Virulence of Herpes Simplex Virus 1 Harboring a UAG Stop Codon between the First and Second Initiation Codon in the Thymidine Kinase Gene
Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is simi...
Saved in:
Published in | Japanese Journal of Infectious Diseases Vol. 75; no. 4; pp. 368 - 373 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee
31.07.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon. |
---|---|
AbstractList | Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon. Herpes simplex virus 1 (HSV-1)-TK(8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop UAG codon at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK(8UAG) to acyclovir (ACV) is similar to that of control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK(44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK(8UAG) and HSV-1-TK(44UAG) with that of HSV-1 wild-type (WT). The 50% lethal dose (LD ) value of HSV-1-TK(44UAG) was 7.8-fold higher than that of HSV-1-TK(8UAG), whereas the LD value of HSV-1-TK(8UAG) was the same as that of the parental HSV-1 WT. There were no statistically significant differences between HSV-1-TK(44UAG), HSV-1-TK(8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in mouse brain. Thus, the virulence of HSV-1 expressing a truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon. Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon. |
ArticleNumber | JJID.2021.674 |
Author | Yamada, Souichi Fukushi, Shuetsu Harada, Shizuko Nguyen, Phu Hoang Anh Saijo, Masayuki Mizuguchi, Masashi |
Author_xml | – sequence: 1 fullname: Yamada, Souichi organization: Department of Virology 1, National Institute of Infectious Diseases, Japan – sequence: 1 fullname: Nguyen, Phu Hoang Anh organization: Department of Developmental Medical Sciences, The University of Tokyo, Japan – sequence: 1 fullname: Saijo, Masayuki organization: Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Japan – sequence: 1 fullname: Harada, Shizuko organization: Department of Virology 1, National Institute of Infectious Diseases, Japan – sequence: 1 fullname: Fukushi, Shuetsu organization: Department of Virology 1, National Institute of Infectious Diseases, Japan – sequence: 1 fullname: Mizuguchi, Masashi organization: Department of Developmental Medical Sciences, The University of Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34980708$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0ctuEzEUBuARKqIXeAIkZIkNmwm-je0sq5QmKZVYpGVreTxnGoeJHewZQR6hb12HCZFg42PJ329Z_i-LMx88FMV7gidSKfZ5H36An9zdLW8mFFMyEZK_Ki6IUrykiomzvGecl4Jhfl5cprTBmFYVwW-Kc8anCkusLorn7y4OHXgLKLRoAXEHCa3cdtfBb3Q4S4ighYl1iM4_IYMer-do1YcdmoUmeFRD_wvAo34N6NbF1CPjG7QCG_JYetc707vsRu1G-LDeb13jPKCvzpsEaA4e3havW9MleHecV8Xj7ZeH2aK8_zZfzq7vSysI7stpHk3VcNuQaStoLWkrQbVSMVoLJSlucSuwIYYbJkTDqK2Vpa0lvJWYE8Kuik_jvbsYfg6Qer11yULXGQ9hSJoKIqqpUkJm-vE_uglD9Pl1WU0lqTgjVVYfjmqot9DoXXRbE_f67ydnwEZgY0gpQnsiBOtDlfpPlfpQpT5UqXOVObUcU5vUmyc4ZUzsne3gmJGV5ofln-zJ2LWJGjx7Aftmq9w |
Cites_doi | 10.1128/JVI.01440-13 10.1099/0022-1317-64-3-523 10.1073/pnas.74.12.5716 10.1128/JCM.42.1.242-249.2004 10.1002/(SICI)1096-9071(199908)58:4<387::AID-JMV11>3.0.CO;2-K 10.1016/j.antiviral.2010.03.002 10.1099/0022-1317-70-4-869 10.1038/289081a0 10.1086/515626 10.1128/jvi.71.5.3872-3878.1997 10.1128/AAC.17.2.209 10.1186/s12985-017-0728-2 10.1017/S0022172400025109 10.1016/j.antiviral.2003.08.018 10.1128/JVI.77.2.1382-1391.2003 10.1046/j.1365-2133.1998.02374.x 10.1128/JVI.01979-16 10.1093/infdis/jix042 10.1099/0022-1317-70-2-375 10.1016/S0021-9258(17)34236-9 10.1002/jmv.1890430319 10.1093/oxfordjournals.aje.a118408 10.1016/S0166-3542(85)80003-6 10.1016/S1386-6532(02)00263-9 10.1099/vir.0.039776-0 10.1128/JVI.01161-19 10.1016/S0166-0934(03)00069-7 10.1128/JVI.75.7.3105-3110.2001 10.1128/AAC.31.7.1117 10.1128/AAC.35.11.2322 10.1099/vir.0.18881-0 10.1111/j.1348-0421.1995.tb03271.x 10.1016/0042-6822(85)90009-1 10.1007/s00705-007-1096-9 10.3389/fmicb.2019.00941 10.1128/AAC.23.5.676 10.7883/yoken.JJID.2020.313 |
ContentType | Journal Article |
Copyright | 2022 Authors Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 Authors – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.7883/yoken.JJID.2021.674 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1884-2836 |
EndPage | 373 |
ExternalDocumentID | 34980708 10_7883_yoken_JJID_2021_674 article_yoken_75_4_75_JJID_2021_674_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29J 2WC 53G 5GY ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL DIK DU5 E3Z EBS EJD F5P FRP GX1 JSF JSH KQ8 OK1 OVT RJT RNS RZJ TR2 W2D X7M XSB AAYXX CITATION NPM 7QL 7T5 7T7 7TK 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c610t-9c61d5d4cd19f62b72f7e8f7832b68720f0f60a1a4a366d32cb8c2fc14f704113 |
ISSN | 1344-6304 1884-2836 |
IngestDate | Thu Jul 10 19:19:16 EDT 2025 Mon Jun 30 12:02:04 EDT 2025 Mon Jul 21 05:56:02 EDT 2025 Tue Jul 01 03:55:17 EDT 2025 Wed Sep 03 06:31:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | acyclovir resistance herpes simplex virus 1 virulence viral thymidine kinase amber mutation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c610t-9c61d5d4cd19f62b72f7e8f7832b68720f0f60a1a4a366d32cb8c2fc14f704113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/yoken/75/4/75_JJID.2021.674/_article/-char/en |
PMID | 34980708 |
PQID | 2697154315 |
PQPubID | 2048383 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2616598867 proquest_journals_2697154315 pubmed_primary_34980708 crossref_primary_10_7883_yoken_JJID_2021_674 jstage_primary_article_yoken_75_4_75_JJID_2021_674_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022/07/31 |
PublicationDateYYYYMMDD | 2022-07-31 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022/07/31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Japanese Journal of Infectious Diseases |
PublicationTitleAlternate | Jpn J Infect Dis |
PublicationYear | 2022 |
Publisher | National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee Japan Science and Technology Agency |
Publisher_xml | – name: National Institute of Infectious Diseases, Japanese Journal of Infectious Diseases Editorial Committee – name: Japan Science and Technology Agency |
References | 17. Larder BA, Darby G. Selection and characterisation of acyclovir-resistant herpes simplex virus type 1 mutants inducing altered DNA polymerase activities. Virology. 1985;146:262-271. 33. Xie Y, Wu L, Wang M, et al. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941. 20. Efstathiou S, Kemp S, Darby G, et al. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989;70:869-879. 28. Saijo M, Suzutani T, Mizuta K, et al. Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons. Arch Virol. 2008;153:303-314. 16. Sauerbrei A, Deinhardt S, Zell R, et al. Phenotypic and genotypic characterization of acyclovir-resistant clinical isolates of herpes simplex virus. Antiviral Res. 2010;86:246-252. 21. Suzutani T, Koyano S, Takada M, et al. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol. 1995;39:787-794. 19. Field HJ, Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother. 1980;17:209-216. 24. Huang CY, Yao HW, Wang LC, et al. Thymidine kinase-negative herpes simplex virus 1 can efficiently establish persistent infection in neural tissues of nude mice. J Virol. 2017;91:e01979-16. 37. Xing J, Ni L, Wang S, et al. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-κB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol. 2013;87:9788-9801. 7. Fyfe JA, Keller PM, Furman PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl) guanine. J Biol Chem. 1978;253:8721-8727. 25. Omura N, Fujii H, Yoshikawa T, et al. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J. 2017;14:59. 30. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg. 1938;27:493-497. 31. Ebeling SB, Eric Borst HP, Simonetti ER, et al. Development and application of quantitative real time PCR and RT-PCR assays that discriminate between the full-length and truncated herpes simplex virus thymidine kinase gene. J Virol Methods. 2003;109:177-186. 6. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977;74:5716-5720. 8. Smee DF, Martin JC, Verheyden JP, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl) guanine. Antimicrob Agents Chemother. 1983;23:676-682. 23. Grey F, Sowa M, Collins P, et al. Characterization of a neurovirulent aciclovir-resistant variant of herpes simplex virus. J Gen Virol. 2003;84:1403-1410. 22. Stroop WG, Careene Banks M, Qavi H, et al. A thymidine kinase deficient HSV-2 strain causes acute keratitis and establishes trigeminal ganglionic latency, but poorly reactivates in vivo. J Med Virol. 1994;43:297-309. 10. Ellis MN, Keller PM, Fyfe JA, et al. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987;31:1117-1125. 15. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29-37. 9. Darby G, Field HJ, Salisbury SA. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir resistance. Nature.1981;289:81-83. 11. Larder BA, Cheng YC, Darby G. Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J Gen Virol. 1983;64:523-532. 18. Collins P, Larder BA, Oliver NM, et al. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J Gen Virol. 1989;70:375-382. 36. Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol. 2012;93:624-634. 13. Sasadeusz JJ, Tufaro F, Safrin S, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol.1997;71:3872-3878. 29. Tanaka M, Kagawa H, Yamanashi Y, et al. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol. 2003;77:1382-1391. 12. De Clercq E. Recent trends and development in antiviral chemotherapy. Antiviral Res. 1985;Suppl 1:11-9. 3. Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol. 2004;42:242-249. 35. Boukhvalova MS, Mortensen E, Mbaye A, et al. Herpes simplex virus 1 induces brain inflammation and multifocal demyelination in the cotton rat Sigmodon hispidus. J Virol. 2019;94:e01161-19. 4. Kakiuchi S, Tsuji M, Nishimura H, et al. Association of the emergence of acyclovir-resistant herpes simplex virus type 1 with prognosis in hematopoietic stem cell transplantation patients. J Infect Dis. 2017;215:865-873. 14. Bestman-Smith J, Schmit I, Papadopoulou B, et al. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues. J Virol. 2001;75:3105-3110. 32. Hill EL, Hunter GA, Ellis MN. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1991;35:2322-2328. 27. Saijo M, Suzutani T, Itoh K, et al. Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: evidence for reactivation of acyclovir-resistant herpes simplex virus. J Med Virol. 1999;58:387-393. 34. Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond). 1978;81:267-277. 5. Saijo M, Suzutani T, Murono K, et al. Recurrent aciclovir-resistant herpes simplex in a child with Wiskott-Aldrich syndrome. Br J Dermatol. 1998;139:311-314. 26. Nguyen PHA, Yamada S, Shibamura M, et al. New mechanism of acyclovir resistance in herpes simplex virus 1, which has a UAG stop codon between the first and second AUG initiation codons. Jpn J Infect Dis. 2020;73:447-451. 2. Chibo D, Druce J, Sasadeusz J, et al. Molecular analysis of clinical isolates of acyclovir resistant herpes simplex virus. Antiviral Res. 2004;61:83-91. 1. Gaudreau A, Hill E, Balfour Jr HH, et al. Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients. J Infect Dis. 1998;178:297-303. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 35. Boukhvalova MS, Mortensen E, Mbaye A, et al. Herpes simplex virus 1 induces brain inflammation and multifocal demyelination in the cotton rat Sigmodon hispidus. J Virol. 2019;94:e01161-19. – reference: 33. Xie Y, Wu L, Wang M, et al. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front Microbiol. 2019;10:941. – reference: 37. Xing J, Ni L, Wang S, et al. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-κB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol. 2013;87:9788-9801. – reference: 34. Field HJ, Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond). 1978;81:267-277. – reference: 8. Smee DF, Martin JC, Verheyden JP, et al. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl) guanine. Antimicrob Agents Chemother. 1983;23:676-682. – reference: 11. Larder BA, Cheng YC, Darby G. Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J Gen Virol. 1983;64:523-532. – reference: 15. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29-37. – reference: 32. Hill EL, Hunter GA, Ellis MN. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1991;35:2322-2328. – reference: 4. Kakiuchi S, Tsuji M, Nishimura H, et al. Association of the emergence of acyclovir-resistant herpes simplex virus type 1 with prognosis in hematopoietic stem cell transplantation patients. J Infect Dis. 2017;215:865-873. – reference: 10. Ellis MN, Keller PM, Fyfe JA, et al. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987;31:1117-1125. – reference: 26. Nguyen PHA, Yamada S, Shibamura M, et al. New mechanism of acyclovir resistance in herpes simplex virus 1, which has a UAG stop codon between the first and second AUG initiation codons. Jpn J Infect Dis. 2020;73:447-451. – reference: 19. Field HJ, Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother. 1980;17:209-216. – reference: 25. Omura N, Fujii H, Yoshikawa T, et al. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J. 2017;14:59. – reference: 27. Saijo M, Suzutani T, Itoh K, et al. Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: evidence for reactivation of acyclovir-resistant herpes simplex virus. J Med Virol. 1999;58:387-393. – reference: 7. Fyfe JA, Keller PM, Furman PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl) guanine. J Biol Chem. 1978;253:8721-8727. – reference: 17. Larder BA, Darby G. Selection and characterisation of acyclovir-resistant herpes simplex virus type 1 mutants inducing altered DNA polymerase activities. Virology. 1985;146:262-271. – reference: 22. Stroop WG, Careene Banks M, Qavi H, et al. A thymidine kinase deficient HSV-2 strain causes acute keratitis and establishes trigeminal ganglionic latency, but poorly reactivates in vivo. J Med Virol. 1994;43:297-309. – reference: 2. Chibo D, Druce J, Sasadeusz J, et al. Molecular analysis of clinical isolates of acyclovir resistant herpes simplex virus. Antiviral Res. 2004;61:83-91. – reference: 16. Sauerbrei A, Deinhardt S, Zell R, et al. Phenotypic and genotypic characterization of acyclovir-resistant clinical isolates of herpes simplex virus. Antiviral Res. 2010;86:246-252. – reference: 29. Tanaka M, Kagawa H, Yamanashi Y, et al. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol. 2003;77:1382-1391. – reference: 12. De Clercq E. Recent trends and development in antiviral chemotherapy. Antiviral Res. 1985;Suppl 1:11-9. – reference: 5. Saijo M, Suzutani T, Murono K, et al. Recurrent aciclovir-resistant herpes simplex in a child with Wiskott-Aldrich syndrome. Br J Dermatol. 1998;139:311-314. – reference: 3. Danve-Szatanek C, Aymard M, Thouvenot D, et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J Clin Microbiol. 2004;42:242-249. – reference: 20. Efstathiou S, Kemp S, Darby G, et al. The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol. 1989;70:869-879. – reference: 6. Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977;74:5716-5720. – reference: 14. Bestman-Smith J, Schmit I, Papadopoulou B, et al. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues. J Virol. 2001;75:3105-3110. – reference: 28. Saijo M, Suzutani T, Mizuta K, et al. Characterization and susceptibility to antiviral agents of herpes simplex virus type 1 containing a unique thymidine kinase gene with an amber codon between the first and the second initiation codons. Arch Virol. 2008;153:303-314. – reference: 18. Collins P, Larder BA, Oliver NM, et al. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J Gen Virol. 1989;70:375-382. – reference: 13. Sasadeusz JJ, Tufaro F, Safrin S, et al. Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol.1997;71:3872-3878. – reference: 30. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg. 1938;27:493-497. – reference: 36. Loret S, Lippé R. Biochemical analysis of infected cell polypeptide (ICP)0, ICP4, UL7 and UL23 incorporated into extracellular herpes simplex virus type 1 virions. J Gen Virol. 2012;93:624-634. – reference: 23. Grey F, Sowa M, Collins P, et al. Characterization of a neurovirulent aciclovir-resistant variant of herpes simplex virus. J Gen Virol. 2003;84:1403-1410. – reference: 9. Darby G, Field HJ, Salisbury SA. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir resistance. Nature.1981;289:81-83. – reference: 24. Huang CY, Yao HW, Wang LC, et al. Thymidine kinase-negative herpes simplex virus 1 can efficiently establish persistent infection in neural tissues of nude mice. J Virol. 2017;91:e01979-16. – reference: 1. Gaudreau A, Hill E, Balfour Jr HH, et al. Phenotypic and genotypic characterization of acyclovir-resistant herpes simplex viruses from immunocompromised patients. J Infect Dis. 1998;178:297-303. – reference: 31. Ebeling SB, Eric Borst HP, Simonetti ER, et al. Development and application of quantitative real time PCR and RT-PCR assays that discriminate between the full-length and truncated herpes simplex virus thymidine kinase gene. J Virol Methods. 2003;109:177-186. – reference: 21. Suzutani T, Koyano S, Takada M, et al. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol. 1995;39:787-794. – ident: 37 doi: 10.1128/JVI.01440-13 – ident: 11 doi: 10.1099/0022-1317-64-3-523 – ident: 6 doi: 10.1073/pnas.74.12.5716 – ident: 3 doi: 10.1128/JCM.42.1.242-249.2004 – ident: 27 doi: 10.1002/(SICI)1096-9071(199908)58:4<387::AID-JMV11>3.0.CO;2-K – ident: 16 doi: 10.1016/j.antiviral.2010.03.002 – ident: 20 doi: 10.1099/0022-1317-70-4-869 – ident: 9 doi: 10.1038/289081a0 – ident: 1 doi: 10.1086/515626 – ident: 13 doi: 10.1128/jvi.71.5.3872-3878.1997 – ident: 19 doi: 10.1128/AAC.17.2.209 – ident: 25 doi: 10.1186/s12985-017-0728-2 – ident: 34 doi: 10.1017/S0022172400025109 – ident: 2 doi: 10.1016/j.antiviral.2003.08.018 – ident: 29 doi: 10.1128/JVI.77.2.1382-1391.2003 – ident: 5 doi: 10.1046/j.1365-2133.1998.02374.x – ident: 24 doi: 10.1128/JVI.01979-16 – ident: 4 doi: 10.1093/infdis/jix042 – ident: 18 doi: 10.1099/0022-1317-70-2-375 – ident: 7 doi: 10.1016/S0021-9258(17)34236-9 – ident: 22 doi: 10.1002/jmv.1890430319 – ident: 30 doi: 10.1093/oxfordjournals.aje.a118408 – ident: 12 doi: 10.1016/S0166-3542(85)80003-6 – ident: 15 doi: 10.1016/S1386-6532(02)00263-9 – ident: 36 doi: 10.1099/vir.0.039776-0 – ident: 35 doi: 10.1128/JVI.01161-19 – ident: 31 doi: 10.1016/S0166-0934(03)00069-7 – ident: 14 doi: 10.1128/JVI.75.7.3105-3110.2001 – ident: 10 doi: 10.1128/AAC.31.7.1117 – ident: 32 doi: 10.1128/AAC.35.11.2322 – ident: 23 doi: 10.1099/vir.0.18881-0 – ident: 21 doi: 10.1111/j.1348-0421.1995.tb03271.x – ident: 17 doi: 10.1016/0042-6822(85)90009-1 – ident: 28 doi: 10.1007/s00705-007-1096-9 – ident: 33 doi: 10.3389/fmicb.2019.00941 – ident: 8 doi: 10.1128/AAC.23.5.676 – ident: 26 doi: 10.7883/yoken.JJID.2020.313 |
SSID | ssj0025510 |
Score | 2.2902393 |
Snippet | Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at... Herpes simplex virus 1 (HSV-1)-TK(8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop UAG codon at the... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 368 |
SubjectTerms | Acyclovir acyclovir resistance amber mutation Gene expression Herpes simplex herpes simplex virus 1 Herpes viruses Kinases Lethal dose Sensitivity Statistical analysis Stop codon Thymidine Thymidine kinase viral thymidine kinase Virulence Viruses |
Title | Virulence of Herpes Simplex Virus 1 Harboring a UAG Stop Codon between the First and Second Initiation Codon in the Thymidine Kinase Gene |
URI | https://www.jstage.jst.go.jp/article/yoken/75/4/75_JJID.2021.674/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34980708 https://www.proquest.com/docview/2697154315 https://www.proquest.com/docview/2616598867 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Infectious Diseases, 2022/07/31, Vol.75(4), pp.368-373 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj9JAFJ7gaowvxrvoasbEtwrSdpiZPqIui7iLJgsGn5pepkslCwTaRPYf-Of8TZ7TmbZgVqO-FNIOZeD75lym50LIyzgQ0mOYtwXqqMUwtsYLOWtxzrj0lK1EkcV_OuKDCRtOu9NG48dO1FKehe3o8sq8kv9BFc4Brpgl-w_IVjeFE_Ae8IUjIAzHv8L4c7rOi6ShYjterVdqY52lWO_3m4XXNpaNWTqhDrILrEnvGKtvr0AKxIB6GaOFtmc_BTNQx3Gii4wxwmmmYTOjTUDkeLa9SGO0TT-ki8AUrt4zcUH9YlvL_aIUOuQLZmSeCFWm_KdZbg2WAW7OLGbW6Dzf1slpX4KLIC6s27NlnkaztJaX6_LCLL3M58uKhvk83xR9iuFKrjLd1qXc1nCccr-0VDk410q-4a-vHzVYvSItdUdquwzY5eo-xm2lz0nJWmA78V1Rr5u0GEqzHbnt6t4-v-oTISXWtdgu52rRHg7fv2vDVO02F6xWn2XIwOij35-cnPjjo-n4GrnugNuCHTWOp1XIEXhvujpGOV1dBQu_5PUVX7FnKd34Cs7Cufq9H1TYQ-M75LZxZGhPs_IuaajFPXLz1IRq3CffK3LSZUI1OakhJy3ISW1akZMGFMhJkZy0oBs15KTAOVqQkwI8VJOT1uQ0o1M9sCIn1eSkSM4HZNI_Gr8dtEzfj1YExnzW8uAl7sYsim0v4U4onEQomQhQPiGXwukknYR3Ajtggct57DpRKCMniWyWiA6zbfchOVgsF-oxoRw0mODgRTgu3M8LvDi0BWeKuTxmruRN8qr8j_2VLu_ig1uMkPgFJD5C4iMkPkDSJG80DtVgs_bNYNH1GR72PlSNwTxKEFtNclhi6JuVuPEd7gkb61J0m-RFdRlEPT6_g1ULCxTG2LzrSclFkzzS2FfzcJknQXvLJ3---VNyq15sh-QgW-fqGVjVWfi8oOpP8CDQ3A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virulence+of+Herpes+Simplex+Virus+1+Harboring+a+UAG+Stop+Codon+between+the+First+and+Second+Initiation+Codon+in+the+Thymidine+Kinase+Gene&rft.jtitle=Japanese+journal+of+infectious+diseases&rft.au=Phu+Hoang+Anh+Nguyen&rft.au=Yamada%2C+Souichi&rft.au=Harada%2C+Shizuko&rft.au=Fukushi%2C+Shuetsu&rft.date=2022-07-31&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-6304&rft.eissn=1884-2836&rft.volume=75&rft.issue=4&rft.spage=368&rft_id=info:doi/10.7883%2Fyoken.JJID.2021.674&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6304&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6304&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6304&client=summon |