Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation

SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-C...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 27; no. 10; pp. 942 - 949
Main Authors McCallum, Matthew, Walls, Alexandra C., Bowen, John E., Corti, Davide, Veesler, David
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.10.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV.
AbstractList SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other [beta]-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other [beta]-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV.
Audience Academic
Author Bowen, John E.
Corti, Davide
Veesler, David
Walls, Alexandra C.
McCallum, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: McCallum
  fullname: McCallum, Matthew
  organization: Department of Biochemistry, University of Washington
– sequence: 2
  givenname: Alexandra C.
  surname: Walls
  fullname: Walls, Alexandra C.
  organization: Department of Biochemistry, University of Washington
– sequence: 3
  givenname: John E.
  orcidid: 0000-0003-3590-9727
  surname: Bowen
  fullname: Bowen, John E.
  organization: Department of Biochemistry, University of Washington
– sequence: 4
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology
– sequence: 5
  givenname: David
  orcidid: 0000-0002-6019-8675
  surname: Veesler
  fullname: Veesler, David
  email: dveesler@uw.edu
  organization: Department of Biochemistry, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32753755$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNURP_AB-CCInGhhxQ7jjfrC1JVUahUCYn2bjn2JHVx7MV2Vi2fntlNWbEIVTnEin_vZd7MHBcHPngoireUnFHClh9TQ7loKlKTijRLVi1fFEeUN7wSYskPdmfBDovjlO4JqTlv2avikNUtZy3nR4W7yXHSeYpQDZM1YEod1sqBz2XKqrPO_lLZBl-GHm9i8Gpt45TKtLI_oBzcow6rGDJYX-ZoR4ip3BzvoNQupK2d70Mctyavi5e9cgnePL1PitvLz7cXX6vrb1-uLs6vK70gIleGdworZ4JhDKoUNVQRQhvRGt5q1XV9Axra2jAqmo4pQVVrgDPaGCCGsZPi02y7mroRjMYwUTm5wvpUfJRBWbl_4-2dHMJatryhjBM0-PBkEMPPCVKWo00anFMewpRk3TCyWCywg4i-n9EBmyYtZkVHvcHlOQItE4QLpM7-Q-FjYLTYIegtft8TnO4JkMnwkAc1pSSvbr7vs-_-jrvL-WfICNAZ0DGkFKHfIZTIzSLJeZEkLpLcLJJcoqb9R6Nt3g4RK7fuWWU9KxP-xQ8Q5X2Yosd5PyP6DWNE3h4
CitedBy_id crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_3390_ijms23031646
crossref_primary_10_1515_cmb_2020_0119
crossref_primary_10_1038_s41594_022_00735_5
crossref_primary_10_3390_v16091458
crossref_primary_10_1007_s10072_023_07186_w
crossref_primary_10_1021_acs_jcim_3c00778
crossref_primary_10_1016_j_coi_2022_102209
crossref_primary_10_1155_2023_5279979
crossref_primary_10_1002_jmv_27132
crossref_primary_10_29328_journal_ijcv_1001060
crossref_primary_10_14710_jbtr_v1i1_13113
crossref_primary_10_1016_j_chom_2020_11_001
crossref_primary_10_1038_s41392_021_00809_8
crossref_primary_10_1080_01913123_2022_2035475
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1016_j_celrep_2021_108950
crossref_primary_10_3390_ijms231911542
crossref_primary_10_3389_fmed_2021_637642
crossref_primary_10_1021_acs_jcim_3c01857
crossref_primary_10_3389_fimmu_2021_660198
crossref_primary_10_1038_s41467_024_46536_w
crossref_primary_10_3390_polym14153014
crossref_primary_10_3390_md18110543
crossref_primary_10_1016_j_celrep_2021_109929
crossref_primary_10_1016_j_coviro_2021_05_005
crossref_primary_10_7554_eLife_82584
crossref_primary_10_3390_vaccines11010012
crossref_primary_10_1038_s41586_021_03677_y
crossref_primary_10_3390_ijms23062928
crossref_primary_10_1016_j_coviro_2021_09_005
crossref_primary_10_1038_s41392_022_00884_5
crossref_primary_10_1126_science_abm5561
crossref_primary_10_3390_v15102009
crossref_primary_10_15252_emmm_202114459
crossref_primary_10_1021_acs_jcim_4c01928
crossref_primary_10_1021_acsomega_1c03558
crossref_primary_10_1080_07391102_2021_1933594
crossref_primary_10_1038_s41596_021_00623_0
crossref_primary_10_3390_ijms25094955
crossref_primary_10_1021_acs_jpcb_4c07004
crossref_primary_10_1021_acsomega_1c02336
crossref_primary_10_1126_science_abe3354
crossref_primary_10_1128_JVI_00203_21
crossref_primary_10_1016_j_jbc_2021_101238
crossref_primary_10_3390_ijms24076642
crossref_primary_10_1016_j_ijbiomac_2021_07_144
crossref_primary_10_1021_acs_jcim_1c00766
crossref_primary_10_1371_journal_pone_0289432
crossref_primary_10_7554_eLife_75720
crossref_primary_10_1016_j_ejphar_2021_173977
crossref_primary_10_3390_ijms25084281
crossref_primary_10_1080_22221751_2022_2095308
crossref_primary_10_1126_science_abm3125
crossref_primary_10_1021_acs_jpcb_3c05460
crossref_primary_10_3390_v13020332
crossref_primary_10_1021_acs_biochem_1c00139
crossref_primary_10_1021_acs_jcim_2c00124
crossref_primary_10_1007_s00253_023_12520_5
crossref_primary_10_1016_j_isci_2022_104722
crossref_primary_10_1128_mbio_03227_21
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_3390_v13050837
crossref_primary_10_3390_v15051143
crossref_primary_10_1021_acs_jproteome_0c00654
crossref_primary_10_3390_v16060912
crossref_primary_10_1021_acs_jpcb_1c00395
crossref_primary_10_1038_s41467_020_20321_x
crossref_primary_10_1007_s00249_022_01619_8
crossref_primary_10_1371_journal_ppat_1012158
crossref_primary_10_3390_ijms23042172
crossref_primary_10_1021_acs_analchem_2c00554
crossref_primary_10_26508_lsa_202201796
crossref_primary_10_1038_s41467_022_32232_0
crossref_primary_10_22159_ijap_2023v15i1_43571
crossref_primary_10_1016_j_jddst_2021_102967
crossref_primary_10_1038_s41586_020_2665_2
crossref_primary_10_3390_ijms23084376
crossref_primary_10_1002_ange_202015639
crossref_primary_10_1002_pro_4152
crossref_primary_10_1021_acs_jpcb_0c10637
crossref_primary_10_1093_bib_bbae468
crossref_primary_10_1371_journal_pbio_3001237
crossref_primary_10_1021_acs_nanolett_0c04465
crossref_primary_10_1128_jvi_01626_21
crossref_primary_10_3390_biom12070964
crossref_primary_10_1371_journal_pone_0252571
crossref_primary_10_1016_j_sbi_2022_102385
crossref_primary_10_1016_j_csbj_2022_11_004
crossref_primary_10_1126_sciadv_abn2911
crossref_primary_10_1016_j_cell_2020_10_043
crossref_primary_10_1038_s41392_022_01007_w
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1039_D4CP01372G
crossref_primary_10_1002_anie_202015639
crossref_primary_10_1128_spectrum_02364_21
crossref_primary_10_1016_j_crstbi_2022_05_001
crossref_primary_10_3390_vaccines9121509
crossref_primary_10_1039_D2CP01893D
crossref_primary_10_1016_j_bbrc_2022_01_106
crossref_primary_10_1016_j_phyplu_2021_100027
crossref_primary_10_1128_spectrum_03655_23
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_1002_jemt_23931
crossref_primary_10_1039_D3CP02042H
crossref_primary_10_1021_jacs_1c00556
crossref_primary_10_1007_s42247_021_00163_z
crossref_primary_10_1002_JLB_3COVCRA0920_628RR
crossref_primary_10_1021_acs_jpcb_4c01341
crossref_primary_10_1007_s11010_022_04588_w
crossref_primary_10_3389_fimmu_2022_872047
crossref_primary_10_1016_j_intimp_2021_107763
crossref_primary_10_1146_annurev_biophys_102620_080956
crossref_primary_10_1038_s41401_021_00851_w
Cites_doi 10.1016/j.cell.2020.02.052
10.3390/v4040557
10.1038/371037a0
10.1038/s41586-020-2349-y
10.1073/pnas.0809524106
10.1038/nature13808
10.1107/S205225251801463X
10.1016/j.jsb.2005.03.010
10.1371/journal.ppat.1007236
10.1038/nmeth.3286
10.1073/pnas.1708727114
10.1107/S0907444909042073
10.1128/JVI.01628-17
10.1056/NEJMoa1211721
10.1186/1471-2105-14-346
10.1080/22221751.2020.1729069
10.1073/pnas.1811980115
10.1128/JVI.02277-14
10.1126/scitranslmed.abb5883
10.1371/journal.ppat.1004502
10.1038/s41594-019-0334-7
10.1126/science.abb7269
10.1056/NEJMoa030781
10.1038/nature12328
10.1016/j.cell.2019.01.046
10.1056/NEJMoa2001017
10.1038/nmeth.2115
10.1038/nmeth.3541
10.1038/s41586-020-2012-7
10.1038/s41598-018-34171-7
10.1107/S2059798319011471
10.1073/pnas.1407087111
10.1128/JVI.00079-09
10.1126/science.1127683
10.7554/eLife.42166
10.1056/NEJMoa030747
10.1073/pnas.1523303113
10.1126/science.1243283
10.1038/s41586-020-2179-y
10.1002/pro.3235
10.1038/nature12005
10.1016/S0140-6736(20)30183-5
10.1073/pnas.1707304114
10.1038/nature02145
10.1038/nature16988
10.1093/protein/11.4.329
10.1126/science.1245627
10.1002/pro.3048
10.1038/s41594-019-0308-9
10.1126/science.abb2762
10.1038/nature17200
10.1038/cr.2016.152
10.1073/pnas.1608147113
10.1126/science.1116480
10.1016/j.jsb.2006.06.010
10.1126/science.1245625
10.1038/nmeth.4169
10.1128/JVI.01962-14
10.1371/journal.ppat.1003618
10.1083/jcb.141.6.1335
10.1038/ncomms15092
10.1126/science.1135710
10.1016/bs.aivir.2019.08.002
10.1016/j.cell.2020.02.058
10.1038/s41564-020-0688-y
10.1016/j.cell.2020.03.045
10.1016/j.virusres.2014.11.021
10.1038/nsmb.1456
10.7554/eLife.17219
10.1128/JVI.77.16.8801-8811.2003
10.1016/j.str.2018.09.006
10.1126/science.abb2507
10.1038/s41592-019-0580-y
10.1016/j.cell.2018.12.028
10.1038/s41594-019-0233-y
10.1038/s41586-020-2180-5
10.1016/j.celrep.2020.107940
10.1101/2020.03.15.992883
10.1101/2020.03.02.972927
10.1016/j.chom.2020.06.010
10.1101/2020.06.26.173476
10.1126/science.abd4251
10.1101/2020.06.27.174979
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1038/s41594-020-0483-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1545-9985
EndPage 949
ExternalDocumentID PMC7541350
A637739059
32753755
10_1038_s41594_020_0483_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120553
– fundername: NIH HHS
  grantid: S10 OD023476
– fundername: NIAID NIH HHS
  grantid: HHSN272201700059C
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5S5
6TJ
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADFRT
ADNMO
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
AJQPL
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
DB5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IH2
IHR
INH
INR
ISR
ITC
L-9
L7B
LK8
M0L
M1P
M2O
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PADUT
PKN
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
ZXP
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7X8
5PM
ID FETCH-LOGICAL-c609t-d5ba5453939851aa1d1a001497d57cabbf4ece72d3194b3a91a7de5314de0d33
IEDL.DBID C6C
ISSN 1545-9993
1545-9985
IngestDate Thu Aug 21 18:18:07 EDT 2025
Fri Jul 11 08:11:42 EDT 2025
Tue Jun 17 21:40:41 EDT 2025
Tue Jun 10 20:49:22 EDT 2025
Fri Jun 27 03:52:59 EDT 2025
Mon Jul 21 05:50:56 EDT 2025
Tue Jul 01 01:59:44 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 21 02:40:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-d5ba5453939851aa1d1a001497d57cabbf4ece72d3194b3a91a7de5314de0d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3590-9727
0000-0002-6019-8675
OpenAccessLink https://www.nature.com/articles/s41594-020-0483-8
PMID 32753755
PQID 2430666375
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541350
proquest_miscellaneous_2430666375
gale_infotracmisc_A637739059
gale_infotracacademiconefile_A637739059
gale_incontextgauss_ISR_A637739059
pubmed_primary_32753755
crossref_primary_10_1038_s41594_020_0483_8
crossref_citationtrail_10_1038_s41594_020_0483_8
springer_journals_10_1038_s41594_020_0483_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature structural & molecular biology
PublicationTitleAbbrev Nat Struct Mol Biol
PublicationTitleAlternate Nat Struct Mol Biol
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Zhu (CR4) 2020; 382
Stewart-Jones (CR52) 2018; 115
Ferlin, Raux, Baquero, Lepault, Gaudin (CR44) 2014; 88
Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (CR3) 2012; 367
Shang (CR29) 2020; 581
Harrison (CR40) 2008; 15
Gui (CR21) 2017; 27
Pancera (CR50) 2014; 514
Barad (CR82) 2015; 12
Burkard (CR12) 2014; 10
Walls (CR18) 2020; 181
Punjani, Rubinstein, Fleet, Brubaker (CR72) 2017; 14
Roche, Bressanelli, Rey, Gaudin (CR42) 2006; 313
Walls (CR10) 2016; 531
Dang (CR54) 2019; 26
Goddard, Huang, Ferrin (CR77) 2007; 157
Liebschner (CR83) 2019; 75
Marcandalli (CR70) 2019; 176
Yuan (CR67) 2020; 368
Julien (CR48) 2013; 342
Craig, Dombkowski (CR64) 2013; 14
Park (CR16) 2016; 113
Kirchdoerfer (CR17) 2016; 531
Lyumkis (CR49) 2013; 342
Hoffmann (CR39) 2020; 181
Zivanov, Nakane, Scheres (CR75) 2019; 6
Frenz (CR78) 2019; 27
CR7
Pallesen (CR20) 2017; 114
Sanders (CR47) 2013; 9
Walls (CR62) 2017; 26
Lan (CR30) 2020; 581
Wong, Paterson, Lamb, Jardetzky (CR53) 2016; 113
Li, Li, Farzan, Harrison (CR33) 2005; 309
Tegunov, Cramer (CR73) 2019; 16
Park (CR25) 2019; 26
Ksiazek (CR2) 2003; 348
Goddard (CR84) 2018; 27
Belouzard, Chu, Whittaker (CR15) 2009; 106
Wang (CR31) 2020; 181
Scheres, Chen (CR76) 2012; 9
Walls (CR36) 2019; 176
Qiao (CR46) 1998; 141
Wang (CR79) 2016; 5
Miroshnikov (CR63) 1998; 11
Hoffmann (CR27) 2020; 181
Bullough, Hughson, Skehel, Wiley (CR41) 1994; 371
Drosten (CR1) 2003; 348
Xiong (CR69) 2018; 92
Suloway (CR71) 2005; 151
Chen (CR81) 2010; 66
Roche, Rey, Gaudin, Bressanelli (CR45) 2007; 315
CR59
Pinto (CR57) 2020; 583
CR58
Song, Gui, Wang, Xiang (CR22) 2018; 14
Zivanov (CR74) 2018; 7
DiMaio (CR80) 2015; 12
McLellan (CR51) 2013; 342
Huang (CR5) 2020; 395
Wrapp (CR56) 2020; 367
Tian (CR66) 2020; 9
Kirchdoerfer (CR55) 2018; 8
Lu (CR35) 2013; 500
Tortorici (CR24) 2019; 26
Bosch, van der Zee, de Haan, Rottier (CR11) 2003; 77
Zhou (CR6) 2020; 579
Madu, Roth, Belouzard, Whittaker (CR37) 2009; 83
Raj (CR34) 2013; 495
Millet, Whittaker (CR13) 2014; 111
Tortorici, Veesler (CR9) 2019; 105
Letko, Marzi, Munster (CR26) 2020; 5
CR68
CR65
Li (CR32) 2003; 426
CR61
CR60
Liu (CR43) 2015; 89
Sheahan (CR8) 2020; 12
Yuan (CR23) 2017; 8
Walls (CR19) 2017; 114
Heald-Sargent, Gallagher (CR38) 2012; 4
Millet, Whittaker (CR14) 2015; 202
Yan (CR28) 2020; 367
RY Wang (483_CR79) 2016; 5
483_CR61
J Lan (483_CR30) 2020; 581
483_CR60
JK Millet (483_CR14) 2015; 202
483_CR65
X Xiong (483_CR69) 2018; 92
F DiMaio (483_CR80) 2015; 12
M Pancera (483_CR50) 2014; 514
T Heald-Sargent (483_CR38) 2012; 4
D Liebschner (483_CR83) 2019; 75
J Shang (483_CR29) 2020; 581
483_CR59
483_CR58
A Ferlin (483_CR44) 2014; 88
B Frenz (483_CR78) 2019; 27
RN Kirchdoerfer (483_CR55) 2018; 8
M Hoffmann (483_CR27) 2020; 181
R Yan (483_CR28) 2020; 367
C Drosten (483_CR1) 2003; 348
BA Barad (483_CR82) 2015; 12
J Marcandalli (483_CR70) 2019; 176
GBE Stewart-Jones (483_CR52) 2018; 115
A Punjani (483_CR72) 2017; 14
VS Raj (483_CR34) 2013; 495
VB Chen (483_CR81) 2010; 66
C Suloway (483_CR71) 2005; 151
KA Miroshnikov (483_CR63) 1998; 11
D Tegunov (483_CR73) 2019; 16
W Li (483_CR32) 2003; 426
RW Sanders (483_CR47) 2013; 9
M Letko (483_CR26) 2020; 5
G Lu (483_CR35) 2013; 500
M Yuan (483_CR67) 2020; 368
J Zivanov (483_CR75) 2019; 6
Q Liu (483_CR43) 2015; 89
AC Walls (483_CR10) 2016; 531
DB Craig (483_CR64) 2013; 14
F Li (483_CR33) 2005; 309
M Gui (483_CR21) 2017; 27
X Tian (483_CR66) 2020; 9
JK Millet (483_CR13) 2014; 111
Y Yuan (483_CR23) 2017; 8
D Pinto (483_CR57) 2020; 583
SC Harrison (483_CR40) 2008; 15
Q Wang (483_CR31) 2020; 181
TP Sheahan (483_CR8) 2020; 12
M Hoffmann (483_CR39) 2020; 181
S Roche (483_CR45) 2007; 315
JP Julien (483_CR48) 2013; 342
IG Madu (483_CR37) 2009; 83
H Qiao (483_CR46) 1998; 141
S Roche (483_CR42) 2006; 313
SH Scheres (483_CR76) 2012; 9
D Wrapp (483_CR56) 2020; 367
AC Walls (483_CR36) 2019; 176
S Belouzard (483_CR15) 2009; 106
HV Dang (483_CR54) 2019; 26
AC Walls (483_CR19) 2017; 114
483_CR7
RN Kirchdoerfer (483_CR17) 2016; 531
D Lyumkis (483_CR49) 2013; 342
YJ Park (483_CR25) 2019; 26
JS McLellan (483_CR51) 2013; 342
N Zhu (483_CR4) 2020; 382
C Huang (483_CR5) 2020; 395
BJ Bosch (483_CR11) 2003; 77
W Song (483_CR22) 2018; 14
TD Goddard (483_CR84) 2018; 27
AC Walls (483_CR18) 2020; 181
J Pallesen (483_CR20) 2017; 114
TG Ksiazek (483_CR2) 2003; 348
MA Tortorici (483_CR9) 2019; 105
PA Bullough (483_CR41) 1994; 371
P Zhou (483_CR6) 2020; 579
C Burkard (483_CR12) 2014; 10
AM Zaki (483_CR3) 2012; 367
JE Park (483_CR16) 2016; 113
JJ Wong (483_CR53) 2016; 113
483_CR68
J Zivanov (483_CR74) 2018; 7
A Walls (483_CR62) 2017; 26
MA Tortorici (483_CR24) 2019; 26
TD Goddard (483_CR77) 2007; 157
32577661 - bioRxiv. 2020 Jun 03:2020.06.03.129817. doi: 10.1101/2020.06.03.129817
References_xml – volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: CR27
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– ident: CR68
– volume: 4
  start-page: 557
  year: 2012
  end-page: 580
  ident: CR38
  article-title: Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence
  publication-title: Viruses
  doi: 10.3390/v4040557
– volume: 371
  start-page: 37
  year: 1994
  end-page: 43
  ident: CR41
  article-title: Structure of influenza haemagglutinin at the pH of membrane fusion
  publication-title: Nature
  doi: 10.1038/371037a0
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: CR57
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 106
  start-page: 5871
  year: 2009
  end-page: 5876
  ident: CR15
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0809524106
– volume: 514
  start-page: 455
  year: 2014
  end-page: 461
  ident: CR50
  article-title: Structure and immune recognition of trimeric pre-fusion HIV-1 Env
  publication-title: Nature
  doi: 10.1038/nature13808
– volume: 6
  start-page: 5
  year: 2019
  end-page: 17
  ident: CR75
  article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis.
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
– ident: CR61
– ident: CR58
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: CR71
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 14
  start-page: e1007236
  year: 2018
  ident: CR22
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 12
  start-page: 361
  year: 2015
  end-page: 365
  ident: CR80
  article-title: Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3286
– volume: 114
  start-page: 11157
  year: 2017
  end-page: 11162
  ident: CR19
  article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708727114
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: CR81
  article-title: : all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 92
  start-page: e01628
  year: 2018
  end-page: 17
  ident: CR69
  article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections
  publication-title: J. Virol.
  doi: 10.1128/JVI.01628-17
– volume: 367
  start-page: 1814
  year: 2012
  end-page: 1820
  ident: CR3
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 14
  start-page: 346
  year: 2013
  ident: CR64
  article-title: Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-346
– volume: 9
  start-page: 382
  year: 2020
  end-page: 385
  ident: CR66
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– volume: 115
  start-page: 12265
  year: 2018
  end-page: 12270
  ident: CR52
  article-title: Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1811980115
– volume: 89
  start-page: 1838
  year: 2015
  end-page: 1850
  ident: CR43
  article-title: Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering
  publication-title: J. Virol.
  doi: 10.1128/JVI.02277-14
– volume: 12
  start-page: eabb5883
  year: 2020
  ident: CR8
  article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice.
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb5883
– volume: 10
  start-page: e1004502
  year: 2014
  ident: CR12
  article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004502
– volume: 26
  start-page: 1151
  year: 2019
  end-page: 1157
  ident: CR25
  article-title: Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0334-7
– volume: 368
  start-page: 630
  year: 2020
  end-page: 633
  ident: CR67
  article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 348
  start-page: 1953
  year: 2003
  end-page: 1966
  ident: CR2
  article-title: A novel coronavirus associated with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030781
– volume: 500
  start-page: 227
  year: 2013
  end-page: 231
  ident: CR35
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
  doi: 10.1038/nature12328
– volume: 176
  start-page: 1420
  year: 2019
  end-page: 1431.e17
  ident: CR70
  article-title: Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.046
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: CR4
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 9
  start-page: 853
  year: 2012
  end-page: 854
  ident: CR76
  article-title: Prevention of overfitting in cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2115
– volume: 12
  start-page: 943
  year: 2015
  end-page: 946
  ident: CR82
  article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3541
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: CR6
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 8
  year: 2018
  ident: CR55
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 75
  start-page: 861
  year: 2019
  end-page: 877
  ident: CR83
  article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798319011471
– volume: 111
  start-page: 15214
  year: 2014
  end-page: 15219
  ident: CR13
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1407087111
– volume: 83
  start-page: 7411
  year: 2009
  end-page: 7421
  ident: CR37
  article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide
  publication-title: J. Virol.
  doi: 10.1128/JVI.00079-09
– volume: 313
  start-page: 187
  year: 2006
  end-page: 191
  ident: CR42
  article-title: Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G
  publication-title: Science
  doi: 10.1126/science.1127683
– ident: CR60
– volume: 7
  start-page: e42166
  year: 2018
  ident: CR74
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: Elife
  doi: 10.7554/eLife.42166
– volume: 348
  start-page: 1967
  year: 2003
  end-page: 1976
  ident: CR1
  article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030747
– volume: 113
  start-page: 1056
  year: 2016
  end-page: 1061
  ident: CR53
  article-title: Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1523303113
– volume: 342
  start-page: 592
  year: 2013
  end-page: 598
  ident: CR51
  article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus
  publication-title: Science
  doi: 10.1126/science.1243283
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: CR29
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: CR84
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 495
  start-page: 251
  year: 2013
  end-page: 254
  ident: CR34
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
  doi: 10.1038/nature12005
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR5
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: CR20
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: CR32
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: CR10
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 11
  start-page: 329
  year: 1998
  end-page: 332
  ident: CR63
  article-title: Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins
  publication-title: Protein Eng.
  doi: 10.1093/protein/11.4.329
– volume: 342
  start-page: 1484
  year: 2013
  end-page: 1490
  ident: CR49
  article-title: Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer
  publication-title: Science
  doi: 10.1126/science.1245627
– volume: 26
  start-page: 113
  year: 2017
  end-page: 121
  ident: CR62
  article-title: Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy
  publication-title: Protein Sci.
  doi: 10.1002/pro.3048
– volume: 26
  start-page: 980
  year: 2019
  end-page: 987
  ident: CR54
  article-title: An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0308-9
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: CR28
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 531
  start-page: 118
  year: 2016
  end-page: 121
  ident: CR17
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
  doi: 10.1038/nature17200
– volume: 27
  start-page: 119
  year: 2017
  end-page: 129
  ident: CR21
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– volume: 113
  start-page: 12262
  year: 2016
  end-page: 12267
  ident: CR16
  article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608147113
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: CR33
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
  doi: 10.1126/science.1116480
– volume: 157
  start-page: 281
  year: 2007
  end-page: 287
  ident: CR77
  article-title: Visualizing density maps with UCSF Chimera
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.06.010
– volume: 342
  start-page: 1477
  year: 2013
  end-page: 1483
  ident: CR48
  article-title: Crystal structure of a soluble cleaved HIV-1 envelope trimer
  publication-title: Science
  doi: 10.1126/science.1245625
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: CR72
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 88
  start-page: 13396
  year: 2014
  end-page: 13409
  ident: CR44
  article-title: Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state
  publication-title: J. Virol.
  doi: 10.1128/JVI.01962-14
– volume: 9
  start-page: e1003618
  year: 2013
  ident: CR47
  article-title: A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003618
– volume: 141
  start-page: 1335
  year: 1998
  end-page: 1347
  ident: CR46
  article-title: Specific single or double proline substitutions in the ‘spring-loaded’ coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.6.1335
– volume: 8
  year: 2017
  ident: CR23
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 315
  start-page: 843
  year: 2007
  end-page: 848
  ident: CR45
  article-title: Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G
  publication-title: Science
  doi: 10.1126/science.1135710
– volume: 105
  start-page: 93
  year: 2019
  end-page: 116
  ident: CR9
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2019.08.002
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: CR18
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: CR26
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e9
  ident: CR31
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 202
  start-page: 120
  year: 2015
  end-page: 134
  ident: CR14
  article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.11.021
– volume: 15
  start-page: 690
  year: 2008
  end-page: 698
  ident: CR40
  article-title: Viral membrane fusion
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1456
– volume: 5
  start-page: e17219
  year: 2016
  ident: CR79
  article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
  publication-title: Elife
  doi: 10.7554/eLife.17219
– ident: CR65
– volume: 77
  start-page: 8801
  year: 2003
  end-page: 8811
  ident: CR11
  article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.16.8801-8811.2003
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: CR39
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 27
  start-page: 134
  year: 2019
  end-page: 139.e3
  ident: CR78
  article-title: Automatically fixing errors in glycoprotein structures with Rosetta
  publication-title: Structure
  doi: 10.1016/j.str.2018.09.006
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: CR56
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 16
  start-page: 1146
  year: 2019
  end-page: 1152
  ident: CR73
  article-title: Real-time cryo-electron microscopy data preprocessing with Warp
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0580-y
– ident: CR7
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039.e15
  ident: CR36
  article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– ident: CR59
– volume: 26
  start-page: 481
  year: 2019
  end-page: 489
  ident: CR24
  article-title: Structural basis for human coronavirus attachment to sialic acid receptors
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0233-y
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: CR30
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 348
  start-page: 1953
  year: 2003
  ident: 483_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030781
– volume: 581
  start-page: 215
  year: 2020
  ident: 483_CR30
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 367
  start-page: 1814
  year: 2012
  ident: 483_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 114
  start-page: E7348
  year: 2017
  ident: 483_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 10
  start-page: e1004502
  year: 2014
  ident: 483_CR12
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004502
– volume: 26
  start-page: 113
  year: 2017
  ident: 483_CR62
  publication-title: Protein Sci.
  doi: 10.1002/pro.3048
– volume: 8
  year: 2017
  ident: 483_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 342
  start-page: 1484
  year: 2013
  ident: 483_CR49
  publication-title: Science
  doi: 10.1126/science.1245627
– volume: 4
  start-page: 557
  year: 2012
  ident: 483_CR38
  publication-title: Viruses
  doi: 10.3390/v4040557
– volume: 9
  start-page: e1003618
  year: 2013
  ident: 483_CR47
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003618
– volume: 426
  start-page: 450
  year: 2003
  ident: 483_CR32
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 342
  start-page: 592
  year: 2013
  ident: 483_CR51
  publication-title: Science
  doi: 10.1126/science.1243283
– volume: 66
  start-page: 12
  year: 2010
  ident: 483_CR81
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 176
  start-page: 1026
  year: 2019
  ident: 483_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 27
  start-page: 14
  year: 2018
  ident: 483_CR84
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 111
  start-page: 15214
  year: 2014
  ident: 483_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1407087111
– volume: 113
  start-page: 1056
  year: 2016
  ident: 483_CR53
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1523303113
– ident: 483_CR7
  doi: 10.1016/j.celrep.2020.107940
– volume: 514
  start-page: 455
  year: 2014
  ident: 483_CR50
  publication-title: Nature
  doi: 10.1038/nature13808
– volume: 15
  start-page: 690
  year: 2008
  ident: 483_CR40
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1456
– volume: 583
  start-page: 290
  year: 2020
  ident: 483_CR57
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 26
  start-page: 980
  year: 2019
  ident: 483_CR54
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0308-9
– ident: 483_CR65
  doi: 10.1101/2020.03.15.992883
– ident: 483_CR58
  doi: 10.1101/2020.03.02.972927
– volume: 367
  start-page: 1444
  year: 2020
  ident: 483_CR28
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 7
  start-page: e42166
  year: 2018
  ident: 483_CR74
  publication-title: Elife
  doi: 10.7554/eLife.42166
– volume: 8
  year: 2018
  ident: 483_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 12
  start-page: 943
  year: 2015
  ident: 483_CR82
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3541
– volume: 11
  start-page: 329
  year: 1998
  ident: 483_CR63
  publication-title: Protein Eng.
  doi: 10.1093/protein/11.4.329
– volume: 9
  start-page: 382
  year: 2020
  ident: 483_CR66
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– volume: 531
  start-page: 118
  year: 2016
  ident: 483_CR17
  publication-title: Nature
  doi: 10.1038/nature17200
– volume: 92
  start-page: e01628
  year: 2018
  ident: 483_CR69
  publication-title: J. Virol.
  doi: 10.1128/JVI.01628-17
– volume: 5
  start-page: 562
  year: 2020
  ident: 483_CR26
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 115
  start-page: 12265
  year: 2018
  ident: 483_CR52
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1811980115
– ident: 483_CR68
  doi: 10.1016/j.chom.2020.06.010
– volume: 77
  start-page: 8801
  year: 2003
  ident: 483_CR11
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.16.8801-8811.2003
– volume: 5
  start-page: e17219
  year: 2016
  ident: 483_CR79
  publication-title: Elife
  doi: 10.7554/eLife.17219
– volume: 114
  start-page: 11157
  year: 2017
  ident: 483_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708727114
– ident: 483_CR60
  doi: 10.1101/2020.06.26.173476
– volume: 181
  start-page: 894
  year: 2020
  ident: 483_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 176
  start-page: 1420
  year: 2019
  ident: 483_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.046
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 483_CR22
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 181
  start-page: 281
  year: 2020
  ident: 483_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 202
  start-page: 120
  year: 2015
  ident: 483_CR14
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2014.11.021
– volume: 88
  start-page: 13396
  year: 2014
  ident: 483_CR44
  publication-title: J. Virol.
  doi: 10.1128/JVI.01962-14
– volume: 157
  start-page: 281
  year: 2007
  ident: 483_CR77
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.06.010
– volume: 531
  start-page: 114
  year: 2016
  ident: 483_CR10
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 382
  start-page: 727
  year: 2020
  ident: 483_CR4
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 14
  start-page: 290
  year: 2017
  ident: 483_CR72
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 579
  start-page: 270
  year: 2020
  ident: 483_CR6
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 9
  start-page: 853
  year: 2012
  ident: 483_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2115
– volume: 581
  start-page: 221
  year: 2020
  ident: 483_CR29
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 342
  start-page: 1477
  year: 2013
  ident: 483_CR48
  publication-title: Science
  doi: 10.1126/science.1245625
– volume: 348
  start-page: 1967
  year: 2003
  ident: 483_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030747
– volume: 500
  start-page: 227
  year: 2013
  ident: 483_CR35
  publication-title: Nature
  doi: 10.1038/nature12328
– volume: 6
  start-page: 5
  year: 2019
  ident: 483_CR75
  publication-title: IUCrJ
  doi: 10.1107/S205225251801463X
– volume: 105
  start-page: 93
  year: 2019
  ident: 483_CR9
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2019.08.002
– volume: 495
  start-page: 251
  year: 2013
  ident: 483_CR34
  publication-title: Nature
  doi: 10.1038/nature12005
– volume: 27
  start-page: 119
  year: 2017
  ident: 483_CR21
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– volume: 83
  start-page: 7411
  year: 2009
  ident: 483_CR37
  publication-title: J. Virol.
  doi: 10.1128/JVI.00079-09
– volume: 371
  start-page: 37
  year: 1994
  ident: 483_CR41
  publication-title: Nature
  doi: 10.1038/371037a0
– volume: 309
  start-page: 1864
  year: 2005
  ident: 483_CR33
  publication-title: Science
  doi: 10.1126/science.1116480
– volume: 12
  start-page: eabb5883
  year: 2020
  ident: 483_CR8
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb5883
– volume: 113
  start-page: 12262
  year: 2016
  ident: 483_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1608147113
– volume: 106
  start-page: 5871
  year: 2009
  ident: 483_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0809524106
– volume: 12
  start-page: 361
  year: 2015
  ident: 483_CR80
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3286
– ident: 483_CR61
  doi: 10.1126/science.abd4251
– volume: 26
  start-page: 481
  year: 2019
  ident: 483_CR24
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0233-y
– volume: 27
  start-page: 134
  year: 2019
  ident: 483_CR78
  publication-title: Structure
  doi: 10.1016/j.str.2018.09.006
– volume: 367
  start-page: 1260
  year: 2020
  ident: 483_CR56
  publication-title: Science
  doi: 10.1126/science.abb2507
– ident: 483_CR59
  doi: 10.1101/2020.06.27.174979
– volume: 16
  start-page: 1146
  year: 2019
  ident: 483_CR73
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0580-y
– volume: 313
  start-page: 187
  year: 2006
  ident: 483_CR42
  publication-title: Science
  doi: 10.1126/science.1127683
– volume: 315
  start-page: 843
  year: 2007
  ident: 483_CR45
  publication-title: Science
  doi: 10.1126/science.1135710
– volume: 14
  start-page: 346
  year: 2013
  ident: 483_CR64
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-346
– volume: 151
  start-page: 41
  year: 2005
  ident: 483_CR71
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 75
  start-page: 861
  year: 2019
  ident: 483_CR83
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798319011471
– volume: 26
  start-page: 1151
  year: 2019
  ident: 483_CR25
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0334-7
– volume: 181
  start-page: 271
  year: 2020
  ident: 483_CR39
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 141
  start-page: 1335
  year: 1998
  ident: 483_CR46
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.6.1335
– volume: 368
  start-page: 630
  year: 2020
  ident: 483_CR67
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 395
  start-page: 497
  year: 2020
  ident: 483_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 181
  start-page: 271
  year: 2020
  ident: 483_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 89
  start-page: 1838
  year: 2015
  ident: 483_CR43
  publication-title: J. Virol.
  doi: 10.1128/JVI.02277-14
– reference: 32577661 - bioRxiv. 2020 Jun 03:2020.06.03.129817. doi: 10.1101/2020.06.03.129817
SSID ssj0025573
Score 2.616509
Snippet SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection,...
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 942
SubjectTerms 101/28
631/326/596/4130
631/535/1258/1259
Antibodies, Monoclonal - metabolism
Antibodies, Neutralizing - metabolism
Betacoronavirus - chemistry
Betacoronavirus - genetics
Betacoronavirus - immunology
Betacoronavirus - metabolism
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Causes of
Conformation
Coronaviruses
Cryoelectron Microscopy
Disulfides - chemistry
Electrophoresis, Polyacrylamide Gel
Enzyme-Linked Immunosorbent Assay
Epidemics
Genetic aspects
Glycoproteins
Health aspects
Humans
Life Sciences
Membrane Biology
Models, Molecular
Mutation
Properties
Protein Conformation
Protein Domains
Protein Engineering
Protein Multimerization
Protein Stability
Protein Structure
Proteins
SARS-CoV-2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
United States
Virulence (Microbiology)
Title Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation
URI https://link.springer.com/article/10.1038/s41594-020-0483-8
https://www.ncbi.nlm.nih.gov/pubmed/32753755
https://www.proquest.com/docview/2430666375
https://pubmed.ncbi.nlm.nih.gov/PMC7541350
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXse9l64I2BoMNM9uyLPsxCQ1tYWG0HeRNSLKcmgW7xMmg__3u5A_mjBb25MBdZEu6k37HnX4i5JNNYR_XPPHiHNOMcc69VAXGUzZR4F8Aol32_PsiPvsZXSz58oAE3VkYV7TvKC3dMt1Vh32rYaNBEtsQixET5iWH5BiZ2zHemsWzPsbi3CWVERh4gH1Yl8hkyb9NDLai_QX5rx1pv1pyL2XqdqL5U_KkhZB00nz0M3Jgy-fkUXOp5N0Lsr5ylLDQN2-1KzKbUVOBOUGzFJAg1sI2Jy9plYNkA0j8d7HZ1bS-LX5ZulrfmcqRNxQl3SL3_6am-PPGUrOuatdc2R95fEmu56fXszOvvVPBM7Gfbr2MawVjw1KWAtZSKsgC5cIkkXFhlNZ5ZI0VYQauGWmm0kCJzIKjRpn1M8ZekaOyKu0bQq3JdShgkeIKwmsRpyLVkY0Sbqwfa81HxO9GV5qWbxyvvVhLl_dmiWwmRMKESJwQmYzIl_4vtw3ZxkPKH3HKJJJYlFgls1K7upbnV5dyEjMhWArIcUQ-t0p5BS83qj10AF1A3quB5slAE7zMDMQfOsuQKMLStNJWu1qGEcMYkAno8evGUvqPZyFEg4KDRAxsqFdAcu-hpCxuHMm34AAvuD8iXztrk-3qUt8_Jm__S_sdeRyiN7jSxBNyBNZp3wPE2uoxORRLMSbHk_l0uoDn9HTx43LsXO0PongkKQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpSmkvpe9um7RqKRRaRGzLsuxjWBI2bZJDs4XchCTLG9PFDuvdQv59Z-QH8ZYGejPMWLakGekbZvSJkE8ug33ciJQlBaYZk0KwTIeWaZdq8C8A0T57fnaezH7G3y7F5Q4J-7MwvmjfU1r6ZbqvDjtoYKNBEtsIixFTztJ75D5A7QQNeZpMhxhLCJ9URmDAAPvwPpHJ07-bGG1F2wvyrR1pu1pyK2Xqd6LjJ-RxByHpYfvTT8mOq56RB-2lkjfPyfLCU8JC39hiU-Yup7YGc4JmKSBBrIVtT17SugDJCpD473K1aWhzXf5ydLG8sbUnbygrukbu_1VD8fHKUbusG99cNRx5fEHmx0fz6Yx1dyowmwTZmuXCaBgbnvEMsJbWYR5qHybJXEirjSliZ52McnDN2HCdhVrmDhw1zl2Qc_6S7FZ15V4T6mxhIgmLlNAQXsskk5mJXZwK64LEGDEhQT-6ynZ843jtxVL5vDdPVTshCiZE4YSodEK-DK9ct2Qbdyl_xClTSGJRYZXMQm-aRp1c_FCHCZeSZ4AcJ-Rzp1TU8HGru0MH0AXkvRpp7o00wcvsSPyhtwyFIixNq1y9aVQUc4wBuYQev2otZfh5HkE0KAVI5MiGBgUk9x5LqvLKk3xLAfBCBBPytbc21a0uzb_H5M1_ab8nD2fzs1N1enL-_S15FKFn-DLFPbILlur2AW6tzTvvYH8AaLAjGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA_nieIX8e3qqVEEQYl2m6ZpPx6ry52PQ7wT7lvIq3vFpV22u8L9986kD-yKgt8KM02bZCb5DTP5hZCXPod93IiMpQWmGdNCsFxPLdM-0-BfAKJD9vzLSXr0Pfl4Ls73iOjPwoSi_UBpGZbpvjrsXQMbDZLYxliMmHGWvV254gq5CnA7wkquWTob4iwhQmIZwQED_MP7ZCbP_mxmtB3tLsq_7Uq7FZM7adOwG81vkZsdjKSH7Y_fJnu-ukOutRdLXt4ly9NACwv9Y4tt6byjtgaTgmYpoEGsh21PX9K6AMka0PjPcr1taLMqf3i6WF7aOhA4lBXdIP__uqH4eOGpXdZNaK4ajj3eI2fzD2ezI9bdq8BsGuUb5oTRMDY85zngLa2nbqpDqCSdkFYbUyTeehk7cM_EcJ1PtXQenDVxPnKc3yf7VV35h4R6W5hYwkIlNITYMs1lbhKfZML6KDVGTEjUj66yHec4Xn2xVCH3zTPVToiCCVE4ISqbkNfDK6uWcONfyi9wyhQSWVRYKbPQ26ZRx6ff1GHKpeQ5oMcJedUpFTV83Oru4AF0AbmvRpoHI03wNDsSP-8tQ6EIy9MqX28bFScc40AuoccPWksZfp7HEBFKARI5sqFBAQm-x5KqvAhE31IAxBDRhLzprU11K0zz9zF59F_az8j1r-_n6vPxyafH5EaMjhEqFQ_IPhiqfwKIa2OeBv_6BXxqJCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-guided+covalent+stabilization+of+coronavirus+spike+glycoprotein+trimers+in+the+closed+conformation&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=McCallum%2C+Matthew&rft.au=Walls%2C+Alexandra+C&rft.au=Bowen%2C+John+E&rft.au=Corti%2C+Davide&rft.date=2020-10-01&rft.eissn=1545-9985&rft.volume=27&rft.issue=10&rft.spage=942&rft_id=info:doi/10.1038%2Fs41594-020-0483-8&rft_id=info%3Apmid%2F32753755&rft.externalDocID=32753755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon