A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET

•Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predic...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 288; p. 120530
Main Authors Rogeau, Antoine, Hives, Florent, Bordier, Cécile, Lahousse, Hélène, Roca, Vincent, Lebouvier, Thibaud, Pasquier, Florence, Huglo, Damien, Semah, Franck, Lopes, Renaud
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2024
Elsevier Limited
Elsevier
SeriesNeuroImage
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predicting the class of test scans.•The posterior cingulate cortex (PCC) for AD and anterior regions for FTD were key regions in the classification process.•The findings suggest the potential for integrating deep learning tools into clinical practice for more accurate and objective neurodegenerative disease diagnosis using [18F]-FDG-PET scans. With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49–0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.
AbstractList With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.
•Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predicting the class of test scans.•The posterior cingulate cortex (PCC) for AD and anterior regions for FTD were key regions in the classification process.•The findings suggest the potential for integrating deep learning tools into clinical practice for more accurate and objective neurodegenerative disease diagnosis using [18F]-FDG-PET scans. With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49–0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.
With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.
ArticleNumber 120530
Author Lahousse, Hélène
Semah, Franck
Pasquier, Florence
Rogeau, Antoine
Huglo, Damien
Hives, Florent
Roca, Vincent
Lopes, Renaud
Bordier, Cécile
Lebouvier, Thibaud
Author_xml – sequence: 1
  givenname: Antoine
  orcidid: 0000-0002-3993-3954
  surname: Rogeau
  fullname: Rogeau, Antoine
  email: antoinerogeau2109@gmail.com
  organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France
– sequence: 2
  givenname: Florent
  surname: Hives
  fullname: Hives, Florent
  organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France
– sequence: 3
  givenname: Cécile
  surname: Bordier
  fullname: Bordier, Cécile
  organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
– sequence: 4
  givenname: Hélène
  surname: Lahousse
  fullname: Lahousse, Hélène
  organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France
– sequence: 5
  givenname: Vincent
  orcidid: 0000-0002-3300-3836
  surname: Roca
  fullname: Roca, Vincent
  organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
– sequence: 6
  givenname: Thibaud
  orcidid: 0000-0002-4386-6045
  surname: Lebouvier
  fullname: Lebouvier, Thibaud
  organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
– sequence: 7
  givenname: Florence
  surname: Pasquier
  fullname: Pasquier, Florence
  organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
– sequence: 8
  givenname: Damien
  surname: Huglo
  fullname: Huglo, Damien
  organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France
– sequence: 9
  givenname: Franck
  surname: Semah
  fullname: Semah, Franck
  organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France
– sequence: 10
  givenname: Renaud
  surname: Lopes
  fullname: Lopes, Renaud
  organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38311126$$D View this record in MEDLINE/PubMed
https://hal.univ-lille.fr/hal-04579197$$DView record in HAL
BookMark eNqNkstuEzEUhkeoiF7gFZAlFoBEgu2ZcewNIvQuRYJFWVu-nGmcOuNie4rCY_DEeJpSRFb15ljWd74j-fyH1V4feqgqRPCUYMI-rqY9DDG4tbqGKcW0mRKK2xo_qw4IFu1EtDO6N97besIJEfvVYUorjLEgDX9R7de8JoRQdlD9nqP6BJnQ3wU_ZBd65dHovi_5Z4g3KAdkvErJdRuUBr0CkxNSCc39ryW4NcS3CVmXQCX4gLoY-hwyrG_D6LCwhj47hUJES1A-LzfjsByDT2hIrr9GOirXI8LPJmcn5-jb6dXL6nmnfIJXD_Wo-n52enV8MVl8Pb88ni8mhmGRJ8C1UZZbjYFigmuGtQCMmTa21TPTtp1gTBMrLFO6axjFxpajrMAd5ULXR9Xl1muDWsnbWH4zbmRQTt4_hHgtVczOeJBKsK42bUeLsdGs1YQqbIXRHHPesbq43m9dS-X_U13MF3J8w007E0TM7khh323Z2xh-DJCyXLtkwHvVQxiSpILSpsVNM6JvdtBVGGLZ0T3FW47ZbFao1w_UoNdgH-f_3XIB-BYwMaQUoXtECJZjoORK_guUHAMlt4EqrZ92Wo3LagxKLnvzTxF82QqgrPLOQZTJOOgNWBdLkspfu6dIPu9IjHe9M8rfwOZpij-8GwOz
CitedBy_id crossref_primary_10_1177_13872877241302493
crossref_primary_10_1002_hsr2_70025
crossref_primary_10_1016_j_cortex_2024_07_004
crossref_primary_10_3390_cells13231965
crossref_primary_10_1007_s42979_025_03686_y
crossref_primary_10_1016_j_health_2024_100362
Cites_doi 10.1093/brain/awr179
10.1016/j.nicl.2018.05.024
10.1016/S1474-4422(20)30314-8
10.1038/s41586-019-1799-6
10.3233/JAD-2011-100996
10.1038/s41398-019-0381-1
10.3233/JAD-2011-110458
10.1016/j.ncl.2017.01.008
10.1007/s00259-020-04969-7
10.21105/joss.00861
10.1155/2014/421743
10.1016/j.pscychresns.2012.04.007
10.1053/j.semnuclmed.2021.01.002
10.1111/jon.12835
10.1007/s00259-021-05483-0
10.3389/fnagi.2019.00220
10.1016/S1474-4422(14)70090-0
10.3389/fnagi.2022.1005731
10.1007/s12149-014-0932-8
10.1007/s00259-021-05603-w
10.1016/S1474-4422(21)00361-6
10.1371/journal.pone.0275983
10.1016/j.neuroimage.2006.01.015
10.1016/j.artmed.2023.102636
10.1016/S1474-4422(09)70299-6
10.2967/jnumed.121.263194
10.1001/jamaneurol.2015.2061
10.1212/WNL.0b013e31821103e6
10.1007/s11517-022-02630-z
10.1212/WNL.0000000000004058
10.1007/s00259-018-4039-7
10.1212/WNL.0000000000009760
10.1016/j.jalz.2011.03.005
10.1016/j.jneumeth.2016.03.001
10.1002/ana.410420114
10.1007/s10072-018-3685-7
10.1055/s-0039-1681041
10.1007/s00406-022-01439-z
10.1016/S2468-2667(21)00249-8
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024. The Author(s)
Attribution
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Author(s)
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
DOA
DOI 10.1016/j.neuroimage.2024.120530
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_a96f3c5f266b4b65b12a0d9cb8088f63
oai_HAL_hal_04579197v1
38311126
10_1016_j_neuroimage_2024_120530
S1053811924000259
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABMYL
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c609t-e8bcad8db0e2010360b9e006bcd5b7c55f966b1d9d6abf4620cddddad90f289b3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:28:34 EDT 2025
Fri May 16 00:31:28 EDT 2025
Fri Jul 11 12:33:35 EDT 2025
Sat Aug 23 13:02:32 EDT 2025
Thu Apr 03 07:02:38 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 03:02:28 EDT 2025
Sat Mar 16 16:12:22 EDT 2024
Tue Aug 26 17:21:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Frontotemporal dementia
Alzheimer's disease
Convolutional neural network
FDG PET
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-e8bcad8db0e2010360b9e006bcd5b7c55f966b1d9d6abf4620cddddad90f289b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3300-3836
0000-0002-3993-3954
0000-0002-4386-6045
0000-0002-6630-394X
OpenAccessLink https://doaj.org/article/a96f3c5f266b4b65b12a0d9cb8088f63
PMID 38311126
PQID 2928580677
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_a96f3c5f266b4b65b12a0d9cb8088f63
hal_primary_oai_HAL_hal_04579197v1
proquest_miscellaneous_2922450441
proquest_journals_2928580677
pubmed_primary_38311126
crossref_primary_10_1016_j_neuroimage_2024_120530
crossref_citationtrail_10_1016_j_neuroimage_2024_120530
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120530
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationSeriesTitle NeuroImage
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Minoshima, Giordani, Berent, Frey, Foster, Kuhl (bib0028) 1997; 42
Xia, Lu, Wen, Eberl, Fulham, Feng (bib0043) 2014; 2014
Castelnovo, Caminiti, Riva, Magnani, Silani, Perani (bib0006) 2019; 40
Minoshima, Mosci, Cross, Thientunyakit (bib0029) 2021; 51
Devenney, Bartley, Hoon, O'Callaghan, Kumfor, Hornberger, Kwok, Halliday, Kiernan, Piguet, Hodges (bib0009) 2015; 72
Gorno-Tempini, Hillis, Weintraub, Kertesz, Mendez, Cappa, Ogar, Rohrer, Black, Boeve, Manes, Dronkers, Vandenberghe, Rascovsky, Patterson, Miller, Knopman, Hodges, Mesulam, Grossman (bib0016) 2011; 76
Minoshima, Cross, Thientunyakit, Foster, Drzezga (bib0027) 2022; 63
Bejanin, Tammewar, Marx, Cobigo, Iaccarino, Kornak, Staffaroni, Dickerson, Boeve, Knopman, Gorno-Tempini, Miller, Jagust, Boxer, Rosen, Rabinovici (bib0003) 2020; 95
Perini, Rodriguez-Vieitez, Kadir, Sala, Savitcheva, Nordberg (bib0034) 2021; 48
Bloudek, Spackman, Blankenburg, Sullivan (bib0004) 2011; 26
McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib0026) 2020; 577
Arbizu, Festari, Altomare, Walker, Bouwman, Rivolta, Orini, Barthel, Agosta, Drzezga, Nestor, Boccardi, Frisoni, Nobili, Disorders (bib0001) 2018; 45
Contador, Vargas-Martinez, Sanchez-Valle, Trapero-Bertran, Llado (bib0008) 2023; 273
Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib0020) 2010; 9
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0039) 2017
Zeiler, Fergus (bib0045) 2014
Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao, Zhang (bib0019) 2020; 14
Diehl-Schmid, Licata, Goldhardt, Forstl, Yakushew, Otto, Anderl-Straub, Beer, Ludolph, Landwehrmeyer, Levin, Danek, Fliessbach, Spottke, Fassbender, Lyros, Prudlo, Krause, Volk, Edbauer, Schroeter, Drzezga, Kornhuber, Lauer, Group, Grimmer (bib0010) 2019; 9
Garcia-Gutierrez, Diaz-Alvarez, Matias-Guiu, Pytel, Matias-Guiu, Cabrera-Martin, Ayala (bib0015) 2022; 60
Jo, Nho, Saykin (bib0021) 2019; 11
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter, Alzheimer's Disease Neuroimaging (bib0012) 2013; 212
McKeith, Boeve, Dickson, Halliday, Taylor, Weintraub, Aarsland, Galvin, Attems, Ballard, Bayston, Beach, Blanc, Bohnen, Bonanni, Bras, Brundin, Burn, Chen-Plotkin, Duda, El-Agnaf, Feldman, Ferman, Ffytche, Fujishiro, Galasko, Goldman, Gomperts, Graff-Radford, Honig, Iranzo, Kantarci, Kaufer, Kukull, Lee, Leverenz, Lewis, Lippa, Lunde, Masellis, Masliah, McLean, Mollenhauer, Montine, Moreno, Mori, Murray, O'Brien, Orimo, Postuma, Ramaswamy, Ross, Salmon, Singleton, Taylor, Thomas, Tiraboschi, Toledo, Trojanowski, Tsuang, Walker, Yamada, Kosaka (bib0024) 2017; 89
Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike, Hillis, Josephs, Boeve, Kertesz, Seeley, Rankin, Johnson, Gorno-Tempini, Rosen, Prioleau-Latham, Lee, Kipps, Lillo, Piguet, Rohrer, Rossor, Warren, Fox, Galasko, Salmon, Black, Mesulam, Weintraub, Dickerson, Diehl-Schmid, Pasquier, Deramecourt, Lebert, Pijnenburg, Chow, Manes, Grafman, Cappa, Freedman, Grossman, Miller (bib0036) 2011; 134
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0044) 2006; 31
Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow, DeKosky, Gauthier, Selkoe, Bateman, Cappa, Crutch, Engelborghs, Frisoni, Fox, Galasko, Habert, Jicha, Nordberg, Pasquier, Rabinovici, Robert, Rowe, Salloway, Sarazin, Epelbaum, de Souza, Vellas, Visser, Schneider, Stern, Scheltens, Cummings (bib0011) 2014; 13
Nichols, Steinmetz, Vollset, Fukutaki, Chalek, Abd-Allah, Abdoli, Abualhasan, Abu-Gharbieh, Akram (bib0032) 2022; 7
Forster, Buschert, Buchholz, Teipel, Friese, Zach, la Fougere, Rominger, Drzezga, Hampel, Bartenstein, Buerger (bib0014) 2011; 25
Teunissen, Verberk, Thijssen, Vermunt, Hansson, Zetterberg, van der Flier, Mielke, Del Campo (bib0041) 2022; 21
Nemoto, Sakaguchi, Kasai, Hotta, Kamei, Noguchi, Minamimoto, Arai, Asada (bib0030) 2021; 31
Olney, Spina, Miller (bib0033) 2017; 35
Balestriero, Bottou, LeCun (bib0002) 2022; 35
Chetelat, Arbizu, Barthel, Garibotto, Law, Morbelli, van de Giessen, Agosta, Barkhof, Brooks, Carrillo, Dubois, Fjell, Frisoni, Hansson, Herholz, Hutton, Jack, Lammertsma, Landau, Minoshima, Nobili, Nordberg, Ossenkoppele, Oyen, Perani, Rabinovici, Scheltens, Villemagne, Zetterberg, Drzezga (bib0007) 2020; 19
Hao, Liu, Li, Wu, Li, Gao, Yuan, Li, Li, Yang, Fan (bib0018) 2022; 17
Li, Morgan, Ashburner, Smith, Rorden (bib0022) 2016; 264
Scheltens, van der Weijden, Adriaanse, van Assema, Oomen, Krudop, Lammertsma, Barkhof, Koene, Teunissen, Scheltens, van der Flier, Pijnenburg, Yaqub, Ossenkoppele, van Berckel (bib0038) 2018; 19
Nguyen, Clement, Planche, Mansencal, Coupe (bib0031) 2023; 144
Brucher, Mandegaran, Filleron, Wagner (bib0005) 2015; 29
Guedj, Varrone, Boellaard, Albert, Barthel, van Berckel, Brendel, Cecchin, Ekmekcioglu, Garibotto, Lammertsma, Law, Penuelas, Semah, Traub-Weidinger, van de Giessen, Van Weehaeghe, Morbelli (bib0017) 2022; 49
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib0025) 2011; 7
Sadeghi, Foster, Wang, Minoshima, Lieberman, Tasdizen (bib0037) 2008
Villain, Dubois (bib0042) 2019; 39
Perovnik, Vo, Nguyen, Jamsek, Rus, Tang, Trost, Eidelberg (bib0035) 2022; 14
Etminani, Soliman, Davidsson, Chang, Martinez-Sanchis, Byttner, Camacho, Bauckneht, Stegeran, Ressner, Agudelo-Cifuentes, Chincarini, Brendel, Rominger, Bruffaerts, Vandenberghe, Kramberger, Trost, Nicastro, Frisoni, Lemstra, van Berckel, Pilotto, Padovani, Morbelli, Aarsland, Nobili, Garibotto, Ochoa-Figueroa (bib0013) 2022; 49
McInnes, L., Healy, J., Melville, J., 2018. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
Forster (10.1016/j.neuroimage.2024.120530_bib0014) 2011; 25
Devenney (10.1016/j.neuroimage.2024.120530_bib0009) 2015; 72
Sadeghi (10.1016/j.neuroimage.2024.120530_bib0037) 2008
Minoshima (10.1016/j.neuroimage.2024.120530_bib0029) 2021; 51
10.1016/j.neuroimage.2024.120530_bib0023
Zeiler (10.1016/j.neuroimage.2024.120530_bib0045) 2014
Nguyen (10.1016/j.neuroimage.2024.120530_bib0031) 2023; 144
Rascovsky (10.1016/j.neuroimage.2024.120530_bib0036) 2011; 134
Etminani (10.1016/j.neuroimage.2024.120530_bib0013) 2022; 49
McKinney (10.1016/j.neuroimage.2024.120530_bib0026) 2020; 577
Balestriero (10.1016/j.neuroimage.2024.120530_bib0002) 2022; 35
Yushkevich (10.1016/j.neuroimage.2024.120530_bib0044) 2006; 31
Castelnovo (10.1016/j.neuroimage.2024.120530_bib0006) 2019; 40
Hu (10.1016/j.neuroimage.2024.120530_bib0019) 2020; 14
Arbizu (10.1016/j.neuroimage.2024.120530_bib0001) 2018; 45
Nemoto (10.1016/j.neuroimage.2024.120530_bib0030) 2021; 31
Perini (10.1016/j.neuroimage.2024.120530_bib0034) 2021; 48
Hao (10.1016/j.neuroimage.2024.120530_bib0018) 2022; 17
Scheltens (10.1016/j.neuroimage.2024.120530_bib0038) 2018; 19
Dubois (10.1016/j.neuroimage.2024.120530_bib0011) 2014; 13
Olney (10.1016/j.neuroimage.2024.120530_bib0033) 2017; 35
Bejanin (10.1016/j.neuroimage.2024.120530_bib0003) 2020; 95
Guedj (10.1016/j.neuroimage.2024.120530_bib0017) 2022; 49
McKeith (10.1016/j.neuroimage.2024.120530_bib0024) 2017; 89
Bloudek (10.1016/j.neuroimage.2024.120530_bib0004) 2011; 26
Diehl-Schmid (10.1016/j.neuroimage.2024.120530_bib0010) 2019; 9
Jo (10.1016/j.neuroimage.2024.120530_bib0021) 2019; 11
Xia (10.1016/j.neuroimage.2024.120530_bib0043) 2014; 2014
Jack (10.1016/j.neuroimage.2024.120530_bib0020) 2010; 9
Li (10.1016/j.neuroimage.2024.120530_bib0022) 2016; 264
Minoshima (10.1016/j.neuroimage.2024.120530_bib0027) 2022; 63
Minoshima (10.1016/j.neuroimage.2024.120530_bib0028) 1997; 42
Chetelat (10.1016/j.neuroimage.2024.120530_bib0007) 2020; 19
Nichols (10.1016/j.neuroimage.2024.120530_bib0032) 2022; 7
McKhann (10.1016/j.neuroimage.2024.120530_bib0025) 2011; 7
10.1016/j.neuroimage.2024.120530_bib0040
Brucher (10.1016/j.neuroimage.2024.120530_bib0005) 2015; 29
Contador (10.1016/j.neuroimage.2024.120530_bib0008) 2023; 273
Villain (10.1016/j.neuroimage.2024.120530_bib0042) 2019; 39
Dukart (10.1016/j.neuroimage.2024.120530_bib0012) 2013; 212
Perovnik (10.1016/j.neuroimage.2024.120530_bib0035) 2022; 14
Gorno-Tempini (10.1016/j.neuroimage.2024.120530_bib0016) 2011; 76
Garcia-Gutierrez (10.1016/j.neuroimage.2024.120530_bib0015) 2022; 60
Selvaraju (10.1016/j.neuroimage.2024.120530_bib0039) 2017
Teunissen (10.1016/j.neuroimage.2024.120530_bib0041) 2022; 21
References_xml – volume: 26
  start-page: 627
  year: 2011
  end-page: 645
  ident: bib0004
  article-title: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 51
  start-page: 230
  year: 2021
  end-page: 240
  ident: bib0029
  article-title: Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer's disease and other types of dementing disorders
  publication-title: Semin. Nucl. Med.
– volume: 19
  start-page: 625
  year: 2018
  end-page: 632
  ident: bib0038
  article-title: Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer's disease
  publication-title: Neuroimage Clin.
– volume: 212
  start-page: 230
  year: 2013
  end-page: 236
  ident: bib0012
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res.
– volume: 7
  start-page: e105
  year: 2022
  end-page: e125
  ident: bib0032
  article-title: Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet Public Health
– volume: 72
  start-page: 1501
  year: 2015
  end-page: 1509
  ident: bib0009
  article-title: Progression in behavioral variant frontotemporal dementia: a longitudinal study
  publication-title: JAMa Neurol.
– volume: 63
  start-page: 2S
  year: 2022
  end-page: 12S
  ident: bib0027
  article-title: (18)F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies
  publication-title: J. Nucl. Med.
– volume: 29
  start-page: 233
  year: 2015
  end-page: 239
  ident: bib0005
  article-title: Measurement of inter- and intra-observer variability in the routine clinical interpretation of brain 18-FDG PET-CT
  publication-title: Ann. Nucl. Med.
– volume: 19
  start-page: 951
  year: 2020
  end-page: 962
  ident: bib0007
  article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  publication-title: Lancet Neurol.
– volume: 9
  start-page: 54
  year: 2019
  ident: bib0010
  article-title: FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations
  publication-title: Transl. Psychiatry
– volume: 49
  start-page: 632
  year: 2022
  end-page: 651
  ident: bib0017
  article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
– volume: 14
  year: 2022
  ident: bib0035
  article-title: Automated differential diagnosis of dementia syndromes using FDG PET and machine learning
  publication-title: Front. Aging Neurosci.
– volume: 31
  start-page: 579
  year: 2021
  end-page: 587
  ident: bib0030
  article-title: Differentiating dementia with Lewy bodies and Alzheimer's disease by deep learning to structural MRI
  publication-title: J. Neuroimaging
– volume: 35
  start-page: 37878
  year: 2022
  end-page: 37891
  ident: bib0002
  article-title: The effects of regularization and data augmentation are class dependent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 563
  year: 2022
  end-page: 584
  ident: bib0013
  article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
– volume: 89
  start-page: 88
  year: 2017
  end-page: 100
  ident: bib0024
  article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium
  publication-title: Neurology
– volume: 42
  start-page: 85
  year: 1997
  end-page: 94
  ident: bib0028
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 134
  start-page: 2456
  year: 2011
  end-page: 2477
  ident: bib0036
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
– volume: 76
  start-page: 1006
  year: 2011
  end-page: 1014
  ident: bib0016
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
– volume: 45
  start-page: 1497
  year: 2018
  end-page: 1508
  ident: bib0001
  article-title: Clinical utility of FDG-PET for the clinical diagnosis in MCI
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
– reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– volume: 264
  year: 2016
  ident: bib0022
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Methods
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bib0025
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National institute on aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib0045
  article-title: Visualizing and understanding convolutional networks
  publication-title: Computer Vision – ECCV 2014
– volume: 577
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib0026
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0039
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 144
  year: 2023
  ident: bib0031
  article-title: Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia
  publication-title: Artif. Intell. Med.
– volume: 60
  start-page: 2737
  year: 2022
  end-page: 2756
  ident: bib0015
  article-title: GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer's disease and frontotemporal dementia using genetic algorithms
  publication-title: Med. Biol. Eng. Comput.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bib0044
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– start-page: 408
  year: 2008
  end-page: 411
  ident: bib0037
  article-title: Automatic classification of Alzheimer's disease vs. Frontotemporal dementia: a spatial decision tree approach with FDG-PET
  publication-title: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– volume: 273
  start-page: 243
  year: 2023
  end-page: 252
  ident: bib0008
  article-title: Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 39
  start-page: 213
  year: 2019
  end-page: 226
  ident: bib0042
  article-title: Alzheimer's disease including focal presentations
  publication-title: Semin. Neurol.
– volume: 14
  year: 2020
  ident: bib0019
  article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease
  publication-title: Front. Neurosci.
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bib0020
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
– reference: McInnes, L., Healy, J., Melville, J., 2018. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
– volume: 48
  start-page: 612
  year: 2021
  end-page: 622
  ident: bib0034
  article-title: Clinical impact of (18)F-FDG-PET among memory clinic patients with uncertain diagnosis
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
– volume: 21
  start-page: 66
  year: 2022
  end-page: 77
  ident: bib0041
  article-title: Blood-based biomarkers for Alzheimer's disease: towards clinical implementation
  publication-title: Lancet Neurol.
– volume: 17
  year: 2022
  ident: bib0018
  article-title: Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China
  publication-title: PLoS One
– volume: 95
  start-page: e140
  year: 2020
  end-page: e154
  ident: bib0003
  article-title: Longitudinal structural and metabolic changes in frontotemporal dementia
  publication-title: Neurology
– volume: 40
  start-page: 515
  year: 2019
  end-page: 521
  ident: bib0006
  article-title: Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation
  publication-title: Neurol. Sci.
– volume: 25
  start-page: 695
  year: 2011
  end-page: 706
  ident: bib0014
  article-title: Effects of a 6-month cognitive intervention program on brain metabolism in amnestic mild cognitive impairment and mild Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 11
  start-page: 220
  year: 2019
  ident: bib0021
  article-title: Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data
  publication-title: Front. Aging Neurosci.
– volume: 35
  start-page: 339
  year: 2017
  end-page: 374
  ident: bib0033
  article-title: Frontotemporal dementia
  publication-title: Neurol. Clin.
– volume: 13
  start-page: 614
  year: 2014
  end-page: 629
  ident: bib0011
  article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria
  publication-title: Lancet Neurol.
– volume: 2014
  year: 2014
  ident: bib0043
  article-title: Automated identification of dementia using FDG-PET imaging
  publication-title: Biomed Res. Int.
– volume: 14
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120530_bib0019
  article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease
  publication-title: Front. Neurosci.
– volume: 134
  start-page: 2456
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120530_bib0036
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 19
  start-page: 625
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120530_bib0038
  article-title: Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer's disease
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.05.024
– volume: 19
  start-page: 951
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120530_bib0007
  article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(20)30314-8
– volume: 577
  start-page: 89
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120530_bib0026
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 25
  start-page: 695
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120530_bib0014
  article-title: Effects of a 6-month cognitive intervention program on brain metabolism in amnestic mild cognitive impairment and mild Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-100996
– volume: 9
  start-page: 54
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120530_bib0010
  article-title: FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-019-0381-1
– volume: 26
  start-page: 627
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120530_bib0004
  article-title: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-110458
– volume: 35
  start-page: 339
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120530_bib0033
  article-title: Frontotemporal dementia
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2017.01.008
– volume: 48
  start-page: 612
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120530_bib0034
  article-title: Clinical impact of (18)F-FDG-PET among memory clinic patients with uncertain diagnosis
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
  doi: 10.1007/s00259-020-04969-7
– start-page: 618
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120530_bib0039
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– ident: 10.1016/j.neuroimage.2024.120530_bib0023
  doi: 10.21105/joss.00861
– volume: 2014
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120530_bib0043
  article-title: Automated identification of dementia using FDG-PET imaging
  publication-title: Biomed Res. Int.
  doi: 10.1155/2014/421743
– volume: 212
  start-page: 230
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120530_bib0012
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2012.04.007
– start-page: 408
  year: 2008
  ident: 10.1016/j.neuroimage.2024.120530_bib0037
  article-title: Automatic classification of Alzheimer's disease vs. Frontotemporal dementia: a spatial decision tree approach with FDG-PET
– volume: 51
  start-page: 230
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120530_bib0029
  article-title: Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer's disease and other types of dementing disorders
  publication-title: Semin. Nucl. Med.
  doi: 10.1053/j.semnuclmed.2021.01.002
– volume: 31
  start-page: 579
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120530_bib0030
  article-title: Differentiating dementia with Lewy bodies and Alzheimer's disease by deep learning to structural MRI
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12835
– start-page: 818
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120530_bib0045
  article-title: Visualizing and understanding convolutional networks
– volume: 49
  start-page: 563
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0013
  article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
  doi: 10.1007/s00259-021-05483-0
– volume: 11
  start-page: 220
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120530_bib0021
  article-title: Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2019.00220
– volume: 13
  start-page: 614
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120530_bib0011
  article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70090-0
– volume: 14
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0035
  article-title: Automated differential diagnosis of dementia syndromes using FDG PET and machine learning
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.1005731
– volume: 29
  start-page: 233
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120530_bib0005
  article-title: Measurement of inter- and intra-observer variability in the routine clinical interpretation of brain 18-FDG PET-CT
  publication-title: Ann. Nucl. Med.
  doi: 10.1007/s12149-014-0932-8
– ident: 10.1016/j.neuroimage.2024.120530_bib0040
– volume: 49
  start-page: 632
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0017
  article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
  doi: 10.1007/s00259-021-05603-w
– volume: 21
  start-page: 66
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0041
  article-title: Blood-based biomarkers for Alzheimer's disease: towards clinical implementation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00361-6
– volume: 17
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0018
  article-title: Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0275983
– volume: 31
  start-page: 1116
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120530_bib0044
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 144
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120530_bib0031
  article-title: Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102636
– volume: 9
  start-page: 119
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120530_bib0020
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 63
  start-page: 2S
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0027
  article-title: (18)F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.121.263194
– volume: 72
  start-page: 1501
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120530_bib0009
  article-title: Progression in behavioral variant frontotemporal dementia: a longitudinal study
  publication-title: JAMa Neurol.
  doi: 10.1001/jamaneurol.2015.2061
– volume: 76
  start-page: 1006
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120530_bib0016
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821103e6
– volume: 60
  start-page: 2737
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0015
  article-title: GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer's disease and frontotemporal dementia using genetic algorithms
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02630-z
– volume: 89
  start-page: 88
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120530_bib0024
  article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004058
– volume: 45
  start-page: 1497
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120530_bib0001
  article-title: Clinical utility of FDG-PET for the clinical diagnosis in MCI
  publication-title: Eur. J. Nucl. Med. Mol. ImAging
  doi: 10.1007/s00259-018-4039-7
– volume: 35
  start-page: 37878
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0002
  article-title: The effects of regularization and data augmentation are class dependent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 95
  start-page: e140
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120530_bib0003
  article-title: Longitudinal structural and metabolic changes in frontotemporal dementia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009760
– volume: 7
  start-page: 263
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120530_bib0025
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National institute on aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.005
– volume: 264
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120530_bib0022
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.03.001
– volume: 42
  start-page: 85
  year: 1997
  ident: 10.1016/j.neuroimage.2024.120530_bib0028
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410420114
– volume: 40
  start-page: 515
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120530_bib0006
  article-title: Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-018-3685-7
– volume: 39
  start-page: 213
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120530_bib0042
  article-title: Alzheimer's disease including focal presentations
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0039-1681041
– volume: 273
  start-page: 243
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120530_bib0008
  article-title: Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-022-01439-z
– volume: 7
  start-page: e105
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120530_bib0032
  article-title: Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00249-8
SSID ssj0009148
Score 2.485398
Snippet •Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A...
With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks...
SourceID doaj
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120530
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Artificial intelligence
Autopsies
Biomarkers
Brain - diagnostic imaging
Brain mapping
Brain research
Cerebral blood flow
Classification
Cognitive science
Convolutional neural network
Deep learning
Dementia
Dementia disorders
FDG PET
Fluorodeoxyglucose F18
Frontotemporal dementia
Frontotemporal Dementia - diagnostic imaging
Glucose metabolism
Humans
Image processing
Ischemia
Magnetic resonance imaging
Medical imaging
Metabolism
Neural networks
Neural Networks, Computer
Neurodegeneration
Neurodegenerative diseases
Neuroimaging
Positron emission tomography
Positron-Emission Tomography - methods
Retrospective Studies
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgD4gL4k3YBRmExIVAnIdji1Nht1SIRRx2pb1Z8YsN6rarpkVafga_mBnHCfSA6IFeKqWexPV89owz428IeeFFwY2rqrSx0mAJM5Zqo3XqWW18YYU0Eg8nH3_ms9Py41l19kepL8wJ6-mB-4F700juC1N5MCS61LzSLG8yuK8WMD88DzyfYPOGzdRAtwtefszb6bO5AjtkewFzFPaEefma5YC-bMsYBc7-LZt0_RyTI__meQYLNL1NbkXXkU76Lt8h19ziLrlxHIPj98jPCS0OKaaRRzhBY-xQ-ArJ3nS9pAbd5dZf0W6j8R1MR5uOTuY_zl174VYvOxpDNq-oD9wGkbtqTm14kdg2dLmi_enJKxoT3TuK6fNfqcZ6E5SJaTo9_EC_HJ3cJ6fTo5P3szSWXEgNz-Q6dUKbxgqrM4dh8oJnWjqYmNrYStemqjxsjzSz0vJG-5LnmbHwAUVnHrZuunhA9hbLhXtEaCNKqUGAcYPBwkYKbzNnuAVkcF3IhNTD2CsT-cixLMZcDYln39RvrSnUmuq1lhA2Sl72nBw7yLxD9Y7tkVU7XACsqYg19S-sJUQO4FDDwVVYauFG7Q4deDvKRuemd1p2lH4OWNzq_WzySeE18MlryWT9nSXkYICqiitRp3KZi0ogT2BCno0_wxqCgaFm4Zab0CYvqww844Q87CE-PqoQBcNjZo__xwDuk5v4p_ocvgOyt15t3BNw6tb6aZi_vwDsAUyv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGHhAviG8CAxmExAtZ4yR2bPFUtpUKMYTEJu0tir-2TF0zNS3SeOCP4C_mLnE69QGpEn2J6ty1p9z5fM797kzIOy8zYRzncWWVwSPMWKyN1rFnhfGZlcooLE4-_iamp_mXM362Qw6GWhiEVQbf3_v0zluHkVF4mqPruh79gMgAlhvcQOC05ljEl-cFWvn-71uYh2J5Xw7HsxipA5qnx3h1PSPrK5i5sFNM832WAlmysUR1nfw3Vqo7FwiZ_Fc82q1Lkwfkfggo6biX-SHZcfNH5O5xSJk_Jn_GNDukCC4PRgbEKFB36SDgdNlQg0F07W9ou9L4ZqalVUvHs18Xrr5yi_ctDYmcD9R3HQ9CR6sZtd3rxbqizYL2NZU3NMDfW4qg-nOq8RQKyuQknhx-pt-PTp6Q08nRycE0DgcxxEYkahk7qU1lpdWJw-R5JhKtHExXbSzXheHcw6ZJM6usqLTPRZoYCx9Qf-JhQ6ezp2R33szdc0IrmSsNDEwYTCFWSnqbOCMs2IvQmYpIMTz70oQu5XhYxqwc4GiX5a3WStRa2WstImzNed136tiC5xOqd02Pvba7gWZxXgZjKyslfGa4h1BG51pwzdIqAcvWEjy0F1lE1GAc5VDOCg4YfqjeQoCPa94Ns9-S-y3Y4ob00_HXEscgUi8UU8VPFpG9wVTL4J_aMlWp5BK7B0bkzfo2eBZMF1Vz16w6mjTnCcTLEXnWm_j6rzKZMSw-e_Ff8r8k9_BbD-nbI7vLxcq9ghhvqV93k_gvWO5REg
  priority: 102
  providerName: Elsevier
Title A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924000259
https://dx.doi.org/10.1016/j.neuroimage.2024.120530
https://www.ncbi.nlm.nih.gov/pubmed/38311126
https://www.proquest.com/docview/2928580677
https://www.proquest.com/docview/2922450441
https://hal.univ-lille.fr/hal-04579197
https://doaj.org/article/a96f3c5f266b4b65b12a0d9cb8088f63
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1GKbhHhB3BcYlUFIvJAR5-LY4gF1rKVcVk1ok_oWxXa8FXXNaFqk8cBH8MWc47it-gBqXiKl56RWzsXH50rIKysSrqssC0sjNY4wY6HSSoWW5domRkgtsTj5ZMgH5-nnUTbyDrfGp1UudaJT1KbW6CN_G8tYZAL7nb2__hHi1CiMrvoRGjtkD1uXIVfno3zddJelbSlcloQCAHwmT5vf5fpFjq9AauGUGKeHLAawaGN7cl38N3apnUtMl_yXLer2pP49ctcbk7TbUv8-uVVNH5DbJz5c_pD86dLkmGJiuWcwAMYFuZtL_6bzmmo0oMf2hjYLhV6ZhpYN7U5-XVbjq2r2uqE-iPOGWtftwHezmlDjXIvjktYz2tZT3lCf-t5QTKi_oAonUFAm-mH_-CM97Z09Iuf93tmHQeiHMISaR3IeVkLp0gijogoD5wmPlKxAVJU2mcp1llk4MClmpOGlsimPI23gAtJHFg5zKnlMdqf1tNontBSpVIDAuMbwYSmFNVGluQFe4SqRAcmX377QvkM5DsqYFMtUtO_FmmoFUq1oqRYQtsK8brt0bIFzhORdwWOfbfegnl0UXmyLUnKb6MyCGaNSxTPF4jICrlYCtLPlSUDkkjmKZSkrKF940XiLBbxb4XpzpzVjtsR-Cby4sfpB92uBz8BKzyWT-U8WkIMlqxZeNzXFWpIC8mL1M2gVDBWV06peOJg4zSKwlQPypGXx1V8lImFYePb0_y9_Ru7gctt8vQOyO58tqudgwM1Vh-wc_mYdJ6sdstf99GUwhPtRb3j6reOcIn8BmZtLHA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbaIgEXxJtAAYNAXFhY79tCCAXSkNKk4tBKubnrVxuUZks2AYWfwQ_hNzKz602UAyiX5hJpYztOZjwPzzczhLywWZgoE8derrnCFmbMk0pKz7JU2VBnXHFMTh4cJr3j6MswHm6RP00uDMIqG5lYCWpdKLwjfxvwIIszrHf24eK7h12jMLratNCo2eLALH6Cy1a-3-8AfV8GQXfv6FPPc10FPJX4fOaZTKpcZ1r6BiPBYeJLboD3pNKxTFUcW_AAJNNcJ7m0URL4SsMLfotvwTuRIay7Ta6A4vXR2UuH6arIL4vq1Ls49DLGuEMO1Xiyqj7l6BykBHilQfSGBTDMX1OHVdeANa24fYbwzH_ZvpUO7N4kN5zxSts1t90iW2Zym1wduPD8HfK7TcMORSC7Y2gYjBuq3iq4OZ0VVKHBPrILWs4l3gKVNC9pe_zrzIzOzfRVSV3Q6DW1VXUFVz1rTHV1lTnKaTGldf7mgjqofUkRwH9KJXa8oCzret3OZ_p17-guOb4U8twjO5NiYh4QmmcRlzCBJQrDlTnPrPaNSjTwZiJD3iJp898L5SqiY2OOsWigb9_EimoCqSZqqrUIW868qKuCbDDnI5J3OR7relcPiumpcGJC5DyxoYotmE0ykkksWZD7cIpkBtrAJmGL8IY5RJM6C8IeFhptsIF3y7nOvKrNpg1nPwdeXNt9r90X-Ay8gpQznv5gLbLbsKpwsrAUq5PbIs-WH4MUw9BUPjHFvBoTRLEPtnmL3K9ZfPlVYRYyTHR7-P_Fn5JrvaNBX_T3Dw8ekeu49RoruEt2ZtO5eQzG40w-qU4sJSeXLSL-AhBEhSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe2Tpp4QfwnMMAgEC-Exfnj2EIIdbSlY1s1oU3aW4ideCvqmtG0oPIx-Dh8Ou4Sp1UfQH1ZXyqlPtftnc93vt_dEfLSiIDrPIrcNJMaW5gxV2mlXMNibYJMSC0xOflowPun4eez6GyD_GlyYRBW2ejESlFnhcY78l1f-iISWO9s11hYxHGn9-Hqu4sdpDDS2rTTqEXkIJ__BPetfL_fAV6_8v1e9-Rj37UdBlzNPTl1c6F0molMeTlGhQPuKZmDHCqdRSrWUWTAG1AskxlPlQm57-kMXvC7PAOeigpg3k2yFaNX1CJbe93B8ZdlyV8W1ol4UeAKxqTFEdXosqpa5fASdAb4qH74lvkwzFs5HKseAitn5OYFgjX_ZQlXJ2LvFrlpTVnarmXvNtnIx3fI9pEN1t8lv9s06FCEtVvxhsG4oOqtAp_TaUE1mu9DM6flTOGdUEnTkrZHvy7y4WU-eV1SG0J6Q01Va8HW0hrRrLrYHKa0mNA6m3NOLfC-pAjnP6cK-19QJnpur_OJHndP7pHTa2HQfdIaF-P8IaGpCKUCAsY1Bi9TKUzm5ZpnIKlcBdIhcfPfJ9rWR8c2HaOkAcJ9S5ZcS5BrSc01h7AF5VVdI2QNmj1k72I8VvmuHhST88QqjSSV3AQ6MmBEqVDxSDE_9WBPKQFng-GBQ2QjHEmTSAuqHyYarrGAdwtaa2zVRtSa1C9AFldW328fJvgMfIRYMhn_YA7ZaUQ1sZqxTJb72CHPFx-DTsNAVTrOi1k1xg8jDyx1hzyoRXzxVYEIGKa9Pfr_5M_INqiH5HB_cPCY3MCV18DBHdKaTmb5E7Akp-qp3bKUfL1uLfEXwNCKww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+convolutional+neural+network+to+classify+subjects+as+Alzheimer%27s+disease%2C+frontotemporal+dementia+or+healthy+controls+using+brain+18F-FDG+PET&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Rogeau%2C+Antoine&rft.au=Hives%2C+Florent&rft.au=Bordier%2C+C%C3%A9cile&rft.au=Lahousse%2C+H%C3%A9l%C3%A8ne&rft.date=2024-03-01&rft.issn=1053-8119&rft.volume=288&rft.spage=120530&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2024_120530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon