Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation
SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-C...
Saved in:
Published in | Nature structural & molecular biology Vol. 27; no. 10; pp. 942 - 949 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.10.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.
The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV. |
---|---|
AbstractList | SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other [beta]-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies.SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other β-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV. SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection, the SARS-CoV-2 spike (S) glycoprotein promotes attachment to the host cell surface and fusion of the viral and host membranes. Prefusion SARS-CoV-2 S is the main target of neutralizing antibodies and the focus of vaccine design. However, its limited stability and conformational dynamics are limiting factors for developing countermeasures against this virus. We report here the design of a construct corresponding to the prefusion SARS-CoV-2 S ectodomain trimer, covalently stabilized by a disulfide bond in the closed conformation. Structural and antigenicity analyses show we successfully shut S in the closed state without otherwise altering its architecture. We demonstrate that this strategy is applicable to other [beta]-coronaviruses, such as SARS-CoV and MERS-CoV, and might become an important tool for structural biology, serology, vaccine design and immunology studies. The conformational dynamics of SARS-CoV-2 spike are constrained by engineering a disulfide bond that locks the protein in a closed conformation, a strategy that was also applied to SARS-CoV and MERS-CoV. |
Audience | Academic |
Author | Bowen, John E. Corti, Davide Veesler, David Walls, Alexandra C. McCallum, Matthew |
Author_xml | – sequence: 1 givenname: Matthew surname: McCallum fullname: McCallum, Matthew organization: Department of Biochemistry, University of Washington – sequence: 2 givenname: Alexandra C. surname: Walls fullname: Walls, Alexandra C. organization: Department of Biochemistry, University of Washington – sequence: 3 givenname: John E. orcidid: 0000-0003-3590-9727 surname: Bowen fullname: Bowen, John E. organization: Department of Biochemistry, University of Washington – sequence: 4 givenname: Davide surname: Corti fullname: Corti, Davide organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology – sequence: 5 givenname: David orcidid: 0000-0002-6019-8675 surname: Veesler fullname: Veesler, David email: dveesler@uw.edu organization: Department of Biochemistry, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32753755$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNURP_AB-CCInGhhxQ7jjfrC1JVUahUCYn2bjn2JHVx7MV2Vi2fntlNWbEIVTnEin_vZd7MHBcHPngoireUnFHClh9TQ7loKlKTijRLVi1fFEeUN7wSYskPdmfBDovjlO4JqTlv2avikNUtZy3nR4W7yXHSeYpQDZM1YEod1sqBz2XKqrPO_lLZBl-GHm9i8Gpt45TKtLI_oBzcow6rGDJYX-ZoR4ip3BzvoNQupK2d70Mctyavi5e9cgnePL1PitvLz7cXX6vrb1-uLs6vK70gIleGdworZ4JhDKoUNVQRQhvRGt5q1XV9Axra2jAqmo4pQVVrgDPaGCCGsZPi02y7mroRjMYwUTm5wvpUfJRBWbl_4-2dHMJatryhjBM0-PBkEMPPCVKWo00anFMewpRk3TCyWCywg4i-n9EBmyYtZkVHvcHlOQItE4QLpM7-Q-FjYLTYIegtft8TnO4JkMnwkAc1pSSvbr7vs-_-jrvL-WfICNAZ0DGkFKHfIZTIzSLJeZEkLpLcLJJcoqb9R6Nt3g4RK7fuWWU9KxP-xQ8Q5X2Yosd5PyP6DWNE3h4 |
CitedBy_id | crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_3390_ijms23031646 crossref_primary_10_1515_cmb_2020_0119 crossref_primary_10_1038_s41594_022_00735_5 crossref_primary_10_3390_v16091458 crossref_primary_10_1007_s10072_023_07186_w crossref_primary_10_1021_acs_jcim_3c00778 crossref_primary_10_1016_j_coi_2022_102209 crossref_primary_10_1155_2023_5279979 crossref_primary_10_1002_jmv_27132 crossref_primary_10_29328_journal_ijcv_1001060 crossref_primary_10_14710_jbtr_v1i1_13113 crossref_primary_10_1016_j_chom_2020_11_001 crossref_primary_10_1038_s41392_021_00809_8 crossref_primary_10_1080_01913123_2022_2035475 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1016_j_celrep_2021_108950 crossref_primary_10_3390_ijms231911542 crossref_primary_10_3389_fmed_2021_637642 crossref_primary_10_1021_acs_jcim_3c01857 crossref_primary_10_3389_fimmu_2021_660198 crossref_primary_10_1038_s41467_024_46536_w crossref_primary_10_3390_polym14153014 crossref_primary_10_3390_md18110543 crossref_primary_10_1016_j_celrep_2021_109929 crossref_primary_10_1016_j_coviro_2021_05_005 crossref_primary_10_7554_eLife_82584 crossref_primary_10_3390_vaccines11010012 crossref_primary_10_1038_s41586_021_03677_y crossref_primary_10_3390_ijms23062928 crossref_primary_10_1016_j_coviro_2021_09_005 crossref_primary_10_1038_s41392_022_00884_5 crossref_primary_10_1126_science_abm5561 crossref_primary_10_3390_v15102009 crossref_primary_10_15252_emmm_202114459 crossref_primary_10_1021_acs_jcim_4c01928 crossref_primary_10_1021_acsomega_1c03558 crossref_primary_10_1080_07391102_2021_1933594 crossref_primary_10_1038_s41596_021_00623_0 crossref_primary_10_3390_ijms25094955 crossref_primary_10_1021_acs_jpcb_4c07004 crossref_primary_10_1021_acsomega_1c02336 crossref_primary_10_1126_science_abe3354 crossref_primary_10_1128_JVI_00203_21 crossref_primary_10_1016_j_jbc_2021_101238 crossref_primary_10_3390_ijms24076642 crossref_primary_10_1016_j_ijbiomac_2021_07_144 crossref_primary_10_1021_acs_jcim_1c00766 crossref_primary_10_1371_journal_pone_0289432 crossref_primary_10_7554_eLife_75720 crossref_primary_10_1016_j_ejphar_2021_173977 crossref_primary_10_3390_ijms25084281 crossref_primary_10_1080_22221751_2022_2095308 crossref_primary_10_1126_science_abm3125 crossref_primary_10_1021_acs_jpcb_3c05460 crossref_primary_10_3390_v13020332 crossref_primary_10_1021_acs_biochem_1c00139 crossref_primary_10_1021_acs_jcim_2c00124 crossref_primary_10_1007_s00253_023_12520_5 crossref_primary_10_1016_j_isci_2022_104722 crossref_primary_10_1128_mbio_03227_21 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_3390_v13050837 crossref_primary_10_3390_v15051143 crossref_primary_10_1021_acs_jproteome_0c00654 crossref_primary_10_3390_v16060912 crossref_primary_10_1021_acs_jpcb_1c00395 crossref_primary_10_1038_s41467_020_20321_x crossref_primary_10_1007_s00249_022_01619_8 crossref_primary_10_1371_journal_ppat_1012158 crossref_primary_10_3390_ijms23042172 crossref_primary_10_1021_acs_analchem_2c00554 crossref_primary_10_26508_lsa_202201796 crossref_primary_10_1038_s41467_022_32232_0 crossref_primary_10_22159_ijap_2023v15i1_43571 crossref_primary_10_1016_j_jddst_2021_102967 crossref_primary_10_1038_s41586_020_2665_2 crossref_primary_10_3390_ijms23084376 crossref_primary_10_1002_ange_202015639 crossref_primary_10_1002_pro_4152 crossref_primary_10_1021_acs_jpcb_0c10637 crossref_primary_10_1093_bib_bbae468 crossref_primary_10_1371_journal_pbio_3001237 crossref_primary_10_1021_acs_nanolett_0c04465 crossref_primary_10_1128_jvi_01626_21 crossref_primary_10_3390_biom12070964 crossref_primary_10_1371_journal_pone_0252571 crossref_primary_10_1016_j_sbi_2022_102385 crossref_primary_10_1016_j_csbj_2022_11_004 crossref_primary_10_1126_sciadv_abn2911 crossref_primary_10_1016_j_cell_2020_10_043 crossref_primary_10_1038_s41392_022_01007_w crossref_primary_10_1126_science_abl8506 crossref_primary_10_1039_D4CP01372G crossref_primary_10_1002_anie_202015639 crossref_primary_10_1128_spectrum_02364_21 crossref_primary_10_1016_j_crstbi_2022_05_001 crossref_primary_10_3390_vaccines9121509 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1016_j_bbrc_2022_01_106 crossref_primary_10_1016_j_phyplu_2021_100027 crossref_primary_10_1128_spectrum_03655_23 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_1002_jemt_23931 crossref_primary_10_1039_D3CP02042H crossref_primary_10_1021_jacs_1c00556 crossref_primary_10_1007_s42247_021_00163_z crossref_primary_10_1002_JLB_3COVCRA0920_628RR crossref_primary_10_1021_acs_jpcb_4c01341 crossref_primary_10_1007_s11010_022_04588_w crossref_primary_10_3389_fimmu_2022_872047 crossref_primary_10_1016_j_intimp_2021_107763 crossref_primary_10_1146_annurev_biophys_102620_080956 crossref_primary_10_1038_s41401_021_00851_w |
Cites_doi | 10.1016/j.cell.2020.02.052 10.3390/v4040557 10.1038/371037a0 10.1038/s41586-020-2349-y 10.1073/pnas.0809524106 10.1038/nature13808 10.1107/S205225251801463X 10.1016/j.jsb.2005.03.010 10.1371/journal.ppat.1007236 10.1038/nmeth.3286 10.1073/pnas.1708727114 10.1107/S0907444909042073 10.1128/JVI.01628-17 10.1056/NEJMoa1211721 10.1186/1471-2105-14-346 10.1080/22221751.2020.1729069 10.1073/pnas.1811980115 10.1128/JVI.02277-14 10.1126/scitranslmed.abb5883 10.1371/journal.ppat.1004502 10.1038/s41594-019-0334-7 10.1126/science.abb7269 10.1056/NEJMoa030781 10.1038/nature12328 10.1016/j.cell.2019.01.046 10.1056/NEJMoa2001017 10.1038/nmeth.2115 10.1038/nmeth.3541 10.1038/s41586-020-2012-7 10.1038/s41598-018-34171-7 10.1107/S2059798319011471 10.1073/pnas.1407087111 10.1128/JVI.00079-09 10.1126/science.1127683 10.7554/eLife.42166 10.1056/NEJMoa030747 10.1073/pnas.1523303113 10.1126/science.1243283 10.1038/s41586-020-2179-y 10.1002/pro.3235 10.1038/nature12005 10.1016/S0140-6736(20)30183-5 10.1073/pnas.1707304114 10.1038/nature02145 10.1038/nature16988 10.1093/protein/11.4.329 10.1126/science.1245627 10.1002/pro.3048 10.1038/s41594-019-0308-9 10.1126/science.abb2762 10.1038/nature17200 10.1038/cr.2016.152 10.1073/pnas.1608147113 10.1126/science.1116480 10.1016/j.jsb.2006.06.010 10.1126/science.1245625 10.1038/nmeth.4169 10.1128/JVI.01962-14 10.1371/journal.ppat.1003618 10.1083/jcb.141.6.1335 10.1038/ncomms15092 10.1126/science.1135710 10.1016/bs.aivir.2019.08.002 10.1016/j.cell.2020.02.058 10.1038/s41564-020-0688-y 10.1016/j.cell.2020.03.045 10.1016/j.virusres.2014.11.021 10.1038/nsmb.1456 10.7554/eLife.17219 10.1128/JVI.77.16.8801-8811.2003 10.1016/j.str.2018.09.006 10.1126/science.abb2507 10.1038/s41592-019-0580-y 10.1016/j.cell.2018.12.028 10.1038/s41594-019-0233-y 10.1038/s41586-020-2180-5 10.1016/j.celrep.2020.107940 10.1101/2020.03.15.992883 10.1101/2020.03.02.972927 10.1016/j.chom.2020.06.010 10.1101/2020.06.26.173476 10.1126/science.abd4251 10.1101/2020.06.27.174979 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Nature Publishing Group |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Nature Publishing Group |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM |
DOI | 10.1038/s41594-020-0483-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1545-9985 |
EndPage | 949 |
ExternalDocumentID | PMC7541350 A637739059 32753755 10_1038_s41594_020_0483_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120553 – fundername: NIH HHS grantid: S10 OD023476 – fundername: NIAID NIH HHS grantid: HHSN272201700059C |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5S5 6TJ 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFO ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADFRT ADNMO AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT AJQPL ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU DB5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IGS IH2 IHR INH INR ISR ITC L-9 L7B LK8 M0L M1P M2O M7P MVM N9A NNMJJ O9- ODYON P2P PADUT PKN PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT ZXP ~8M AAYXX ABFSG ACMFV ACSTC AETEA AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c609t-d5ba5453939851aa1d1a001497d57cabbf4ece72d3194b3a91a7de5314de0d33 |
IEDL.DBID | C6C |
ISSN | 1545-9993 1545-9985 |
IngestDate | Thu Aug 21 18:18:07 EDT 2025 Fri Jul 11 08:11:42 EDT 2025 Tue Jun 17 21:40:41 EDT 2025 Tue Jun 10 20:49:22 EDT 2025 Fri Jun 27 03:52:59 EDT 2025 Mon Jul 21 05:50:56 EDT 2025 Tue Jul 01 01:59:44 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 21 02:40:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-d5ba5453939851aa1d1a001497d57cabbf4ece72d3194b3a91a7de5314de0d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3590-9727 0000-0002-6019-8675 |
OpenAccessLink | https://www.nature.com/articles/s41594-020-0483-8 |
PMID | 32753755 |
PQID | 2430666375 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541350 proquest_miscellaneous_2430666375 gale_infotracmisc_A637739059 gale_infotracacademiconefile_A637739059 gale_incontextgauss_ISR_A637739059 pubmed_primary_32753755 crossref_primary_10_1038_s41594_020_0483_8 crossref_citationtrail_10_1038_s41594_020_0483_8 springer_journals_10_1038_s41594_020_0483_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature structural & molecular biology |
PublicationTitleAbbrev | Nat Struct Mol Biol |
PublicationTitleAlternate | Nat Struct Mol Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Zhu (CR4) 2020; 382 Stewart-Jones (CR52) 2018; 115 Ferlin, Raux, Baquero, Lepault, Gaudin (CR44) 2014; 88 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (CR3) 2012; 367 Shang (CR29) 2020; 581 Harrison (CR40) 2008; 15 Gui (CR21) 2017; 27 Pancera (CR50) 2014; 514 Barad (CR82) 2015; 12 Burkard (CR12) 2014; 10 Walls (CR18) 2020; 181 Punjani, Rubinstein, Fleet, Brubaker (CR72) 2017; 14 Roche, Bressanelli, Rey, Gaudin (CR42) 2006; 313 Walls (CR10) 2016; 531 Dang (CR54) 2019; 26 Goddard, Huang, Ferrin (CR77) 2007; 157 Liebschner (CR83) 2019; 75 Marcandalli (CR70) 2019; 176 Yuan (CR67) 2020; 368 Julien (CR48) 2013; 342 Craig, Dombkowski (CR64) 2013; 14 Park (CR16) 2016; 113 Kirchdoerfer (CR17) 2016; 531 Lyumkis (CR49) 2013; 342 Hoffmann (CR39) 2020; 181 Zivanov, Nakane, Scheres (CR75) 2019; 6 Frenz (CR78) 2019; 27 CR7 Pallesen (CR20) 2017; 114 Sanders (CR47) 2013; 9 Walls (CR62) 2017; 26 Lan (CR30) 2020; 581 Wong, Paterson, Lamb, Jardetzky (CR53) 2016; 113 Li, Li, Farzan, Harrison (CR33) 2005; 309 Tegunov, Cramer (CR73) 2019; 16 Park (CR25) 2019; 26 Ksiazek (CR2) 2003; 348 Goddard (CR84) 2018; 27 Belouzard, Chu, Whittaker (CR15) 2009; 106 Wang (CR31) 2020; 181 Scheres, Chen (CR76) 2012; 9 Walls (CR36) 2019; 176 Qiao (CR46) 1998; 141 Wang (CR79) 2016; 5 Miroshnikov (CR63) 1998; 11 Hoffmann (CR27) 2020; 181 Bullough, Hughson, Skehel, Wiley (CR41) 1994; 371 Drosten (CR1) 2003; 348 Xiong (CR69) 2018; 92 Suloway (CR71) 2005; 151 Chen (CR81) 2010; 66 Roche, Rey, Gaudin, Bressanelli (CR45) 2007; 315 CR59 Pinto (CR57) 2020; 583 CR58 Song, Gui, Wang, Xiang (CR22) 2018; 14 Zivanov (CR74) 2018; 7 DiMaio (CR80) 2015; 12 McLellan (CR51) 2013; 342 Huang (CR5) 2020; 395 Wrapp (CR56) 2020; 367 Tian (CR66) 2020; 9 Kirchdoerfer (CR55) 2018; 8 Lu (CR35) 2013; 500 Tortorici (CR24) 2019; 26 Bosch, van der Zee, de Haan, Rottier (CR11) 2003; 77 Zhou (CR6) 2020; 579 Madu, Roth, Belouzard, Whittaker (CR37) 2009; 83 Raj (CR34) 2013; 495 Millet, Whittaker (CR13) 2014; 111 Tortorici, Veesler (CR9) 2019; 105 Letko, Marzi, Munster (CR26) 2020; 5 CR68 CR65 Li (CR32) 2003; 426 CR61 CR60 Liu (CR43) 2015; 89 Sheahan (CR8) 2020; 12 Yuan (CR23) 2017; 8 Walls (CR19) 2017; 114 Heald-Sargent, Gallagher (CR38) 2012; 4 Millet, Whittaker (CR14) 2015; 202 Yan (CR28) 2020; 367 RY Wang (483_CR79) 2016; 5 483_CR61 J Lan (483_CR30) 2020; 581 483_CR60 JK Millet (483_CR14) 2015; 202 483_CR65 X Xiong (483_CR69) 2018; 92 F DiMaio (483_CR80) 2015; 12 M Pancera (483_CR50) 2014; 514 T Heald-Sargent (483_CR38) 2012; 4 D Liebschner (483_CR83) 2019; 75 J Shang (483_CR29) 2020; 581 483_CR59 483_CR58 A Ferlin (483_CR44) 2014; 88 B Frenz (483_CR78) 2019; 27 RN Kirchdoerfer (483_CR55) 2018; 8 M Hoffmann (483_CR27) 2020; 181 R Yan (483_CR28) 2020; 367 C Drosten (483_CR1) 2003; 348 BA Barad (483_CR82) 2015; 12 J Marcandalli (483_CR70) 2019; 176 GBE Stewart-Jones (483_CR52) 2018; 115 A Punjani (483_CR72) 2017; 14 VS Raj (483_CR34) 2013; 495 VB Chen (483_CR81) 2010; 66 C Suloway (483_CR71) 2005; 151 KA Miroshnikov (483_CR63) 1998; 11 D Tegunov (483_CR73) 2019; 16 W Li (483_CR32) 2003; 426 RW Sanders (483_CR47) 2013; 9 M Letko (483_CR26) 2020; 5 G Lu (483_CR35) 2013; 500 M Yuan (483_CR67) 2020; 368 J Zivanov (483_CR75) 2019; 6 Q Liu (483_CR43) 2015; 89 AC Walls (483_CR10) 2016; 531 DB Craig (483_CR64) 2013; 14 F Li (483_CR33) 2005; 309 M Gui (483_CR21) 2017; 27 X Tian (483_CR66) 2020; 9 JK Millet (483_CR13) 2014; 111 Y Yuan (483_CR23) 2017; 8 D Pinto (483_CR57) 2020; 583 SC Harrison (483_CR40) 2008; 15 Q Wang (483_CR31) 2020; 181 TP Sheahan (483_CR8) 2020; 12 M Hoffmann (483_CR39) 2020; 181 S Roche (483_CR45) 2007; 315 JP Julien (483_CR48) 2013; 342 IG Madu (483_CR37) 2009; 83 H Qiao (483_CR46) 1998; 141 S Roche (483_CR42) 2006; 313 SH Scheres (483_CR76) 2012; 9 D Wrapp (483_CR56) 2020; 367 AC Walls (483_CR36) 2019; 176 S Belouzard (483_CR15) 2009; 106 HV Dang (483_CR54) 2019; 26 AC Walls (483_CR19) 2017; 114 483_CR7 RN Kirchdoerfer (483_CR17) 2016; 531 D Lyumkis (483_CR49) 2013; 342 YJ Park (483_CR25) 2019; 26 JS McLellan (483_CR51) 2013; 342 N Zhu (483_CR4) 2020; 382 C Huang (483_CR5) 2020; 395 BJ Bosch (483_CR11) 2003; 77 W Song (483_CR22) 2018; 14 TD Goddard (483_CR84) 2018; 27 AC Walls (483_CR18) 2020; 181 J Pallesen (483_CR20) 2017; 114 TG Ksiazek (483_CR2) 2003; 348 MA Tortorici (483_CR9) 2019; 105 PA Bullough (483_CR41) 1994; 371 P Zhou (483_CR6) 2020; 579 C Burkard (483_CR12) 2014; 10 AM Zaki (483_CR3) 2012; 367 JE Park (483_CR16) 2016; 113 JJ Wong (483_CR53) 2016; 113 483_CR68 J Zivanov (483_CR74) 2018; 7 A Walls (483_CR62) 2017; 26 MA Tortorici (483_CR24) 2019; 26 TD Goddard (483_CR77) 2007; 157 32577661 - bioRxiv. 2020 Jun 03:2020.06.03.129817. doi: 10.1101/2020.06.03.129817 |
References_xml | – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR27 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – ident: CR68 – volume: 4 start-page: 557 year: 2012 end-page: 580 ident: CR38 article-title: Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence publication-title: Viruses doi: 10.3390/v4040557 – volume: 371 start-page: 37 year: 1994 end-page: 43 ident: CR41 article-title: Structure of influenza haemagglutinin at the pH of membrane fusion publication-title: Nature doi: 10.1038/371037a0 – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: CR57 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 106 start-page: 5871 year: 2009 end-page: 5876 ident: CR15 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 514 start-page: 455 year: 2014 end-page: 461 ident: CR50 article-title: Structure and immune recognition of trimeric pre-fusion HIV-1 Env publication-title: Nature doi: 10.1038/nature13808 – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: CR75 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. publication-title: IUCrJ doi: 10.1107/S205225251801463X – ident: CR61 – ident: CR58 – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: CR71 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 14 start-page: e1007236 year: 2018 ident: CR22 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 12 start-page: 361 year: 2015 end-page: 365 ident: CR80 article-title: Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement publication-title: Nat. Methods doi: 10.1038/nmeth.3286 – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: CR19 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: CR81 article-title: : all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 92 start-page: e01628 year: 2018 end-page: 17 ident: CR69 article-title: Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections publication-title: J. Virol. doi: 10.1128/JVI.01628-17 – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: CR3 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 14 start-page: 346 year: 2013 ident: CR64 article-title: Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-346 – volume: 9 start-page: 382 year: 2020 end-page: 385 ident: CR66 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1729069 – volume: 115 start-page: 12265 year: 2018 end-page: 12270 ident: CR52 article-title: Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1811980115 – volume: 89 start-page: 1838 year: 2015 end-page: 1850 ident: CR43 article-title: Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering publication-title: J. Virol. doi: 10.1128/JVI.02277-14 – volume: 12 start-page: eabb5883 year: 2020 ident: CR8 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb5883 – volume: 10 start-page: e1004502 year: 2014 ident: CR12 article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004502 – volume: 26 start-page: 1151 year: 2019 end-page: 1157 ident: CR25 article-title: Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0334-7 – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: CR67 article-title: A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 348 start-page: 1953 year: 2003 end-page: 1966 ident: CR2 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030781 – volume: 500 start-page: 227 year: 2013 end-page: 231 ident: CR35 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature doi: 10.1038/nature12328 – volume: 176 start-page: 1420 year: 2019 end-page: 1431.e17 ident: CR70 article-title: Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus publication-title: Cell doi: 10.1016/j.cell.2019.01.046 – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: CR4 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 9 start-page: 853 year: 2012 end-page: 854 ident: CR76 article-title: Prevention of overfitting in cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.2115 – volume: 12 start-page: 943 year: 2015 end-page: 946 ident: CR82 article-title: EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: CR6 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 8 year: 2018 ident: CR55 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 75 start-page: 861 year: 2019 end-page: 877 ident: CR83 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319011471 – volume: 111 start-page: 15214 year: 2014 end-page: 15219 ident: CR13 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1407087111 – volume: 83 start-page: 7411 year: 2009 end-page: 7421 ident: CR37 article-title: Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide publication-title: J. Virol. doi: 10.1128/JVI.00079-09 – volume: 313 start-page: 187 year: 2006 end-page: 191 ident: CR42 article-title: Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G publication-title: Science doi: 10.1126/science.1127683 – ident: CR60 – volume: 7 start-page: e42166 year: 2018 ident: CR74 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: Elife doi: 10.7554/eLife.42166 – volume: 348 start-page: 1967 year: 2003 end-page: 1976 ident: CR1 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030747 – volume: 113 start-page: 1056 year: 2016 end-page: 1061 ident: CR53 article-title: Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1523303113 – volume: 342 start-page: 592 year: 2013 end-page: 598 ident: CR51 article-title: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus publication-title: Science doi: 10.1126/science.1243283 – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: CR29 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: CR84 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: CR34 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR5 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: CR20 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: CR32 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: CR10 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 11 start-page: 329 year: 1998 end-page: 332 ident: CR63 article-title: Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins publication-title: Protein Eng. doi: 10.1093/protein/11.4.329 – volume: 342 start-page: 1484 year: 2013 end-page: 1490 ident: CR49 article-title: Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer publication-title: Science doi: 10.1126/science.1245627 – volume: 26 start-page: 113 year: 2017 end-page: 121 ident: CR62 article-title: Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy publication-title: Protein Sci. doi: 10.1002/pro.3048 – volume: 26 start-page: 980 year: 2019 end-page: 987 ident: CR54 article-title: An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0308-9 – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: CR28 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 531 start-page: 118 year: 2016 end-page: 121 ident: CR17 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature doi: 10.1038/nature17200 – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: CR21 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 113 start-page: 12262 year: 2016 end-page: 12267 ident: CR16 article-title: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608147113 – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: CR33 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – volume: 157 start-page: 281 year: 2007 end-page: 287 ident: CR77 article-title: Visualizing density maps with UCSF Chimera publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.06.010 – volume: 342 start-page: 1477 year: 2013 end-page: 1483 ident: CR48 article-title: Crystal structure of a soluble cleaved HIV-1 envelope trimer publication-title: Science doi: 10.1126/science.1245625 – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: CR72 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 88 start-page: 13396 year: 2014 end-page: 13409 ident: CR44 article-title: Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state publication-title: J. Virol. doi: 10.1128/JVI.01962-14 – volume: 9 start-page: e1003618 year: 2013 ident: CR47 article-title: A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003618 – volume: 141 start-page: 1335 year: 1998 end-page: 1347 ident: CR46 article-title: Specific single or double proline substitutions in the ‘spring-loaded’ coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity publication-title: J. Cell Biol. doi: 10.1083/jcb.141.6.1335 – volume: 8 year: 2017 ident: CR23 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 315 start-page: 843 year: 2007 end-page: 848 ident: CR45 article-title: Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G publication-title: Science doi: 10.1126/science.1135710 – volume: 105 start-page: 93 year: 2019 end-page: 116 ident: CR9 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: CR18 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: CR26 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 181 start-page: 894 year: 2020 end-page: 904.e9 ident: CR31 article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 202 start-page: 120 year: 2015 end-page: 134 ident: CR14 article-title: Host cell proteases: critical determinants of coronavirus tropism and pathogenesis publication-title: Virus Res. doi: 10.1016/j.virusres.2014.11.021 – volume: 15 start-page: 690 year: 2008 end-page: 698 ident: CR40 article-title: Viral membrane fusion publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1456 – volume: 5 start-page: e17219 year: 2016 ident: CR79 article-title: Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta publication-title: Elife doi: 10.7554/eLife.17219 – ident: CR65 – volume: 77 start-page: 8801 year: 2003 end-page: 8811 ident: CR11 article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex publication-title: J. Virol. doi: 10.1128/JVI.77.16.8801-8811.2003 – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: CR39 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 27 start-page: 134 year: 2019 end-page: 139.e3 ident: CR78 article-title: Automatically fixing errors in glycoprotein structures with Rosetta publication-title: Structure doi: 10.1016/j.str.2018.09.006 – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR56 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 16 start-page: 1146 year: 2019 end-page: 1152 ident: CR73 article-title: Real-time cryo-electron microscopy data preprocessing with Warp publication-title: Nat. Methods doi: 10.1038/s41592-019-0580-y – ident: CR7 – volume: 176 start-page: 1026 year: 2019 end-page: 1039.e15 ident: CR36 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – ident: CR59 – volume: 26 start-page: 481 year: 2019 end-page: 489 ident: CR24 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR30 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 348 start-page: 1953 year: 2003 ident: 483_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030781 – volume: 581 start-page: 215 year: 2020 ident: 483_CR30 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 367 start-page: 1814 year: 2012 ident: 483_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 114 start-page: E7348 year: 2017 ident: 483_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 10 start-page: e1004502 year: 2014 ident: 483_CR12 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004502 – volume: 26 start-page: 113 year: 2017 ident: 483_CR62 publication-title: Protein Sci. doi: 10.1002/pro.3048 – volume: 8 year: 2017 ident: 483_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 342 start-page: 1484 year: 2013 ident: 483_CR49 publication-title: Science doi: 10.1126/science.1245627 – volume: 4 start-page: 557 year: 2012 ident: 483_CR38 publication-title: Viruses doi: 10.3390/v4040557 – volume: 9 start-page: e1003618 year: 2013 ident: 483_CR47 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003618 – volume: 426 start-page: 450 year: 2003 ident: 483_CR32 publication-title: Nature doi: 10.1038/nature02145 – volume: 342 start-page: 592 year: 2013 ident: 483_CR51 publication-title: Science doi: 10.1126/science.1243283 – volume: 66 start-page: 12 year: 2010 ident: 483_CR81 publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 176 start-page: 1026 year: 2019 ident: 483_CR36 publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 27 start-page: 14 year: 2018 ident: 483_CR84 publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 111 start-page: 15214 year: 2014 ident: 483_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1407087111 – volume: 113 start-page: 1056 year: 2016 ident: 483_CR53 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1523303113 – ident: 483_CR7 doi: 10.1016/j.celrep.2020.107940 – volume: 514 start-page: 455 year: 2014 ident: 483_CR50 publication-title: Nature doi: 10.1038/nature13808 – volume: 15 start-page: 690 year: 2008 ident: 483_CR40 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1456 – volume: 583 start-page: 290 year: 2020 ident: 483_CR57 publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 26 start-page: 980 year: 2019 ident: 483_CR54 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0308-9 – ident: 483_CR65 doi: 10.1101/2020.03.15.992883 – ident: 483_CR58 doi: 10.1101/2020.03.02.972927 – volume: 367 start-page: 1444 year: 2020 ident: 483_CR28 publication-title: Science doi: 10.1126/science.abb2762 – volume: 7 start-page: e42166 year: 2018 ident: 483_CR74 publication-title: Elife doi: 10.7554/eLife.42166 – volume: 8 year: 2018 ident: 483_CR55 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 12 start-page: 943 year: 2015 ident: 483_CR82 publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 11 start-page: 329 year: 1998 ident: 483_CR63 publication-title: Protein Eng. doi: 10.1093/protein/11.4.329 – volume: 9 start-page: 382 year: 2020 ident: 483_CR66 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1729069 – volume: 531 start-page: 118 year: 2016 ident: 483_CR17 publication-title: Nature doi: 10.1038/nature17200 – volume: 92 start-page: e01628 year: 2018 ident: 483_CR69 publication-title: J. Virol. doi: 10.1128/JVI.01628-17 – volume: 5 start-page: 562 year: 2020 ident: 483_CR26 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 115 start-page: 12265 year: 2018 ident: 483_CR52 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1811980115 – ident: 483_CR68 doi: 10.1016/j.chom.2020.06.010 – volume: 77 start-page: 8801 year: 2003 ident: 483_CR11 publication-title: J. Virol. doi: 10.1128/JVI.77.16.8801-8811.2003 – volume: 5 start-page: e17219 year: 2016 ident: 483_CR79 publication-title: Elife doi: 10.7554/eLife.17219 – volume: 114 start-page: 11157 year: 2017 ident: 483_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – ident: 483_CR60 doi: 10.1101/2020.06.26.173476 – volume: 181 start-page: 894 year: 2020 ident: 483_CR31 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 176 start-page: 1420 year: 2019 ident: 483_CR70 publication-title: Cell doi: 10.1016/j.cell.2019.01.046 – volume: 14 start-page: e1007236 year: 2018 ident: 483_CR22 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 181 start-page: 281 year: 2020 ident: 483_CR18 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 202 start-page: 120 year: 2015 ident: 483_CR14 publication-title: Virus Res. doi: 10.1016/j.virusres.2014.11.021 – volume: 88 start-page: 13396 year: 2014 ident: 483_CR44 publication-title: J. Virol. doi: 10.1128/JVI.01962-14 – volume: 157 start-page: 281 year: 2007 ident: 483_CR77 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.06.010 – volume: 531 start-page: 114 year: 2016 ident: 483_CR10 publication-title: Nature doi: 10.1038/nature16988 – volume: 382 start-page: 727 year: 2020 ident: 483_CR4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 14 start-page: 290 year: 2017 ident: 483_CR72 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 579 start-page: 270 year: 2020 ident: 483_CR6 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 9 start-page: 853 year: 2012 ident: 483_CR76 publication-title: Nat. Methods doi: 10.1038/nmeth.2115 – volume: 581 start-page: 221 year: 2020 ident: 483_CR29 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 342 start-page: 1477 year: 2013 ident: 483_CR48 publication-title: Science doi: 10.1126/science.1245625 – volume: 348 start-page: 1967 year: 2003 ident: 483_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030747 – volume: 500 start-page: 227 year: 2013 ident: 483_CR35 publication-title: Nature doi: 10.1038/nature12328 – volume: 6 start-page: 5 year: 2019 ident: 483_CR75 publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 105 start-page: 93 year: 2019 ident: 483_CR9 publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 495 start-page: 251 year: 2013 ident: 483_CR34 publication-title: Nature doi: 10.1038/nature12005 – volume: 27 start-page: 119 year: 2017 ident: 483_CR21 publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 83 start-page: 7411 year: 2009 ident: 483_CR37 publication-title: J. Virol. doi: 10.1128/JVI.00079-09 – volume: 371 start-page: 37 year: 1994 ident: 483_CR41 publication-title: Nature doi: 10.1038/371037a0 – volume: 309 start-page: 1864 year: 2005 ident: 483_CR33 publication-title: Science doi: 10.1126/science.1116480 – volume: 12 start-page: eabb5883 year: 2020 ident: 483_CR8 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb5883 – volume: 113 start-page: 12262 year: 2016 ident: 483_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1608147113 – volume: 106 start-page: 5871 year: 2009 ident: 483_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 12 start-page: 361 year: 2015 ident: 483_CR80 publication-title: Nat. Methods doi: 10.1038/nmeth.3286 – ident: 483_CR61 doi: 10.1126/science.abd4251 – volume: 26 start-page: 481 year: 2019 ident: 483_CR24 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 27 start-page: 134 year: 2019 ident: 483_CR78 publication-title: Structure doi: 10.1016/j.str.2018.09.006 – volume: 367 start-page: 1260 year: 2020 ident: 483_CR56 publication-title: Science doi: 10.1126/science.abb2507 – ident: 483_CR59 doi: 10.1101/2020.06.27.174979 – volume: 16 start-page: 1146 year: 2019 ident: 483_CR73 publication-title: Nat. Methods doi: 10.1038/s41592-019-0580-y – volume: 313 start-page: 187 year: 2006 ident: 483_CR42 publication-title: Science doi: 10.1126/science.1127683 – volume: 315 start-page: 843 year: 2007 ident: 483_CR45 publication-title: Science doi: 10.1126/science.1135710 – volume: 14 start-page: 346 year: 2013 ident: 483_CR64 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-346 – volume: 151 start-page: 41 year: 2005 ident: 483_CR71 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 75 start-page: 861 year: 2019 ident: 483_CR83 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319011471 – volume: 26 start-page: 1151 year: 2019 ident: 483_CR25 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0334-7 – volume: 181 start-page: 271 year: 2020 ident: 483_CR39 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 141 start-page: 1335 year: 1998 ident: 483_CR46 publication-title: J. Cell Biol. doi: 10.1083/jcb.141.6.1335 – volume: 368 start-page: 630 year: 2020 ident: 483_CR67 publication-title: Science doi: 10.1126/science.abb7269 – volume: 395 start-page: 497 year: 2020 ident: 483_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 181 start-page: 271 year: 2020 ident: 483_CR27 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 89 start-page: 1838 year: 2015 ident: 483_CR43 publication-title: J. Virol. doi: 10.1128/JVI.02277-14 – reference: 32577661 - bioRxiv. 2020 Jun 03:2020.06.03.129817. doi: 10.1101/2020.06.03.129817 |
SSID | ssj0025573 |
Score | 2.616509 |
Snippet | SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection,... SARS-CoV-2 is the causative agent of the COVID-19 pandemic, with 10 million infections and more than 500,000 fatalities by June 2020. To initiate infection,... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 942 |
SubjectTerms | 101/28 631/326/596/4130 631/535/1258/1259 Antibodies, Monoclonal - metabolism Antibodies, Neutralizing - metabolism Betacoronavirus - chemistry Betacoronavirus - genetics Betacoronavirus - immunology Betacoronavirus - metabolism Biochemistry Biological Microscopy Biomedical and Life Sciences Causes of Conformation Coronaviruses Cryoelectron Microscopy Disulfides - chemistry Electrophoresis, Polyacrylamide Gel Enzyme-Linked Immunosorbent Assay Epidemics Genetic aspects Glycoproteins Health aspects Humans Life Sciences Membrane Biology Models, Molecular Mutation Properties Protein Conformation Protein Domains Protein Engineering Protein Multimerization Protein Stability Protein Structure Proteins SARS-CoV-2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism United States Virulence (Microbiology) |
Title | Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation |
URI | https://link.springer.com/article/10.1038/s41594-020-0483-8 https://www.ncbi.nlm.nih.gov/pubmed/32753755 https://www.proquest.com/docview/2430666375 https://pubmed.ncbi.nlm.nih.gov/PMC7541350 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXse9l64I2BoMNM9uyLPsxCQ1tYWG0HeRNSLKcmgW7xMmg__3u5A_mjBb25MBdZEu6k37HnX4i5JNNYR_XPPHiHNOMcc69VAXGUzZR4F8Aol32_PsiPvsZXSz58oAE3VkYV7TvKC3dMt1Vh32rYaNBEtsQixET5iWH5BiZ2zHemsWzPsbi3CWVERh4gH1Yl8hkyb9NDLai_QX5rx1pv1pyL2XqdqL5U_KkhZB00nz0M3Jgy-fkUXOp5N0Lsr5ylLDQN2-1KzKbUVOBOUGzFJAg1sI2Jy9plYNkA0j8d7HZ1bS-LX5ZulrfmcqRNxQl3SL3_6am-PPGUrOuatdc2R95fEmu56fXszOvvVPBM7Gfbr2MawVjw1KWAtZSKsgC5cIkkXFhlNZ5ZI0VYQauGWmm0kCJzIKjRpn1M8ZekaOyKu0bQq3JdShgkeIKwmsRpyLVkY0Sbqwfa81HxO9GV5qWbxyvvVhLl_dmiWwmRMKESJwQmYzIl_4vtw3ZxkPKH3HKJJJYlFgls1K7upbnV5dyEjMhWArIcUQ-t0p5BS83qj10AF1A3quB5slAE7zMDMQfOsuQKMLStNJWu1qGEcMYkAno8evGUvqPZyFEg4KDRAxsqFdAcu-hpCxuHMm34AAvuD8iXztrk-3qUt8_Jm__S_sdeRyiN7jSxBNyBNZp3wPE2uoxORRLMSbHk_l0uoDn9HTx43LsXO0PongkKQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpSmkvpe9um7RqKRRaRGzLsuxjWBI2bZJDs4XchCTLG9PFDuvdQv59Z-QH8ZYGejPMWLakGekbZvSJkE8ug33ciJQlBaYZk0KwTIeWaZdq8C8A0T57fnaezH7G3y7F5Q4J-7MwvmjfU1r6ZbqvDjtoYKNBEtsIixFTztJ75D5A7QQNeZpMhxhLCJ9URmDAAPvwPpHJ07-bGG1F2wvyrR1pu1pyK2Xqd6LjJ-RxByHpYfvTT8mOq56RB-2lkjfPyfLCU8JC39hiU-Yup7YGc4JmKSBBrIVtT17SugDJCpD473K1aWhzXf5ydLG8sbUnbygrukbu_1VD8fHKUbusG99cNRx5fEHmx0fz6Yx1dyowmwTZmuXCaBgbnvEMsJbWYR5qHybJXEirjSliZ52McnDN2HCdhVrmDhw1zl2Qc_6S7FZ15V4T6mxhIgmLlNAQXsskk5mJXZwK64LEGDEhQT-6ynZ843jtxVL5vDdPVTshCiZE4YSodEK-DK9ct2Qbdyl_xClTSGJRYZXMQm-aRp1c_FCHCZeSZ4AcJ-Rzp1TU8HGru0MH0AXkvRpp7o00wcvsSPyhtwyFIixNq1y9aVQUc4wBuYQev2otZfh5HkE0KAVI5MiGBgUk9x5LqvLKk3xLAfBCBBPytbc21a0uzb_H5M1_ab8nD2fzs1N1enL-_S15FKFn-DLFPbILlur2AW6tzTvvYH8AaLAjGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA_nieIX8e3qqVEEQYl2m6ZpPx6ry52PQ7wT7lvIq3vFpV22u8L9986kD-yKgt8KM02bZCb5DTP5hZCXPod93IiMpQWmGdNCsFxPLdM-0-BfAKJD9vzLSXr0Pfl4Ls73iOjPwoSi_UBpGZbpvjrsXQMbDZLYxliMmHGWvV254gq5CnA7wkquWTob4iwhQmIZwQED_MP7ZCbP_mxmtB3tLsq_7Uq7FZM7adOwG81vkZsdjKSH7Y_fJnu-ukOutRdLXt4ly9NACwv9Y4tt6byjtgaTgmYpoEGsh21PX9K6AMka0PjPcr1taLMqf3i6WF7aOhA4lBXdIP__uqH4eOGpXdZNaK4ajj3eI2fzD2ezI9bdq8BsGuUb5oTRMDY85zngLa2nbqpDqCSdkFYbUyTeehk7cM_EcJ1PtXQenDVxPnKc3yf7VV35h4R6W5hYwkIlNITYMs1lbhKfZML6KDVGTEjUj66yHec4Xn2xVCH3zTPVToiCCVE4ISqbkNfDK6uWcONfyi9wyhQSWVRYKbPQ26ZRx6ff1GHKpeQ5oMcJedUpFTV83Oru4AF0AbmvRpoHI03wNDsSP-8tQ6EIy9MqX28bFScc40AuoccPWksZfp7HEBFKARI5sqFBAQm-x5KqvAhE31IAxBDRhLzprU11K0zz9zF59F_az8j1r-_n6vPxyafH5EaMjhEqFQ_IPhiqfwKIa2OeBv_6BXxqJCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-guided+covalent+stabilization+of+coronavirus+spike+glycoprotein+trimers+in+the+closed+conformation&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=McCallum%2C+Matthew&rft.au=Walls%2C+Alexandra+C&rft.au=Bowen%2C+John+E&rft.au=Corti%2C+Davide&rft.date=2020-10-01&rft.eissn=1545-9985&rft.volume=27&rft.issue=10&rft.spage=942&rft_id=info:doi/10.1038%2Fs41594-020-0483-8&rft_id=info%3Apmid%2F32753755&rft.externalDocID=32753755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon |