Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy

Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 13462
Main Authors Ihara, Shiro, Saito, Hikaru, Yoshinaga, Mizumo, Avala, Lavakumar, Murayama, Mitsuhiro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be further shortened to capture a targeted phenomenon in real-time as STEM’s current temporal resolution is far below the conventional TEM’s. However, rapid image acquisition in the millisecond per frame or faster generally causes image distortion, poor electron signals, and unidirectional blurring, which are obstacles for realizing video-rate STEM observation. Here we show an image correction framework integrating deep learning (DL)-based denoising and image distortion correction schemes optimized for STEM rapid image acquisition. By comparing a series of distortion corrected rapid scan images with corresponding regular scan speed images, the trained DL network is shown to remove not only the statistical noise but also the unidirectional blurring. This result demonstrates that rapid as well as high-quality image acquisition by STEM without hardware modification can be established by the DL. The DL-based noise filter could be applied to in-situ observation, such as dislocation activities under external stimuli, with high spatio-temporal resolution.
AbstractList Abstract Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be further shortened to capture a targeted phenomenon in real-time as STEM’s current temporal resolution is far below the conventional TEM’s. However, rapid image acquisition in the millisecond per frame or faster generally causes image distortion, poor electron signals, and unidirectional blurring, which are obstacles for realizing video-rate STEM observation. Here we show an image correction framework integrating deep learning (DL)-based denoising and image distortion correction schemes optimized for STEM rapid image acquisition. By comparing a series of distortion corrected rapid scan images with corresponding regular scan speed images, the trained DL network is shown to remove not only the statistical noise but also the unidirectional blurring. This result demonstrates that rapid as well as high-quality image acquisition by STEM without hardware modification can be established by the DL. The DL-based noise filter could be applied to in-situ observation, such as dislocation activities under external stimuli, with high spatio-temporal resolution.
Abstract Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be further shortened to capture a targeted phenomenon in real-time as STEM’s current temporal resolution is far below the conventional TEM’s. However, rapid image acquisition in the millisecond per frame or faster generally causes image distortion, poor electron signals, and unidirectional blurring, which are obstacles for realizing video-rate STEM observation. Here we show an image correction framework integrating deep learning (DL)-based denoising and image distortion correction schemes optimized for STEM rapid image acquisition. By comparing a series of distortion corrected rapid scan images with corresponding regular scan speed images, the trained DL network is shown to remove not only the statistical noise but also the unidirectional blurring. This result demonstrates that rapid as well as high-quality image acquisition by STEM without hardware modification can be established by the DL. The DL-based noise filter could be applied to in-situ observation, such as dislocation activities under external stimuli, with high spatio-temporal resolution.
Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials science by taking STEM’s high affinity with various analytical options into account. As is well known, STEM’s image acquisition time needs to be further shortened to capture a targeted phenomenon in real-time as STEM’s current temporal resolution is far below the conventional TEM’s. However, rapid image acquisition in the millisecond per frame or faster generally causes image distortion, poor electron signals, and unidirectional blurring, which are obstacles for realizing video-rate STEM observation. Here we show an image correction framework integrating deep learning (DL)-based denoising and image distortion correction schemes optimized for STEM rapid image acquisition. By comparing a series of distortion corrected rapid scan images with corresponding regular scan speed images, the trained DL network is shown to remove not only the statistical noise but also the unidirectional blurring. This result demonstrates that rapid as well as high-quality image acquisition by STEM without hardware modification can be established by the DL. The DL-based noise filter could be applied to in-situ observation, such as dislocation activities under external stimuli, with high spatio-temporal resolution.
ArticleNumber 13462
Author Saito, Hikaru
Ihara, Shiro
Avala, Lavakumar
Murayama, Mitsuhiro
Yoshinaga, Mizumo
Author_xml – sequence: 1
  givenname: Shiro
  surname: Ihara
  fullname: Ihara, Shiro
  email: ihara-shiro@cm.kyushu-u.ac.jp
  organization: Institute for Materials Chemistry and Engineering, Kyushu University
– sequence: 2
  givenname: Hikaru
  surname: Saito
  fullname: Saito, Hikaru
  organization: Institute for Materials Chemistry and Engineering, Kyushu University, Pan-Omics Data-Driven Research Innovation Center, Kyushu University
– sequence: 3
  givenname: Mizumo
  surname: Yoshinaga
  fullname: Yoshinaga, Mizumo
  organization: Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
– sequence: 4
  givenname: Lavakumar
  surname: Avala
  fullname: Avala, Lavakumar
  organization: Institute for Materials Chemistry and Engineering, Kyushu University
– sequence: 5
  givenname: Mitsuhiro
  surname: Murayama
  fullname: Murayama, Mitsuhiro
  organization: Institute for Materials Chemistry and Engineering, Kyushu University, Department of Materials Science and Engineering, Virginia Tech, Reactor Materials and Mechanical Design Group, Energy and Environmental Directorate, Pacific Northwest National Laboratory
BackLink https://www.osti.gov/servlets/purl/2471602$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAQtVARLUv_AKcILlwC_oodX5BQ-apUiQucrYkz2XqV2IudbbX_HmdTAeWALx7PvHkzfnrPyVmIAQl5yehbRkX7LkvWmLamnNdMC0Vr8YRccCqbmgvOz_6Kz8llzjtaTsONZOYZOReNEUzT5oLcf0TcVyNCCj5s6w4y9lWIPmM1-HHGVLLVHO8h9dXkx7EUXAx9FVOPqfITbBdAd6wOeQmygxBOLQlCnnzOPoYKR3RzKsHkXYrZxf3xBXk6wJjx8uHekB-fP32_-lrffPtyffXhpnaK0bmWba8bORgzMCOdo6rtYGBKATCqJAhm1KCo1g0iCgCDjmqBLTVgmAZ0YkOuV94-ws7uU9k4HW0Eb0-JmLYW0uzdiHYQ1DSi7bQp0tHy6DrQHfSDpmCgDNuQ9yvX_tBN2DsM5ZfjI9LHleBv7TbeWSMaRaUsBK9Wgphnb7PzM7rbImco8lguNVOUF9Cbhykp_jxgnm2R0eE4QsB4yJYrYzRlQpoCff0PdBcPKRQ9F1RrDBdSFBRfUYv2OeHwe2NG7eIlu3rJFi_Zk5fs0iTWprxfLIDpD_V_un4BnT_OZw
CitedBy_id crossref_primary_10_1016_j_cossms_2023_101090
crossref_primary_10_1093_jmicro_dfae008
crossref_primary_10_1364_OE_510656
crossref_primary_10_1093_jmicro_dfac071
crossref_primary_10_1021_acs_chemmater_4c00638
crossref_primary_10_2472_jsms_72_631
crossref_primary_10_3390_electronics12224595
crossref_primary_10_20517_microstructures_2023_39
Cites_doi 10.1186/s40679-015-0008-4
10.1016/j.ultramic.2018.05.005
10.1039/C8NR08376B
10.1016/0167-2789(92)90242-F
10.1016/j.micron.2019.02.009
10.1016/j.ultramic.2017.07.016
10.1038/s41598-021-99914-5
10.1186/1472-6807-11-7
10.1093/jmicro/dfv021
10.1016/j.ultramic.2011.03.021
10.1038/s41598-021-87811-w
10.1016/j.jnucmat.2020.152658
10.1016/j.ultramic.2018.06.001
10.1016/S0304-3991(75)80015-5
10.1016/j.ultramic.2013.12.004
10.1016/j.ultramic.2008.08.005
10.1246/bcsj.20200134
10.1109/TIP.2010.2045029
10.1093/jmicro/dfq030
10.1109/TIP.2018.2819821
10.1016/j.cossms.2020.100850
10.1093/jmicro/dfaa017
10.1017/S1431927620001750
10.1016/j.mee.2019.111051
10.1109/TIP.2020.3014721
10.1016/j.ultramic.2015.12.002
10.1109/TMI.2017.2679713
10.1016/j.semcdb.2009.07.008
10.1038/s41598-018-30639-8
10.1002/adts.201800037
10.1007/s10851-013-0435-6
10.1016/j.infrared.2018.09.015
10.1109/TIP.2007.901238
10.1016/j.ultramic.2017.04.007
10.1137/040616024
10.1017/CBO9780511615092
10.1109/ICIP.2010.5653394
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41598-022-17360-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13462
ExternalDocumentID oai_doaj_org_article_f309538b792040309bba7badf70a9a4a
2471602
10_1038_s41598_022_17360_3
GrantInformation_xml – fundername: JST CREST
  grantid: JPMJCR1994
– fundername: NSF
  grantid: ECCS 1542100
– fundername: JSPS KAKENHI
  grantid: JP21K20491; JP19H02029; JP21K20491
– fundername: R3QR Program
  grantid: 01271; 01271
– fundername: Five-star Alliance
– fundername: Iketani science and technology foundation
– fundername: Pan-Omics Data-Driven Research Innovation Center
– fundername: JSPS
  grantid: JP20K21093
– fundername: ;
– fundername: ;
  grantid: JPMJCR1994
– fundername: ;
  grantid: 01271; 01271
– fundername: ;
  grantid: ECCS 1542100
– fundername: ;
  grantid: JP21K20491; JP19H02029; JP21K20491
– fundername: ;
  grantid: JP20K21093
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c610t-48d754f99f194cc068baf166aa1064a3196f60775eee3aa9ec073e809a917aec3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:14:11 EDT 2024
Tue Sep 17 20:49:51 EDT 2024
Mon Oct 28 03:00:36 EDT 2024
Fri Oct 25 02:01:08 EDT 2024
Fri Nov 08 21:55:43 EST 2024
Fri Aug 23 02:47:44 EDT 2024
Fri Oct 11 20:56:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-48d754f99f194cc068baf166aa1064a3196f60775eee3aa9ec073e809a917aec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356044/
PMID 35931705
PQID 2698992343
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f309538b792040309bba7badf70a9a4a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356044
osti_scitechconnect_2471602
proquest_miscellaneous_2699701349
proquest_journals_2698992343
crossref_primary_10_1038_s41598_022_17360_3
springer_journals_10_1038_s41598_022_17360_3
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Meiniel, Olivo-Marin, Angelini (CR27) 2018; 27
Sato (CR4) 2015; 64
Jones (CR33) 2017; 179
Aoyama, Takagi, Hirase, Miyazawa (CR9) 2008; 109
CR17
CR39
Salmon, Harmany, Deledalle, Willett (CR26) 2014; 48
Zhu, Ophus, Toloczko, Edwards (CR36) 2018; 193
CR38
Giannatou, Papavieros, Constantoudis, Papageorgiou, Gogolides (CR21) 2019; 216
Rudin, Osher, Fatemi (CR22) 1992; 60
Buades, Coll, Morel (CR23) 2005; 4
Sang, LaBeau (CR34) 2014; 138
Dabov, Foi, Katkovnik, Egiazarian (CR30) 2007; 16
Ophus, Csiton, Nelson (CR35) 2016; 162
Ishikawa (CR13) 2020; 69
Madsen (CR20) 2018; 1
Xiu, Bei, Zhang, Wang, Field (CR37) 2021; 544
Bioucas-Dias, Figueiredo (CR24) 2010; 19
Hung, Bai, Shimokawa, Tsuji, Murayama (CR2) 2021; 11
Smith, Cowley (CR8) 1975; 1
Mäkinen, Azzari, Foi (CR31) 2020; 29
Kuang (CR29) 2018; 94
Bárcena, Koster (CR3) 2009; 20
Li, Zeng, Peng, Ji (CR19) 2017; 36
Hasezaki (CR11) 2017; 182
Hata (CR5) 2020; 24
Shimizu (CR14) 2020; 93
CR25
van Omme, Zakhozheva, Spruit, Sholkina, Pérez Garza (CR6) 2018; 192
Vanrompay (CR7) 2018; 10
Hata (CR10) 2011; 111
Jones (CR32) 2015; 1
CR42
CR41
CR40
Samaee (CR1) 2018; 8
Stuckner, Shimizu, Nakamura, Murayama (CR15) 2020; 26
Zhao (CR16) 2021; 11
Oktay, A., & Gurses, A. (CR18) 2019; 120
Chen, Pellequer (CR28) 2011; 11
Motoki (CR12) 2010; 59
D Smith (17360_CR8) 1975; 1
X Kuang (17360_CR29) 2018; 94
X Sang (17360_CR34) 2014; 138
C Ophus (17360_CR35) 2016; 162
Y Zhu (17360_CR36) 2018; 193
K Sato (17360_CR4) 2015; 64
T Shimizu (17360_CR14) 2020; 93
S Hata (17360_CR10) 2011; 111
L Jones (17360_CR32) 2015; 1
J van Omme (17360_CR6) 2018; 192
J Stuckner (17360_CR15) 2020; 26
K Dabov (17360_CR30) 2007; 16
17360_CR40
Y Zhao (17360_CR16) 2021; 11
17360_CR42
J Bioucas-Dias (17360_CR24) 2010; 19
17360_CR41
M Bárcena (17360_CR3) 2009; 20
E Giannatou (17360_CR21) 2019; 216
17360_CR25
R Li (17360_CR19) 2017; 36
R Ishikawa (17360_CR13) 2020; 69
P Xiu (17360_CR37) 2021; 544
J Madsen (17360_CR20) 2018; 1
L Jones (17360_CR33) 2017; 179
W Meiniel (17360_CR27) 2018; 27
J Salmon (17360_CR26) 2014; 48
B Oktay (17360_CR18) 2019; 120
K Aoyama (17360_CR9) 2008; 109
S Hata (17360_CR5) 2020; 24
C Hung (17360_CR2) 2021; 11
A Buades (17360_CR23) 2005; 4
V Samaee (17360_CR1) 2018; 8
Y Mäkinen (17360_CR31) 2020; 29
S Chen (17360_CR28) 2011; 11
17360_CR17
17360_CR39
S Motoki (17360_CR12) 2010; 59
LI Rudin (17360_CR22) 1992; 60
17360_CR38
KL Hasezaki (17360_CR11) 2017; 182
H Vanrompay (17360_CR7) 2018; 10
References_xml – volume: 1
  start-page: 1
  year: 2015
  ident: CR32
  article-title: Smart Align—a new tool for robust non-rigid registration of scanning microscope data
  publication-title: Adv. Struct. Chem. Imaging
  doi: 10.1186/s40679-015-0008-4
  contributor:
    fullname: Jones
– volume: 192
  start-page: 14
  year: 2018
  end-page: 20
  ident: CR6
  article-title: Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.05.005
  contributor:
    fullname: Pérez Garza
– volume: 10
  start-page: 22792
  year: 2018
  end-page: 22801
  ident: CR7
  article-title: 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography
  publication-title: Nanoscale
  doi: 10.1039/C8NR08376B
  contributor:
    fullname: Vanrompay
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  ident: CR22
  article-title: Nonlinear total variation based noise removal algorithm
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
  contributor:
    fullname: Fatemi
– volume: 120
  start-page: 113
  year: 2019
  end-page: 119
  ident: CR18
  article-title: Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images
  publication-title: Micron
  doi: 10.1016/j.micron.2019.02.009
  contributor:
    fullname: A., & Gurses, A.
– volume: 182
  start-page: 249
  year: 2017
  end-page: 257
  ident: CR11
  article-title: Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.07.016
  contributor:
    fullname: Hasezaki
– ident: CR39
– volume: 11
  start-page: 1
  year: 2021
  ident: CR16
  article-title: Five-second STEM dislocation tomography for 300 nm thick specimen assisted by deep-learning-based noise filtering
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99914-5
  contributor:
    fullname: Zhao
– volume: 11
  start-page: 1
  year: 2011
  ident: CR28
  article-title: DeStripe :frequency-based algorithm for removing stripe noises from AFM images
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-11-7
  contributor:
    fullname: Pellequer
– volume: 64
  start-page: 369
  year: 2015
  end-page: 375
  ident: CR4
  article-title: Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfv021
  contributor:
    fullname: Sato
– volume: 111
  start-page: 1168
  year: 2011
  end-page: 1175
  ident: CR10
  article-title: High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2011.03.021
  contributor:
    fullname: Hata
– volume: 11
  start-page: 8468
  year: 2021
  ident: CR2
  article-title: A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87811-w
  contributor:
    fullname: Murayama
– volume: 544
  year: 2021
  ident: CR37
  article-title: STEM characterization of dislocation loops in irradiated FCC alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152658
  contributor:
    fullname: Field
– volume: 193
  start-page: 12
  year: 2018
  end-page: 23
  ident: CR36
  article-title: Towards bend-contour-free dislocation imaging via diffraction contrast STEM
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.06.001
  contributor:
    fullname: Edwards
– volume: 1
  start-page: 127
  year: 1975
  end-page: 136
  ident: CR8
  article-title: Aperture contrast in thick amorphous specimens using scanning transmission electron microscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(75)80015-5
  contributor:
    fullname: Cowley
– volume: 138
  start-page: 28
  year: 2014
  end-page: 35
  ident: CR34
  article-title: Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.12.004
  contributor:
    fullname: LaBeau
– ident: CR40
– ident: CR25
– ident: CR42
– volume: 109
  start-page: 70
  year: 2008
  end-page: 80
  ident: CR9
  article-title: STEM tomography for thick biological specimens
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.08.005
  contributor:
    fullname: Miyazawa
– volume: 93
  start-page: 1079
  year: 2020
  end-page: 1085
  ident: CR14
  article-title: Real-time video imaging of mechanical motions of a single molecular shuttle with sub-millisecond sub-angstrom precision
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20200134
  contributor:
    fullname: Shimizu
– volume: 19
  start-page: 1720
  year: 2010
  end-page: 1730
  ident: CR24
  article-title: Multiplicative noise removal using variable splitting and constrained optimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2045029
  contributor:
    fullname: Figueiredo
– volume: 59
  start-page: S45
  year: 2010
  end-page: S53
  ident: CR12
  article-title: Dependence of beam broadening on detection angle in scanning transmission electron microtomography
  publication-title: J. Electron. Microscope.
  doi: 10.1093/jmicro/dfq030
  contributor:
    fullname: Motoki
– volume: 27
  start-page: 3842
  year: 2018
  end-page: 3856
  ident: CR27
  article-title: Denoising of microscopy images: A review of the state-of-the-art, and a new sparsity-based method
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2819821
  contributor:
    fullname: Angelini
– volume: 24
  year: 2020
  ident: CR5
  article-title: Electron tomography: An imaging method for materials deformation dynamics
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2020.100850
  contributor:
    fullname: Hata
– volume: 69
  start-page: 240
  year: 2020
  end-page: 247
  ident: CR13
  article-title: High spatiotemporal-resolution imaging in the scanning transmission electron microscope
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfaa017
  contributor:
    fullname: Ishikawa
– volume: 26
  start-page: 667
  year: 2020
  end-page: 675
  ident: CR15
  article-title: Ultra-fast electron microscopic imaging of single molecules with a direct electron detection camera and noise reduction
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927620001750
  contributor:
    fullname: Murayama
– volume: 216
  year: 2019
  ident: CR21
  article-title: Deep learning denoising of SEM images towards noise-reduced LER measurements
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.111051
  contributor:
    fullname: Gogolides
– volume: 29
  start-page: 8339
  year: 2020
  end-page: 8354
  ident: CR31
  article-title: Collaborative filtering of correlated noise: exact transform-domain variance for improved shrinkage and patch matching
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3014721
  contributor:
    fullname: Foi
– volume: 162
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR35
  article-title: Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopes from image pairs with orthogonal scan directions
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.12.002
  contributor:
    fullname: Nelson
– volume: 36
  start-page: 1533
  year: 2017
  end-page: 1541
  ident: CR19
  article-title: Deep learning segmentation of optical microscopy images improves 3d neuron reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2679713
  contributor:
    fullname: Ji
– ident: CR38
– ident: CR17
– volume: 20
  start-page: 920
  year: 2009
  end-page: 930
  ident: CR3
  article-title: Electron tomography in life science
  publication-title: Sem. Cell. Dev. Biol.
  doi: 10.1016/j.semcdb.2009.07.008
  contributor:
    fullname: Koster
– volume: 8
  start-page: 12012
  year: 2018
  ident: CR1
  article-title: Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30639-8
  contributor:
    fullname: Samaee
– volume: 1
  start-page: 1800037
  year: 2018
  ident: CR20
  article-title: A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800037
  contributor:
    fullname: Madsen
– volume: 48
  start-page: 279
  year: 2014
  end-page: 294
  ident: CR26
  article-title: Poisson noise reduction with non-local PCA
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-013-0435-6
  contributor:
    fullname: Willett
– volume: 94
  start-page: 142
  year: 2018
  end-page: 150
  ident: CR29
  article-title: Robust destriping method based on data-driven learning
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.09.015
  contributor:
    fullname: Kuang
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: CR30
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
  contributor:
    fullname: Egiazarian
– ident: CR41
– volume: 179
  start-page: 57
  year: 2017
  end-page: 62
  ident: CR33
  article-title: Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.04.007
  contributor:
    fullname: Jones
– volume: 4
  start-page: 490
  year: 2005
  end-page: 530
  ident: CR23
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multisc. Model. Simul.
  doi: 10.1137/040616024
  contributor:
    fullname: Morel
– volume: 1
  start-page: 1
  year: 2015
  ident: 17360_CR32
  publication-title: Adv. Struct. Chem. Imaging
  doi: 10.1186/s40679-015-0008-4
  contributor:
    fullname: L Jones
– volume: 192
  start-page: 14
  year: 2018
  ident: 17360_CR6
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.05.005
  contributor:
    fullname: J van Omme
– ident: 17360_CR40
  doi: 10.1017/CBO9780511615092
– ident: 17360_CR38
– volume: 59
  start-page: S45
  year: 2010
  ident: 17360_CR12
  publication-title: J. Electron. Microscope.
  doi: 10.1093/jmicro/dfq030
  contributor:
    fullname: S Motoki
– ident: 17360_CR17
– volume: 179
  start-page: 57
  year: 2017
  ident: 17360_CR33
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.04.007
  contributor:
    fullname: L Jones
– volume: 111
  start-page: 1168
  year: 2011
  ident: 17360_CR10
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2011.03.021
  contributor:
    fullname: S Hata
– volume: 27
  start-page: 3842
  year: 2018
  ident: 17360_CR27
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2819821
  contributor:
    fullname: W Meiniel
– volume: 8
  start-page: 12012
  year: 2018
  ident: 17360_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30639-8
  contributor:
    fullname: V Samaee
– volume: 1
  start-page: 1800037
  year: 2018
  ident: 17360_CR20
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800037
  contributor:
    fullname: J Madsen
– volume: 69
  start-page: 240
  year: 2020
  ident: 17360_CR13
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfaa017
  contributor:
    fullname: R Ishikawa
– volume: 16
  start-page: 2080
  year: 2007
  ident: 17360_CR30
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
  contributor:
    fullname: K Dabov
– volume: 216
  year: 2019
  ident: 17360_CR21
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.111051
  contributor:
    fullname: E Giannatou
– ident: 17360_CR25
  doi: 10.1109/ICIP.2010.5653394
– ident: 17360_CR39
  doi: 10.1007/978-3-319-24574-4_28
– volume: 36
  start-page: 1533
  year: 2017
  ident: 17360_CR19
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2679713
  contributor:
    fullname: R Li
– volume: 11
  start-page: 1
  year: 2011
  ident: 17360_CR28
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-11-7
  contributor:
    fullname: S Chen
– ident: 17360_CR42
– volume: 162
  start-page: 1
  year: 2016
  ident: 17360_CR35
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.12.002
  contributor:
    fullname: C Ophus
– volume: 193
  start-page: 12
  year: 2018
  ident: 17360_CR36
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.06.001
  contributor:
    fullname: Y Zhu
– volume: 26
  start-page: 667
  year: 2020
  ident: 17360_CR15
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927620001750
  contributor:
    fullname: J Stuckner
– volume: 138
  start-page: 28
  year: 2014
  ident: 17360_CR34
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.12.004
  contributor:
    fullname: X Sang
– volume: 60
  start-page: 259
  year: 1992
  ident: 17360_CR22
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
  contributor:
    fullname: LI Rudin
– volume: 24
  year: 2020
  ident: 17360_CR5
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2020.100850
  contributor:
    fullname: S Hata
– volume: 29
  start-page: 8339
  year: 2020
  ident: 17360_CR31
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3014721
  contributor:
    fullname: Y Mäkinen
– volume: 11
  start-page: 1
  year: 2021
  ident: 17360_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99914-5
  contributor:
    fullname: Y Zhao
– volume: 109
  start-page: 70
  year: 2008
  ident: 17360_CR9
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.08.005
  contributor:
    fullname: K Aoyama
– volume: 93
  start-page: 1079
  year: 2020
  ident: 17360_CR14
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20200134
  contributor:
    fullname: T Shimizu
– volume: 544
  year: 2021
  ident: 17360_CR37
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152658
  contributor:
    fullname: P Xiu
– volume: 20
  start-page: 920
  year: 2009
  ident: 17360_CR3
  publication-title: Sem. Cell. Dev. Biol.
  doi: 10.1016/j.semcdb.2009.07.008
  contributor:
    fullname: M Bárcena
– volume: 64
  start-page: 369
  year: 2015
  ident: 17360_CR4
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfv021
  contributor:
    fullname: K Sato
– volume: 10
  start-page: 22792
  year: 2018
  ident: 17360_CR7
  publication-title: Nanoscale
  doi: 10.1039/C8NR08376B
  contributor:
    fullname: H Vanrompay
– volume: 4
  start-page: 490
  year: 2005
  ident: 17360_CR23
  publication-title: Multisc. Model. Simul.
  doi: 10.1137/040616024
  contributor:
    fullname: A Buades
– volume: 182
  start-page: 249
  year: 2017
  ident: 17360_CR11
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.07.016
  contributor:
    fullname: KL Hasezaki
– volume: 19
  start-page: 1720
  year: 2010
  ident: 17360_CR24
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2045029
  contributor:
    fullname: J Bioucas-Dias
– volume: 1
  start-page: 127
  year: 1975
  ident: 17360_CR8
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(75)80015-5
  contributor:
    fullname: D Smith
– volume: 48
  start-page: 279
  year: 2014
  ident: 17360_CR26
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-013-0435-6
  contributor:
    fullname: J Salmon
– ident: 17360_CR41
– volume: 11
  start-page: 8468
  year: 2021
  ident: 17360_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87811-w
  contributor:
    fullname: C Hung
– volume: 94
  start-page: 142
  year: 2018
  ident: 17360_CR29
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.09.015
  contributor:
    fullname: X Kuang
– volume: 120
  start-page: 113
  year: 2019
  ident: 17360_CR18
  publication-title: Micron
  doi: 10.1016/j.micron.2019.02.009
  contributor:
    fullname: B Oktay
SSID ssj0000529419
Score 2.464118
Snippet Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven materials...
Abstract Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven...
Abstract Application of scanning transmission electron microscopy (STEM) to in situ observation will be essential in the current and emerging data-driven...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 13462
SubjectTerms 639/301/930/328
639/301/930/328/2082
Deep learning
External stimuli
Humanities and Social Sciences
multidisciplinary
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Transmission electron microscopy
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIQoQUZiRtE9StOfORVVUhwolJv1tjrlD2QrNhUaP99Z-xsaSohLpxWiaOsd2ac-WY9-T7G3vSiSbIDqKOMUJO2bQ2NtLiuEBwlGZMEKhS_frNn5-bLRXNxS-qLesIKPXAx3EmviRGtC61TGG94EAK0AVZ9K8CBKdBIuFvFVGH1Vs5IN78lI3R3ssVMRW-TYe0lW23x4bPIRJmwHz9GXFgLsHm3VfLOfmlOQ6eP2MMZP_L3Zd6H7F4aHrP7RVFy94T9_pTShs9SEJc15agVH8b1NvF-TRvjeJZPuVWWk-AQDmBBvOKZgZOvf2bNIh52nPrhL_k2FkkjPlFKw5Cg_9b4XjoH70A_LY6b3VN2fvr5-8ezetZWqCMCpqk23aptTO9cL52JUdguQC-tBcAa0QAtzN4SPV5KSQO4FPFZkDrhAOs7SFE_YwfDOKTnjDdBAaKsrokajAiNg6SNktEqo5PqXcXe7u3sN4VCw-etb9354hWPXvHZK15X7AO54uZKor_OJzAo_BwU_l9BUbEjcqRHFEFUuJF6huLkFWZiK1TFjvf-9fOK3XpFSpqIdg3O4PXNMBqWNlBgSONVvsa1gggdK9Yu4mIx3eXIsP6RWbudRnBpTMXe7SPoz5f_3Rwv_oc5jtgDRYFPnS7NMTuYfl2ll4ilpvAqL5trxr4c9A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9RAEC50RfAiPjHuKi1407DpRx59El_LIujJhbk1lZ7OOAeT2U0WmX9vVSeZJQt6CkmHpNP17qrUB_C2yfIgK8TUS48pY9ummMuC5IqcoyB9kMiB4vcfxfmF-bbKV9OGWz-VVc46MSrqded5j_xUMdIheSNGf9hdpowaxdnVCULjLtyTKiu4pKtclYc9Fs5iGWmnf2UyXZ32ZK_4nzKKwGSpC1JBC3sU2_bToSPxWrictwsmb2VNozE6ewQPJy9SfBzJ_hjuhPYJ3B9xJfdP4c-XEHZiAoTYpGyp1qLttn0QzZbT43RVDLFgVjDsEA1QWLwWsQ-n2P6OyEWi3guuit-I3o_ARmJgw0aMwTtsYgbQoSfwp_lut38GF2dff34-TyeEhdST2zSkplqXuWmsbaQ13tMK1tjIokCkSNEgi2dTcJO8EIJGtMGTRghVZpGiPAxeP4ejtmvDCxB5rZB8rSr3Gk1W5xaDNkr6QhkdVGMTeDevs9uNjTRcTIDryo1UcUQVF6nidAKfmBSHO7kJdrzQXW3cJFOu0dwsr6pLq0gV0UldY1njuikztGgwgWMmpCNfghvieq4c8oNTZI-LTCVwMtPXTXLbuxsuS-DNYZgWltMo2IbuOt5jy4zbOiZQLvhiMd3lSLv9FXt3W00upjEJvJ856Obl_16Ol_-f6zE8UMzSXMmSn8DRcHUdXpGvNNSvo0D8BecnFIo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB7OE8EX8SfWOyWCb1pt0zRtHkT8dRyCPrlwb2GaTdYFbdfdHrr_vTNpe9Lj9GmhKd02M9P5ppl8H8CzkJU-rxFTlztMWds2xTLXFFcEjnzufI5cKH7-ok8X6tNZeXYAk9zROIG7K0s71pNabL-__P1z_4YC_vWwZbx-taMkxBvFqKzKq0LTe-UaXJeKKnVu5Rvh_sD1LY2KWh9Mwp4SmJDjPpqrLzPLVZHSn346Cr0ZHL3cTHlpRTUmqpPbcGtEmOLt4BJ34MC3d-HGoDm5vwe_Pni_EaNYxCrlLLYUbbfeeRHWvHROR0Ufm2kFSxLRAJXMSxE5OsX6R1Q1Es1ecMf8SuzcIHokek565DT89U1M4jp0BX40123292Fx8vHr-9N0VF9IHUGqPlX1sipVMCbkRjmX6brBkGuNSFWkQg7doJlAz3tfIBrv6G3h68wgVYDoXfEADtuu9Q9BlI1EwmF16QpUWVMa9IWSudNkJC-DSeD5NM92M5Bs2Lg4XtR2sIolq9hoFVsk8I5NcXEmE2THA912Zcd4s6FgIr26qQyZmpeRmgarBpehytCgwgSO2JCWcAaT5TruKnK9lZSrdSYTOJ7sayeXtJK1NgkPK7qDpxfDNLG8xIKt787jOabKmPIxgWrmF7PbnY-062-R19sUBD-VSuDF5EF___zf0_Hov09yBDclezQ3uZTHcNhvz_1jglF98yTGxh-6rhlj
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIlLRXmItKUyEjeIiB9x4mNZqCokOFGpN2vstcseSFZsKrT_vjNOdlEqOHBaJXZ2s56ZzDeZ8TeMvU1VHUULUAYRoKTetiXUwqBdITiKIkQBFCh-_WYur_SX6_p6osmhvTCz_L1qP2zQwdAmMAyZRKMMPjMeskfog1sq31qYxf59CmWstLDTvpi_XzrzPZmiHz96NKUZvLxfHHkvQ5odz8VTdjghRn4-iviIPYjdM_Z47CG5fc5-f4pxzafmDzcleaUl7_rVJvK0olQ4nuVDLo7l1GIIBzAEXvLMuclXP3OXIu63nCrgb_gmjE2M-EBODJWA3qbxXbMc_Ab6a6Ffb1-wq4vP3xeX5dRNoQwIkYZSt8um1snaJKwOoTKthySMAcCoUAOZYjJEiBdjVAA2BrT-2FYWMKKDGNRLdtD1XXzFeO0lIK5q66BAV762EJWWIhipVZTJFuzdbp3deiTNcDnZrVo3SsWhVFyWilMF-0ii2M8kwut8AvXATfbjkiJivNY3VuJjBw-8h8bDMjUVWNBQsBMSpEPcQOS3gaqEwuAk-l5TyYKd7uTrJhvdOEm9MxHfaryDN_thXFhKmUAX-9s8xzYVUTgWrJnpxex25yPd6kfm6bYK4aTWBXu_06A_P_7v5Tj-v-kn7IkkFacqlvqUHQy_buNrxEmDP8sGcgewNA1a
  priority: 102
  providerName: Springer Nature
Title Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy
URI https://link.springer.com/article/10.1038/s41598-022-17360-3
https://www.proquest.com/docview/2698992343
https://search.proquest.com/docview/2699701349
https://www.osti.gov/servlets/purl/2471602
https://pubmed.ncbi.nlm.nih.gov/PMC9356044
https://doaj.org/article/f309538b792040309bba7badf70a9a4a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajo2-jH0yt13QYG-bG9uSP_S4Zi1lkFLGCnkTZ0XOAosdGpeR_753st0thb3sxcGWsRXdne7OOv1-AB-rKHVxgRja2GLI3LYhpnFGdkXBkYuti5ETxelVdnmjvs3S2R6kw14YX7Rvy-Vp_Wt1Wi9_-trK9cqOhzqx8fV0oiX5aaXG-7BPCvpXit4BeidaxbrfIBPJYrwhJ8UbySjtinOZ0bxzCM9kqiVDyez4Iw_bTz8NmddOyPm4YPLRqql3Rhcv4HkfRYovXW9fwp6rX8HTjldy-xp-f3VuLXpCiEXInmou6ma5caJa8vI4XRWtL5gVTDtEDZQWz4XH4RTLlWcuEuVWcFX8QmxsR2wkWnZspBj8hU0MBDr0BP5rtllv38DNxfmPyWXYMyyElsKmNlTFPE9VpXUVa2VtlBUlVnGWIVKmqJDNs8oYJM85JxG1szQjuCLSSFkeOivfwkHd1O4diLRMkGKtIrUSVVSmGp1USWyzREmXVDqAT8M4m3UHpGH8ArgsTCcgQwIyXkBGBnDGoni4k0Gw_YXmdmF6VTCVZLC8osx1QlMRnZQl5iXOqzxCjQoDOGZBGoolGBDXcuWQbU1C_jiLkgBOBvma3m43JmE-TYp5FfXgw0MzDSwvo2Dtmjt_j84jhnUMIN_Ri53u7raQKnvs7l51A_g8aNCfl_97OI7--0XHcJiw4nORS3oCB-3tnXtPYVRbjsh4ZvkInpydX11_p7NJNhn5TxJ0nKpi5M3qHlwxIpE
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,24330,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4inSFjASN4iaxM7DJ8SrWqDtqZX2Zk0cZ9kDybZJhfbfM-MkW6USnFaJo2zimfHMeCbfB_CujlIXF4ihjS2GzG0bYhpnZFcUHLnYuhg5UTw9yxYX6scyXY4bbt3YVjmtiX6hrlrLe-RHCTMdUjSi5MfNZcisUVxdHSk07sI9xuFiBoN8me_2WLiKpWI9fisTyeKoI3_F35RRBhbnMqMlaOaPPGw__bRkXrOQ83bD5K2qqXdGx4_h0RhFik-D2J_AHdc8hfsDr-T2Gfz56txGjIQQq5A9VSWadt05Ua-5PE5nRe8bZgXTDtEApcWV8DicYv3bMxeJciu4K34lOjsQG4meHRspBu-wiYlAh-7Ar2bbzfY5XBx_O_-yCEeGhdBS2NSHqqjyVNVa17FW1kZZUWIdZxkiZYoK2TzrjEHynHMSUTtLK4IrIo2U5aGz8gXsNW3jXoJIywQp1ipSK1FFZarRSZXENkuUdEmtA3g_zbPZDEAaxhfAZWEGqRiSivFSMTKAzyyK3ZUMgu1PtFcrM9qUqSWD5RVlrhNaiuigLDEvsarzCDUqDOCABWkolmBAXMudQ7Y3CfnjLEoCOJzka0a77cyNlgXwdjdME8tlFGxce-2v0XnEsI4B5DO9mD3ufKRZ__LY3VpSiKlUAB8mDbr5839Px_7_n_UNPFicn56Yk-9nPw_gYcLqzV0t6SHs9VfX7hXFTX352hvHX_YJF3E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJxAviE-RbYCReIOoSex8-Akxtmp8VRNi0t6si-OUPpB0aybU_5471-3USfAUJY4Sx_ftu9wP4G2b5C6tEGObWowZ2zbGPC1Irsg5cql1KXKg-H1anJ6rLxf5Rah_Woayyo1O9Iq66S3vkY8zRjokb0TJcRvKIs6OJx8WlzEjSHGmNcBp3IW9UhUyGcHe0cn07Md2x4VzWirV4c-ZRFbjJVkv_sOM4rG0lAUppB3r5Jv406EnYdtxQG-XT97KoXrTNHkED4NPKT6umeAx3HHdE7i3RplcPYU_x84tRICHmMVstxrR9fOlE-2ck-V0VQy-fFYwCBENUJDcCN-VU8x_exwjUa8E18jPxNKuYY7EwGaO2IT328QGToeewJ9m-8XqGZxPTn5-Oo0D3kJsyYkaYlU1Za5ardtUK2uToqqxTYsCkeJGhSysbcEt85xzElE7S_rBVYlGivnQWfkcRl3fuRcg8jpD8ryq3EpUSZ1rdFJlqS0yJV3W6gjebdbZLNZtNYxPh8vKrKliiCrGU8XICI6YFNs7uSW2v9BfzUyQMNNKbp1X1aXOSDHRSV1jWWPTlglqVBjBARPSkGfB7XEt1xHZwWRknYski-BwQ18TpHhpbngugjfbYVpYTqpg5_prf48uE27yGEG5wxc7090d6ea_fCdvLcnhVCqC9xsOunn5v5dj__9zfQ33STLMt8_TrwfwIGPu5hKX_BBGw9W1e0lO1FC_CtLxF87UHQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+noise+filtering+toward+millisecond+order+imaging+by+using+scanning+transmission+electron+microscopy&rft.jtitle=Scientific+reports&rft.au=Ihara%2C+Shiro&rft.au=Saito%2C+Hikaru&rft.au=Yoshinaga%2C+Mizumo&rft.au=Avala%2C+Lavakumar&rft.date=2022-08-05&rft.pub=Nature+Publishing+Group&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-17360-3&rft.externalDocID=2471602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon