Virulence of Herpes Simplex Virus 1 Harboring a UAG Stop Codon between the First and Second Initiation Codon in the Thymidine Kinase Gene

Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is simi...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Infectious Diseases Vol. 75; no. 4; pp. 368 - 373
Main Authors Yamada, Souichi, Nguyen, Phu Hoang Anh, Saijo, Masayuki, Harada, Shizuko, Fukushi, Shuetsu, Mizuguchi, Masashi
Format Journal Article
LanguageEnglish
Published Japan National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee 31.07.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.
AbstractList Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.
Herpes simplex virus 1 (HSV-1)-TK(8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop UAG codon at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK(8UAG) to acyclovir (ACV) is similar to that of control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK(44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK(8UAG) and HSV-1-TK(44UAG) with that of HSV-1 wild-type (WT). The 50% lethal dose (LD ) value of HSV-1-TK(44UAG) was 7.8-fold higher than that of HSV-1-TK(8UAG), whereas the LD value of HSV-1-TK(8UAG) was the same as that of the parental HSV-1 WT. There were no statistically significant differences between HSV-1-TK(44UAG), HSV-1-TK(8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in mouse brain. Thus, the virulence of HSV-1 expressing a truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.
Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.
ArticleNumber JJID.2021.674
Author Yamada, Souichi
Fukushi, Shuetsu
Harada, Shizuko
Nguyen, Phu Hoang Anh
Saijo, Masayuki
Mizuguchi, Masashi
Author_xml – sequence: 1
  fullname: Yamada, Souichi
  organization: Department of Virology 1, National Institute of Infectious Diseases, Japan
– sequence: 1
  fullname: Nguyen, Phu Hoang Anh
  organization: Department of Developmental Medical Sciences, The University of Tokyo, Japan
– sequence: 1
  fullname: Saijo, Masayuki
  organization: Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Japan
– sequence: 1
  fullname: Harada, Shizuko
  organization: Department of Virology 1, National Institute of Infectious Diseases, Japan
– sequence: 1
  fullname: Fukushi, Shuetsu
  organization: Department of Virology 1, National Institute of Infectious Diseases, Japan
– sequence: 1
  fullname: Mizuguchi, Masashi
  organization: Department of Developmental Medical Sciences, The University of Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34980708$$D View this record in MEDLINE/PubMed
BookMark eNpd0ctuEzEUBuARKqIXeAIkZIkNmwm-je0sq5QmKZVYpGVreTxnGoeJHewZQR6hb12HCZFg42PJ329Z_i-LMx88FMV7gidSKfZ5H36An9zdLW8mFFMyEZK_Ki6IUrykiomzvGecl4Jhfl5cprTBmFYVwW-Kc8anCkusLorn7y4OHXgLKLRoAXEHCa3cdtfBb3Q4S4ighYl1iM4_IYMer-do1YcdmoUmeFRD_wvAo34N6NbF1CPjG7QCG_JYetc707vsRu1G-LDeb13jPKCvzpsEaA4e3havW9MleHecV8Xj7ZeH2aK8_zZfzq7vSysI7stpHk3VcNuQaStoLWkrQbVSMVoLJSlucSuwIYYbJkTDqK2Vpa0lvJWYE8Kuik_jvbsYfg6Qer11yULXGQ9hSJoKIqqpUkJm-vE_uglD9Pl1WU0lqTgjVVYfjmqot9DoXXRbE_f67ydnwEZgY0gpQnsiBOtDlfpPlfpQpT5UqXOVObUcU5vUmyc4ZUzsne3gmJGV5ofln-zJ2LWJGjx7Aftmq9w
Cites_doi 10.1128/JVI.01440-13
10.1099/0022-1317-64-3-523
10.1073/pnas.74.12.5716
10.1128/JCM.42.1.242-249.2004
10.1002/(SICI)1096-9071(199908)58:4<387::AID-JMV11>3.0.CO;2-K
10.1016/j.antiviral.2010.03.002
10.1099/0022-1317-70-4-869
10.1038/289081a0
10.1086/515626
10.1128/jvi.71.5.3872-3878.1997
10.1128/AAC.17.2.209
10.1186/s12985-017-0728-2
10.1017/S0022172400025109
10.1016/j.antiviral.2003.08.018
10.1128/JVI.77.2.1382-1391.2003
10.1046/j.1365-2133.1998.02374.x
10.1128/JVI.01979-16
10.1093/infdis/jix042
10.1099/0022-1317-70-2-375
10.1016/S0021-9258(17)34236-9
10.1002/jmv.1890430319
10.1093/oxfordjournals.aje.a118408
10.1016/S0166-3542(85)80003-6
10.1016/S1386-6532(02)00263-9
10.1099/vir.0.039776-0
10.1128/JVI.01161-19
10.1016/S0166-0934(03)00069-7
10.1128/JVI.75.7.3105-3110.2001
10.1128/AAC.31.7.1117
10.1128/AAC.35.11.2322
10.1099/vir.0.18881-0
10.1111/j.1348-0421.1995.tb03271.x
10.1016/0042-6822(85)90009-1
10.1007/s00705-007-1096-9
10.3389/fmicb.2019.00941
10.1128/AAC.23.5.676
10.7883/yoken.JJID.2020.313
ContentType Journal Article
Copyright 2022 Authors
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Authors
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
DOI 10.7883/yoken.JJID.2021.674
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-2836
EndPage 373
ExternalDocumentID 34980708
10_7883_yoken_JJID_2021_674
article_yoken_75_4_75_JJID_2021_674_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29J
2WC
53G
5GY
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
AAYXX
CITATION
NPM
7QL
7T5
7T7
7TK
7U9
8FD
C1K
FR3
H94
M7N
P64
7X8
ID FETCH-LOGICAL-c610t-9c61d5d4cd19f62b72f7e8f7832b68720f0f60a1a4a366d32cb8c2fc14f704113
ISSN 1344-6304
1884-2836
IngestDate Thu Jul 10 19:19:16 EDT 2025
Mon Jun 30 12:02:04 EDT 2025
Mon Jul 21 05:56:02 EDT 2025
Tue Jul 01 03:55:17 EDT 2025
Wed Sep 03 06:31:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords acyclovir resistance
herpes simplex virus 1
virulence
viral thymidine kinase
amber mutation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c610t-9c61d5d4cd19f62b72f7e8f7832b68720f0f60a1a4a366d32cb8c2fc14f704113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/yoken/75/4/75_JJID.2021.674/_article/-char/en
PMID 34980708
PQID 2697154315
PQPubID 2048383
PageCount 6
ParticipantIDs proquest_miscellaneous_2616598867
proquest_journals_2697154315
pubmed_primary_34980708
crossref_primary_10_7883_yoken_JJID_2021_674
jstage_primary_article_yoken_75_4_75_JJID_2021_674_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022/07/31
PublicationDateYYYYMMDD 2022-07-31
PublicationDate_xml – month: 07
  year: 2022
  text: 2022/07/31
  day: 31
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Japanese Journal of Infectious Diseases
PublicationTitleAlternate Jpn J Infect Dis
PublicationYear 2022
Publisher National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
– name: Japan Science and Technology Agency
References 17. Larder BA, Darby G. Selection and characterisation of acyclovir-resistant herpes simplex virus type 1 mutants inducing altered DNA polymerase activities. Virology. 1985;146:262-271.
33. Xie Y, Wu L, Wang M, et al. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941.
20. Efstathiou S, Kemp S, Darby G, et al. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989;70:869-879.
28. Saijo M, Suzutani T, Mizuta K, et al. Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons. Arch Virol. 2008;153:303-314.
16. Sauerbrei A, Deinhardt S, Zell R, et al. Phenotypic and genotypic characterization of acyclovir-resistant clinical isolates of herpes simplex virus. Antiviral Res. 2010;86:246-252.
21. Suzutani T, Koyano S, Takada M, et al. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol. 1995;39:787-794.
19. Field HJ, Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother. 1980;17:209-216.
24. Huang CY, Yao HW, Wang LC, et al. Thymidine kinase-negative herpes simplex virus 1 can efficiently establish persistent infection in neural tissues of nude mice. J Virol. 2017;91:e01979-16.
37. Xing J, Ni L, Wang S, et al. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-κB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol. 2013;87:9788-9801.
7. Fyfe JA, Keller PM, Furman PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl) guanine. J Biol Chem. 1978;253:8721-8727.
25. Omura N, Fujii H, Yoshikawa T, et al. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J. 2017;14:59.
30. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg. 1938;27:493-497.
31. Ebeling SB, Eric Borst HP, Simonetti ER, et al. Development and application of quantitative real time PCR and RT-PCR assays that discriminate between the full-length and truncated herpes simplex virus thymidine kinase gene. J Virol Methods. 2003;109:177-186.
6. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977;74:5716-5720.
8. Smee DF, Martin JC, Verheyden JP, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl) guanine. Antimicrob Agents Chemother. 1983;23:676-682.
23. Grey F, Sowa M, Collins P, et al. Characterization of a neurovirulent aciclovir-resistant variant of herpes simplex virus. J Gen Virol. 2003;84:1403-1410.
22. Stroop WG, Careene Banks M, Qavi H, et al. A thymidine kinase deficient HSV-2 strain causes acute keratitis and establishes trigeminal ganglionic latency, but poorly reactivates in vivo. J Med Virol. 1994;43:297-309.
10. Ellis MN, Keller PM, Fyfe JA, et al. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987;31:1117-1125.
15. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29-37.
9. Darby G, Field HJ, Salisbury SA. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir resistance. Nature.1981;289:81-83.
11. Larder BA, Cheng YC, Darby G. Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J Gen Virol. 1983;64:523-532.
18. Collins P, Larder BA, Oliver NM, et al. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J Gen Virol. 1989;70:375-382.
36. Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol. 2012;93:624-634.
13. Sasadeusz JJ, Tufaro F, Safrin S, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol.1997;71:3872-3878.
29. Tanaka M, Kagawa H, Yamanashi Y, et al. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol. 2003;77:1382-1391.
12. De Clercq E. Recent trends and development in antiviral chemotherapy. Antiviral Res. 1985;Suppl 1:11-9.
3. Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol. 2004;42:242-249.
35. Boukhvalova MS, Mortensen E, Mbaye A, et al. Herpes simplex virus 1 induces brain inflammation and multifocal demyelination in the cotton rat Sigmodon hispidus. J Virol. 2019;94:e01161-19.
4. Kakiuchi S, Tsuji M, Nishimura H, et al. Association of the emergence of acyclovir-resistant herpes simplex virus type 1 with prognosis in hematopoietic stem cell transplantation patients. J Infect Dis. 2017;215:865-873.
14. Bestman-Smith J, Schmit I, Papadopoulou B, et al. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues. J Virol. 2001;75:3105-3110.
32. Hill EL, Hunter GA, Ellis MN. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1991;35:2322-2328.
27. Saijo M, Suzutani T, Itoh K, et al. Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: evidence for reactivation of acyclovir-resistant herpes simplex virus. J Med Virol. 1999;58:387-393.
34. Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond). 1978;81:267-277.
5. Saijo M, Suzutani T, Murono K, et al. Recurrent aciclovir-resistant herpes simplex in a child with Wiskott-Aldrich syndrome. Br J Dermatol. 1998;139:311-314.
26. Nguyen PHA, Yamada S, Shibamura M, et al. New mechanism of acyclovir resistance in herpes simplex virus 1, which has a UAG stop codon between the first and second AUG initiation codons. Jpn J Infect Dis. 2020;73:447-451.
2. Chibo D, Druce J, Sasadeusz J, et al. Molecular analysis of clinical isolates of acyclovir resistant herpes simplex virus. Antiviral Res. 2004;61:83-91.
1. Gaudreau A, Hill E, Balfour Jr HH, et al. Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients. J Infect Dis. 1998;178:297-303.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 35. Boukhvalova MS, Mortensen E, Mbaye A, et al. Herpes simplex virus 1 induces brain inflammation and multifocal demyelination in the cotton rat Sigmodon hispidus. J Virol. 2019;94:e01161-19.
– reference: 33. Xie Y, Wu L, Wang M, et al. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941.
– reference: 37. Xing J, Ni L, Wang S, et al. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-κB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol. 2013;87:9788-9801.
– reference: 34. Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond). 1978;81:267-277.
– reference: 8. Smee DF, Martin JC, Verheyden JP, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl) guanine. Antimicrob Agents Chemother. 1983;23:676-682.
– reference: 11. Larder BA, Cheng YC, Darby G. Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J Gen Virol. 1983;64:523-532.
– reference: 15. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29-37.
– reference: 32. Hill EL, Hunter GA, Ellis MN. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1991;35:2322-2328.
– reference: 4. Kakiuchi S, Tsuji M, Nishimura H, et al. Association of the emergence of acyclovir-resistant herpes simplex virus type 1 with prognosis in hematopoietic stem cell transplantation patients. J Infect Dis. 2017;215:865-873.
– reference: 10. Ellis MN, Keller PM, Fyfe JA, et al. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987;31:1117-1125.
– reference: 26. Nguyen PHA, Yamada S, Shibamura M, et al. New mechanism of acyclovir resistance in herpes simplex virus 1, which has a UAG stop codon between the first and second AUG initiation codons. Jpn J Infect Dis. 2020;73:447-451.
– reference: 19. Field HJ, Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother. 1980;17:209-216.
– reference: 25. Omura N, Fujii H, Yoshikawa T, et al. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J. 2017;14:59.
– reference: 27. Saijo M, Suzutani T, Itoh K, et al. Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: evidence for reactivation of acyclovir-resistant herpes simplex virus. J Med Virol. 1999;58:387-393.
– reference: 7. Fyfe JA, Keller PM, Furman PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl) guanine. J Biol Chem. 1978;253:8721-8727.
– reference: 17. Larder BA, Darby G. Selection and characterisation of acyclovir-resistant herpes simplex virus type 1 mutants inducing altered DNA polymerase activities. Virology. 1985;146:262-271.
– reference: 22. Stroop WG, Careene Banks M, Qavi H, et al. A thymidine kinase deficient HSV-2 strain causes acute keratitis and establishes trigeminal ganglionic latency, but poorly reactivates in vivo. J Med Virol. 1994;43:297-309.
– reference: 2. Chibo D, Druce J, Sasadeusz J, et al. Molecular analysis of clinical isolates of acyclovir resistant herpes simplex virus. Antiviral Res. 2004;61:83-91.
– reference: 16. Sauerbrei A, Deinhardt S, Zell R, et al. Phenotypic and genotypic characterization of acyclovir-resistant clinical isolates of herpes simplex virus. Antiviral Res. 2010;86:246-252.
– reference: 29. Tanaka M, Kagawa H, Yamanashi Y, et al. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol. 2003;77:1382-1391.
– reference: 12. De Clercq E. Recent trends and development in antiviral chemotherapy. Antiviral Res. 1985;Suppl 1:11-9.
– reference: 5. Saijo M, Suzutani T, Murono K, et al. Recurrent aciclovir-resistant herpes simplex in a child with Wiskott-Aldrich syndrome. Br J Dermatol. 1998;139:311-314.
– reference: 3. Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol. 2004;42:242-249.
– reference: 20. Efstathiou S, Kemp S, Darby G, et al. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989;70:869-879.
– reference: 6. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977;74:5716-5720.
– reference: 14. Bestman-Smith J, Schmit I, Papadopoulou B, et al. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues. J Virol. 2001;75:3105-3110.
– reference: 28. Saijo M, Suzutani T, Mizuta K, et al. Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons. Arch Virol. 2008;153:303-314.
– reference: 18. Collins P, Larder BA, Oliver NM, et al. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J Gen Virol. 1989;70:375-382.
– reference: 13. Sasadeusz JJ, Tufaro F, Safrin S, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol.1997;71:3872-3878.
– reference: 30. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg. 1938;27:493-497.
– reference: 36. Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol. 2012;93:624-634.
– reference: 23. Grey F, Sowa M, Collins P, et al. Characterization of a neurovirulent aciclovir-resistant variant of herpes simplex virus. J Gen Virol. 2003;84:1403-1410.
– reference: 9. Darby G, Field HJ, Salisbury SA. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir resistance. Nature.1981;289:81-83.
– reference: 24. Huang CY, Yao HW, Wang LC, et al. Thymidine kinase-negative herpes simplex virus 1 can efficiently establish persistent infection in neural tissues of nude mice. J Virol. 2017;91:e01979-16.
– reference: 1. Gaudreau A, Hill E, Balfour Jr HH, et al. Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients. J Infect Dis. 1998;178:297-303.
– reference: 31. Ebeling SB, Eric Borst HP, Simonetti ER, et al. Development and application of quantitative real time PCR and RT-PCR assays that discriminate between the full-length and truncated herpes simplex virus thymidine kinase gene. J Virol Methods. 2003;109:177-186.
– reference: 21. Suzutani T, Koyano S, Takada M, et al. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol. 1995;39:787-794.
– ident: 37
  doi: 10.1128/JVI.01440-13
– ident: 11
  doi: 10.1099/0022-1317-64-3-523
– ident: 6
  doi: 10.1073/pnas.74.12.5716
– ident: 3
  doi: 10.1128/JCM.42.1.242-249.2004
– ident: 27
  doi: 10.1002/(SICI)1096-9071(199908)58:4<387::AID-JMV11>3.0.CO;2-K
– ident: 16
  doi: 10.1016/j.antiviral.2010.03.002
– ident: 20
  doi: 10.1099/0022-1317-70-4-869
– ident: 9
  doi: 10.1038/289081a0
– ident: 1
  doi: 10.1086/515626
– ident: 13
  doi: 10.1128/jvi.71.5.3872-3878.1997
– ident: 19
  doi: 10.1128/AAC.17.2.209
– ident: 25
  doi: 10.1186/s12985-017-0728-2
– ident: 34
  doi: 10.1017/S0022172400025109
– ident: 2
  doi: 10.1016/j.antiviral.2003.08.018
– ident: 29
  doi: 10.1128/JVI.77.2.1382-1391.2003
– ident: 5
  doi: 10.1046/j.1365-2133.1998.02374.x
– ident: 24
  doi: 10.1128/JVI.01979-16
– ident: 4
  doi: 10.1093/infdis/jix042
– ident: 18
  doi: 10.1099/0022-1317-70-2-375
– ident: 7
  doi: 10.1016/S0021-9258(17)34236-9
– ident: 22
  doi: 10.1002/jmv.1890430319
– ident: 30
  doi: 10.1093/oxfordjournals.aje.a118408
– ident: 12
  doi: 10.1016/S0166-3542(85)80003-6
– ident: 15
  doi: 10.1016/S1386-6532(02)00263-9
– ident: 36
  doi: 10.1099/vir.0.039776-0
– ident: 35
  doi: 10.1128/JVI.01161-19
– ident: 31
  doi: 10.1016/S0166-0934(03)00069-7
– ident: 14
  doi: 10.1128/JVI.75.7.3105-3110.2001
– ident: 10
  doi: 10.1128/AAC.31.7.1117
– ident: 32
  doi: 10.1128/AAC.35.11.2322
– ident: 23
  doi: 10.1099/vir.0.18881-0
– ident: 21
  doi: 10.1111/j.1348-0421.1995.tb03271.x
– ident: 17
  doi: 10.1016/0042-6822(85)90009-1
– ident: 28
  doi: 10.1007/s00705-007-1096-9
– ident: 33
  doi: 10.3389/fmicb.2019.00941
– ident: 8
  doi: 10.1128/AAC.23.5.676
– ident: 26
  doi: 10.7883/yoken.JJID.2020.313
SSID ssj0025510
Score 2.2902393
Snippet Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at...
Herpes simplex virus 1 (HSV-1)-TK(8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop UAG codon at the...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 368
SubjectTerms Acyclovir
acyclovir resistance
amber mutation
Gene expression
Herpes simplex
herpes simplex virus 1
Herpes viruses
Kinases
Lethal dose
Sensitivity
Statistical analysis
Stop codon
Thymidine
Thymidine kinase
viral thymidine kinase
Virulence
Viruses
Title Virulence of Herpes Simplex Virus 1 Harboring a UAG Stop Codon between the First and Second Initiation Codon in the Thymidine Kinase Gene
URI https://www.jstage.jst.go.jp/article/yoken/75/4/75_JJID.2021.674/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34980708
https://www.proquest.com/docview/2697154315
https://www.proquest.com/docview/2616598867
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Infectious Diseases, 2022/07/31, Vol.75(4), pp.368-373
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj9JAFJ7gaowvxrvoasbEtwrSdpiZPqIui7iLJgsGn5pepkslCwTaRPYf-Of8TZ7TmbZgVqO-FNIOZeD75lym50LIyzgQ0mOYtwXqqMUwtsYLOWtxzrj0lK1EkcV_OuKDCRtOu9NG48dO1FKehe3o8sq8kv9BFc4Brpgl-w_IVjeFE_Ae8IUjIAzHv8L4c7rOi6ShYjterVdqY52lWO_3m4XXNpaNWTqhDrILrEnvGKtvr0AKxIB6GaOFtmc_BTNQx3Gii4wxwmmmYTOjTUDkeLa9SGO0TT-ki8AUrt4zcUH9YlvL_aIUOuQLZmSeCFWm_KdZbg2WAW7OLGbW6Dzf1slpX4KLIC6s27NlnkaztJaX6_LCLL3M58uKhvk83xR9iuFKrjLd1qXc1nCccr-0VDk410q-4a-vHzVYvSItdUdquwzY5eo-xm2lz0nJWmA78V1Rr5u0GEqzHbnt6t4-v-oTISXWtdgu52rRHg7fv2vDVO02F6xWn2XIwOij35-cnPjjo-n4GrnugNuCHTWOp1XIEXhvujpGOV1dBQu_5PUVX7FnKd34Cs7Cufq9H1TYQ-M75LZxZGhPs_IuaajFPXLz1IRq3CffK3LSZUI1OakhJy3ISW1akZMGFMhJkZy0oBs15KTAOVqQkwI8VJOT1uQ0o1M9sCIn1eSkSM4HZNI_Gr8dtEzfj1YExnzW8uAl7sYsim0v4U4onEQomQhQPiGXwukknYR3Ajtggct57DpRKCMniWyWiA6zbfchOVgsF-oxoRw0mODgRTgu3M8LvDi0BWeKuTxmruRN8qr8j_2VLu_ig1uMkPgFJD5C4iMkPkDSJG80DtVgs_bNYNH1GR72PlSNwTxKEFtNclhi6JuVuPEd7gkb61J0m-RFdRlEPT6_g1ULCxTG2LzrSclFkzzS2FfzcJknQXvLJ3---VNyq15sh-QgW-fqGVjVWfi8oOpP8CDQ3A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virulence+of+Herpes+Simplex+Virus+1+Harboring+a+UAG+Stop+Codon+between+the+First+and+Second+Initiation+Codon+in+the+Thymidine+Kinase+Gene&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Phu+Hoang+Anh+Nguyen&rft.au=Yamada%2C+Souichi&rft.au=Harada%2C+Shizuko&rft.au=Fukushi%2C+Shuetsu&rft.date=2022-07-31&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=75&rft.issue=4&rft.spage=368&rft_id=info:doi/10.7883%2Fyoken.JJID.2021.674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon