Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries

Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical appl...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 151 - 15
Main Authors Wang, Ruirui, Wu, Renbing, Ding, Chaofan, Chen, Ziliang, Xu, Hongbin, Liu, Yongfeng, Zhang, Jichao, Ha, Yuan, Fei, Ben, Pan, Hongge
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
AbstractList HighlightsSiO2-mediated ZIF-L is developed to prepare Co–N4@2D/3D carbon.Co–N4@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support.Co–N4@2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate.The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g-1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g-1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.
Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N has been delicately developed as an advanced sulfur host through a SiO -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.
The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
Abstract The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries.
ArticleNumber 151
Author Zhang, Jichao
Liu, Yongfeng
Chen, Ziliang
Pan, Hongge
Ha, Yuan
Ding, Chaofan
Xu, Hongbin
Fei, Ben
Wang, Ruirui
Wu, Renbing
Author_xml – sequence: 1
  givenname: Ruirui
  surname: Wang
  fullname: Wang, Ruirui
  organization: Department of Materials Science, Fudan University
– sequence: 2
  givenname: Renbing
  surname: Wu
  fullname: Wu, Renbing
  email: rbwu@fudan.edu.cn
  organization: Department of Materials Science, Fudan University
– sequence: 3
  givenname: Chaofan
  surname: Ding
  fullname: Ding, Chaofan
  organization: Department of Materials Science, Fudan University
– sequence: 4
  givenname: Ziliang
  surname: Chen
  fullname: Chen, Ziliang
  organization: Department of Materials Science, Fudan University
– sequence: 5
  givenname: Hongbin
  surname: Xu
  fullname: Xu, Hongbin
  organization: Department of Materials Science, Fudan University
– sequence: 6
  givenname: Yongfeng
  surname: Liu
  fullname: Liu, Yongfeng
  email: mselyf@zju.edu.cn
  organization: State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University
– sequence: 7
  givenname: Jichao
  surname: Zhang
  fullname: Zhang, Jichao
  organization: Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 8
  givenname: Yuan
  surname: Ha
  fullname: Ha, Yuan
  organization: Department of Materials Science, Fudan University
– sequence: 9
  givenname: Ben
  surname: Fei
  fullname: Fei, Ben
  organization: Department of Materials Science, Fudan University
– sequence: 10
  givenname: Hongge
  surname: Pan
  fullname: Pan, Hongge
  email: honggepan@zju.edu.cn
  organization: State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Institute of Science and Technology for New Energy, Xi’an Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34195913$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUHaEiWkJ_gAWyxIbNgN_2bJDSiNJIkagErC2P7UlcZsbBdoq6Y9Mv4A_5EpwmBdpFVr62zzk6997zvDoaw-iq6iWCbxGE4l2iUGJYQ4xqCLngNX9SnWDEYM0YQ0elJgjVXEB-XJ2m5FvIMBVYMPqsOiYUNaxB5KS6vQwxbBKY6diGEUyjWfnsTN5EB6YpuaHtnQXtDZjFkFK98OO3ct-jF05fuwR--LwC82Hd6zGXz2kOgzdgFlrdZ9CFCC78clVfuljqQY_GgYX__fPXZ3Cmc3bRu_SietrpPrnT_Tmpvp5_-DK7qBefPs5n00VtOGxy3bSCSi0RZtwya3TTIUwoRlIQK6xpdOnWWuk4cgYyQhrScOOEtbSTklJOJtV8p2uDvlLr6Acdb1TQXt09hLhUOmZveqe6TnJsWk44RpQjK6WgSCPOWyFs12213u-01pt2cNa4MUfdPxB9-DP6lVqGayUxZZzBIvBmLxDD941LWQ0-GdeXMbqyEoUZFYwIVjqZVK8fQa_CJo5lVArzssqSBM4PohjlooEINwX16n_ffw3fZ6IA5A5gtiuPrlPGZ5192Lbhe4Wg2iZQ7RKoSgLVXQLV1gF-RL1XP0giO1Iq4HHp4j_bB1h_AIs97Tc
CitedBy_id crossref_primary_10_1002_cssc_202400999
crossref_primary_10_1002_adfm_202214353
crossref_primary_10_1039_D4TA08712G
crossref_primary_10_1016_j_jcis_2022_12_111
crossref_primary_10_1002_adma_202202256
crossref_primary_10_1002_adfm_202200424
crossref_primary_10_1039_D5GC00414D
crossref_primary_10_12677_JOCR_2023_114030
crossref_primary_10_1021_acs_jpcc_3c06017
crossref_primary_10_1007_s40820_023_01137_y
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1002_smll_202300065
crossref_primary_10_1016_j_mtener_2023_101344
crossref_primary_10_1007_s40820_021_00756_7
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1002_batt_202200494
crossref_primary_10_1016_j_cej_2024_151938
crossref_primary_10_1002_smll_202409674
crossref_primary_10_1016_j_cej_2021_134163
crossref_primary_10_1016_j_cej_2022_137777
crossref_primary_10_1039_D3RA00502J
crossref_primary_10_1007_s40820_023_01064_y
crossref_primary_10_1016_j_cej_2024_157004
crossref_primary_10_3389_fbioe_2022_997622
crossref_primary_10_1007_s40820_022_00954_x
crossref_primary_10_1016_j_jallcom_2024_175810
crossref_primary_10_1021_acsami_2c12114
crossref_primary_10_1007_s12274_023_6063_6
crossref_primary_10_1016_j_ensm_2025_104207
crossref_primary_10_1016_j_apsusc_2023_157068
crossref_primary_10_1021_acsaem_3c01137
crossref_primary_10_1021_acs_chemmater_4c02120
crossref_primary_10_1002_asia_202400177
crossref_primary_10_1002_smll_202409740
crossref_primary_10_1039_D4CC05742B
crossref_primary_10_1007_s40820_023_01037_1
crossref_primary_10_3390_en15217961
crossref_primary_10_1016_j_ijhydene_2022_04_292
crossref_primary_10_1016_j_cclet_2022_01_014
crossref_primary_10_1016_j_jallcom_2021_162831
crossref_primary_10_1016_j_cej_2024_150886
crossref_primary_10_1016_j_jechem_2022_02_046
crossref_primary_10_1007_s12274_022_4662_2
crossref_primary_10_1016_j_cej_2022_138046
crossref_primary_10_1016_j_cej_2022_139410
crossref_primary_10_3390_pr10030566
crossref_primary_10_1002_smll_202405148
crossref_primary_10_1007_s40820_022_00935_0
crossref_primary_10_1002_adfm_202204635
crossref_primary_10_1039_D3TA03098A
crossref_primary_10_1007_s11581_023_05155_z
crossref_primary_10_1016_j_cej_2024_153826
crossref_primary_10_1002_aenm_202202094
crossref_primary_10_1002_eem2_12703
crossref_primary_10_1021_acs_iecr_1c04634
Cites_doi 10.1002/adma.201970236
10.1016/j.ensm.2020.07.034
10.1002/adma.201706758
10.1002/adma.201601759
10.1002/adma.201904876
10.1002/aenm.202000091
10.1021/acsnano.0c03325
10.1002/adma.201903813
10.1016/j.ensm.2020.05.022
10.1002/aenm.201802768
10.1002/anie.201901109
10.1016/j.progpolymsci.2018.12.002
10.1039/C0JM01921F
10.1016/j.jallcom.2003.12.011
10.1007/s40820-020-00449-7
10.1021/acsnano.0c00799
10.1002/anie.201909339
10.1039/C8EE02694G
10.1021/acs.nanolett.9b04719
10.1039/C9TA11680J
10.1016/j.nantod.2017.12.010
10.1039/C9NH00730J
10.1016/j.ensm.2020.03.008
10.1021/acsnano.0c10603
10.1002/adfm.201702046
10.1007/s40820-019-0341-6
10.1021/acsnano.0c03403
10.1021/jacs.8b12973
10.1002/adma.202002168
10.1002/aenm.201803774
10.1002/adma.201903955
10.1002/adma.202000315
10.1002/adfm.202001165
10.1016/j.cej.2018.08.136
10.1016/j.matt.2020.06.002
10.1021/acsnano.9b02231
10.1039/C5CS00410A
10.1002/adma.201802146
10.1021/jacs.0c07790
10.1021/acsnano.9b04519
10.1007/s12274-017-1709-x
10.1002/adma.201901220
10.1016/j.cej.2020.125686
10.1016/S0925-8388(02)01045-9
10.1021/acsnano.9b02928
10.1002/adma.201603401
10.1039/C9TA12921A
10.1002/aenm.202002592
10.1038/s42004-019-0166-8
10.1016/j.carbon.2018.09.067
10.1039/C8TA11615F
10.1007/s40820-021-00609-3
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-021-00676-6
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
Publicly Available Content Database


PubMed
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 15
ExternalDocumentID oai_doaj_org_article_ff862cb63621461d88741a166b77dff6
PMC8245650
34195913
10_1007_s40820_021_00676_6
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c609t-9b748a81256d5dca9f123421873d7dc9a706dd8e61ec05339396ce7dd4f884463
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:26:42 EDT 2025
Thu Aug 21 14:12:55 EDT 2025
Tue Aug 05 10:47:37 EDT 2025
Wed Aug 13 03:33:28 EDT 2025
Wed Aug 13 04:14:12 EDT 2025
Thu Apr 03 07:06:02 EDT 2025
Tue Jul 01 00:55:46 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Fri Feb 21 02:44:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3D porous carbon architecture
Single-atom Co
Cathode
Lithium–sulfur battery
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-9b748a81256d5dca9f123421873d7dc9a706dd8e61ec05339396ce7dd4f884463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-021-00676-6
PMID 34195913
PQID 2546790129
PQPubID 2044332
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_ff862cb63621461d88741a166b77dff6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8245650
proquest_miscellaneous_2547537505
proquest_journals_2619582066
proquest_journals_2546790129
pubmed_primary_34195913
crossref_citationtrail_10_1007_s40820_021_00676_6
crossref_primary_10_1007_s40820_021_00676_6
springer_journals_10_1007_s40820_021_00676_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Liu, Chen, Jia, Xu, Liu (CR7) 2019; 13
Tian, Li, Zhang, Luo, Wang (CR53) 2020; 32
Ma, Wan, Wang, Wang, Liang (CR34) 2020; 14
Li, Wu, Zhang, Wang, Zhang (CR30) 2020; 30
Wang, Li, Lai, Hou, Gao (CR5) 2019; 355
An, Luo, Yao, Wen, Zheng (CR12) 2021; 13
Zhang, Liu, Muhammad, Wan, Xie (CR47) 2019; 31
Zhu, Zhu, Yan, Dong, Zhang (CR27) 2019; 90
Wang, Zhang, Yan, Zhang, Wu (CR10) 2020; 12
Xie, Li, Peng, Song, Zhao (CR33) 2019; 31
Li, Wu, Lou (CR21) 2016; 9
Yang, Gao, Sun, Jand, Yu (CR54) 2019; 31
Du, Chen, Hu, Chuang, Xie (CR32) 2019; 141
Park, Yu, Sung (CR22) 2018; 18
Yang, Wang, Li, Li, Zhang (CR51) 2020; 8
Zhao, Li, Peng, Yuan, Wei (CR15) 2020; 59
Ha, Fei, Yan, Xu, Chen (CR38) 2020; 10
Yuan, Peng, Li, Xie, Kong (CR41) 2019; 9
Pan, Liu, Gao, Lei, Wang (CR3) 2005; 150
Seh, Sun, Zhang, Cui (CR25) 2016; 45
He, Hwang, Cullen, Uddin, Langhorst (CR37) 2019; 12
Peng, Zhang, Huang, Zhang, Xie (CR42) 2016; 28
Fei, Zhang, Cai, Zheng, Chen (CR45) 2021; 15
Wu, Zhou, Xu, Cao, Li (CR43) 2019; 13
Li, Chen, Mou, Liu, Xue (CR31) 2020; 28
Chen, Wu, Liu, Wang, Xu (CR52) 2017; 27
Zhang, Luo, Li, Gao, Li (CR9) 2020; 3
Luo, Zhang, Li, Cheng, Li (CR50) 2020; 14
Pan, Liu, Gao, Zhu, Lei (CR2) 2003; 351
Zheng, Ji, Fan, Chen, Li (CR18) 2019; 9
Zhang, Li, Wang, Cui, Wei (CR24) 2020; 30
Han, Ling, Wang, Ma, Zhong (CR35) 2019; 58
Wang, Luo, Wang, Zhou, Deng (CR48) 2020; 32
Wang, Song, Yu, Ullah, Guan (CR29) 2020; 8
Zhang, Zhong, Zhou, Zhang, Huang (CR8) 2020; 12
Fei, Dong, Wan, Zhao, Xu (CR36) 2018; 30
Wang, Cullen, Pan, Hwang, Wang (CR39) 2018; 30
Zhou, Zhao, Wang, Yang, Chen (CR28) 2020; 20
Wang, Shen, Liu, Xu, Liu (CR46) 2019; 31
Ye, Jiang, Li, Wu, Chen (CR11) 2020; 32
Chen, Wu, Wang, Zhang, Song (CR6) 2018; 11
Zhou, Yang, Ding, Lai, Nie (CR16) 2020; 14
Wang, Chen, Sun, Chang, Ding (CR49) 2020; 399
Liu, Pan, Gao, Wang (CR1) 2011; 21
Zhang, Wang, Niu, Chen (CR19) 2019; 141
Gao, Zhou, Chen, Wu, Su (CR44) 2019; 2
Liao, Lei, Chen, Lu, Pan (CR4) 2004; 376
Li, Zhou, Shen, Yang, Li (CR23) 2019; 13
Zhang, Luo, Deng, Huang, Zhou (CR13) 2020; 10
Wu, Pan, He, Han, Ma (CR40) 2020; 142
Cha, Patel, Bhoyate, Prasad, Choi (CR14) 2020; 5
Xu, Liu, Bai, Wu (CR20) 2019; 7
Liu, Huang, Zhang, Mai (CR26) 2017; 29
Ma, Feng, Liu, Yang, Zhou (CR17) 2020; 32
RR Li (676_CR23) 2019; 13
F Ma (676_CR34) 2020; 14
Z Li (676_CR21) 2016; 9
ZL Chen (676_CR52) 2017; 27
ZQ Ye (676_CR11) 2020; 32
YN An (676_CR12) 2021; 13
XP Han (676_CR35) 2019; 58
YF Yang (676_CR51) 2020; 8
HG Pan (676_CR3) 2005; 150
ZL Chen (676_CR6) 2018; 11
HG Pan (676_CR2) 2003; 351
RC Wang (676_CR48) 2020; 32
YF Liu (676_CR1) 2011; 21
ZS Wang (676_CR46) 2019; 31
LL Zhang (676_CR47) 2019; 31
GM Zhou (676_CR28) 2020; 20
YH He (676_CR37) 2019; 12
J Zheng (676_CR18) 2019; 9
Z Zhang (676_CR9) 2020; 3
JJ Park (676_CR22) 2018; 18
ZW Seh (676_CR25) 2016; 45
SZ Zhang (676_CR8) 2020; 12
D Luo (676_CR50) 2020; 14
JL Wang (676_CR10) 2020; 12
E Cha (676_CR14) 2020; 5
SY Zhou (676_CR16) 2020; 14
J Xie (676_CR33) 2019; 31
XX Wang (676_CR39) 2018; 30
CG Wang (676_CR29) 2020; 8
HL Fei (676_CR36) 2018; 30
H Yuan (676_CR41) 2019; 9
B Zhang (676_CR13) 2020; 10
YJ Li (676_CR31) 2020; 28
XC Gao (676_CR44) 2019; 2
HB Xu (676_CR20) 2019; 7
Y Tian (676_CR53) 2020; 32
X Liu (676_CR26) 2017; 29
RR Wang (676_CR49) 2020; 399
HJ Peng (676_CR42) 2016; 28
B Fei (676_CR45) 2021; 15
C Ma (676_CR17) 2020; 32
ZZ Du (676_CR32) 2019; 141
B Liao (676_CR4) 2004; 376
Y Ha (676_CR38) 2020; 10
Y Liu (676_CR7) 2019; 13
YG Zhang (676_CR24) 2020; 30
RR Wang (676_CR5) 2019; 355
LL Zhang (676_CR19) 2019; 141
YJ Li (676_CR30) 2020; 30
F Wu (676_CR40) 2020; 142
QP Wu (676_CR43) 2019; 13
M Zhao (676_CR15) 2020; 59
JD Zhu (676_CR27) 2019; 90
XF Yang (676_CR54) 2019; 31
References_xml – volume: 31
  start-page: 1902228
  year: 2019
  ident: CR46
  article-title: Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201970236
– volume: 32
  start-page: 46
  year: 2020
  end-page: 54
  ident: CR17
  article-title: Dual-engineered separator for highly robust, all-climate lithium–sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.034
– volume: 30
  start-page: 1706758
  year: 2018
  ident: CR39
  article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 29
  start-page: 1601759
  year: 2017
  ident: CR26
  article-title: Nanostructured metal oxides and sulfides for lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601759
– volume: 32
  start-page: 1904876
  year: 2020
  ident: CR53
  article-title: Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904876
– volume: 10
  start-page: 2000091
  year: 2020
  ident: CR13
  article-title: Optimized catalytic WS –WO heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000091
– volume: 14
  start-page: 10115
  year: 2020
  end-page: 10126
  ident: CR34
  article-title: Bifunctional atomically dispersed Mo–N /C nanosheets boost lithium sulfide deposition decomposition for stable lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03325
– volume: 31
  start-page: 1903813
  year: 2019
  ident: CR33
  article-title: Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903813
– volume: 30
  start-page: 250
  year: 2020
  end-page: 259
  ident: CR30
  article-title: Fast conversion and controlled deposition of lithium(poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.022
– volume: 9
  start-page: 1802768
  year: 2019
  ident: CR41
  article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802768
– volume: 58
  start-page: 5359
  year: 2019
  end-page: 5364
  ident: CR35
  article-title: Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901109
– volume: 90
  start-page: 118
  year: 2019
  end-page: 163
  ident: CR27
  article-title: Recent progress in polymer materials for advanced lithium–sulfur batteries
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.12.002
– volume: 21
  start-page: 4743
  year: 2011
  end-page: 4755
  ident: CR1
  article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM01921F
– volume: 150
  start-page: 565
  year: 2005
  end-page: 570
  ident: CR3
  article-title: A study of the structural and electrochemical properties of La Mg (Ni Co ) (x=2.5–5.0) hydrogen storage alloys
  publication-title: J. Electrochem. Soc.
  doi: 10.1016/j.jallcom.2003.12.011
– volume: 12
  start-page: 112
  year: 2020
  ident: CR8
  article-title: Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00449-7
– volume: 376
  start-page: 186
  year: 2004
  end-page: 195
  ident: CR4
  article-title: A study on the structure and electrochemical properties of La Mg(Ni M ) (M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.12.011
– volume: 14
  start-page: 4849
  year: 2020
  end-page: 4860
  ident: CR50
  article-title: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb O nanocluster toward superior Li–S performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00799
– volume: 59
  start-page: 12636
  year: 2020
  end-page: 12652
  ident: CR15
  article-title: Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909339
– volume: 12
  start-page: 250
  year: 2019
  end-page: 260
  ident: CR37
  article-title: Highly active atomically dispersed CoN fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 20
  start-page: 1252
  year: 2020
  end-page: 1261
  ident: CR28
  article-title: Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04719
– volume: 8
  start-page: 3421
  year: 2020
  end-page: 3430
  ident: CR29
  article-title: Iron single-atom catalyst anchored on nitrogenrich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11680J
– volume: 9
  start-page: 3061
  year: 2016
  end-page: 3070
  ident: CR21
  article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1016/j.nantod.2017.12.010
– volume: 5
  start-page: 808
  year: 2020
  end-page: 831
  ident: CR14
  article-title: Nanoengineering to achieve high efficiency practical lithium–sulfur batteries
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00730J
– volume: 28
  start-page: 196
  year: 2020
  end-page: 204
  ident: CR31
  article-title: Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.008
– volume: 15
  start-page: 6849
  year: 2021
  end-page: 6860
  ident: CR45
  article-title: Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10603
– volume: 27
  start-page: 1702046
  year: 2017
  ident: CR52
  article-title: General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702046
– volume: 12
  start-page: 4
  year: 2020
  ident: CR10
  article-title: Rational design of porous N–Ti C MXene@CNT microspheres for high cycling stability in Li–S battery
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0341-6
– volume: 14
  start-page: 7538
  year: 2020
  end-page: 7551
  ident: CR16
  article-title: Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03403
– volume: 141
  start-page: 3977
  year: 2019
  end-page: 3985
  ident: CR32
  article-title: Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12973
– volume: 32
  start-page: 2002168
  year: 2020
  ident: CR11
  article-title: A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002168
– volume: 9
  start-page: 1803774
  year: 2019
  ident: CR18
  article-title: High-fluorinated electrolytes for Li–S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803774
– volume: 31
  start-page: 1903955
  year: 2019
  ident: CR47
  article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903955
– volume: 32
  start-page: 2000315
  year: 2020
  ident: CR48
  article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000315
– volume: 30
  start-page: 2001165
  year: 2020
  ident: CR24
  article-title: Hierarchical defective Fe C@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001165
– volume: 355
  start-page: 752
  year: 2019
  end-page: 759
  ident: CR5
  article-title: 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.136
– volume: 3
  start-page: 1
  year: 2020
  end-page: 15
  ident: CR9
  article-title: Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries
  publication-title: Matter
  doi: 10.1016/j.matt.2020.06.002
– volume: 18
  start-page: 35
  year: 2018
  end-page: 64
  ident: CR22
  article-title: Design of structural and functional nanomaterials for lithium–sulfur batteries
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.12.010
– volume: 13
  start-page: 10049
  year: 2019
  end-page: 10061
  ident: CR23
  article-title: Conductive holey MoO –Mo N heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02231
– volume: 45
  start-page: 5605
  year: 2016
  end-page: 5634
  ident: CR25
  article-title: Designing high-energy lithium–sulfur batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00410A
– volume: 30
  start-page: 1802146
  year: 2018
  ident: CR36
  article-title: Microwave-assisted rapid synthesis of graphene-supported single atomic metals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802146
– volume: 142
  start-page: 16861
  year: 2020
  end-page: 16867
  ident: CR40
  article-title: A single-atom Co–N electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07790
– volume: 13
  start-page: 9520
  year: 2019
  end-page: 9532
  ident: CR43
  article-title: Adenine derivative host with interlaced 2d structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li–S batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04519
– volume: 11
  start-page: 966
  year: 2018
  end-page: 978
  ident: CR6
  article-title: Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1709-x
– volume: 31
  start-page: 1901220
  year: 2019
  ident: CR54
  article-title: Promoting the transformation of Li S to Li S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901220
– volume: 399
  year: 2020
  ident: CR49
  article-title: Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium–sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125686
– volume: 351
  start-page: 228
  year: 2003
  end-page: 234
  ident: CR2
  article-title: An investigation on the structural and electrochemical properties of La Mg (Ni Co ) (x=3.15–3.80) hydrogen storage electrode alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01045-9
– volume: 13
  start-page: 6113
  year: 2019
  end-page: 6124
  ident: CR7
  article-title: Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02928
– volume: 28
  start-page: 9551
  year: 2016
  end-page: 9558
  ident: CR42
  article-title: A cooperative interface for highly efficient lithium–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603401
– volume: 8
  start-page: 3692
  year: 2020
  end-page: 3700
  ident: CR51
  article-title: Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12921A
– volume: 10
  start-page: 2002592
  year: 2020
  ident: CR38
  article-title: Atomically dispersed co-pyridinic N–C for superior oxygen reduction reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002592
– volume: 2
  start-page: 66
  year: 2019
  ident: CR44
  article-title: Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium–sulfur batteries
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0166-8
– volume: 141
  start-page: 400
  year: 2019
  end-page: 416
  ident: CR19
  article-title: Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.067
– volume: 7
  start-page: 3558
  year: 2019
  end-page: 3562
  ident: CR20
  article-title: Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11615F
– volume: 13
  start-page: 84
  year: 2021
  ident: CR12
  article-title: Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00609-3
– volume: 27
  start-page: 1702046
  year: 2017
  ident: 676_CR52
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702046
– volume: 9
  start-page: 1803774
  year: 2019
  ident: 676_CR18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803774
– volume: 399
  year: 2020
  ident: 676_CR49
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125686
– volume: 10
  start-page: 2002592
  year: 2020
  ident: 676_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002592
– volume: 32
  start-page: 2002168
  year: 2020
  ident: 676_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002168
– volume: 12
  start-page: 4
  year: 2020
  ident: 676_CR10
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0341-6
– volume: 351
  start-page: 228
  year: 2003
  ident: 676_CR2
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(02)01045-9
– volume: 29
  start-page: 1601759
  year: 2017
  ident: 676_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601759
– volume: 14
  start-page: 10115
  year: 2020
  ident: 676_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03325
– volume: 20
  start-page: 1252
  year: 2020
  ident: 676_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04719
– volume: 12
  start-page: 112
  year: 2020
  ident: 676_CR8
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00449-7
– volume: 18
  start-page: 35
  year: 2018
  ident: 676_CR22
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.12.010
– volume: 30
  start-page: 2001165
  year: 2020
  ident: 676_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001165
– volume: 141
  start-page: 3977
  year: 2019
  ident: 676_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12973
– volume: 9
  start-page: 1802768
  year: 2019
  ident: 676_CR41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802768
– volume: 14
  start-page: 4849
  year: 2020
  ident: 676_CR50
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00799
– volume: 2
  start-page: 66
  year: 2019
  ident: 676_CR44
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0166-8
– volume: 31
  start-page: 1903813
  year: 2019
  ident: 676_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903813
– volume: 355
  start-page: 752
  year: 2019
  ident: 676_CR5
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.136
– volume: 30
  start-page: 1802146
  year: 2018
  ident: 676_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802146
– volume: 5
  start-page: 808
  year: 2020
  ident: 676_CR14
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00730J
– volume: 142
  start-page: 16861
  year: 2020
  ident: 676_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07790
– volume: 14
  start-page: 7538
  year: 2020
  ident: 676_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03403
– volume: 32
  start-page: 1904876
  year: 2020
  ident: 676_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904876
– volume: 31
  start-page: 1902228
  year: 2019
  ident: 676_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201970236
– volume: 10
  start-page: 2000091
  year: 2020
  ident: 676_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000091
– volume: 31
  start-page: 1901220
  year: 2019
  ident: 676_CR54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901220
– volume: 8
  start-page: 3421
  year: 2020
  ident: 676_CR29
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11680J
– volume: 376
  start-page: 186
  year: 2004
  ident: 676_CR4
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2003.12.011
– volume: 13
  start-page: 6113
  year: 2019
  ident: 676_CR7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02928
– volume: 59
  start-page: 12636
  year: 2020
  ident: 676_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909339
– volume: 9
  start-page: 3061
  year: 2016
  ident: 676_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1016/j.nantod.2017.12.010
– volume: 30
  start-page: 250
  year: 2020
  ident: 676_CR30
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.022
– volume: 7
  start-page: 3558
  year: 2019
  ident: 676_CR20
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11615F
– volume: 3
  start-page: 1
  year: 2020
  ident: 676_CR9
  publication-title: Matter
  doi: 10.1016/j.matt.2020.06.002
– volume: 12
  start-page: 250
  year: 2019
  ident: 676_CR37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 28
  start-page: 196
  year: 2020
  ident: 676_CR31
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.008
– volume: 150
  start-page: 565
  year: 2005
  ident: 676_CR3
  publication-title: J. Electrochem. Soc.
  doi: 10.1016/j.jallcom.2003.12.011
– volume: 31
  start-page: 1903955
  year: 2019
  ident: 676_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903955
– volume: 28
  start-page: 9551
  year: 2016
  ident: 676_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603401
– volume: 15
  start-page: 6849
  year: 2021
  ident: 676_CR45
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10603
– volume: 13
  start-page: 84
  year: 2021
  ident: 676_CR12
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00609-3
– volume: 45
  start-page: 5605
  year: 2016
  ident: 676_CR25
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00410A
– volume: 90
  start-page: 118
  year: 2019
  ident: 676_CR27
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.12.002
– volume: 21
  start-page: 4743
  year: 2011
  ident: 676_CR1
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM01921F
– volume: 32
  start-page: 46
  year: 2020
  ident: 676_CR17
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.034
– volume: 30
  start-page: 1706758
  year: 2018
  ident: 676_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706758
– volume: 11
  start-page: 966
  year: 2018
  ident: 676_CR6
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1709-x
– volume: 8
  start-page: 3692
  year: 2020
  ident: 676_CR51
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12921A
– volume: 32
  start-page: 2000315
  year: 2020
  ident: 676_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000315
– volume: 141
  start-page: 400
  year: 2019
  ident: 676_CR19
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.067
– volume: 58
  start-page: 5359
  year: 2019
  ident: 676_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901109
– volume: 13
  start-page: 9520
  year: 2019
  ident: 676_CR43
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04519
– volume: 13
  start-page: 10049
  year: 2019
  ident: 676_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02231
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.475763
Snippet Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon...
The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics...
The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics...
HighlightsSiO2-mediated ZIF-L is developed to prepare Co–N4@2D/3D carbon.Co–N4@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon...
SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N...
Abstract The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms 3D porous carbon architecture
Artilce
Carbon
Cathode
Cathodes
Crosslinking
Electrochemical analysis
Electron transfer
Engineering
Fading
Li-S batteries
Lithium sulfur batteries
Lithium–sulfur battery
Metal-organic frameworks
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Polysulfides
Reaction kinetics
Silicon dioxide
Single-atom Co
Sulfur
Zeolites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYJGHn8dlRVWhgipBpd4ivyIqlSzaTZG4ceEX8A_5Jcw42SQLBS4cd-1dOTNjz0zG832EPOVK5hUXnpXORsa9s0xr2bA8GCdiCFqmDrk3b-XhCX99Kk5nVF94J6yHB-4F96JpIOb2TsJBixTUATYFL2whpVMqNE0C2wafN0umwJJKhYxMU30QaZX5DKWGI6ZLNQGZCQQuUxM-pig5-PXB0faBtMISVmKqKwomVS6HDpzUh4eszTnD2w54-ksmd7xcIgO4LIL9_SLmL9XY5OQObpDrQ3RKF71UbpIrsb1Frs0wC2-Tb8er9epiQ5d27VYtXcwKERQryB_deQzUfaFLXBnDXBc-D7OPov0cNxRf_lLEJUa1BrrosDWaLhGapKMQRVO8fcKOp54GenT24-v3d7RHA4Xk_g45OXj1fnnIBi4H5mVuOmac4tpCNCFkEMFb04DLBJVoVQUVvLEgUbCMKIvosT3YVEb6qELgjdaQslZ3yV67auN9QoUNEBSCIYjG8Bi0jbEoc1uCY41BepWRYiv72g9A58i3cV6PEM1JXzXoq076qmVGno2_-dTDfPx19ktU6TgTIbrTF2C49WC49b8MNyP7W4Ooh3NjUyM7gTL4cvDyYYnYQIjAn5En4zAcCFjlsW0E9eNfQAoKgaDIyL3evMaFInifMEWVEbVjeDtPsjvSnn1IoOM6VcjzjDzfmui0rD9L6sH_kNRDcrXEvZUuEe2TvW59ER9BKNi5x2nX_wQ6m05K
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQkJG4gUVefuSEtqtWFSrVCqjUW-TYDlQqSdlNkbhx4RfwD_klzDhOsgulx107keMZe2Y8nu8j5EUuRZzl3LC00o7lptJMKVGz2BYVd9Yq4Svk3h2Jg-P87Qk_CQduq3CtctgT_UZtW4Nn5K_R0-cefPzN-VeGrFGYXQ0UGtfJNmzBCoKv7d29o8X7QaNSicxMU54Q6ZXzNbSaHLFdsgnQjCOAmZxwMnmag30PBrd3qCWmsjxjXZIwIWMRKnF8PR6yN8cMbz2gFRBMbFg7TwpwmSf774XMv7Ky3tjt3ya3gpdKZ71a3SHXXHOX3FzDLrxHfi7aZXuxonO9rNqGztYSEhQzyV-qM2dp9Z3OcWQMY174HXofOv3NrSgeAlPEJ0bxWjrrsESazhGipKPgTVO8hcIWU20DPTz9_ePXB9qjgkKQf58c7-99nB-wwOnAjIiLjhWVzJUGr4ILy63RRQ2mE0SiZGalNYWGGQUNcSJxBsuEi6wQxklr81opCF2zB2SraRv3iFCuLTiHVileF7mzSjuXpLFOwcA6K4yMSDLMfWkC4DnybpyVI1Szl1cJ8iq9vEoRkZfjM-c93MeVvXdRpGNPhOr2f7TLT2VY-WVdQ9BoKgGeAnKow3jBidOJEJWUtq7hJTuDQpRh_1iVyFIgCzwkvLx5XAwReT42w8aA2R7dOBA_vgJCUXAIeUQe9uo1DhRB_HiRZBGRG4q38SWbLc3pZw8-rnymPI7Iq0FFp2H9f6YeX_0VT8iNFFeNvya0Q7a65YV7Cs5eVz0LK_oP2rBHvQ
  priority: 102
  providerName: ProQuest
Title Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries
URI https://link.springer.com/article/10.1007/s40820-021-00676-6
https://www.ncbi.nlm.nih.gov/pubmed/34195913
https://www.proquest.com/docview/2546790129
https://www.proquest.com/docview/2619582066
https://www.proquest.com/docview/2547537505
https://pubmed.ncbi.nlm.nih.gov/PMC8245650
https://doaj.org/article/ff862cb63621461d88741a166b77dff6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZoe4ED4s1CiYzEDSztw689JktDhUoVAZV6W3nXXqhUdlGSInHjwi_gH_JLmPG-EghIXBIldlYTz9gz45n5hpBnXMkw4aJkcWEc42VhmNayYqFNC-Gs1dJXyL05lcdn_PW5OO-KwlZ9tnsfkvQn9VDshq2RQ4YpBXjESib3yIEA3x3lOhsxx2OF3ZjG2CC2VOYbCDUc8VySEcRMIGiZGrExRcxBp3dKtjWiFYavfJe6KGJShbKrvtlN1paG840AdlmvfyZh_haJ9Qpufovc7CxTOm1F6Ta55uo75MYGXuFd8n3RLJurFc3MsmhqOt0IQlCMHn8qLp2lxVeaIWUM_Vz43M0-ceaLW1G8-KWISYwstXS6xrJomiEsyZqCBU0x84QtxnoGenLx89uPd7RFAgXH_h45mx-9z45Z18eBlTJM1ywtFNcGLAkhrbClSStQl8ASrRKrbJkaWFGQCicjV2JpcJqksnTKWl5pDe5qcp_s103tHhIqjAWD0GotqpQ7q41zURyaGJSqs7JUAYn6tc_LDuQce21c5gM8s-dXDvzKPb9yGZDnw28-txAf_5w9Q5YOMxGe23_RLD_k3W7PqwocxbKQYB1g33SgFww3E0lZKGWrCh5y2AtE3p0Zqxw7E6gULwZ3D0vEBUL0_YA8HYbhMMAIj6kdsB8fAe4nGIEiIA9a8RoIReA-kUZJQNSW4G39k-2R-uKjBxzXPjoeBuRFL6IjWX9fqUf_N_0xuR7jLvKpQodkf728ck_A4FsXE7Kn568m5GA6ezmbw_vs6HTxduJ3Pb7KbOKvUn4BoMpIuw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSzy8CM5ILQsLFu6rSrRSr2lTuy0K5Wk7G5BvXHhF_A_-FH8Emacx-5C6a3HXTvWJDOeh8fzDSHPuJJ-xEXOwkxbxvNMsziWBfNNkglrTCxdhdzmlhzu8o97Ym-F_GprYfBaZasTnaI2VY5n5K_Q0xcOfPzN8ReGXaMwu9q20KjFYsOefoOQbfp6_R3w93kYDt7v9Ies6SrAcuknM5Zkisca7JqQRphcJwUobw6WTkVGmTzRypdAo5WBzbFQNYkSmVtlDC_iGIKnCNa9RC5zGMEdFQ8-tPIbKuwDNc9KYjNnvoCNwxFJJprDpwmES1NzVE4RcvAmGvNeu-8KE2euP14QMAmUNXU_rvoPe0X7DO9YoM2RTC7ZVteC4Cy_-d_rn3_lgJ1pHdwg1xufmPZqIb5JVmx5i1xbQEq8TX5sV5PqZEr7epJVJe0tpD8o5q0_Z0fW0OyU9pEyhhE2_G5mj6z-aqcUj5wpoiGjMBnam2FBNu0jIMqMgu9O8c4L255XUtDR-Pf3n59ojUE6ttM7ZPdCeH2XrJZVae8TKrQBV9TEsSgSbk2srQ1CX4dgzq2RufJI0H77NG_g1bHLx1HaAUM7fqXAr9TxK5UeedE9c1yDi5w7-y2ytJuJwODuj2pykDZ6Ji0KCFHzTIJfgh3bgV5wGXUgZaaUKQpYZK0ViLTRVtMUeyKoBI8kzx7utp5HnnbDoIYwt6RLC-zHJSDwBfdTeOReLV4doQgZKJIg8ohaErylN1keKceHDuo8dnl53yMvWxGdk_X_L_Xg_Ld4Qq4MdzZH6Wh9a-MhuRriDnIXlNbI6mxyYh-BmznLHru9Tcn-RSuTP4xBgis
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkRB7QLw3sICRuIG1efmRYwlUC5RVJVhpb5EdO7DSkqzaLBI3LvwC_iG_hBknTVooSBxbu5HrGXu-ycx8Q8jTVIowSXnJYqMdS0ujmVKiYqHNDHfWKuEr5N4dicPj9M0JP1mr4vfZ7quQZFfTgCxNdXtwbquDofAN2ySHDNML8LoVTFwmV8BTiTCpLx_5x2OJnZnGOCG2V07X2GpS5HZJRkIzjgRmcuTJ5HEK9r03uB2glhjK8h3roogJGYq-Emf7sjasnW8KsA3J_pmQ-VtU1hu76Q1yvUepdNKp1U1yydW3yO4ad-Ft8n3eLJqLJc31wjQ1nawFJChGkj-bM2ep-UpzXBlDnxc-97NnTn9xS4ovgSnyE6N4LZ20WCJNc6QoaSmgaYpZKGw-1jbQ2enPbz_e044VFJz8O-R4-upDfsj6ng6sFGHWsszIVGlAFVxYbkudVWA6QSRKJlbaMtOwo6AhTkSuxDLhLMlE6aS1aaUUuK7JXbJTN7XbI5RrC-DQKsWrLHVWaeeiONQxGFhnRSkDEq32vih7wnPsu3FWDFTNXl4FyKvw8ipEQJ4Nvznv6D7-OfsFinSYiVTd_otm8bHoT35RVeA0lkYAUsAe6rBeAHE6EsJIaasKHrK_Uoiivz-WBXYpkBm-JNw-LJAjCJn4A_JkGIaLAaM9unYgfnwEuKIACHlA7nXqNSwUSfx4FiUBkRuKt_FPNkfq00-efFz5SHkYkOcrFR2X9feduv9_0x-Tq_OX02L2-ujtA3ItxgPlM4j2yU67uHAPAQe25pE_6r8AZpJKKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Carbon+Architecture+Assembled+by+Cross-Linked+Carbon+Leaves+with+Implanted+Atomic+Cobalt+for+High-Performance+Li%E2%80%93S+Batteries&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Ruirui&rft.au=Wu%2C+Renbing&rft.au=Ding%2C+Chaofan&rft.au=Chen%2C+Ziliang&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-021-00676-6&rft.externalDocID=10_1007_s40820_021_00676_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon