d4DdHwl9H-INqu6so8QVjyzhUtzBZNIRnUm08I5qYANZa6UNhEiPa2F7iDPfeaNiQhb72khWv4I4I8I_BFNhF4t35m2gB-X1n7vWbis6cG6w4P67LvodF8ocPKoI4qU8H8aPGJijCFKKcYtuE9lhLa9AAjweTxwr_YRTnouiM8DnUDpTi8XorMvM7HShgg9XxaDZfDbPbKy9aKtwzOYUqcR4mvytNbd9ZJq_CNgjJdpmWUpi9DrXvJWjf-fHI8v7-szdHN4NDoQB3uH-9voFvVqkYChpjtoc362sE_Av5urp0GpMPp21Vr8F8HrZTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUDwgGCACBtgJHiCqonjxMkDQoyt2hirKsSkvXm-QqUuKWs76F_j13GcS0snsbc9pardxPW55Dv28XcAXruM25CrqKt8hivLZdLNcpN2cxQ4RgfG0Kqcz_EgPThhn0-T0w34056F8WmVrU-sHLUptV8j71EeIlRAfxv1XJMWMdzrf5j87PoKUn6ntS2nUavIkV38wvBt-v5wD2X9htL-_rdPB92mwkBXI2yY4QAjT-CmHZOJyfwqCAsl545yo5hmLkwzqiy3mVQy0daFeI10Sp2McqtdGON9b8Em91FRBzZ39wfDr8sVHs-9njHWnNQJ46w3ZZVfqhLoKcW5Way9DauiAXgp0bjXAO_VdM0re7bVq7D_AO43GJZ8rJXuIWzYYgtu11UtF1tw7x-Ow0dwfjzXnn6XSD0yZFITzKIyEH-whTQZ80QWhvxejP3HUUGGUzs3Jc6ynJIJWoaR5HIkib1s7KTqfm5nqMBjvLNdPe8xnNyIBJ5ApygL-xSI4onNXJwqDCkZ1YmMM-ekQjHkqVLaBBC1cy10Q4Du63CMRbURH2eilo9A-YhKPmIRwNvlbyY1_ce1vXe9CJc9PXV39UV58V00nkAohHzURSrK8f9pxMeRMSZSSjFuEUzlAWx7BRCIgDyNr_b5TnomIl8VOsTWnVYvRONtpmJlGwG8Wjajn_CbP7Kw5bzuwxMMsOMA-Jo-rQ13vaUY_agYx_M4T5KYBfCu1bzVw_8_Hc-uH-tLuIMWLL4cDo624S71VhGi16Y70JldzO1zBHsz9aKxKgJnN23IfwEtXGrK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muconic+acid+production+from+glucose+and+xylose+in+Pseudomonas+putida+via+evolution+and+metabolic+engineering&rft.jtitle=Nature+communications&rft.au=Ling%2C+Chen&rft.au=Peabody%2C+George+L.&rft.au=Salvach%C3%BAa%2C+Davinia&rft.au=Kim%2C+Young-Mo&rft.date=2022-08-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-32296-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_32296_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |