De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions
The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentat...
Saved in:
Published in | BMC genomics Vol. 17; no. 163; p. 182 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
03.03.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions.
The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment.
The RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. |
---|---|
AbstractList | Background The phytoflagellated protozoan, Euglena gracilis , has been proposed as an attractive feedstock for the accumulation of valuable compounds such as [beta]-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena , the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. Results The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis , of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans -splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel [beta]-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment. Conclusion The RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. Keywords: Euglena gracilis , Wax ester fermentation, Transcriptome analysis The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment. The RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. BACKGROUNDThe phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions.RESULTSThe E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment.CONCLUSIONThe RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. The phytoflagellated protozoan, Euglena gracilis , has been proposed as an attractive feedstock for the accumulation of valuable compounds such as [beta]-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena , the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis , of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans -splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel [beta]-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these components were not extensive or dynamic during the anaerobic treatment. The RNA-Seq analysis provided comprehensive transcriptome information on E.gracilis for the first time, and this information will advance our understanding of this unique organism. The comprehensive analysis indicated that paramylon and wax ester metabolic pathways are regulated at post-transcriptional rather than the transcriptional level in response to anaerobic conditions. |
ArticleNumber | 182 |
Audience | Academic |
Author | Ishikawa, Takahiro Arakawa, Kazuharu Yoshida, Yuta Tomiyama, Takuya Tomita, Masaru Maruta, Takanori |
Author_xml | – sequence: 1 givenname: Yuta surname: Yoshida fullname: Yoshida, Yuta email: freedomandfavor@gmail.com, freedomandfavor@gmail.com organization: Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. freedomandfavor@gmail.com – sequence: 2 givenname: Takuya surname: Tomiyama fullname: Tomiyama, Takuya email: takaratommy@gmail.com, takaratommy@gmail.com organization: Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan. takaratommy@gmail.com – sequence: 3 givenname: Takanori surname: Maruta fullname: Maruta, Takanori email: maruta@life.shimane-u.ac.jp, maruta@life.shimane-u.ac.jp organization: Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan. maruta@life.shimane-u.ac.jp – sequence: 4 givenname: Masaru surname: Tomita fullname: Tomita, Masaru email: mt@sfc.keio.ac.jp, mt@sfc.keio.ac.jp organization: Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. mt@sfc.keio.ac.jp – sequence: 5 givenname: Takahiro surname: Ishikawa fullname: Ishikawa, Takahiro email: ishikawa@life.shimane-u.ac.jp, ishikawa@life.shimane-u.ac.jp organization: Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan. ishikawa@life.shimane-u.ac.jp – sequence: 6 givenname: Kazuharu surname: Arakawa fullname: Arakawa, Kazuharu email: gaou@sfc.keio.ac.jp, gaou@sfc.keio.ac.jp organization: Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. gaou@sfc.keio.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26939900$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk9r3DAQxUVJaf60H6CXYuilPTiRZFmWLoWQpG0gUEhzF5I8dlVkyZXspfvto2XTkIWiw4iZ33swwztFRyEGQOg9weeECH6RCRWc1ZjwmrYM1_wVOiGsIzUlnB29-B-j05x_Y0w6Qds36Jhy2UiJ8QmK11CFuImVzhkm47eVDn1l4zTrpBe3gWpJOmSb3LzECcpU-212uYpDdbOOHoKuxqSt86XnQpUgzzHkIos7FlI0zha_0LvFlcFb9HrQPsO7p3qGHr7ePFx9r-9-fLu9uryrLSd4qRsrBDaayp5IKxrTQMeo4bwX1pjetpxiLKSUQ8tbqVm5gjTtYBhnWmDaN2foy952Xs0EvYVQ1vBqTm7SaauidupwEtwvNcaNYl0nGt4Ug09PBin-WSEvanLZgvc6QFyzIl2HRUepEAX9uEdH7UG5MMTiaHe4umSsxUzIpi3U-X-o8nqYXLkPDK70DwSfDwSFWeDvMuo1Z3X78_6QJXvWpphzguF5U4LVLipqHxVVoqJ2UVG8aD68PNGz4l82mkd-M7wF |
CitedBy_id | crossref_primary_10_3390_genes10050351 crossref_primary_10_1016_j_biochi_2022_12_016 crossref_primary_10_1016_j_jclepro_2021_128996 crossref_primary_10_1016_j_pbi_2017_04_003 crossref_primary_10_3389_fpls_2018_00370 crossref_primary_10_1038_s41598_018_36600_z crossref_primary_10_3389_fceng_2022_884451 crossref_primary_10_3389_fmicb_2023_1143770 crossref_primary_10_1007_s00343_019_9159_9 crossref_primary_10_1016_j_protis_2023_125996 crossref_primary_10_1111_brv_12523 crossref_primary_10_1007_s10811_018_1496_0 crossref_primary_10_1111_jpy_12758 crossref_primary_10_3390_metabo9060115 crossref_primary_10_1016_j_biochi_2021_02_016 crossref_primary_10_1016_j_mimet_2016_08_018 crossref_primary_10_1016_j_algal_2023_103292 crossref_primary_10_1007_s11356_024_32409_8 crossref_primary_10_4467_16890027AP_22_003_16206 crossref_primary_10_1016_j_algal_2018_11_017 crossref_primary_10_1038_s41598_019_50611_4 crossref_primary_10_1038_s41564_018_0305_5 crossref_primary_10_1186_s12915_019_0626_8 crossref_primary_10_1371_journal_pone_0210755 crossref_primary_10_1002_1873_3468_14221 crossref_primary_10_1039_D0QM00621A crossref_primary_10_1071_FP19365 crossref_primary_10_1093_pcp_pcz192 crossref_primary_10_1371_journal_pone_0227226 crossref_primary_10_3390_pathogens9040281 crossref_primary_10_1371_journal_pone_0172813 crossref_primary_10_1016_j_algal_2018_11_022 crossref_primary_10_1016_j_protis_2024_126017 crossref_primary_10_1016_j_algal_2022_102829 crossref_primary_10_1016_j_plantsci_2018_10_017 crossref_primary_10_1093_molbev_msaa061 crossref_primary_10_1128_mSphere_00675_20 crossref_primary_10_3724_abbs_2023143 crossref_primary_10_1002_1873_3468_12659 crossref_primary_10_1038_s41598_018_35389_1 crossref_primary_10_1186_s12915_020_0754_1 crossref_primary_10_3389_fmicb_2016_02050 crossref_primary_10_1016_j_biortech_2023_128582 crossref_primary_10_1080_09670262_2019_1576062 crossref_primary_10_1093_pcp_pcy208 crossref_primary_10_1007_s12257_016_0649_8 crossref_primary_10_1007_s10142_018_0636_6 crossref_primary_10_1038_s41598_017_14077_6 crossref_primary_10_3390_genes12060842 crossref_primary_10_1111_nph_16237 crossref_primary_10_3390_biom14030327 crossref_primary_10_1016_j_biochi_2018_09_006 crossref_primary_10_1016_j_carres_2016_11_017 crossref_primary_10_3389_fpls_2021_786208 crossref_primary_10_1016_j_jphotobiol_2020_111950 crossref_primary_10_1007_s10811_017_1235_y crossref_primary_10_1016_j_algal_2019_101638 crossref_primary_10_3389_fbioe_2019_00108 crossref_primary_10_1038_s41598_021_92174_3 crossref_primary_10_1002_1873_3468_13276 crossref_primary_10_1074_jbc_RA117_000936 |
Cites_doi | 10.1074/jbc.M210533200 10.1093/bioinformatics/bti610 10.1104/pp.112.206177 10.1186/1471-2105-12-323 10.1039/C5MB00319A 10.1016/S0021-9258(18)97699-4 10.1080/09168451.2015.1069694 10.1016/j.carbpol.2013.05.026 10.1016/0003-9861(90)90332-S 10.1016/j.phytochem.2015.05.010 10.1016/j.biotechadv.2013.07.011 10.1038/nbt0210-126 10.1007/s11745-015-4010-3 10.1007/BF00414703 10.1074/jbc.M400913200 10.1128/AEM.12.4.292-294.1964 10.1093/oxfordjournals.molbev.a003853 10.1039/c3fo60256g 10.1111/j.1432-1033.1984.tb08258.x 10.1093/bioinformatics/bth088 10.1016/j.gene.2007.07.023 10.1007/s11745-010-3395-2 10.1128/EC.00222-06 10.1093/nar/gkt1076 10.1016/0005-2744(69)90252-6 10.1271/bbb.110482 10.1016/j.rser.2009.07.020 10.1016/0014-5793(82)81310-0 10.1371/journal.pone.0007710 10.1038/nmeth.1923 10.1038/nbt.1883 10.2172/1150177 10.1093/bioinformatics/btp616 10.1074/jbc.M411010200 10.1093/nar/21.15.3537 10.1016/j.molcel.2010.12.011 10.1016/0076-6879(72)28138-1 10.1002/j.1460-2075.1991.tb07804.x 10.1093/bioinformatics/19.2.305 10.1007/s002940000116 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Yoshida et al. 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Yoshida et al. 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 7X8 5PM |
DOI | 10.1186/s12864-016-2540-6 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 182 |
ExternalDocumentID | A445048935 10_1186_s12864_016_2540_6 26939900 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -A0 0R~ 23N 2WC 2XV 3V. 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX AIXEN ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION AFGXO 7X8 5PM |
ID | FETCH-LOGICAL-c610t-3c880ba29d19c83b3e742b66d8cbbdc562008999f5659a48649b5fb464a802d3 |
IEDL.DBID | RPM |
ISSN | 1471-2164 |
IngestDate | Tue Sep 17 21:05:45 EDT 2024 Fri Oct 25 08:50:36 EDT 2024 Wed Aug 14 18:53:41 EDT 2024 Tue Nov 12 23:34:59 EST 2024 Sat Sep 28 21:35:51 EDT 2024 Thu Sep 12 16:42:49 EDT 2024 Sat Sep 28 07:58:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 163 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c610t-3c880ba29d19c83b3e742b66d8cbbdc562008999f5659a48649b5fb464a802d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778363/ |
PMID | 26939900 |
PQID | 1770872288 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4778363 proquest_miscellaneous_1770872288 gale_infotracmisc_A445048935 gale_infotracacademiconefile_A445048935 gale_incontextgauss_ISR_A445048935 crossref_primary_10_1186_s12864_016_2540_6 pubmed_primary_26939900 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-03 |
PublicationDateYYYYMMDD | 2016-03-03 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | 1868836 - EMBO J. 1991 Sep;10(9):2621-5 25860691 - Lipids. 2015 May;50(5):483-92 26028521 - Phytochemistry. 2015 Aug;116:21-7 14962934 - Bioinformatics. 2004 Jun 12;20(9):1464-5 23987321 - Carbohydr Polym. 2013 Oct 15;98(1):95-101 24214961 - Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 23928208 - Biotechnol Adv. 2013 Dec;31(8):1532-42 6146525 - Eur J Biochem. 1984 Jul 2;142(1):121-6 17716833 - Gene. 2007 Nov 1;402(1-2):35-9 12502715 - J Biol Chem. 2003 Mar 7;278(10):8075-82 12538262 - Bioinformatics. 2003 Jan 22;19(2):305-6 14199015 - Appl Microbiol. 1964 Jul;12:292-4 19907644 - PLoS One. 2009;4(11):e7710 11319255 - Mol Biol Evol. 2001 May;18(5):710-20 8346031 - Nucleic Acids Res. 1993 Jul 25;21(15):3537-44 2114824 - Arch Biochem Biophys. 1990 Aug 1;280(2):292-8 20195781 - Lipids. 2010 Mar;45(3):263-73 26214137 - Biosci Biotechnol Biochem. 2015;79(12):1957-64 25512067 - Biochim Biophys Acta. 2015 Apr;1850(4):620-7 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 22056447 - Biosci Biotechnol Biochem. 2011;75(11):2253-6 14245356 - J Biol Chem. 1964 Oct;239:3163-7 20139944 - Nat Biotechnol. 2010 Feb;28(2):126-8 21172659 - Mol Cell. 2010 Dec 22;40(6):939-53 5354264 - Biochim Biophys Acta. 1969 Nov 4;191(2):329-41 21816040 - BMC Bioinformatics. 2011;12:323 22388286 - Nat Methods. 2012 Apr;9(4):357-9 15569691 - J Biol Chem. 2005 Feb 11;280(6):4329-38 21572440 - Nat Biotechnol. 2011 Jul;29(7):644-52 23209127 - Plant Physiol. 2013 Feb;161(2):1034-48 15014069 - J Biol Chem. 2004 May 21;279(21):22422-9 16081474 - Bioinformatics. 2005 Sep 15;21(18):3674-6 26289754 - Mol Biosyst. 2015 Oct;11(10):2808-20 10905424 - Curr Genet. 2000 Jun;37(6):349-55 24104447 - Food Funct. 2013 Nov;4(11):1685-90 16998072 - Eukaryot Cell. 2006 Dec;5(12):2079-91 T Watanabe (2540_CR5) 2013; 4 H Inui (2540_CR7) 1982; 150 Y Kott (2540_CR12) 1964; 12 C Rotte (2540_CR27) 2001; 18 K Arakawa (2540_CR36) 2003; 19 B Langmead (2540_CR40) 2012; 9 P Teerawanichpan (2540_CR29) 2010; 45 MD Robinson (2540_CR41) 2010; 26 C Frantz (2540_CR20) 2000; 37 EC O’Neill (2540_CR21) 2015; 11 A Conesa (2540_CR37) 2005; 21 2540_CR4 G Markou (2540_CR2) 2013; 31 2540_CR9 M Kanehisa (2540_CR38) 2014; 42 TM Mata (2540_CR1) 2010; 14 ER Baker (2540_CR13) 1981; 129 MG Grabherr (2540_CR17) 2011; 29 M Hoffmeister (2540_CR31) 2004; 279 LH Tessier (2540_CR19) 1991; 10 F Tripodi (2540_CR34) 1850; 2015 H Inui (2540_CR8) 1984; 142 MS Chauton (2540_CR33) 2013; 161 E Stephens (2540_CR3) 2010; 28 LE Koren (2540_CR35) 1967; 14 T Beissbarth (2540_CR43) 2004; 20 RB Hallick (2540_CR14) 1993; 21 H Inui (2540_CR10) 1990; 280 B Li (2540_CR42) 2011; 12 N Ahmadinejad (2540_CR16) 2007; 402 M Nakazawa (2540_CR28) 2015; 50 F Matsuda (2540_CR32) 2011; 75 2540_CR26 M Shibakami (2540_CR6) 2013; 98 LR Marechal (2540_CR22) 1964; 239 2540_CR24 M Hoffmeister (2540_CR11) 2005; 280 DG Durnford (2540_CR15) 2006; 5 J Zhao (2540_CR18) 2010; 40 N Kono (2540_CR39) 2009; 4 T Takeda (2540_CR25) 2015; 116 R Kalscheuer (2540_CR30) 2003; 278 DR Barras (2540_CR23) 1969; 191 |
References_xml | – volume: 278 start-page: 8075 year: 2003 ident: 2540_CR30 publication-title: J Biol Chem doi: 10.1074/jbc.M210533200 contributor: fullname: R Kalscheuer – ident: 2540_CR4 – volume: 21 start-page: 3674 year: 2005 ident: 2540_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 contributor: fullname: A Conesa – volume: 161 start-page: 1034 year: 2013 ident: 2540_CR33 publication-title: Plant Physiol doi: 10.1104/pp.112.206177 contributor: fullname: MS Chauton – volume: 12 start-page: 323 year: 2011 ident: 2540_CR42 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 contributor: fullname: B Li – volume: 11 start-page: 2808 year: 2015 ident: 2540_CR21 publication-title: Mol Biosyst doi: 10.1039/C5MB00319A contributor: fullname: EC O’Neill – volume: 239 start-page: 3163 year: 1964 ident: 2540_CR22 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)97699-4 contributor: fullname: LR Marechal – ident: 2540_CR26 doi: 10.1080/09168451.2015.1069694 – volume: 98 start-page: 95 year: 2013 ident: 2540_CR6 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2013.05.026 contributor: fullname: M Shibakami – volume: 280 start-page: 292 year: 1990 ident: 2540_CR10 publication-title: Arch Biochem Biophys doi: 10.1016/0003-9861(90)90332-S contributor: fullname: H Inui – volume: 116 start-page: 21 year: 2015 ident: 2540_CR25 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.05.010 contributor: fullname: T Takeda – volume: 31 start-page: 1532 year: 2013 ident: 2540_CR2 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2013.07.011 contributor: fullname: G Markou – volume: 28 start-page: 126 year: 2010 ident: 2540_CR3 publication-title: Nature Biotech doi: 10.1038/nbt0210-126 contributor: fullname: E Stephens – volume: 50 start-page: 483 issue: 5 year: 2015 ident: 2540_CR28 publication-title: Lipids doi: 10.1007/s11745-015-4010-3 contributor: fullname: M Nakazawa – volume: 129 start-page: 310 year: 1981 ident: 2540_CR13 publication-title: Arch Microbiol doi: 10.1007/BF00414703 contributor: fullname: ER Baker – volume: 279 start-page: 22422 year: 2004 ident: 2540_CR31 publication-title: J Biol Chem doi: 10.1074/jbc.M400913200 contributor: fullname: M Hoffmeister – volume: 12 start-page: 292 year: 1964 ident: 2540_CR12 publication-title: Appl Microbiol doi: 10.1128/AEM.12.4.292-294.1964 contributor: fullname: Y Kott – volume: 18 start-page: 710 year: 2001 ident: 2540_CR27 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003853 contributor: fullname: C Rotte – volume: 4 start-page: 1685 year: 2013 ident: 2540_CR5 publication-title: Food Funct doi: 10.1039/c3fo60256g contributor: fullname: T Watanabe – volume: 142 start-page: 121 year: 1984 ident: 2540_CR8 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1984.tb08258.x contributor: fullname: H Inui – volume: 20 start-page: 1464 year: 2004 ident: 2540_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth088 contributor: fullname: T Beissbarth – volume: 402 start-page: 35 issue: 1–2 year: 2007 ident: 2540_CR16 publication-title: Gene doi: 10.1016/j.gene.2007.07.023 contributor: fullname: N Ahmadinejad – volume: 45 start-page: 263 year: 2010 ident: 2540_CR29 publication-title: Lipids doi: 10.1007/s11745-010-3395-2 contributor: fullname: P Teerawanichpan – volume: 5 start-page: 2079 year: 2006 ident: 2540_CR15 publication-title: Eukaryot Cell doi: 10.1128/EC.00222-06 contributor: fullname: DG Durnford – volume: 42 start-page: D199 year: 2014 ident: 2540_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1076 contributor: fullname: M Kanehisa – volume: 191 start-page: 329 year: 1969 ident: 2540_CR23 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2744(69)90252-6 contributor: fullname: DR Barras – volume: 75 start-page: 2253 issue: 11 year: 2011 ident: 2540_CR32 publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.110482 contributor: fullname: F Matsuda – volume: 14 start-page: 217 year: 2010 ident: 2540_CR1 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.07.020 contributor: fullname: TM Mata – volume: 150 start-page: 89 year: 1982 ident: 2540_CR7 publication-title: FEBS Lett doi: 10.1016/0014-5793(82)81310-0 contributor: fullname: H Inui – volume: 4 start-page: e7710 year: 2009 ident: 2540_CR39 publication-title: PLoS One doi: 10.1371/journal.pone.0007710 contributor: fullname: N Kono – volume: 9 start-page: 357 year: 2012 ident: 2540_CR40 publication-title: Nat Methods doi: 10.1038/nmeth.1923 contributor: fullname: B Langmead – volume: 29 start-page: 644 year: 2011 ident: 2540_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 contributor: fullname: MG Grabherr – ident: 2540_CR9 doi: 10.2172/1150177 – volume: 26 start-page: 139 year: 2010 ident: 2540_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: MD Robinson – volume: 280 start-page: 4329 year: 2005 ident: 2540_CR11 publication-title: J Biol Chem doi: 10.1074/jbc.M411010200 contributor: fullname: M Hoffmeister – volume: 21 start-page: 3537 year: 1993 ident: 2540_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/21.15.3537 contributor: fullname: RB Hallick – volume: 14 start-page: 17 year: 1967 ident: 2540_CR35 publication-title: J Protozool contributor: fullname: LE Koren – volume: 40 start-page: 939 year: 2010 ident: 2540_CR18 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.12.011 contributor: fullname: J Zhao – ident: 2540_CR24 doi: 10.1016/0076-6879(72)28138-1 – volume: 2015 start-page: 620 year: 1850 ident: 2540_CR34 publication-title: Biochim Biophys Acta contributor: fullname: F Tripodi – volume: 10 start-page: 2621 year: 1991 ident: 2540_CR19 publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb07804.x contributor: fullname: LH Tessier – volume: 19 start-page: 305 year: 2003 ident: 2540_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.305 contributor: fullname: K Arakawa – volume: 37 start-page: 349 year: 2000 ident: 2540_CR20 publication-title: Curr Genet doi: 10.1007/s002940000116 contributor: fullname: C Frantz |
SSID | ssj0017825 |
Score | 2.4823248 |
Snippet | The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan,... The phytoflagellated protozoan, Euglena gracilis , has been proposed as an attractive feedstock for the accumulation of valuable compounds such as... Background The phytoflagellated protozoan, Euglena gracilis , has been proposed as an attractive feedstock for the accumulation of valuable compounds such as... BACKGROUNDThe phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as... |
SourceID | pubmedcentral proquest gale crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 182 |
SubjectTerms | Analysis Euglena Euglena gracilis - genetics Euglena gracilis - metabolism Gene expression Glucans - metabolism Influence Lipid Metabolism - genetics Molecular Sequence Annotation Physiological aspects RNA Splicing RNA, Protozoan - genetics Sequence Analysis, RNA Transcriptome Unsaturated fatty acids Waxes - metabolism |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA61Ivgi_nbbKlEEQVjdy2aTzUMpRVuqDz5oC30LSTZpD65Zvb0rvf_emexe25Xi62Y2hMlMZob58oWQ96mucOBIFpL7nDd1yK30qV3ISxmk4SahLX6IoxP-_bQ63SDr560GBXZ3lnb4ntTJfPbp6s9qDxx-Nzl8LT53cMYKxFKInGGfX9wj9xmHQh2RfPymqQDBsEqXjeQkZ1AmDE3OO6cYhal_D-tb0WqMpLwVmg4fk0dDTkn3eyN4QjZ8fEoe9K9Mrp6R9qunsb1sKeTJ_sLOVtTEhrob2m-6wICVjo_2wsNoz1NC20APIL320dCzuXHTGXybRjrvYbXwW4uyHpmcHMyHzW804ufk-PDg-MtRPryzkDtInhZ56cCJrWGqmShXl7b0UC9bIZraWds4yJAKbA6qAMmfMhwUpWwVLBfc1AVryhdkM7bRvyJUiaawKqjClY4bvP09EZULjgcRWMFlRj6utap_92waOlUhtdD9FmhEnOEWaJGRd6h3jSwVEWEwZ2bZdfrbr596n_OqQNqcKiMfBqHQgrKcGW4VwHqQ2GokuTOSBDdyo-G36-3VOITYs-jbZacnUha1ZKyuM_Ky3-7rxTOhIMMriozIkSFcCyB793gkTs8TizeXeIGm3Pr_srbJQ4ZWiai3codsLuZL_xrSoIV9k4z7L42EA1c priority: 102 providerName: Scholars Portal |
Title | De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26939900 https://search.proquest.com/docview/1770872288 https://pubmed.ncbi.nlm.nih.gov/PMC4778363 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtx2AvY9_z2gVtDAYDN44tS_Zj1qV0gZbSdpA3IclSF0jkko9C__vdyXYX73EvNvjORkgn3cn3u58I-RL2FQYmkobgPmZV4WItbEgXskw4oZgKaIsLfvaLTWf5bI_kXS1MAO0bPT_2i-Wxn_8O2Mq7pRl2OLHh5fkJE1h7kA33yT4YaLdFb1MH4PLyNn05KvhwDQswR6AFj1MEAeCZRSkvwS9jUduOL_p3Rd5xSX245I7_OX1BnreBIx03DXxJ9qx_RZ42R0k-vCb1D0t9fV9TCIbtUi8eqPIVNX-5vekGvVJYI-qlBWlDRkJrRycQQ1uv6O1KmfkCns09XTXYWXitRl2LdE0GvocZbrTUN-TmdHJzcha3hynEBiKkTZwZmKlapWU1Kk2R6czCplhzXhVG68pAGJRgBrB0EOGVikGflTp3mnGmiiStsrfkwNfevie05FWiS1cmJjNMYYn3iOfGGea4SxMmIvKt61V511BmyLDVKLhsRkMirAxHQ_KIfMZ-l0hF4RHrcqu267X8eX0lx4zlCXLj5BH52iq5GjrLqLZ0ANqD7FU9zaOeJswV0xN_6oZXoggBZt7W27UcCZEUIk2LIiLvmuF-bHxnLhERPUN4VECK7r4ELDdQdbeW-uG_3zwkz1K0XUS9ZUfkYLPa2o8QBm30AIx_JgbkyXg8vZ7C_fvk4vJqEH4qwPWcFYMwMf4AKXcNrw |
link.rule.ids | 230,315,730,783,787,867,888,24330,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qRfRF_KyrVaMIgrC9vd1sdvNYastV2yJ6Qt9Ckk3qwV223IfQ_96Z_ai3Pvq6mSwhM5OZML_5BeBDc6-w6EgGk_uYV6WPTeGaciHPCl9orhu0xYWY_ORfLvPLHcj7XpgGtG_N7CDMFwdh9qvBVl4v7KjHiY2-nR_xgnoPstEduIv-mvD-kt4VDzDo5V0Bc1yK0QqPYEFQCxGnBAOgV4tSITEyU1vbVjT690zeCkpDwORWBDp5BA-71JEdtkt8DDsuPIF77WOSN0-h_uxYqH_XDNNhtzDzG6ZDxexfdm-2prjUnBL1wuFoS0fCas-OMYt2QbOrpbazOX6bBbZs0bM4rSZZR4RNFv9HNW6y1WcwPTmeHk3i7jmF2GKOtI4zi75qdCqrsbRlZjKH12IjRFVaYyqLiVBCNUDpMceTmuOeSZN7wwXXZZJW2XPYDXVwL4BJUSVGepnYzHJNTd5jkVtvuRc-TXgRwad-V9V1S5qhmstGKVSrDUXAMtKGEhG8p31XREYRCO1ypTerlTr98V0dcp4nxI6TR_CxE_I1bpbVXfMArof4qwaS-wNJ9BY7GH7Xq1fREEHMgqs3KzUuiqQs0rQsI9hr1X27-N5cIigGhnArQCTdwxG03Yasu7PVl_898y3cn0zPz9TZ6cXXV_AgJTsmDFy2D7vr5ca9xqRobd40LvAHwZYLKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSksvoe86TVK1FAoFx15bluxjSLIkfYTQppCbkGQpXdiVl30U8u87I9vJusdcPSMjpBnNiPnmEyGfwr3CgCNpSO5jVpcu1sKGciHLhROKqYC2OOenv9nXq-Jq46mvANo3enLgp7MDP_kTsJXzmUl6nFhy8eOICew9yJN57ZKH5BH4bMr7i3pXQIDAV3RFzFHJkyUcwxzhFjzOEAqALxdlvILojK1tGxHp_3N5IzANQZMbUWj8jGx36SM9bKf5nDyw_gV53D4oefOSNMeW-uZvQyEltjM9vaHK19TcMXzTFcamcFI0MwvSlpKENo6eQCZtvaLXC2UmU_g28XTRImhhWIO6FkmbDPwP69xor6_I5fjk8ug07p5UiA3kSas4N-CvWmVVPapMmevcwtVYc16XRuvaQDKUYh2wcpDnVYrBmlW6cJpxpso0q_PXZMs33r4ltOJ1qitXpSY3TGGj94gXxhnmuMtSJiLypV9VOW-JM2S4cJRctrshEVyGuyF5RD7iukskpPCIeLlW6-VSnv36KQ8ZK1JkyCki8rlTcg0sllFdAwHMBzmsBpq7A03wGDMQf-i3V6IIYWbeNuulHAmRliLLyjIib9rtvp18by4REQNDuFVAou6hBOw3EHZ39rpz75HvyZOL47H8fnb-7R15mqEZIwwu3yVbq8Xa7kFetNL7wQP-AZJUDDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+assembly+and+comparative+transcriptome+analysis+of+Euglena+gracilis+in+response+to+anaerobic+conditions&rft.jtitle=BMC+genomics&rft.au=Yoshida%2C+Yuta&rft.au=Tomiyama%2C+Takuya&rft.au=Maruta%2C+Takanori&rft.au=Tomita%2C+Masaru&rft.date=2016-03-03&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=17&rft.issue=163&rft_id=info:doi/10.1186%2Fs12864-016-2540-6&rft.externalDocID=A445048935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |