Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes
Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic p...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 62; no. 1; pp. 194 - 204 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naïve patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1β synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1β in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. |
---|---|
AbstractList | Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naïve patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1β synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1β in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naive patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1[beta] maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1[beta] synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1[beta] in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. Diabetes 62:194-204, 2013 Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naïve patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1β synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1β in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes.Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naïve patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1β synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1β in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naive patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1β synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1β in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. Diabetes 62:194-204, 2013 Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the pathogenesis of type 2 diabetes, little is known about the ex vivo profile of inflammasome activation in type 2 diabetic patients. In this study, we investigated patterns of NLRP3 inflammasome activation in monocyte-derived macrophages (MDMs) from drug-naïve patients with newly diagnosed type 2 diabetes. Type 2 diabetic subjects had significantly increased mRNA and protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and proinflammatory cytokines in MDMs cultured with autologous sera compared with healthy controls. Upregulated interleukin (IL)-1[beta] maturation, IL-18 secretion, and caspase-1 cleavage were observed in MDMs from type 2 diabetic patients after stimulation with various danger molecules (ATP, high-mobility group protein B1, free fatty acids, islet amyloid polypeptide, and monosodium uric acid crystals). Mitochondrial reactive oxygen species and NLRP3 were required for IL-1[beta] synthesis in MDMs. Finally, 2 months of therapy with the antidiabetic drug metformin significantly inhibited the maturation of IL-1[beta] in MDMs from patients with type 2 diabetes through AMP-activated protein kinase (AMPK) activation. Taken together, these data suggest that NLRP3 inflammasome activation is elevated in myeloid cells from type 2 diabetic patients and that antidiabetic treatment with metformin contributes to modulation of inflammasome activation in type 2 diabetes. |
Audience | Professional |
Author | Ku, Bon Jeong Kim, Jwa-Jin Jo, Eun-Kyeong Lee, Hye-Mi Kim, Hyun Jin Shong, Minho |
Author_xml | – sequence: 1 givenname: Hye-Mi surname: Lee fullname: Lee, Hye-Mi organization: Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, South Korea, Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea – sequence: 2 givenname: Jwa-Jin surname: Kim fullname: Kim, Jwa-Jin organization: Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, South Korea, Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea – sequence: 3 givenname: Hyun Jin surname: Kim fullname: Kim, Hyun Jin organization: Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea – sequence: 4 givenname: Minho surname: Shong fullname: Shong, Minho organization: Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea, Research Institute for Medical Sciences4, Chungnam National University School of Medicine, Daejeon, South Korea – sequence: 5 givenname: Bon Jeong surname: Ku fullname: Ku, Bon Jeong organization: Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea, Research Institute for Medical Sciences4, Chungnam National University School of Medicine, Daejeon, South Korea – sequence: 6 givenname: Eun-Kyeong surname: Jo fullname: Jo, Eun-Kyeong organization: Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, South Korea, Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea, Research Institute for Medical Sciences4, Chungnam National University School of Medicine, Daejeon, South Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27061665$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23086037$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1v0zAUhi00xLrCBX8ARUJIcJHNH4nT3EyqyhhDFZvQJrizHPc48-TYJXam7d_jsm6lUCFf2LKf8_p8vAdoz3kHCL0m-JAyVh0tGkJzXFD8DI1Izeqc0erHHhphnO5JVVf76CCEG4wxT-sF2qcMTzhm1Qh9uVr20A5WRlhkX-ffLlh25rSVXSeD7yCbqmhuZTTeZcZlF-kELobsu4nX2eX9EjKafTSygQjhJXqupQ3war2P0dWnk8vZ53x-fno2m85zxQmOueS1LqVuMNakLiogkwmhCqQsOMUlZVo3RUGYLhguSy6bRrOybDhv0ithBWNjdPyguxyaDhYqJdRLK5a96WR_L7w0YvvFmWvR-lvBSsox5Ung_Vqg9z8HCFF0JiiwVjrwQxCEVqwglFckoW__Qm_80LtUXqJ4TUidFDdUKy0I47RP_6qVqJgywqq6rJPkGOU7qBYcpCTTQLVJ11v84Q4-rQV0Ru0M-LAVkJgId7GVQwhicjr_XzJrVnlroQWRBjY73-bf_Nn0p24_OikB79aADEpa3UunTNhwFeaE8zJxRw-c6n0IPWihTPxtsFSdsYJgsfK0WHlarDy9Kesp4lH0X_YXDo_vjA |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1155_2017_2438247 crossref_primary_10_3390_medicina59101772 crossref_primary_10_1002_iub_1645 crossref_primary_10_2337_db14_1098 crossref_primary_10_1021_acs_jmedchem_5b01091 crossref_primary_10_1371_journal_pone_0211005 crossref_primary_10_3390_biom13040708 crossref_primary_10_1016_j_semcancer_2020_09_013 crossref_primary_10_1097_FJC_0000000000000550 crossref_primary_10_1016_j_devcel_2020_07_015 crossref_primary_10_1016_j_cmet_2020_06_013 crossref_primary_10_1016_j_phrs_2019_01_035 crossref_primary_10_3390_ph18020279 crossref_primary_10_1016_j_yfrne_2019_100771 crossref_primary_10_1152_ajpendo_00205_2024 crossref_primary_10_1007_s00210_019_01773_5 crossref_primary_10_1161_CIRCRESAHA_116_308030 crossref_primary_10_1016_j_molcel_2014_03_029 crossref_primary_10_1016_j_bbrc_2023_149409 crossref_primary_10_1039_D3FO03015F crossref_primary_10_1177_0963689720934413 crossref_primary_10_1111_jcmm_14834 crossref_primary_10_23736_S2724_6507_21_03460_X crossref_primary_10_1017_S0022149X23000792 crossref_primary_10_1111_jcmm_13743 crossref_primary_10_1371_journal_pone_0122633 crossref_primary_10_3389_fimmu_2020_571731 crossref_primary_10_3390_nu15102294 crossref_primary_10_3390_ijtm4030027 crossref_primary_10_1016_j_neuint_2019_104583 crossref_primary_10_1016_j_cytogfr_2023_09_007 crossref_primary_10_1016_j_cyto_2013_08_003 crossref_primary_10_1016_j_metabol_2017_06_002 crossref_primary_10_1016_j_metabol_2018_01_002 crossref_primary_10_1007_s10571_020_01021_y crossref_primary_10_1016_j_autrev_2021_102867 crossref_primary_10_1177_0271678X16662043 crossref_primary_10_1016_S1280_4703_22_47395_6 crossref_primary_10_1538_expanim_20_0123 crossref_primary_10_1155_2022_2193768 crossref_primary_10_3390_biomedicines8100441 crossref_primary_10_1007_s10787_024_01556_2 crossref_primary_10_1111_acer_14936 crossref_primary_10_1186_s12974_019_1498_0 crossref_primary_10_3390_cimb46010043 crossref_primary_10_1111_obr_12199 crossref_primary_10_1186_s13098_024_01369_x crossref_primary_10_1186_s13287_017_0668_1 crossref_primary_10_3389_fphar_2021_625785 crossref_primary_10_2337_db13_1398 crossref_primary_10_1111_pim_12410 crossref_primary_10_3390_nu5093757 crossref_primary_10_1016_j_jaut_2017_02_006 crossref_primary_10_1507_endocrj_EJ14_0584 crossref_primary_10_1111_obr_13045 crossref_primary_10_1186_s12882_021_02391_1 crossref_primary_10_3389_fimmu_2024_1534823 crossref_primary_10_1111_iji_12401 crossref_primary_10_3389_fnins_2014_00315 crossref_primary_10_3390_ijms20030649 crossref_primary_10_3390_ijms21124223 crossref_primary_10_3390_antiox11020269 crossref_primary_10_1016_j_lfs_2015_05_011 crossref_primary_10_1038_s41467_022_35158_9 crossref_primary_10_1016_j_chembiol_2024_04_006 crossref_primary_10_1093_jpp_rgad043 crossref_primary_10_1096_fj_202002334R crossref_primary_10_1016_j_phymed_2022_154617 crossref_primary_10_1038_ncomms13344 crossref_primary_10_3390_ijms20051050 crossref_primary_10_1152_ajprenal_00314_2016 crossref_primary_10_2337_dcS15_3015 crossref_primary_10_1016_j_isci_2024_111544 crossref_primary_10_2337_db14_1059 crossref_primary_10_1016_j_jpha_2024_101069 crossref_primary_10_2147_JIR_S466624 crossref_primary_10_1016_j_intimp_2023_110024 crossref_primary_10_1016_j_it_2019_05_001 crossref_primary_10_1007_s00125_014_3249_1 crossref_primary_10_1016_j_taap_2022_115893 crossref_primary_10_1016_j_abb_2019_108148 crossref_primary_10_1007_s11883_019_0780_z crossref_primary_10_1186_s12933_018_0745_5 crossref_primary_10_1007_s00125_015_3679_4 crossref_primary_10_1016_j_gene_2013_07_082 crossref_primary_10_3390_ijms23094973 crossref_primary_10_3390_molecules29061401 crossref_primary_10_3389_fpubh_2017_00074 crossref_primary_10_1007_s12026_017_8913_3 crossref_primary_10_3390_v16020213 crossref_primary_10_1016_j_biocel_2017_01_001 crossref_primary_10_3389_fphar_2022_842313 crossref_primary_10_1007_s12640_019_00070_6 crossref_primary_10_1016_j_micpath_2021_104880 crossref_primary_10_1038_nm_3265 crossref_primary_10_1016_j_redox_2014_04_001 crossref_primary_10_3390_molecules23030522 crossref_primary_10_3389_fimmu_2017_01745 crossref_primary_10_3390_ijms22168773 crossref_primary_10_5551_jat_RV17014 crossref_primary_10_3389_fphar_2022_967594 crossref_primary_10_1080_21623945_2015_1024394 crossref_primary_10_1166_mex_2020_1815 crossref_primary_10_3389_fendo_2020_00445 crossref_primary_10_1007_s10557_017_6725_2 crossref_primary_10_7570_jomes_2017_26_3_161 crossref_primary_10_1371_journal_pone_0271737 crossref_primary_10_1002_JLB_3A0620_348RR crossref_primary_10_1038_nrd4275 crossref_primary_10_1089_wound_2021_0148 crossref_primary_10_2147_JIR_S357082 crossref_primary_10_1016_S2352_3026_18_30109_1 crossref_primary_10_1038_s41598_017_08689_1 crossref_primary_10_2147_JIR_S418166 crossref_primary_10_1038_s41419_018_1163_z crossref_primary_10_1038_s41598_018_32853_w crossref_primary_10_3389_fphys_2019_01607 crossref_primary_10_1042_CS20180600 crossref_primary_10_1016_j_jacbts_2020_03_015 crossref_primary_10_3390_ijms21165743 crossref_primary_10_3390_cells13131125 crossref_primary_10_3390_ijms22095000 crossref_primary_10_3390_molecules22081315 crossref_primary_10_1007_s00125_024_06306_1 crossref_primary_10_1007_s10565_024_09893_2 crossref_primary_10_3390_ijms22052668 crossref_primary_10_1016_j_ejphar_2022_175091 crossref_primary_10_3390_toxins13010038 crossref_primary_10_1016_j_lfs_2023_122356 crossref_primary_10_1681_ASN_2015060676 crossref_primary_10_1016_j_intimp_2023_110292 crossref_primary_10_1007_s10557_014_6531_z crossref_primary_10_1111_dom_14902 crossref_primary_10_1038_s41467_021_22987_3 crossref_primary_10_1093_bbb_zbae068 crossref_primary_10_1146_annurev_pathmechdis_032521_102529 crossref_primary_10_1016_j_drudis_2021_02_018 crossref_primary_10_1089_ars_2022_0100 crossref_primary_10_3390_ijms231911086 crossref_primary_10_1007_s12013_024_01235_7 crossref_primary_10_1016_j_expneurol_2013_11_001 crossref_primary_10_1038_s41467_020_18528_z crossref_primary_10_1194_jlr_M072587 crossref_primary_10_1186_s12944_017_0595_2 crossref_primary_10_1016_j_aquatox_2024_106839 crossref_primary_10_1016_j_bbrc_2018_09_134 crossref_primary_10_1016_j_ejmech_2023_115336 crossref_primary_10_1371_journal_pone_0222278 crossref_primary_10_1016_j_phrs_2021_105710 crossref_primary_10_1007_s11356_021_14904_4 crossref_primary_10_1038_nrendo_2014_35 crossref_primary_10_1074_jbc_M113_531202 crossref_primary_10_3389_fendo_2017_00271 crossref_primary_10_1155_2017_2309478 crossref_primary_10_5483_BMBRep_2016_49_10_115 crossref_primary_10_1007_s00018_016_2316_9 crossref_primary_10_1111_cei_12667 crossref_primary_10_1111_ajt_15620 crossref_primary_10_1111_bpa_12479 crossref_primary_10_1007_s13577_024_01132_4 crossref_primary_10_1016_j_pnpbp_2023_110796 crossref_primary_10_3904_kjim_2021_174 crossref_primary_10_1172_jci_insight_179855 crossref_primary_10_2147_JIR_S291453 crossref_primary_10_1089_ars_2014_5868 crossref_primary_10_1002_ptr_6088 crossref_primary_10_1111_bph_16479 crossref_primary_10_1016_j_lfs_2024_123180 crossref_primary_10_3389_fimmu_2019_02538 crossref_primary_10_1097_CRD_0000000000000391 crossref_primary_10_1016_j_bbrc_2015_06_060 crossref_primary_10_1186_s13098_024_01325_9 crossref_primary_10_54044_RAMI_2021_02_02 crossref_primary_10_1016_j_placenta_2015_10_015 crossref_primary_10_1007_s12272_016_0827_4 crossref_primary_10_1016_j_biopha_2017_03_003 crossref_primary_10_1111_1753_0407_12845 crossref_primary_10_1042_CS20243515 crossref_primary_10_1089_ars_2017_7313 crossref_primary_10_3389_fendo_2022_986565 crossref_primary_10_3390_ijms241210409 crossref_primary_10_3390_jcm12186022 crossref_primary_10_1016_j_molmed_2016_12_007 crossref_primary_10_1016_j_molmet_2022_101549 crossref_primary_10_3389_fimmu_2022_1021351 crossref_primary_10_1111_jcmm_13464 crossref_primary_10_1155_2016_3480637 crossref_primary_10_2337_db20_0357 crossref_primary_10_1172_JCI83260 crossref_primary_10_1016_j_bbalip_2016_09_002 crossref_primary_10_3390_biomedicines9020136 crossref_primary_10_3390_ijms23147951 crossref_primary_10_1016_j_drudis_2018_08_005 crossref_primary_10_1016_j_bbrc_2017_02_021 crossref_primary_10_3389_fcell_2021_641852 crossref_primary_10_1016_j_abb_2018_11_013 crossref_primary_10_1016_j_ecoenv_2024_117504 crossref_primary_10_1016_j_cbi_2018_05_004 crossref_primary_10_1111_bcpt_13415 crossref_primary_10_1371_journal_pone_0181248 crossref_primary_10_1007_s10753_020_01190_4 crossref_primary_10_4049_jimmunol_2000513 crossref_primary_10_1007_s11892_015_0642_1 crossref_primary_10_3389_fimmu_2021_630380 crossref_primary_10_3390_ijms22136827 crossref_primary_10_3390_ijms222212476 crossref_primary_10_1016_j_tem_2018_04_008 crossref_primary_10_1038_nrendo_2015_194 crossref_primary_10_1080_08923973_2017_1355377 crossref_primary_10_12677_ACM_2023_1361292 crossref_primary_10_1080_09273948_2020_1811350 crossref_primary_10_1002_jcp_25844 crossref_primary_10_1073_pnas_2210809119 crossref_primary_10_1038_s41418_018_0179_3 crossref_primary_10_3389_fimmu_2024_1502299 crossref_primary_10_1016_j_phrs_2017_10_010 crossref_primary_10_1038_icb_2014_11 crossref_primary_10_3390_ijms22189952 crossref_primary_10_1016_j_cyto_2020_155101 crossref_primary_10_1038_s41598_018_19293_2 crossref_primary_10_1111_dom_12646 crossref_primary_10_3389_fimmu_2019_01330 crossref_primary_10_1007_s00018_022_04490_0 crossref_primary_10_3389_fimmu_2018_02564 crossref_primary_10_1016_j_it_2024_02_004 crossref_primary_10_1016_j_mad_2022_111743 crossref_primary_10_3390_ijms21051835 crossref_primary_10_1038_nrgastro_2015_94 crossref_primary_10_1089_ars_2022_0022 crossref_primary_10_3390_cells9010082 crossref_primary_10_1016_j_trsl_2015_08_011 crossref_primary_10_2174_1871530322666220630093359 crossref_primary_10_3390_molecules26164996 crossref_primary_10_1186_s12974_016_0774_5 crossref_primary_10_3389_fendo_2017_00072 crossref_primary_10_3390_foods13111763 crossref_primary_10_1155_2019_5271295 crossref_primary_10_3390_ijms19103092 crossref_primary_10_1016_j_kint_2019_01_014 crossref_primary_10_1186_s12974_017_0985_4 crossref_primary_10_3389_fimmu_2021_808012 crossref_primary_10_3390_molecules24050858 crossref_primary_10_3390_cells12030431 crossref_primary_10_1152_ajpcell_00379_2020 crossref_primary_10_1007_s11655_022_3513_4 crossref_primary_10_3389_fphar_2022_847605 crossref_primary_10_3390_nu11030516 crossref_primary_10_1186_s13024_022_00544_w crossref_primary_10_1210_en_2017_00294 crossref_primary_10_1007_s00125_013_3023_9 crossref_primary_10_1002_oby_22734 crossref_primary_10_3168_jds_2019_16706 crossref_primary_10_2459_JCM_0000000000001448 crossref_primary_10_1007_s00011_016_1002_6 crossref_primary_10_3390_nu8040215 crossref_primary_10_1002_bies_201300084 crossref_primary_10_3389_fimmu_2021_682853 crossref_primary_10_3390_ijms20122876 crossref_primary_10_1016_j_ejphar_2023_175901 crossref_primary_10_1002_JLB_3MA0821_418R crossref_primary_10_1007_s00018_020_03587_8 crossref_primary_10_1016_j_neuropharm_2020_108305 crossref_primary_10_3389_fimmu_2022_1008047 crossref_primary_10_1097_MED_0000000000000277 crossref_primary_10_3389_fcvm_2022_991716 crossref_primary_10_4049_jimmunol_1800224 crossref_primary_10_1016_j_celrep_2018_03_097 crossref_primary_10_1128_IAI_00125_15 crossref_primary_10_3390_cells10020314 crossref_primary_10_3389_fphar_2021_653940 crossref_primary_10_3389_fphys_2021_709703 crossref_primary_10_3389_fncel_2018_00440 crossref_primary_10_1016_j_cstres_2024_01_002 crossref_primary_10_1016_j_bbadis_2016_04_017 crossref_primary_10_1016_j_biopha_2018_04_140 crossref_primary_10_1021_acsptsci_1c00126 crossref_primary_10_1155_2018_6345805 crossref_primary_10_1016_j_clinre_2021_101843 crossref_primary_10_1038_nm_3893 crossref_primary_10_1016_j_bmcl_2016_10_025 crossref_primary_10_1002_dmrr_3841 crossref_primary_10_1016_j_biopha_2021_112219 crossref_primary_10_1002_stem_1728 crossref_primary_10_4251_wjgo_v17_i2_100094 crossref_primary_10_1038_cmi_2015_95 crossref_primary_10_1177_03000605221111275 crossref_primary_10_1016_j_bcp_2023_115911 crossref_primary_10_1007_s10787_023_01235_8 crossref_primary_10_2147_DMSO_S301352 crossref_primary_10_3390_nu9121370 crossref_primary_10_4196_kjpp_2022_26_3_165 crossref_primary_10_1016_j_jaci_2013_06_022 crossref_primary_10_1136_annrheumdis_2017_212416 crossref_primary_10_3389_fimmu_2021_683803 crossref_primary_10_1111_dom_12688 crossref_primary_10_1080_15548627_2020_1804677 crossref_primary_10_1016_j_metop_2022_100166 crossref_primary_10_1155_2022_9687925 crossref_primary_10_3389_fimmu_2022_896353 crossref_primary_10_1152_ajprenal_00637_2014 crossref_primary_10_1194_jlr_M062828 crossref_primary_10_2337_db22_0962 crossref_primary_10_1016_j_cej_2024_149014 crossref_primary_10_1165_rcmb_2013_0087OC crossref_primary_10_3390_nu12030854 crossref_primary_10_31793_1680_1466_2020_25_2_143 crossref_primary_10_3390_ijms19113495 crossref_primary_10_3346_jkms_2014_29_8_1038 crossref_primary_10_3389_fimmu_2016_00597 crossref_primary_10_1186_s13071_018_3223_8 crossref_primary_10_15446_rsap_v19n1_54415 crossref_primary_10_1016_j_cca_2022_04_011 crossref_primary_10_1586_1744666X_2016_1168293 crossref_primary_10_1038_icb_2014_5 crossref_primary_10_1038_icb_2014_4 crossref_primary_10_1002_cti2_1247 crossref_primary_10_1124_jpet_116_233239 crossref_primary_10_1097_MOL_0000000000000107 crossref_primary_10_1002_cmdc_201600055 crossref_primary_10_1155_2020_8872639 crossref_primary_10_1002_mco2_349 crossref_primary_10_1126_scisignal_aag2298 crossref_primary_10_1016_j_actbio_2018_03_021 crossref_primary_10_1016_j_bbih_2024_100862 crossref_primary_10_1038_icb_2017_23 crossref_primary_10_1186_s13098_015_0113_5 crossref_primary_10_1096_fj_201902938RR crossref_primary_10_3389_fimmu_2021_765349 crossref_primary_10_1016_j_metabol_2023_155527 crossref_primary_10_1111_jsr_13202 crossref_primary_10_1007_s10557_020_06978_y crossref_primary_10_1002_JPER_18_0528 crossref_primary_10_1111_bph_15532 crossref_primary_10_1007_s12272_021_01307_9 crossref_primary_10_3390_cells10123480 crossref_primary_10_3390_ijms21176275 crossref_primary_10_1039_D2NR03756D crossref_primary_10_1038_s41392_023_01687_y crossref_primary_10_1517_14740338_2015_1096343 crossref_primary_10_3389_fphar_2024_1368835 crossref_primary_10_1002_advs_202307224 crossref_primary_10_3389_fendo_2024_1503704 crossref_primary_10_1016_j_bcp_2014_10_001 crossref_primary_10_3389_fendo_2024_1443798 crossref_primary_10_1038_s41392_021_00650_z crossref_primary_10_3389_fendo_2018_00748 crossref_primary_10_3389_fncel_2017_00270 crossref_primary_10_1016_j_biopha_2021_111325 crossref_primary_10_1016_j_biopha_2022_112933 crossref_primary_10_1177_17590914211003247 crossref_primary_10_1111_jre_12677 crossref_primary_10_1016_j_intimp_2020_106987 crossref_primary_10_1371_journal_pone_0089169 crossref_primary_10_1016_j_diabres_2013_04_005 crossref_primary_10_1155_2024_3654690 crossref_primary_10_1155_2013_678627 crossref_primary_10_3389_fcell_2019_00259 crossref_primary_10_1186_s12916_019_1433_3 crossref_primary_10_1016_j_bcp_2023_115959 crossref_primary_10_18632_aging_205243 crossref_primary_10_3390_ijms23052873 crossref_primary_10_3389_fragi_2024_1442323 crossref_primary_10_3390_biomedicines11051315 crossref_primary_10_1186_s12974_018_1313_3 crossref_primary_10_1016_j_jnutbio_2015_04_012 crossref_primary_10_1136_annrheumdis_2018_214656 crossref_primary_10_2478_amtsb_2020_0045 crossref_primary_10_1016_j_cyto_2016_11_009 crossref_primary_10_1111_ejn_15789 crossref_primary_10_3389_fimmu_2023_1052756 crossref_primary_10_1155_2021_5551578 crossref_primary_10_23736_S2724_5683_20_05454_7 crossref_primary_10_3390_ijms23094589 crossref_primary_10_1002_jcb_30530 crossref_primary_10_1016_j_plefa_2014_05_003 crossref_primary_10_1002_jcp_26784 crossref_primary_10_1016_j_micpath_2021_105168 crossref_primary_10_3390_ijms241310866 crossref_primary_10_1016_j_biopha_2019_109410 crossref_primary_10_3389_fimmu_2020_583373 crossref_primary_10_1186_s12933_023_01979_1 crossref_primary_10_1038_eye_2017_241 crossref_primary_10_1111_hepr_12883 crossref_primary_10_1111_jdi_12328 crossref_primary_10_3389_fimmu_2020_609441 crossref_primary_10_3390_ijms18061275 crossref_primary_10_1016_S1283_0771_22_47366_X crossref_primary_10_1016_j_ejphar_2019_03_006 crossref_primary_10_1038_s41401_021_00613_8 crossref_primary_10_1002_oby_21003 crossref_primary_10_2147_DMSO_S338254 crossref_primary_10_1016_j_cmet_2019_07_004 crossref_primary_10_1074_jbc_M117_791715 crossref_primary_10_1111_dom_12172 crossref_primary_10_3390_ijms19113289 crossref_primary_10_1016_j_humgen_2022_201057 crossref_primary_10_1172_JCI120845 crossref_primary_10_1111_1753_0407_12643 crossref_primary_10_2174_1871527320666210223145112 crossref_primary_10_1016_j_immuni_2021_05_004 crossref_primary_10_1007_s00125_014_3482_7 crossref_primary_10_1007_s10565_022_09789_z crossref_primary_10_1016_S1567_5688_14_70002_9 crossref_primary_10_1016_j_archoralbio_2020_104692 crossref_primary_10_5933_JKAPD_2018_45_1_109 crossref_primary_10_1016_j_mito_2024_101972 crossref_primary_10_3389_fimmu_2020_614801 crossref_primary_10_29105_respyn23_2_780 crossref_primary_10_1016_j_coi_2014_03_007 crossref_primary_10_1016_j_jcjd_2020_11_003 crossref_primary_10_1016_j_tem_2017_05_004 crossref_primary_10_3892_ijmm_2025_5489 crossref_primary_10_1186_s12933_020_01110_8 crossref_primary_10_3389_fragi_2024_1452453 crossref_primary_10_1016_j_biopha_2024_116863 crossref_primary_10_1074_jbc_M117_797126 crossref_primary_10_1007_s10557_018_6778_x crossref_primary_10_1016_j_jnutbio_2022_109080 crossref_primary_10_3390_biom12050634 crossref_primary_10_1097_MCO_0000000000001055 crossref_primary_10_1111_dom_12153 crossref_primary_10_3389_fimmu_2021_789023 crossref_primary_10_1016_j_cyto_2018_07_020 crossref_primary_10_1155_2018_6091014 crossref_primary_10_1016_j_ejphar_2017_05_032 crossref_primary_10_1016_j_freeradbiomed_2017_02_027 crossref_primary_10_3390_ijms21145104 crossref_primary_10_1016_j_bbalip_2015_08_009 crossref_primary_10_3390_biom9120850 crossref_primary_10_1371_journal_pone_0104771 crossref_primary_10_1016_j_humimm_2024_111164 crossref_primary_10_1172_JCI169730 crossref_primary_10_1016_j_jhep_2021_11_026 crossref_primary_10_1089_ars_2015_6294 crossref_primary_10_1007_s00395_019_0743_0 crossref_primary_10_1080_21655979_2021_1983975 crossref_primary_10_3390_futurepharmacol3040048 crossref_primary_10_1016_j_arr_2024_102505 crossref_primary_10_1097_MCO_0000000000000077 crossref_primary_10_1098_rsob_200291 crossref_primary_10_1371_journal_pone_0231543 crossref_primary_10_2147_JIR_S448693 crossref_primary_10_1016_j_heliyon_2022_e12304 crossref_primary_10_3389_fimmu_2020_613613 crossref_primary_10_1128_IAI_01095_15 crossref_primary_10_1016_j_jacc_2019_05_045 crossref_primary_10_3390_cells9081812 crossref_primary_10_1016_j_npep_2020_102057 crossref_primary_10_1016_j_intimp_2022_108595 crossref_primary_10_3390_ijms21114184 crossref_primary_10_1002_cmdc_201700731 crossref_primary_10_1074_jbc_M115_662114 crossref_primary_10_3389_fimmu_2023_1122586 crossref_primary_10_1084_jem_20182191 crossref_primary_10_1007_s11605_023_05654_4 crossref_primary_10_1172_JCI67227 crossref_primary_10_1016_j_cmet_2020_04_015 crossref_primary_10_1016_j_dsx_2017_03_006 crossref_primary_10_3892_ijmm_2019_4148 crossref_primary_10_1038_s41420_023_01438_6 crossref_primary_10_3389_fimmu_2020_570251 crossref_primary_10_3390_ijms21218145 crossref_primary_10_3390_antiox12081488 crossref_primary_10_3390_jpm13091295 crossref_primary_10_1515_jpem_2017_0007 crossref_primary_10_1016_j_lfs_2020_117727 crossref_primary_10_4049_jimmunol_1301035 crossref_primary_10_1002_kjm2_12654 crossref_primary_10_3390_cells8111389 crossref_primary_10_1111_cts_12186 crossref_primary_10_1038_srep35016 crossref_primary_10_1080_08820139_2019_1586917 crossref_primary_10_1038_s41598_021_97441_x crossref_primary_10_1124_pr_112_006171 crossref_primary_10_1038_s41374_021_00535_3 crossref_primary_10_1161_CIRCRESAHA_116_306923 crossref_primary_10_2337_db18_0999 crossref_primary_10_3390_ijms23105634 crossref_primary_10_1016_j_imlet_2017_10_010 crossref_primary_10_1016_j_micinf_2014_11_009 crossref_primary_10_1002_mnfr_201900226 crossref_primary_10_1002_bies_201800027 crossref_primary_10_2174_1573399819666230216112032 crossref_primary_10_1210_me_2014_1393 crossref_primary_10_1155_2019_2363460 crossref_primary_10_1517_14728222_2016_1086752 crossref_primary_10_3389_fimmu_2020_573662 crossref_primary_10_1002_jcb_27194 crossref_primary_10_3389_fphys_2018_00114 crossref_primary_10_3390_ijms221910721 crossref_primary_10_3389_fdgth_2024_1336050 crossref_primary_10_1016_j_cytogfr_2014_07_020 crossref_primary_10_1016_j_jff_2022_105348 crossref_primary_10_1111_cpr_12868 crossref_primary_10_1155_2021_8043299 crossref_primary_10_3324_haematol_2021_278855 crossref_primary_10_2119_molmed_2015_00104 crossref_primary_10_1186_s40170_021_00260_x crossref_primary_10_1016_j_arr_2023_101958 crossref_primary_10_18632_oncotarget_16903 crossref_primary_10_1016_j_adcanc_2022_100056 crossref_primary_10_1111_cei_13080 crossref_primary_10_1016_j_mito_2017_08_015 crossref_primary_10_1182_bloodadvances_2020003475 crossref_primary_10_3390_ijms24054990 crossref_primary_10_1042_BCJ20190472 crossref_primary_10_1136_bmjdrc_2016_000227 crossref_primary_10_1038_srep24399 crossref_primary_10_1016_j_jnutbio_2016_04_004 crossref_primary_10_1055_s_0040_1708540 crossref_primary_10_2174_1871523019666200916115034 crossref_primary_10_22209_IC_v61n3a07 crossref_primary_10_3103_S0095452721040113 crossref_primary_10_1016_j_arr_2015_06_004 crossref_primary_10_1093_toxsci_kfac076 crossref_primary_10_1002_dmrr_3383 crossref_primary_10_1016_j_bcp_2014_08_013 crossref_primary_10_1155_2021_9265016 crossref_primary_10_1152_ajpcell_00604_2020 crossref_primary_10_1111_bph_12479 crossref_primary_10_1371_journal_pone_0296651 crossref_primary_10_3390_ijms252011197 crossref_primary_10_1016_j_jnutbio_2021_108614 crossref_primary_10_2139_ssrn_3950746 crossref_primary_10_1139_apnm_2016_0429 crossref_primary_10_1096_fj_201902355RR crossref_primary_10_1007_s10522_020_09873_z crossref_primary_10_1038_s41420_020_0245_8 crossref_primary_10_1136_egastro_2024_100096 crossref_primary_10_1016_j_ejphar_2020_173503 crossref_primary_10_3390_nu14030490 crossref_primary_10_1111_jdi_13930 crossref_primary_10_37871_jbres1424 crossref_primary_10_1007_s12272_020_01295_2 crossref_primary_10_1038_s41423_019_0296_z crossref_primary_10_2174_0113892010276859231125165251 crossref_primary_10_3389_fcvm_2020_00010 crossref_primary_10_1007_s00011_022_01667_y crossref_primary_10_1007_s00018_015_1995_y crossref_primary_10_1080_21655979_2021_1987125 crossref_primary_10_1210_js_2018_00220 crossref_primary_10_1038_s41418_019_0286_9 crossref_primary_10_4110_in_2019_19_e28 crossref_primary_10_1007_s12079_017_0396_4 crossref_primary_10_1038_s41598_024_61089_0 crossref_primary_10_1016_j_molcel_2018_11_018 crossref_primary_10_1039_D4CP04644G crossref_primary_10_1080_08958378_2021_1980637 crossref_primary_10_1111_1753_0407_12276 crossref_primary_10_1146_annurev_nutr_071816_064836 crossref_primary_10_1038_s41380_021_01431_4 crossref_primary_10_3389_fimmu_2023_1082050 crossref_primary_10_1080_03009734_2017_1368745 crossref_primary_10_1016_j_foodres_2017_01_017 crossref_primary_10_2174_0929867327666200123093544 crossref_primary_10_2147_JIR_S351913 crossref_primary_10_1007_s13410_023_01290_5 crossref_primary_10_5551_jat_42945 crossref_primary_10_1016_j_det_2013_04_006 crossref_primary_10_1002_jcp_30839 crossref_primary_10_1124_jpet_116_235069 crossref_primary_10_1016_j_bbrc_2022_04_131 crossref_primary_10_1111_omi_12217 crossref_primary_10_3389_fcimb_2016_00195 crossref_primary_10_3389_fimmu_2024_1450440 crossref_primary_10_3892_etm_2017_5337 crossref_primary_10_1016_j_intimp_2020_106653 crossref_primary_10_3390_cells10092367 crossref_primary_10_1021_acs_chemrestox_8b00304 |
Cites_doi | 10.1200/JCO.2009.25.4110 10.1210/en.2006-0692 10.1210/en.2008-0404 10.1126/scitranslmed.3001902 10.1016/j.cmet.2010.11.011 10.1007/s00125-011-2126-4 10.1172/JCI29069 10.2337/diabetes.52.3.812 10.1016/j.molmed.2010.11.001 10.1182/blood-2008-03-146720 10.1016/j.it.2011.05.004 10.1038/icb.2011.72 10.1038/nrd3403 10.1002/dmrr.1185 10.1152/ajpendo.00363.2011 10.1038/ni.2022 10.1016/j.coi.2009.01.006 10.1016/j.chom.2009.08.004 10.1056/NEJMoa065213 10.1073/pnas.1100255108 10.2337/dc09-1799 10.1038/ng756 10.2337/diabetes.51.7.2074 10.1016/S0065-2776(06)91004-9 10.1042/CS20110386 10.1161/01.ATV.0000122852.22604.78 10.2337/db11-0416 10.1038/ni.1980 10.1084/jem.20110367 10.2337/db08-0127 10.1016/j.freeradbiomed.2010.12.006 10.2337/dc11-s221 10.1084/jem.20102049 10.1038/nrendo.2009.271 10.1172/JCI40599 10.1023/B:MCBI.0000009862.17396.8d 10.1164/rccm.200710-1602OC 10.1038/nri2925 10.1038/nature09663 10.4110/in.2011.11.2.95 10.1038/nm.2279 10.1038/ni.1831 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS COPYRIGHT 2013 American Diabetes Association COPYRIGHT 2013 American Diabetes Association Copyright American Diabetes Association Jan 2013 2013 by the American Diabetes Association. 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2013 American Diabetes Association – notice: COPYRIGHT 2013 American Diabetes Association – notice: Copyright American Diabetes Association Jan 2013 – notice: 2013 by the American Diabetes Association. 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM |
DOI | 10.2337/db12-0420 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (via ProQuest) Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 204 |
ExternalDocumentID | PMC3526026 2864616761 A313795927 23086037 27061665 10_2337_db12_0420 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAFWJ AAKAS AAQQT AAWTL AAYEP AAYOK AAYXX ABOCM ABUWG ACGFO ACGOD ACPRK ADBBV ADGHP ADZCM AEGXH AENEX AERZD AFKRA AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BTFSW BVXVI CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EMOBN EX3 F5P FRP FYUFA GICCO GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ IAG IAO IEA IHR INH INR IOF IPO ITC K-O K2M K9- KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5~ M7P NAPCQ O5R O5S O9- OB3 OHH OK1 OVD P2P PCD PEA PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI RPM S0X SJFOW SJN SV3 TDI TEORI TR2 UKHRP VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 8F7 AAYJJ AFFNX AI. C1A H~9 IQODW J5H MVM N4W PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c610t-a69f5afb00f1947e18812ceaa4620523ffb4413f430556abbf355b66b20513433 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 14:04:21 EDT 2025 Fri Jul 11 02:46:31 EDT 2025 Fri Jul 25 19:36:11 EDT 2025 Tue Jun 17 21:08:24 EDT 2025 Thu Jun 12 23:32:17 EDT 2025 Tue Jun 10 20:28:04 EDT 2025 Fri Jun 27 04:36:21 EDT 2025 Tue Jun 10 19:52:06 EDT 2025 Mon Jul 21 06:02:14 EDT 2025 Mon Jul 21 09:12:06 EDT 2025 Tue Jul 01 03:04:09 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Endocrinopathy Type 2 diabetes Human Metabolic diseases |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c610t-a69f5afb00f1947e18812ceaa4620523ffb4413f430556abbf355b66b20513433 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3526026 |
PMID | 23086037 |
PQID | 1269119602 |
PQPubID | 34443 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3526026 proquest_miscellaneous_1273412671 proquest_journals_1269119602 gale_infotracmisc_A313795927 gale_infotracgeneralonefile_A313795927 gale_infotracacademiconefile_A313795927 gale_incontextgauss_8GL_A313795927 gale_incontextcollege_GICCO_A313795927 pubmed_primary_23086037 pascalfrancis_primary_27061665 crossref_citationtrail_10_2337_db12_0420 crossref_primary_10_2337_db12_0420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2013 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | WHO/IASO/IOTF (2022031209190147100_B21) 2000 Donath (2022031209190147100_B2) 2011; 11 Bulua (2022031209190147100_B36) 2011; 208 Dasu (2022031209190147100_B24) 2010; 33 Masters (2022031209190147100_B30) 2011; 3 Zmijewski (2022031209190147100_B44) 2008; 178 Herlein (2022031209190147100_B27) 2009; 150 Viollet (2022031209190147100_B40) 2012; 122 Larsen (2022031209190147100_B14) 2007; 356 Coletta (2022031209190147100_B19) 2011; 301 Pedra (2022031209190147100_B6) 2009; 21 Lee (2022031209190147100_B22) 2012 Grenader (2022031209190147100_B42) 2009; 27 Musi (2022031209190147100_B38) 2002; 51 Shoelson (2022031209190147100_B3) 2006; 116 2022031209190147100_B1 Yuk (2022031209190147100_B23) 2009; 6 Zhou (2022031209190147100_B5) 2010; 11 DeFronzo (2022031209190147100_B20) 2011; 34 Stienstra (2022031209190147100_B8) 2010; 12 Stienstra (2022031209190147100_B11) 2011; 108 Vandanmagsar (2022031209190147100_B9) 2011; 17 Hoffman (2022031209190147100_B31) 2001; 29 Zhou (2022031209190147100_B26) 2011; 469 Boyle (2022031209190147100_B28) 2011; 54 Wagner (2022031209190147100_B32) 2006; 91 Netea (2022031209190147100_B25) 2009; 113 Nakahira (2022031209190147100_B18) 2011; 12 De Nardo (2022031209190147100_B7) 2011; 32 Mandrup-Poulsen (2022031209190147100_B15) 2010; 6 Colombini (2022031209190147100_B35) 2004; 256-257 Zheng (2022031209190147100_B39) 2012; 61 Joya-Galeana (2022031209190147100_B43) 2011; 27 Shaw (2022031209190147100_B17) 2011; 17 Wen (2022031209190147100_B10) 2011; 12 Stutz (2022031209190147100_B16) 2009; 119 Drummond (2022031209190147100_B33) 2011; 10 Naik (2022031209190147100_B37) 2011; 208 Ceriello (2022031209190147100_B4) 2004; 24 Lee (2022031209190147100_B29) 2011; 11 Rains (2022031209190147100_B34) 2011; 50 Spranger (2022031209190147100_B12) 2003; 52 Jager (2022031209190147100_B13) 2007; 148 Tan (2022031209190147100_B41) 2008; 57 14977174 - Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):107-15 23258906 - Diabetes. 2013 Jan;62(1):22-4 21637386 - Immune Netw. 2011 Apr;11(2):95-9 18436790 - Am J Respir Crit Care Med. 2008 Jul 15;178(2):168-79 21876127 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15324-9 21876553 - Immunol Cell Biol. 2012 Jul;90(6):601-10 18772240 - Endocrinology. 2009 Jan;150(1):46-55 19884518 - J Clin Oncol. 2009 Dec 10;27(35):e259; author reply e260 17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26 17038556 - Endocrinology. 2007 Jan;148(1):241-51 11687797 - Nat Genet. 2001 Nov;29(3):301-5 21733753 - Trends Immunol. 2011 Aug;32(8):373-9 20067962 - Diabetes Care. 2010 Apr;33(4):861-8 21309063 - Diabetes Metab Res Rev. 2011 May;27(4):373-82 18375437 - Diabetes. 2008 Jun;57(6):1501-7 12606524 - Diabetes. 2003 Mar;52(3):812-7 22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70 19104081 - Blood. 2009 Mar 5;113(10):2324-35 21862724 - Am J Physiol Endocrinol Metab. 2011 Nov;301(5):E749-55 21357740 - J Exp Med. 2011 Mar 14;208(3):417-20 16823477 - J Clin Invest. 2006 Jul;116(7):1793-801 12086935 - Diabetes. 2002 Jul;51(7):2074-81 20023662 - Nat Immunol. 2010 Feb;11(2):136-40 20173777 - Nat Rev Endocrinol. 2010 Mar;6(3):158-66 21629295 - Nat Rev Drug Discov. 2011 Jun;10(6):453-71 19955661 - J Clin Invest. 2009 Dec;119(12):3502-11 21282379 - J Exp Med. 2011 Mar 14;208(3):519-33 21151103 - Nat Immunol. 2011 Mar;12(3):222-30 21163704 - Trends Mol Med. 2011 Feb;17(2):57-64 21478880 - Nat Immunol. 2011 May;12(5):408-15 21124315 - Nature. 2011 Jan 13;469(7329):221-5 16938540 - Adv Immunol. 2006;91:159-73 21109192 - Cell Metab. 2010 Dec 1;12(6):593-605 19748465 - Cell Host Microbe. 2009 Sep 17;6(3):231-43 21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75 21543720 - Sci Transl Med. 2011 May 4;3(81):81ps17 19223160 - Curr Opin Immunol. 2009 Feb;21(1):10-6 14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23 21217695 - Nat Med. 2011 Feb;17(2):179-88 21233852 - Nat Rev Immunol. 2011 Feb;11(2):98-107 21525456 - Diabetes Care. 2011 May;34 Suppl 2:S202-9 22124463 - Diabetes. 2012 Jan;61(1):217-28 21455728 - Diabetologia. 2011 Jul;54(7):1799-809 |
References_xml | – ident: 2022031209190147100_B1 – volume: 27 start-page: e260 year: 2009 ident: 2022031209190147100_B42 article-title: Metformin as an addition to conventional chemotherapy in breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2009.25.4110 – volume: 148 start-page: 241 year: 2007 ident: 2022031209190147100_B13 article-title: Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression publication-title: Endocrinology doi: 10.1210/en.2006-0692 – volume: 150 start-page: 46 year: 2009 ident: 2022031209190147100_B27 article-title: Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats publication-title: Endocrinology doi: 10.1210/en.2008-0404 – volume: 3 start-page: 81ps17 year: 2011 ident: 2022031209190147100_B30 article-title: The inflammasome in atherosclerosis and type 2 diabetes publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001902 – volume: 12 start-page: 593 year: 2010 ident: 2022031209190147100_B8 article-title: The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity publication-title: Cell Metab doi: 10.1016/j.cmet.2010.11.011 – volume: 54 start-page: 1799 year: 2011 ident: 2022031209190147100_B28 article-title: AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study publication-title: Diabetologia doi: 10.1007/s00125-011-2126-4 – volume: 116 start-page: 1793 year: 2006 ident: 2022031209190147100_B3 article-title: Inflammation and insulin resistance publication-title: J Clin Invest doi: 10.1172/JCI29069 – volume: 52 start-page: 812 year: 2003 ident: 2022031209190147100_B12 article-title: Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study publication-title: Diabetes doi: 10.2337/diabetes.52.3.812 – volume: 17 start-page: 57 year: 2011 ident: 2022031209190147100_B17 article-title: Inflammasomes and autoimmunity publication-title: Trends Mol Med doi: 10.1016/j.molmed.2010.11.001 – volume: 113 start-page: 2324 year: 2009 ident: 2022031209190147100_B25 article-title: Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages publication-title: Blood doi: 10.1182/blood-2008-03-146720 – volume: 32 start-page: 373 year: 2011 ident: 2022031209190147100_B7 article-title: NLRP3 inflammasomes link inflammation and metabolic disease publication-title: Trends Immunol doi: 10.1016/j.it.2011.05.004 – year: 2012 ident: 2022031209190147100_B22 article-title: Mycobacterium abscessus activates the NLRP3 inflammasome via Dectin-1-Syk and p62/SQSTM1 publication-title: Immunol Cell Biol doi: 10.1038/icb.2011.72 – volume: 10 start-page: 453 year: 2011 ident: 2022031209190147100_B33 article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3403 – volume: 27 start-page: 373 year: 2011 ident: 2022031209190147100_B43 article-title: Effects of insulin and oral anti-diabetic agents on glucose metabolism, vascular dysfunction and skeletal muscle inflammation in type 2 diabetic subjects publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.1185 – volume: 301 start-page: E749 year: 2011 ident: 2022031209190147100_B19 article-title: Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00363.2011 – volume: 12 start-page: 408 year: 2011 ident: 2022031209190147100_B10 article-title: Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling publication-title: Nat Immunol doi: 10.1038/ni.2022 – volume: 21 start-page: 10 year: 2009 ident: 2022031209190147100_B6 article-title: Sensing pathogens and danger signals by the inflammasome publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2009.01.006 – volume: 6 start-page: 231 year: 2009 ident: 2022031209190147100_B23 article-title: Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.08.004 – volume: 356 start-page: 1517 year: 2007 ident: 2022031209190147100_B14 article-title: Interleukin-1-receptor antagonist in type 2 diabetes mellitus publication-title: N Engl J Med doi: 10.1056/NEJMoa065213 – volume: 108 start-page: 15324 year: 2011 ident: 2022031209190147100_B11 article-title: Inflammasome is a central player in the induction of obesity and insulin resistance publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1100255108 – volume: 33 start-page: 861 year: 2010 ident: 2022031209190147100_B24 article-title: Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects publication-title: Diabetes Care doi: 10.2337/dc09-1799 – volume: 29 start-page: 301 year: 2001 ident: 2022031209190147100_B31 article-title: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome publication-title: Nat Genet doi: 10.1038/ng756 – volume: 51 start-page: 2074 year: 2002 ident: 2022031209190147100_B38 article-title: Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.7.2074 – volume: 91 start-page: 159 year: 2006 ident: 2022031209190147100_B32 article-title: Endogenous TLR ligands and autoimmunity publication-title: Adv Immunol doi: 10.1016/S0065-2776(06)91004-9 – volume: 122 start-page: 253 year: 2012 ident: 2022031209190147100_B40 article-title: Cellular and molecular mechanisms of metformin: an overview publication-title: Clin Sci (Lond) doi: 10.1042/CS20110386 – volume: 24 start-page: 816 year: 2004 ident: 2022031209190147100_B4 article-title: Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000122852.22604.78 – volume: 61 start-page: 217 year: 2012 ident: 2022031209190147100_B39 article-title: Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin publication-title: Diabetes doi: 10.2337/db11-0416 – volume: 12 start-page: 222 year: 2011 ident: 2022031209190147100_B18 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat Immunol doi: 10.1038/ni.1980 – volume: 208 start-page: 417 year: 2011 ident: 2022031209190147100_B37 article-title: Mitochondrial reactive oxygen species drive proinflammatory cytokine production publication-title: J Exp Med doi: 10.1084/jem.20110367 – volume: 57 start-page: 1501 year: 2008 ident: 2022031209190147100_B41 article-title: Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance publication-title: Diabetes doi: 10.2337/db08-0127 – volume: 50 start-page: 567 year: 2011 ident: 2022031209190147100_B34 article-title: Oxidative stress, insulin signaling, and diabetes publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2010.12.006 – volume: 34 start-page: S202 year: 2011 ident: 2022031209190147100_B20 article-title: Type 2 diabetes can be prevented with early pharmacological intervention publication-title: Diabetes Care doi: 10.2337/dc11-s221 – volume: 208 start-page: 519 year: 2011 ident: 2022031209190147100_B36 article-title: Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) publication-title: J Exp Med doi: 10.1084/jem.20102049 – volume: 6 start-page: 158 year: 2010 ident: 2022031209190147100_B15 article-title: Blockade of interleukin 1 in type 1 diabetes mellitus publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2009.271 – volume: 119 start-page: 3502 year: 2009 ident: 2022031209190147100_B16 article-title: Inflammasomes: too big to miss publication-title: J Clin Invest doi: 10.1172/JCI40599 – volume: 256-257 start-page: 107 year: 2004 ident: 2022031209190147100_B35 article-title: VDAC: the channel at the interface between mitochondria and the cytosol publication-title: Mol Cell Biochem doi: 10.1023/B:MCBI.0000009862.17396.8d – volume: 178 start-page: 168 year: 2008 ident: 2022031209190147100_B44 article-title: Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200710-1602OC – volume: 11 start-page: 98 year: 2011 ident: 2022031209190147100_B2 article-title: Type 2 diabetes as an inflammatory disease publication-title: Nat Rev Immunol doi: 10.1038/nri2925 – volume-title: The Asia-Pacific Perspective: Redefining Obesity and Its Treatment year: 2000 ident: 2022031209190147100_B21 – volume: 469 start-page: 221 year: 2011 ident: 2022031209190147100_B26 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 11 start-page: 95 year: 2011 ident: 2022031209190147100_B29 article-title: Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes publication-title: Immune Netw doi: 10.4110/in.2011.11.2.95 – volume: 17 start-page: 179 year: 2011 ident: 2022031209190147100_B9 article-title: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance publication-title: Nat Med doi: 10.1038/nm.2279 – volume: 11 start-page: 136 year: 2010 ident: 2022031209190147100_B5 article-title: Thioredoxin-interacting protein links oxidative stress to inflammasome activation publication-title: Nat Immunol doi: 10.1038/ni.1831 – reference: 20023662 - Nat Immunol. 2010 Feb;11(2):136-40 – reference: 19748465 - Cell Host Microbe. 2009 Sep 17;6(3):231-43 – reference: 21862724 - Am J Physiol Endocrinol Metab. 2011 Nov;301(5):E749-55 – reference: 16938540 - Adv Immunol. 2006;91:159-73 – reference: 18436790 - Am J Respir Crit Care Med. 2008 Jul 15;178(2):168-79 – reference: 17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26 – reference: 21455728 - Diabetologia. 2011 Jul;54(7):1799-809 – reference: 21124315 - Nature. 2011 Jan 13;469(7329):221-5 – reference: 21282379 - J Exp Med. 2011 Mar 14;208(3):519-33 – reference: 16823477 - J Clin Invest. 2006 Jul;116(7):1793-801 – reference: 23258906 - Diabetes. 2013 Jan;62(1):22-4 – reference: 22124463 - Diabetes. 2012 Jan;61(1):217-28 – reference: 18375437 - Diabetes. 2008 Jun;57(6):1501-7 – reference: 21163704 - Trends Mol Med. 2011 Feb;17(2):57-64 – reference: 21217695 - Nat Med. 2011 Feb;17(2):179-88 – reference: 21876127 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15324-9 – reference: 21637386 - Immune Netw. 2011 Apr;11(2):95-9 – reference: 12606524 - Diabetes. 2003 Mar;52(3):812-7 – reference: 11687797 - Nat Genet. 2001 Nov;29(3):301-5 – reference: 21478880 - Nat Immunol. 2011 May;12(5):408-15 – reference: 21876553 - Immunol Cell Biol. 2012 Jul;90(6):601-10 – reference: 21357740 - J Exp Med. 2011 Mar 14;208(3):417-20 – reference: 17038556 - Endocrinology. 2007 Jan;148(1):241-51 – reference: 21233852 - Nat Rev Immunol. 2011 Feb;11(2):98-107 – reference: 22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70 – reference: 21109192 - Cell Metab. 2010 Dec 1;12(6):593-605 – reference: 21543720 - Sci Transl Med. 2011 May 4;3(81):81ps17 – reference: 20173777 - Nat Rev Endocrinol. 2010 Mar;6(3):158-66 – reference: 19223160 - Curr Opin Immunol. 2009 Feb;21(1):10-6 – reference: 21629295 - Nat Rev Drug Discov. 2011 Jun;10(6):453-71 – reference: 19104081 - Blood. 2009 Mar 5;113(10):2324-35 – reference: 19884518 - J Clin Oncol. 2009 Dec 10;27(35):e259; author reply e260 – reference: 14977174 - Mol Cell Biochem. 2004 Jan-Feb;256-257(1-2):107-15 – reference: 21733753 - Trends Immunol. 2011 Aug;32(8):373-9 – reference: 12086935 - Diabetes. 2002 Jul;51(7):2074-81 – reference: 21525456 - Diabetes Care. 2011 May;34 Suppl 2:S202-9 – reference: 18772240 - Endocrinology. 2009 Jan;150(1):46-55 – reference: 19955661 - J Clin Invest. 2009 Dec;119(12):3502-11 – reference: 21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75 – reference: 21309063 - Diabetes Metab Res Rev. 2011 May;27(4):373-82 – reference: 20067962 - Diabetes Care. 2010 Apr;33(4):861-8 – reference: 14976002 - Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23 – reference: 21151103 - Nat Immunol. 2011 Mar;12(3):222-30 |
SSID | ssj0006060 |
Score | 2.5967457 |
Snippet | Despite the recent attention focused on the roles of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 194 |
SubjectTerms | Adult Aged AMP-Activated Protein Kinases - physiology Antidiabetics Apoptosis Biological and medical sciences CARD Signaling Adaptor Proteins Care and treatment Carrier Proteins - genetics Carrier Proteins - physiology Cytokines Cytoskeletal Proteins - genetics Diabetes Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diabetes. Impaired glucose tolerance Diagnosis Dosage and administration Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Fatty acids Female Glucose Homeostasis Humans Immunology and Transplantation Inflammasomes - physiology Inflammation Insulin resistance Interleukin-1 Interleukin-18 - biosynthesis Interleukin-1beta - biosynthesis Interleukin-1beta - genetics Kinases Male Medical sciences Metformin Metformin - therapeutic use Middle Aged NLR Family, Pyrin Domain-Containing 3 Protein Obesity Pathogenesis Polypeptides Protein expression Proteins Reactive Oxygen Species - metabolism RNA, Messenger - analysis Type 2 diabetes Uric acid |
Title | Upregulated NLRP3 Inflammasome Activation in Patients With Type 2 Diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23086037 https://www.proquest.com/docview/1269119602 https://www.proquest.com/docview/1273412671 https://pubmed.ncbi.nlm.nih.gov/PMC3526026 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxASmvg5OkZlEBq8RKvtxE6eUKk2xjRKNVHRN8t24q0SS8vS_v_cJW62oIqXvviLGztn--5y-T5CPqTS5AmcA5E1DAKUlInIiDiLLPNwIJqYO19X-Y7l2TQ-nyWzkHCrQlnlZk-sN-p84TBHfsy4hHUJ_jb_vPwToWoUvl0NEhoPyS5Sl6FVq1kbcA3AOW8-QWEcaThVwyzEhVDHucWShBhlvu-dR2FXfrI0FcyQb6Qttvme_5ZQ3juTTp-SveBM0mHz9J-RB0X5nDz6Hl6XvyDn0-VtozVf5HR8cTkR9FvpwQZuTLW4KejQbcTN6Lykk4ZitaK_5qtrigEq5TRUzFQvyfT05OfoLAriCZEDj2gVGZn5xHhYVZ5lsSpYCke5K4yJJcdUsPcWPCHha8ovaaz14HlYKS20MhEL8YrslIuyeE2ot6k1Phm4QZrHVmTWQczE81RZlRsnsx75tJlC7QKzOApc_NYQYeBsa5xtjbPdI-9b6LKh09gGOsLnoJGeosT6F9fkUDSMb_RDDwUTqJDOFfTWBV6ZdVXp9OtFB_QxgPwC7sqZ8N0BjA2przrIow7yqiH-3gY87ABhRbpOc79jQO1IuQLvScoErt9YlA5bRqXvDLxH3rXN2DWWwZXFYo0YBV4Hl4r1yH5jgHedC4hOBwL-XXVMswUgkXi3pZxf14TiqJEAsfjB_2_rDXnMay0QzD8dkp3V7bp4Cx7ZyvbrZQe_6Yj1ye6Xk_Hk8i8Q9jQx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQESQtwpjGEQDF6iNXZipw8IVYXRbl2Z0KrtzdhOvFViaVlaIf4Uv5Fz4qRdUMXb3ir5ixvbxz6XHJ-PkDeJ0GkMeiAwOgQHJQl5oHnUCUzoQCHqiFlXZvmORH8c7Z_GpxvkT30XBtMq6zOxPKjTqcUY-W7IBOxLsLfZx9nPAFmj8OtqTaHhxeIg-_0LXLbiw-ATrO9bxvY-H_f6QcUqEFgwFeaBFh0Xawfi5sCBl1mYgI6zmdaRYBgjdc6AicBdWQtLaGMcqGQjhIHWkEcYAIUj_wb8kLijkt4qpQScAX_lJWRY9lP6SkYMkLupwRSICGnFr-i_SgvcmekCVsR5Ko11tu6_KZtXdODePXK3Ml5p10vbfbKR5Q_IzcPq8_xDsj-eXXpu-yylo-G3I04HuQOZu9DF9CKjXVuTqdFJTo98SdeCnkzm5xQdYspolaFTPCLja5nWx2Qzn-bZU0KdSYx2cdu2kzQyvGMs-GgsTaSRqbai0yLv6ylUtqpkjoQaPxR4NDjbCmdb4Wy3yOsldObLd6wD7eA6KCyHkWO-jfUxGwXj631VXR5yZGRnEnprAs_0oihU8mXYAL2rQG4Kb2V1dc8BxoalthrInQbyzBcaXwfcagDhBLCN5u2GAC1HyiRYa0LE8HwtUao6ogq12lAt8mrZjF1j2l2eTReIkWDlMCHDFnniBXDVOQdvuM3h32VDNJcALFzebMkn52UBc-RkAN__2f9f6yW51T8-HKrhYHTwnNxmJQ8Jxr62yOb8cpG9AGtwbrbLLUjJ9-ve838Byphs2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIU1ICPGbjjEMgsFL1MZO7fQBoaqjrFspFaJib8Z24q3SlpalFeJf46_jLk7aBVW87dlfnNi-89055-8IeR0LnbTBDgRGhxCgxCEPNI86gQkdGEQdMeuKLN-ROJpEx6ft0y3yp7oLg2mV1Z5YbNTJzOIZeTNkAvQS_G3WdGVaxPiw_2H-M8AKUvintSqn4UXkJP39C8K3_P3gENb6DWP9j996R0FZYSCw4DYsAi06rq0diJ6DYF6mYQz2zqZaR4LhealzBtwF7gpeLKGNcWCejRAGWkMe4WEobP-3JJcx6ljcW6eXQGDgr7-EDClApWc1YpzLZmIwHSLCEuPXbGFpEe7MdQ6r43xZjU1-77_pm9fsYf8euVs6srTrJe8-2UqzB2Tnc_mr_iE5nsyvfJ37NKGj4dcxp4PMgfxd6nx2mdKurQqr0WlGx57eNaffp4tzisExZbTM1skfkcmNTOtjsp3NsvQpoc7ERrt2y7biJDK8YyzEayyJpZGJtqLTIO-qKVS2ZDXH4hoXCqIbnG2Fs61wthvk1Qo691Qem0AHuA4KqTEyFDLrz28UjK_3RXV5yLE6O5PQWx14ppd5ruJPwxrobQlyM_gqq8s7DzA2pN2qIQ9qyDNPOr4JuFcDwm5ga837NQFajZRJ8NyEaMPzlUSpcrvK1Vq5GuTlqhm7xhS8LJ0tESPB42FChg3yxAvgunMOkXGLw9tlTTRXACQxr7dk0_OCzBzrM7SY2P3_Z70gO6DtajgYnTwjt1lRkgSPwfbI9uJqmT4Hx3Bh9gsNpOTHTav8XxgpcRE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upregulated+NLRP3+Inflammasome+Activation+in+Patients+With+Type+2+Diabetes&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Lee%2C+Hye-Mi&rft.au=Kim%2C+Jwa-Jin&rft.au=Kim%2C+Hyun+Jin&rft.au=Shong%2C+Minho&rft.date=2013-01-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=62&rft.issue=1&rft.spage=194&rft.epage=204&rft_id=info:doi/10.2337%2Fdb12-0420&rft_id=info%3Apmid%2F23086037&rft.externalDocID=PMC3526026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |