A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET
•Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predic...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 288; p. 120530 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2024
Elsevier Limited Elsevier |
Series | NeuroImage |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predicting the class of test scans.•The posterior cingulate cortex (PCC) for AD and anterior regions for FTD were key regions in the classification process.•The findings suggest the potential for integrating deep learning tools into clinical practice for more accurate and objective neurodegenerative disease diagnosis using [18F]-FDG-PET scans.
With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49–0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers. |
---|---|
AbstractList | With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers. •Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A tailor-made 3D VGG16-like network outperforms clinical interpretation by specialist physicians, achieving an overall accuracy of 89.8 % in predicting the class of test scans.•The posterior cingulate cortex (PCC) for AD and anterior regions for FTD were key regions in the classification process.•The findings suggest the potential for integrating deep learning tools into clinical practice for more accurate and objective neurodegenerative disease diagnosis using [18F]-FDG-PET scans. With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49–0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers. With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers. |
ArticleNumber | 120530 |
Author | Lahousse, Hélène Semah, Franck Pasquier, Florence Rogeau, Antoine Huglo, Damien Hives, Florent Roca, Vincent Lopes, Renaud Bordier, Cécile Lebouvier, Thibaud |
Author_xml | – sequence: 1 givenname: Antoine orcidid: 0000-0002-3993-3954 surname: Rogeau fullname: Rogeau, Antoine email: antoinerogeau2109@gmail.com organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France – sequence: 2 givenname: Florent surname: Hives fullname: Hives, Florent organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France – sequence: 3 givenname: Cécile surname: Bordier fullname: Bordier, Cécile organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France – sequence: 4 givenname: Hélène surname: Lahousse fullname: Lahousse, Hélène organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France – sequence: 5 givenname: Vincent orcidid: 0000-0002-3300-3836 surname: Roca fullname: Roca, Vincent organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France – sequence: 6 givenname: Thibaud orcidid: 0000-0002-4386-6045 surname: Lebouvier fullname: Lebouvier, Thibaud organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France – sequence: 7 givenname: Florence surname: Pasquier fullname: Pasquier, Florence organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France – sequence: 8 givenname: Damien surname: Huglo fullname: Huglo, Damien organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France – sequence: 9 givenname: Franck surname: Semah fullname: Semah, Franck organization: Department of Nuclear Medicine, Lille University Hospitals, Lille, France – sequence: 10 givenname: Renaud surname: Lopes fullname: Lopes, Renaud organization: University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38311126$$D View this record in MEDLINE/PubMed https://hal.univ-lille.fr/hal-04579197$$DView record in HAL |
BookMark | eNqNkstuEzEUhkeoiF7gFZAlFoBEgu2ZcewNIvQuRYJFWVu-nGmcOuNie4rCY_DEeJpSRFb15ljWd74j-fyH1V4feqgqRPCUYMI-rqY9DDG4tbqGKcW0mRKK2xo_qw4IFu1EtDO6N97besIJEfvVYUorjLEgDX9R7de8JoRQdlD9nqP6BJnQ3wU_ZBd65dHovi_5Z4g3KAdkvErJdRuUBr0CkxNSCc39ryW4NcS3CVmXQCX4gLoY-hwyrG_D6LCwhj47hUJES1A-LzfjsByDT2hIrr9GOirXI8LPJmcn5-jb6dXL6nmnfIJXD_Wo-n52enV8MVl8Pb88ni8mhmGRJ8C1UZZbjYFigmuGtQCMmTa21TPTtp1gTBMrLFO6axjFxpajrMAd5ULXR9Xl1muDWsnbWH4zbmRQTt4_hHgtVczOeJBKsK42bUeLsdGs1YQqbIXRHHPesbq43m9dS-X_U13MF3J8w007E0TM7khh323Z2xh-DJCyXLtkwHvVQxiSpILSpsVNM6JvdtBVGGLZ0T3FW47ZbFao1w_UoNdgH-f_3XIB-BYwMaQUoXtECJZjoORK_guUHAMlt4EqrZ92Wo3LagxKLnvzTxF82QqgrPLOQZTJOOgNWBdLkspfu6dIPu9IjHe9M8rfwOZpij-8GwOz |
CitedBy_id | crossref_primary_10_1177_13872877241302493 crossref_primary_10_1002_hsr2_70025 crossref_primary_10_1016_j_cortex_2024_07_004 crossref_primary_10_3390_cells13231965 crossref_primary_10_1007_s42979_025_03686_y crossref_primary_10_1016_j_health_2024_100362 |
Cites_doi | 10.1093/brain/awr179 10.1016/j.nicl.2018.05.024 10.1016/S1474-4422(20)30314-8 10.1038/s41586-019-1799-6 10.3233/JAD-2011-100996 10.1038/s41398-019-0381-1 10.3233/JAD-2011-110458 10.1016/j.ncl.2017.01.008 10.1007/s00259-020-04969-7 10.21105/joss.00861 10.1155/2014/421743 10.1016/j.pscychresns.2012.04.007 10.1053/j.semnuclmed.2021.01.002 10.1111/jon.12835 10.1007/s00259-021-05483-0 10.3389/fnagi.2019.00220 10.1016/S1474-4422(14)70090-0 10.3389/fnagi.2022.1005731 10.1007/s12149-014-0932-8 10.1007/s00259-021-05603-w 10.1016/S1474-4422(21)00361-6 10.1371/journal.pone.0275983 10.1016/j.neuroimage.2006.01.015 10.1016/j.artmed.2023.102636 10.1016/S1474-4422(09)70299-6 10.2967/jnumed.121.263194 10.1001/jamaneurol.2015.2061 10.1212/WNL.0b013e31821103e6 10.1007/s11517-022-02630-z 10.1212/WNL.0000000000004058 10.1007/s00259-018-4039-7 10.1212/WNL.0000000000009760 10.1016/j.jalz.2011.03.005 10.1016/j.jneumeth.2016.03.001 10.1002/ana.410420114 10.1007/s10072-018-3685-7 10.1055/s-0039-1681041 10.1007/s00406-022-01439-z 10.1016/S2468-2667(21)00249-8 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024. The Author(s) Attribution |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024. The Author(s) – notice: Attribution |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES DOA |
DOI | 10.1016/j.neuroimage.2024.120530 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_a96f3c5f266b4b65b12a0d9cb8088f63 oai_HAL_hal_04579197v1 38311126 10_1016_j_neuroimage_2024_120530 S1053811924000259 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABMYL ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES |
ID | FETCH-LOGICAL-c609t-e8bcad8db0e2010360b9e006bcd5b7c55f966b1d9d6abf4620cddddad90f289b3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:28:34 EDT 2025 Fri May 16 00:31:28 EDT 2025 Fri Jul 11 12:33:35 EDT 2025 Sat Aug 23 13:02:32 EDT 2025 Thu Apr 03 07:02:38 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 03:02:28 EDT 2025 Sat Mar 16 16:12:22 EDT 2024 Tue Aug 26 17:21:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Frontotemporal dementia Alzheimer's disease Convolutional neural network FDG PET |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-e8bcad8db0e2010360b9e006bcd5b7c55f966b1d9d6abf4620cddddad90f289b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3300-3836 0000-0002-3993-3954 0000-0002-4386-6045 0000-0002-6630-394X |
OpenAccessLink | https://doaj.org/article/a96f3c5f266b4b65b12a0d9cb8088f63 |
PMID | 38311126 |
PQID | 2928580677 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a96f3c5f266b4b65b12a0d9cb8088f63 hal_primary_oai_HAL_hal_04579197v1 proquest_miscellaneous_2922450441 proquest_journals_2928580677 pubmed_primary_38311126 crossref_primary_10_1016_j_neuroimage_2024_120530 crossref_citationtrail_10_1016_j_neuroimage_2024_120530 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120530 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationSeriesTitle | NeuroImage |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Minoshima, Giordani, Berent, Frey, Foster, Kuhl (bib0028) 1997; 42 Xia, Lu, Wen, Eberl, Fulham, Feng (bib0043) 2014; 2014 Castelnovo, Caminiti, Riva, Magnani, Silani, Perani (bib0006) 2019; 40 Minoshima, Mosci, Cross, Thientunyakit (bib0029) 2021; 51 Devenney, Bartley, Hoon, O'Callaghan, Kumfor, Hornberger, Kwok, Halliday, Kiernan, Piguet, Hodges (bib0009) 2015; 72 Gorno-Tempini, Hillis, Weintraub, Kertesz, Mendez, Cappa, Ogar, Rohrer, Black, Boeve, Manes, Dronkers, Vandenberghe, Rascovsky, Patterson, Miller, Knopman, Hodges, Mesulam, Grossman (bib0016) 2011; 76 Minoshima, Cross, Thientunyakit, Foster, Drzezga (bib0027) 2022; 63 Bejanin, Tammewar, Marx, Cobigo, Iaccarino, Kornak, Staffaroni, Dickerson, Boeve, Knopman, Gorno-Tempini, Miller, Jagust, Boxer, Rosen, Rabinovici (bib0003) 2020; 95 Perini, Rodriguez-Vieitez, Kadir, Sala, Savitcheva, Nordberg (bib0034) 2021; 48 Bloudek, Spackman, Blankenburg, Sullivan (bib0004) 2011; 26 McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib0026) 2020; 577 Arbizu, Festari, Altomare, Walker, Bouwman, Rivolta, Orini, Barthel, Agosta, Drzezga, Nestor, Boccardi, Frisoni, Nobili, Disorders (bib0001) 2018; 45 Contador, Vargas-Martinez, Sanchez-Valle, Trapero-Bertran, Llado (bib0008) 2023; 273 Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib0020) 2010; 9 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0039) 2017 Zeiler, Fergus (bib0045) 2014 Hu, Qing, Liu, Zhang, Lv, Wang, Wang, He, Gao, Zhang (bib0019) 2020; 14 Diehl-Schmid, Licata, Goldhardt, Forstl, Yakushew, Otto, Anderl-Straub, Beer, Ludolph, Landwehrmeyer, Levin, Danek, Fliessbach, Spottke, Fassbender, Lyros, Prudlo, Krause, Volk, Edbauer, Schroeter, Drzezga, Kornhuber, Lauer, Group, Grimmer (bib0010) 2019; 9 Garcia-Gutierrez, Diaz-Alvarez, Matias-Guiu, Pytel, Matias-Guiu, Cabrera-Martin, Ayala (bib0015) 2022; 60 Jo, Nho, Saykin (bib0021) 2019; 11 Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter, Alzheimer's Disease Neuroimaging (bib0012) 2013; 212 McKeith, Boeve, Dickson, Halliday, Taylor, Weintraub, Aarsland, Galvin, Attems, Ballard, Bayston, Beach, Blanc, Bohnen, Bonanni, Bras, Brundin, Burn, Chen-Plotkin, Duda, El-Agnaf, Feldman, Ferman, Ffytche, Fujishiro, Galasko, Goldman, Gomperts, Graff-Radford, Honig, Iranzo, Kantarci, Kaufer, Kukull, Lee, Leverenz, Lewis, Lippa, Lunde, Masellis, Masliah, McLean, Mollenhauer, Montine, Moreno, Mori, Murray, O'Brien, Orimo, Postuma, Ramaswamy, Ross, Salmon, Singleton, Taylor, Thomas, Tiraboschi, Toledo, Trojanowski, Tsuang, Walker, Yamada, Kosaka (bib0024) 2017; 89 Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike, Hillis, Josephs, Boeve, Kertesz, Seeley, Rankin, Johnson, Gorno-Tempini, Rosen, Prioleau-Latham, Lee, Kipps, Lillo, Piguet, Rohrer, Rossor, Warren, Fox, Galasko, Salmon, Black, Mesulam, Weintraub, Dickerson, Diehl-Schmid, Pasquier, Deramecourt, Lebert, Pijnenburg, Chow, Manes, Grafman, Cappa, Freedman, Grossman, Miller (bib0036) 2011; 134 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bib0044) 2006; 31 Dubois, Feldman, Jacova, Hampel, Molinuevo, Blennow, DeKosky, Gauthier, Selkoe, Bateman, Cappa, Crutch, Engelborghs, Frisoni, Fox, Galasko, Habert, Jicha, Nordberg, Pasquier, Rabinovici, Robert, Rowe, Salloway, Sarazin, Epelbaum, de Souza, Vellas, Visser, Schneider, Stern, Scheltens, Cummings (bib0011) 2014; 13 Nichols, Steinmetz, Vollset, Fukutaki, Chalek, Abd-Allah, Abdoli, Abualhasan, Abu-Gharbieh, Akram (bib0032) 2022; 7 Forster, Buschert, Buchholz, Teipel, Friese, Zach, la Fougere, Rominger, Drzezga, Hampel, Bartenstein, Buerger (bib0014) 2011; 25 Teunissen, Verberk, Thijssen, Vermunt, Hansson, Zetterberg, van der Flier, Mielke, Del Campo (bib0041) 2022; 21 Nemoto, Sakaguchi, Kasai, Hotta, Kamei, Noguchi, Minamimoto, Arai, Asada (bib0030) 2021; 31 Olney, Spina, Miller (bib0033) 2017; 35 Balestriero, Bottou, LeCun (bib0002) 2022; 35 Chetelat, Arbizu, Barthel, Garibotto, Law, Morbelli, van de Giessen, Agosta, Barkhof, Brooks, Carrillo, Dubois, Fjell, Frisoni, Hansson, Herholz, Hutton, Jack, Lammertsma, Landau, Minoshima, Nobili, Nordberg, Ossenkoppele, Oyen, Perani, Rabinovici, Scheltens, Villemagne, Zetterberg, Drzezga (bib0007) 2020; 19 Hao, Liu, Li, Wu, Li, Gao, Yuan, Li, Li, Yang, Fan (bib0018) 2022; 17 Li, Morgan, Ashburner, Smith, Rorden (bib0022) 2016; 264 Scheltens, van der Weijden, Adriaanse, van Assema, Oomen, Krudop, Lammertsma, Barkhof, Koene, Teunissen, Scheltens, van der Flier, Pijnenburg, Yaqub, Ossenkoppele, van Berckel (bib0038) 2018; 19 Nguyen, Clement, Planche, Mansencal, Coupe (bib0031) 2023; 144 Brucher, Mandegaran, Filleron, Wagner (bib0005) 2015; 29 Guedj, Varrone, Boellaard, Albert, Barthel, van Berckel, Brendel, Cecchin, Ekmekcioglu, Garibotto, Lammertsma, Law, Penuelas, Semah, Traub-Weidinger, van de Giessen, Van Weehaeghe, Morbelli (bib0017) 2022; 49 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib0025) 2011; 7 Sadeghi, Foster, Wang, Minoshima, Lieberman, Tasdizen (bib0037) 2008 Villain, Dubois (bib0042) 2019; 39 Perovnik, Vo, Nguyen, Jamsek, Rus, Tang, Trost, Eidelberg (bib0035) 2022; 14 Etminani, Soliman, Davidsson, Chang, Martinez-Sanchis, Byttner, Camacho, Bauckneht, Stegeran, Ressner, Agudelo-Cifuentes, Chincarini, Brendel, Rominger, Bruffaerts, Vandenberghe, Kramberger, Trost, Nicastro, Frisoni, Lemstra, van Berckel, Pilotto, Padovani, Morbelli, Aarsland, Nobili, Garibotto, Ochoa-Figueroa (bib0013) 2022; 49 McInnes, L., Healy, J., Melville, J., 2018. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. Forster (10.1016/j.neuroimage.2024.120530_bib0014) 2011; 25 Devenney (10.1016/j.neuroimage.2024.120530_bib0009) 2015; 72 Sadeghi (10.1016/j.neuroimage.2024.120530_bib0037) 2008 Minoshima (10.1016/j.neuroimage.2024.120530_bib0029) 2021; 51 10.1016/j.neuroimage.2024.120530_bib0023 Zeiler (10.1016/j.neuroimage.2024.120530_bib0045) 2014 Nguyen (10.1016/j.neuroimage.2024.120530_bib0031) 2023; 144 Rascovsky (10.1016/j.neuroimage.2024.120530_bib0036) 2011; 134 Etminani (10.1016/j.neuroimage.2024.120530_bib0013) 2022; 49 McKinney (10.1016/j.neuroimage.2024.120530_bib0026) 2020; 577 Balestriero (10.1016/j.neuroimage.2024.120530_bib0002) 2022; 35 Yushkevich (10.1016/j.neuroimage.2024.120530_bib0044) 2006; 31 Castelnovo (10.1016/j.neuroimage.2024.120530_bib0006) 2019; 40 Hu (10.1016/j.neuroimage.2024.120530_bib0019) 2020; 14 Arbizu (10.1016/j.neuroimage.2024.120530_bib0001) 2018; 45 Nemoto (10.1016/j.neuroimage.2024.120530_bib0030) 2021; 31 Perini (10.1016/j.neuroimage.2024.120530_bib0034) 2021; 48 Hao (10.1016/j.neuroimage.2024.120530_bib0018) 2022; 17 Scheltens (10.1016/j.neuroimage.2024.120530_bib0038) 2018; 19 Dubois (10.1016/j.neuroimage.2024.120530_bib0011) 2014; 13 Olney (10.1016/j.neuroimage.2024.120530_bib0033) 2017; 35 Bejanin (10.1016/j.neuroimage.2024.120530_bib0003) 2020; 95 Guedj (10.1016/j.neuroimage.2024.120530_bib0017) 2022; 49 McKeith (10.1016/j.neuroimage.2024.120530_bib0024) 2017; 89 Bloudek (10.1016/j.neuroimage.2024.120530_bib0004) 2011; 26 Diehl-Schmid (10.1016/j.neuroimage.2024.120530_bib0010) 2019; 9 Jo (10.1016/j.neuroimage.2024.120530_bib0021) 2019; 11 Xia (10.1016/j.neuroimage.2024.120530_bib0043) 2014; 2014 Jack (10.1016/j.neuroimage.2024.120530_bib0020) 2010; 9 Li (10.1016/j.neuroimage.2024.120530_bib0022) 2016; 264 Minoshima (10.1016/j.neuroimage.2024.120530_bib0027) 2022; 63 Minoshima (10.1016/j.neuroimage.2024.120530_bib0028) 1997; 42 Chetelat (10.1016/j.neuroimage.2024.120530_bib0007) 2020; 19 Nichols (10.1016/j.neuroimage.2024.120530_bib0032) 2022; 7 McKhann (10.1016/j.neuroimage.2024.120530_bib0025) 2011; 7 10.1016/j.neuroimage.2024.120530_bib0040 Brucher (10.1016/j.neuroimage.2024.120530_bib0005) 2015; 29 Contador (10.1016/j.neuroimage.2024.120530_bib0008) 2023; 273 Villain (10.1016/j.neuroimage.2024.120530_bib0042) 2019; 39 Dukart (10.1016/j.neuroimage.2024.120530_bib0012) 2013; 212 Perovnik (10.1016/j.neuroimage.2024.120530_bib0035) 2022; 14 Gorno-Tempini (10.1016/j.neuroimage.2024.120530_bib0016) 2011; 76 Garcia-Gutierrez (10.1016/j.neuroimage.2024.120530_bib0015) 2022; 60 Selvaraju (10.1016/j.neuroimage.2024.120530_bib0039) 2017 Teunissen (10.1016/j.neuroimage.2024.120530_bib0041) 2022; 21 |
References_xml | – volume: 26 start-page: 627 year: 2011 end-page: 645 ident: bib0004 article-title: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 51 start-page: 230 year: 2021 end-page: 240 ident: bib0029 article-title: Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer's disease and other types of dementing disorders publication-title: Semin. Nucl. Med. – volume: 19 start-page: 625 year: 2018 end-page: 632 ident: bib0038 article-title: Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer's disease publication-title: Neuroimage Clin. – volume: 212 start-page: 230 year: 2013 end-page: 236 ident: bib0012 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res. – volume: 7 start-page: e105 year: 2022 end-page: e125 ident: bib0032 article-title: Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019 publication-title: Lancet Public Health – volume: 72 start-page: 1501 year: 2015 end-page: 1509 ident: bib0009 article-title: Progression in behavioral variant frontotemporal dementia: a longitudinal study publication-title: JAMa Neurol. – volume: 63 start-page: 2S year: 2022 end-page: 12S ident: bib0027 article-title: (18)F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies publication-title: J. Nucl. Med. – volume: 29 start-page: 233 year: 2015 end-page: 239 ident: bib0005 article-title: Measurement of inter- and intra-observer variability in the routine clinical interpretation of brain 18-FDG PET-CT publication-title: Ann. Nucl. Med. – volume: 19 start-page: 951 year: 2020 end-page: 962 ident: bib0007 article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias publication-title: Lancet Neurol. – volume: 9 start-page: 54 year: 2019 ident: bib0010 article-title: FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations publication-title: Transl. Psychiatry – volume: 49 start-page: 632 year: 2022 end-page: 651 ident: bib0017 article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3 publication-title: Eur. J. Nucl. Med. Mol. ImAging – volume: 14 year: 2022 ident: bib0035 article-title: Automated differential diagnosis of dementia syndromes using FDG PET and machine learning publication-title: Front. Aging Neurosci. – volume: 31 start-page: 579 year: 2021 end-page: 587 ident: bib0030 article-title: Differentiating dementia with Lewy bodies and Alzheimer's disease by deep learning to structural MRI publication-title: J. Neuroimaging – volume: 35 start-page: 37878 year: 2022 end-page: 37891 ident: bib0002 article-title: The effects of regularization and data augmentation are class dependent publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 563 year: 2022 end-page: 584 ident: bib0013 article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET publication-title: Eur. J. Nucl. Med. Mol. ImAging – volume: 89 start-page: 88 year: 2017 end-page: 100 ident: bib0024 article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium publication-title: Neurology – volume: 42 start-page: 85 year: 1997 end-page: 94 ident: bib0028 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease publication-title: Ann. Neurol. – volume: 134 start-page: 2456 year: 2011 end-page: 2477 ident: bib0036 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain – volume: 76 start-page: 1006 year: 2011 end-page: 1014 ident: bib0016 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology – volume: 45 start-page: 1497 year: 2018 end-page: 1508 ident: bib0001 article-title: Clinical utility of FDG-PET for the clinical diagnosis in MCI publication-title: Eur. J. Nucl. Med. Mol. ImAging – reference: Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. – volume: 264 year: 2016 ident: bib0022 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Methods – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bib0025 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National institute on aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. – start-page: 818 year: 2014 end-page: 833 ident: bib0045 article-title: Visualizing and understanding convolutional networks publication-title: Computer Vision – ECCV 2014 – volume: 577 start-page: 89 year: 2020 end-page: 94 ident: bib0026 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature – start-page: 618 year: 2017 end-page: 626 ident: bib0039 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 144 year: 2023 ident: bib0031 article-title: Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia publication-title: Artif. Intell. Med. – volume: 60 start-page: 2737 year: 2022 end-page: 2756 ident: bib0015 article-title: GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer's disease and frontotemporal dementia using genetic algorithms publication-title: Med. Biol. Eng. Comput. – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: bib0044 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – start-page: 408 year: 2008 end-page: 411 ident: bib0037 article-title: Automatic classification of Alzheimer's disease vs. Frontotemporal dementia: a spatial decision tree approach with FDG-PET publication-title: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro – volume: 273 start-page: 243 year: 2023 end-page: 252 ident: bib0008 article-title: Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 39 start-page: 213 year: 2019 end-page: 226 ident: bib0042 article-title: Alzheimer's disease including focal presentations publication-title: Semin. Neurol. – volume: 14 year: 2020 ident: bib0019 article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease publication-title: Front. Neurosci. – volume: 9 start-page: 119 year: 2010 end-page: 128 ident: bib0020 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. – reference: McInnes, L., Healy, J., Melville, J., 2018. Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. – volume: 48 start-page: 612 year: 2021 end-page: 622 ident: bib0034 article-title: Clinical impact of (18)F-FDG-PET among memory clinic patients with uncertain diagnosis publication-title: Eur. J. Nucl. Med. Mol. ImAging – volume: 21 start-page: 66 year: 2022 end-page: 77 ident: bib0041 article-title: Blood-based biomarkers for Alzheimer's disease: towards clinical implementation publication-title: Lancet Neurol. – volume: 17 year: 2022 ident: bib0018 article-title: Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China publication-title: PLoS One – volume: 95 start-page: e140 year: 2020 end-page: e154 ident: bib0003 article-title: Longitudinal structural and metabolic changes in frontotemporal dementia publication-title: Neurology – volume: 40 start-page: 515 year: 2019 end-page: 521 ident: bib0006 article-title: Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation publication-title: Neurol. Sci. – volume: 25 start-page: 695 year: 2011 end-page: 706 ident: bib0014 article-title: Effects of a 6-month cognitive intervention program on brain metabolism in amnestic mild cognitive impairment and mild Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 11 start-page: 220 year: 2019 ident: bib0021 article-title: Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data publication-title: Front. Aging Neurosci. – volume: 35 start-page: 339 year: 2017 end-page: 374 ident: bib0033 article-title: Frontotemporal dementia publication-title: Neurol. Clin. – volume: 13 start-page: 614 year: 2014 end-page: 629 ident: bib0011 article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria publication-title: Lancet Neurol. – volume: 2014 year: 2014 ident: bib0043 article-title: Automated identification of dementia using FDG-PET imaging publication-title: Biomed Res. Int. – volume: 14 year: 2020 ident: 10.1016/j.neuroimage.2024.120530_bib0019 article-title: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease publication-title: Front. Neurosci. – volume: 134 start-page: 2456 year: 2011 ident: 10.1016/j.neuroimage.2024.120530_bib0036 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awr179 – volume: 19 start-page: 625 year: 2018 ident: 10.1016/j.neuroimage.2024.120530_bib0038 article-title: Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer's disease publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.05.024 – volume: 19 start-page: 951 year: 2020 ident: 10.1016/j.neuroimage.2024.120530_bib0007 article-title: Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(20)30314-8 – volume: 577 start-page: 89 year: 2020 ident: 10.1016/j.neuroimage.2024.120530_bib0026 article-title: International evaluation of an AI system for breast cancer screening publication-title: Nature doi: 10.1038/s41586-019-1799-6 – volume: 25 start-page: 695 year: 2011 ident: 10.1016/j.neuroimage.2024.120530_bib0014 article-title: Effects of a 6-month cognitive intervention program on brain metabolism in amnestic mild cognitive impairment and mild Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-100996 – volume: 9 start-page: 54 year: 2019 ident: 10.1016/j.neuroimage.2024.120530_bib0010 article-title: FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations publication-title: Transl. Psychiatry doi: 10.1038/s41398-019-0381-1 – volume: 26 start-page: 627 year: 2011 ident: 10.1016/j.neuroimage.2024.120530_bib0004 article-title: Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-110458 – volume: 35 start-page: 339 year: 2017 ident: 10.1016/j.neuroimage.2024.120530_bib0033 article-title: Frontotemporal dementia publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2017.01.008 – volume: 48 start-page: 612 year: 2021 ident: 10.1016/j.neuroimage.2024.120530_bib0034 article-title: Clinical impact of (18)F-FDG-PET among memory clinic patients with uncertain diagnosis publication-title: Eur. J. Nucl. Med. Mol. ImAging doi: 10.1007/s00259-020-04969-7 – start-page: 618 year: 2017 ident: 10.1016/j.neuroimage.2024.120530_bib0039 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization – ident: 10.1016/j.neuroimage.2024.120530_bib0023 doi: 10.21105/joss.00861 – volume: 2014 year: 2014 ident: 10.1016/j.neuroimage.2024.120530_bib0043 article-title: Automated identification of dementia using FDG-PET imaging publication-title: Biomed Res. Int. doi: 10.1155/2014/421743 – volume: 212 start-page: 230 year: 2013 ident: 10.1016/j.neuroimage.2024.120530_bib0012 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.04.007 – start-page: 408 year: 2008 ident: 10.1016/j.neuroimage.2024.120530_bib0037 article-title: Automatic classification of Alzheimer's disease vs. Frontotemporal dementia: a spatial decision tree approach with FDG-PET – volume: 51 start-page: 230 year: 2021 ident: 10.1016/j.neuroimage.2024.120530_bib0029 article-title: Brain [F-18]FDG PET for clinical dementia workup: differential diagnosis of Alzheimer's disease and other types of dementing disorders publication-title: Semin. Nucl. Med. doi: 10.1053/j.semnuclmed.2021.01.002 – volume: 31 start-page: 579 year: 2021 ident: 10.1016/j.neuroimage.2024.120530_bib0030 article-title: Differentiating dementia with Lewy bodies and Alzheimer's disease by deep learning to structural MRI publication-title: J. Neuroimaging doi: 10.1111/jon.12835 – start-page: 818 year: 2014 ident: 10.1016/j.neuroimage.2024.120530_bib0045 article-title: Visualizing and understanding convolutional networks – volume: 49 start-page: 563 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0013 article-title: A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET publication-title: Eur. J. Nucl. Med. Mol. ImAging doi: 10.1007/s00259-021-05483-0 – volume: 11 start-page: 220 year: 2019 ident: 10.1016/j.neuroimage.2024.120530_bib0021 article-title: Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00220 – volume: 13 start-page: 614 year: 2014 ident: 10.1016/j.neuroimage.2024.120530_bib0011 article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(14)70090-0 – volume: 14 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0035 article-title: Automated differential diagnosis of dementia syndromes using FDG PET and machine learning publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.1005731 – volume: 29 start-page: 233 year: 2015 ident: 10.1016/j.neuroimage.2024.120530_bib0005 article-title: Measurement of inter- and intra-observer variability in the routine clinical interpretation of brain 18-FDG PET-CT publication-title: Ann. Nucl. Med. doi: 10.1007/s12149-014-0932-8 – ident: 10.1016/j.neuroimage.2024.120530_bib0040 – volume: 49 start-page: 632 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0017 article-title: EANM procedure guidelines for brain PET imaging using [(18)F]FDG, version 3 publication-title: Eur. J. Nucl. Med. Mol. ImAging doi: 10.1007/s00259-021-05603-w – volume: 21 start-page: 66 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0041 article-title: Blood-based biomarkers for Alzheimer's disease: towards clinical implementation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(21)00361-6 – volume: 17 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0018 article-title: Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China publication-title: PLoS One doi: 10.1371/journal.pone.0275983 – volume: 31 start-page: 1116 year: 2006 ident: 10.1016/j.neuroimage.2024.120530_bib0044 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 144 year: 2023 ident: 10.1016/j.neuroimage.2024.120530_bib0031 article-title: Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102636 – volume: 9 start-page: 119 year: 2010 ident: 10.1016/j.neuroimage.2024.120530_bib0020 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(09)70299-6 – volume: 63 start-page: 2S year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0027 article-title: (18)F-FDG PET imaging in neurodegenerative dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies publication-title: J. Nucl. Med. doi: 10.2967/jnumed.121.263194 – volume: 72 start-page: 1501 year: 2015 ident: 10.1016/j.neuroimage.2024.120530_bib0009 article-title: Progression in behavioral variant frontotemporal dementia: a longitudinal study publication-title: JAMa Neurol. doi: 10.1001/jamaneurol.2015.2061 – volume: 76 start-page: 1006 year: 2011 ident: 10.1016/j.neuroimage.2024.120530_bib0016 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology doi: 10.1212/WNL.0b013e31821103e6 – volume: 60 start-page: 2737 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0015 article-title: GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer's disease and frontotemporal dementia using genetic algorithms publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02630-z – volume: 89 start-page: 88 year: 2017 ident: 10.1016/j.neuroimage.2024.120530_bib0024 article-title: Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium publication-title: Neurology doi: 10.1212/WNL.0000000000004058 – volume: 45 start-page: 1497 year: 2018 ident: 10.1016/j.neuroimage.2024.120530_bib0001 article-title: Clinical utility of FDG-PET for the clinical diagnosis in MCI publication-title: Eur. J. Nucl. Med. Mol. ImAging doi: 10.1007/s00259-018-4039-7 – volume: 35 start-page: 37878 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0002 article-title: The effects of regularization and data augmentation are class dependent publication-title: Adv. Neural Inf. Process. Syst. – volume: 95 start-page: e140 year: 2020 ident: 10.1016/j.neuroimage.2024.120530_bib0003 article-title: Longitudinal structural and metabolic changes in frontotemporal dementia publication-title: Neurology doi: 10.1212/WNL.0000000000009760 – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.neuroimage.2024.120530_bib0025 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National institute on aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 264 year: 2016 ident: 10.1016/j.neuroimage.2024.120530_bib0022 article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.03.001 – volume: 42 start-page: 85 year: 1997 ident: 10.1016/j.neuroimage.2024.120530_bib0028 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease publication-title: Ann. Neurol. doi: 10.1002/ana.410420114 – volume: 40 start-page: 515 year: 2019 ident: 10.1016/j.neuroimage.2024.120530_bib0006 article-title: Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation publication-title: Neurol. Sci. doi: 10.1007/s10072-018-3685-7 – volume: 39 start-page: 213 year: 2019 ident: 10.1016/j.neuroimage.2024.120530_bib0042 article-title: Alzheimer's disease including focal presentations publication-title: Semin. Neurol. doi: 10.1055/s-0039-1681041 – volume: 273 start-page: 243 year: 2023 ident: 10.1016/j.neuroimage.2024.120530_bib0008 article-title: Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-022-01439-z – volume: 7 start-page: e105 year: 2022 ident: 10.1016/j.neuroimage.2024.120530_bib0032 article-title: Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00249-8 |
SSID | ssj0009148 |
Score | 2.485398 |
Snippet | •Visual interpretation of [18F]-FDG-PET scans remains challenging and with the advent of new treatments, accurate diagnosis is more important than ever.•A... With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks... |
SourceID | doaj hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120530 |
SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer's disease Artificial intelligence Autopsies Biomarkers Brain - diagnostic imaging Brain mapping Brain research Cerebral blood flow Classification Cognitive science Convolutional neural network Deep learning Dementia Dementia disorders FDG PET Fluorodeoxyglucose F18 Frontotemporal dementia Frontotemporal Dementia - diagnostic imaging Glucose metabolism Humans Image processing Ischemia Magnetic resonance imaging Medical imaging Metabolism Neural networks Neural Networks, Computer Neurodegeneration Neurodegenerative diseases Neuroimaging Positron emission tomography Positron-Emission Tomography - methods Retrospective Studies |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgD4gL4k3YBRmExIVAnIdji1Nht1SIRRx2pb1Z8YsN6rarpkVafga_mBnHCfSA6IFeKqWexPV89owz428IeeFFwY2rqrSx0mAJM5Zqo3XqWW18YYU0Eg8nH3_ms9Py41l19kepL8wJ6-mB-4F700juC1N5MCS61LzSLG8yuK8WMD88DzyfYPOGzdRAtwtefszb6bO5AjtkewFzFPaEefma5YC-bMsYBc7-LZt0_RyTI__meQYLNL1NbkXXkU76Lt8h19ziLrlxHIPj98jPCS0OKaaRRzhBY-xQ-ArJ3nS9pAbd5dZf0W6j8R1MR5uOTuY_zl174VYvOxpDNq-oD9wGkbtqTm14kdg2dLmi_enJKxoT3TuK6fNfqcZ6E5SJaTo9_EC_HJ3cJ6fTo5P3szSWXEgNz-Q6dUKbxgqrM4dh8oJnWjqYmNrYStemqjxsjzSz0vJG-5LnmbHwAUVnHrZuunhA9hbLhXtEaCNKqUGAcYPBwkYKbzNnuAVkcF3IhNTD2CsT-cixLMZcDYln39RvrSnUmuq1lhA2Sl72nBw7yLxD9Y7tkVU7XACsqYg19S-sJUQO4FDDwVVYauFG7Q4deDvKRuemd1p2lH4OWNzq_WzySeE18MlryWT9nSXkYICqiitRp3KZi0ogT2BCno0_wxqCgaFm4Zab0CYvqww844Q87CE-PqoQBcNjZo__xwDuk5v4p_ocvgOyt15t3BNw6tb6aZi_vwDsAUyv priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGHhAviG8CAxmExAtZ4yR2bPFUtpUKMYTEJu0tir-2TF0zNS3SeOCP4C_mLnE69QGpEn2J6ty1p9z5fM797kzIOy8zYRzncWWVwSPMWKyN1rFnhfGZlcooLE4-_iamp_mXM362Qw6GWhiEVQbf3_v0zluHkVF4mqPruh79gMgAlhvcQOC05ljEl-cFWvn-71uYh2J5Xw7HsxipA5qnx3h1PSPrK5i5sFNM832WAlmysUR1nfw3Vqo7FwiZ_Fc82q1Lkwfkfggo6biX-SHZcfNH5O5xSJk_Jn_GNDukCC4PRgbEKFB36SDgdNlQg0F07W9ou9L4ZqalVUvHs18Xrr5yi_ctDYmcD9R3HQ9CR6sZtd3rxbqizYL2NZU3NMDfW4qg-nOq8RQKyuQknhx-pt-PTp6Q08nRycE0DgcxxEYkahk7qU1lpdWJw-R5JhKtHExXbSzXheHcw6ZJM6usqLTPRZoYCx9Qf-JhQ6ezp2R33szdc0IrmSsNDEwYTCFWSnqbOCMs2IvQmYpIMTz70oQu5XhYxqwc4GiX5a3WStRa2WstImzNed136tiC5xOqd02Pvba7gWZxXgZjKyslfGa4h1BG51pwzdIqAcvWEjy0F1lE1GAc5VDOCg4YfqjeQoCPa94Ns9-S-y3Y4ob00_HXEscgUi8UU8VPFpG9wVTL4J_aMlWp5BK7B0bkzfo2eBZMF1Vz16w6mjTnCcTLEXnWm_j6rzKZMSw-e_Ff8r8k9_BbD-nbI7vLxcq9ghhvqV93k_gvWO5REg priority: 102 providerName: Elsevier |
Title | A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924000259 https://dx.doi.org/10.1016/j.neuroimage.2024.120530 https://www.ncbi.nlm.nih.gov/pubmed/38311126 https://www.proquest.com/docview/2928580677 https://www.proquest.com/docview/2922450441 https://hal.univ-lille.fr/hal-04579197 https://doaj.org/article/a96f3c5f266b4b65b12a0d9cb8088f63 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1GKbhHhB3BcYlUFIvJAR5-LY4gF1rKVcVk1ok_oWxXa8FXXNaFqk8cBH8MWc47it-gBqXiKl56RWzsXH50rIKysSrqssC0sjNY4wY6HSSoWW5domRkgtsTj5ZMgH5-nnUTbyDrfGp1UudaJT1KbW6CN_G8tYZAL7nb2__hHi1CiMrvoRGjtkD1uXIVfno3zddJelbSlcloQCAHwmT5vf5fpFjq9AauGUGKeHLAawaGN7cl38N3apnUtMl_yXLer2pP49ctcbk7TbUv8-uVVNH5DbJz5c_pD86dLkmGJiuWcwAMYFuZtL_6bzmmo0oMf2hjYLhV6ZhpYN7U5-XVbjq2r2uqE-iPOGWtftwHezmlDjXIvjktYz2tZT3lCf-t5QTKi_oAonUFAm-mH_-CM97Z09Iuf93tmHQeiHMISaR3IeVkLp0gijogoD5wmPlKxAVJU2mcp1llk4MClmpOGlsimPI23gAtJHFg5zKnlMdqf1tNontBSpVIDAuMbwYSmFNVGluQFe4SqRAcmX377QvkM5DsqYFMtUtO_FmmoFUq1oqRYQtsK8brt0bIFzhORdwWOfbfegnl0UXmyLUnKb6MyCGaNSxTPF4jICrlYCtLPlSUDkkjmKZSkrKF940XiLBbxb4XpzpzVjtsR-Cby4sfpB92uBz8BKzyWT-U8WkIMlqxZeNzXFWpIC8mL1M2gVDBWV06peOJg4zSKwlQPypGXx1V8lImFYePb0_y9_Ru7gctt8vQOyO58tqudgwM1Vh-wc_mYdJ6sdstf99GUwhPtRb3j6reOcIn8BmZtLHA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbaIgEXxJtAAYNAXFhY79tCCAXSkNKk4tBKubnrVxuUZks2AYWfwQ_hNzKz602UAyiX5hJpYztOZjwPzzczhLywWZgoE8derrnCFmbMk0pKz7JU2VBnXHFMTh4cJr3j6MswHm6RP00uDMIqG5lYCWpdKLwjfxvwIIszrHf24eK7h12jMLratNCo2eLALH6Cy1a-3-8AfV8GQXfv6FPPc10FPJX4fOaZTKpcZ1r6BiPBYeJLboD3pNKxTFUcW_AAJNNcJ7m0URL4SsMLfotvwTuRIay7Ta6A4vXR2UuH6arIL4vq1Ls49DLGuEMO1Xiyqj7l6BykBHilQfSGBTDMX1OHVdeANa24fYbwzH_ZvpUO7N4kN5zxSts1t90iW2Zym1wduPD8HfK7TcMORSC7Y2gYjBuq3iq4OZ0VVKHBPrILWs4l3gKVNC9pe_zrzIzOzfRVSV3Q6DW1VXUFVz1rTHV1lTnKaTGldf7mgjqofUkRwH9KJXa8oCzret3OZ_p17-guOb4U8twjO5NiYh4QmmcRlzCBJQrDlTnPrPaNSjTwZiJD3iJp898L5SqiY2OOsWigb9_EimoCqSZqqrUIW868qKuCbDDnI5J3OR7relcPiumpcGJC5DyxoYotmE0ykkksWZD7cIpkBtrAJmGL8IY5RJM6C8IeFhptsIF3y7nOvKrNpg1nPwdeXNt9r90X-Ay8gpQznv5gLbLbsKpwsrAUq5PbIs-WH4MUw9BUPjHFvBoTRLEPtnmL3K9ZfPlVYRYyTHR7-P_Fn5JrvaNBX_T3Dw8ekeu49RoruEt2ZtO5eQzG40w-qU4sJSeXLSL-AhBEhSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe2Tpp4QfwnMMAgEC-Exfnj2EIIdbSlY1s1oU3aW4ideCvqmtG0oPIx-Dh8Ou4Sp1UfQH1ZXyqlPtftnc93vt_dEfLSiIDrPIrcNJMaW5gxV2mlXMNibYJMSC0xOflowPun4eez6GyD_GlyYRBW2ejESlFnhcY78l1f-iISWO9s11hYxHGn9-Hqu4sdpDDS2rTTqEXkIJ__BPetfL_fAV6_8v1e9-Rj37UdBlzNPTl1c6F0molMeTlGhQPuKZmDHCqdRSrWUWTAG1AskxlPlQm57-kMXvC7PAOeigpg3k2yFaNX1CJbe93B8ZdlyV8W1ol4UeAKxqTFEdXosqpa5fASdAb4qH74lvkwzFs5HKseAitn5OYFgjX_ZQlXJ2LvFrlpTVnarmXvNtnIx3fI9pEN1t8lv9s06FCEtVvxhsG4oOqtAp_TaUE1mu9DM6flTOGdUEnTkrZHvy7y4WU-eV1SG0J6Q01Va8HW0hrRrLrYHKa0mNA6m3NOLfC-pAjnP6cK-19QJnpur_OJHndP7pHTa2HQfdIaF-P8IaGpCKUCAsY1Bi9TKUzm5ZpnIKlcBdIhcfPfJ9rWR8c2HaOkAcJ9S5ZcS5BrSc01h7AF5VVdI2QNmj1k72I8VvmuHhST88QqjSSV3AQ6MmBEqVDxSDE_9WBPKQFng-GBQ2QjHEmTSAuqHyYarrGAdwtaa2zVRtSa1C9AFldW328fJvgMfIRYMhn_YA7ZaUQ1sZqxTJb72CHPFx-DTsNAVTrOi1k1xg8jDyx1hzyoRXzxVYEIGKa9Pfr_5M_INqiH5HB_cPCY3MCV18DBHdKaTmb5E7Akp-qp3bKUfL1uLfEXwNCKww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+convolutional+neural+network+to+classify+subjects+as+Alzheimer%27s+disease%2C+frontotemporal+dementia+or+healthy+controls+using+brain+18F-FDG+PET&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Rogeau%2C+Antoine&rft.au=Hives%2C+Florent&rft.au=Bordier%2C+C%C3%A9cile&rft.au=Lahousse%2C+H%C3%A9l%C3%A8ne&rft.date=2024-03-01&rft.issn=1053-8119&rft.volume=288&rft.spage=120530&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2024_120530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |