Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries
Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical appl...
Saved in:
Published in | Nano-micro letters Vol. 13; no. 1; pp. 151 - 15 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
SiO
2
-mediated ZIF-L is developed to prepare Co–N
4
@2D/3D carbon.
Co–N
4
@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support.
Co–N
4
@2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate.
The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N
4
has been delicately developed as an advanced sulfur host through a SiO
2
-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N
4
active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g
−1
at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. |
---|---|
AbstractList | HighlightsSiO2-mediated ZIF-L is developed to prepare Co–N4@2D/3D carbon.Co–N4@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support.Co–N4@2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate.The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g-1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries.The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g-1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries. Highlights SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N 4 @2D/3D carbon-based sulfur cathode enables a high reversible specific capacity and low capacity fading rate. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co-N has been delicately developed as an advanced sulfur host through a SiO -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation-delithiation process but also endow rich interface with full exposure of Co-N active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li-S batteries. The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N 4 has been delicately developed as an advanced sulfur host through a SiO 2 -mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N 4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g −1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. Abstract The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics of sulfur cathodes. Herein, a hierarchically porous three-dimension (3D) carbon architecture assembled by cross-linked carbon leaves with implanted atomic Co–N4 has been delicately developed as an advanced sulfur host through a SiO2-mediated zeolitic imidazolate framework-L (ZIF-L) strategy. The unique 3D architectures not only provide a highly conductive network for fast electron transfer and buffer the volume change upon lithiation–delithiation process but also endow rich interface with full exposure of Co–N4 active sites to boost the lithium polysulfides adsorption and conversion. Owing to the accelerated kinetics and suppressed shuttle effect, the as-prepared sulfur cathode exhibits a superior electrochemical performance with a high reversible specific capacity of 695 mAh g−1 at 5 C and a low capacity fading rate of 0.053% per cycle over 500 cycles at 1 C. This work may provide a promising solution for the design of an advanced sulfur-based cathode toward high-performance Li–S batteries. |
ArticleNumber | 151 |
Author | Zhang, Jichao Liu, Yongfeng Chen, Ziliang Pan, Hongge Ha, Yuan Ding, Chaofan Xu, Hongbin Fei, Ben Wang, Ruirui Wu, Renbing |
Author_xml | – sequence: 1 givenname: Ruirui surname: Wang fullname: Wang, Ruirui organization: Department of Materials Science, Fudan University – sequence: 2 givenname: Renbing surname: Wu fullname: Wu, Renbing email: rbwu@fudan.edu.cn organization: Department of Materials Science, Fudan University – sequence: 3 givenname: Chaofan surname: Ding fullname: Ding, Chaofan organization: Department of Materials Science, Fudan University – sequence: 4 givenname: Ziliang surname: Chen fullname: Chen, Ziliang organization: Department of Materials Science, Fudan University – sequence: 5 givenname: Hongbin surname: Xu fullname: Xu, Hongbin organization: Department of Materials Science, Fudan University – sequence: 6 givenname: Yongfeng surname: Liu fullname: Liu, Yongfeng email: mselyf@zju.edu.cn organization: State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University – sequence: 7 givenname: Jichao surname: Zhang fullname: Zhang, Jichao organization: Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 8 givenname: Yuan surname: Ha fullname: Ha, Yuan organization: Department of Materials Science, Fudan University – sequence: 9 givenname: Ben surname: Fei fullname: Fei, Ben organization: Department of Materials Science, Fudan University – sequence: 10 givenname: Hongge surname: Pan fullname: Pan, Hongge email: honggepan@zju.edu.cn organization: State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Institute of Science and Technology for New Energy, Xi’an Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34195913$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUHaEiWkJ_gAWyxIbNgN_2bJDSiNJIkagErC2P7UlcZsbBdoq6Y9Mv4A_5EpwmBdpFVr62zzk6997zvDoaw-iq6iWCbxGE4l2iUGJYQ4xqCLngNX9SnWDEYM0YQ0elJgjVXEB-XJ2m5FvIMBVYMPqsOiYUNaxB5KS6vQwxbBKY6diGEUyjWfnsTN5EB6YpuaHtnQXtDZjFkFK98OO3ct-jF05fuwR--LwC82Hd6zGXz2kOgzdgFlrdZ9CFCC78clVfuljqQY_GgYX__fPXZ3Cmc3bRu_SietrpPrnT_Tmpvp5_-DK7qBefPs5n00VtOGxy3bSCSi0RZtwya3TTIUwoRlIQK6xpdOnWWuk4cgYyQhrScOOEtbSTklJOJtV8p2uDvlLr6Acdb1TQXt09hLhUOmZveqe6TnJsWk44RpQjK6WgSCPOWyFs12213u-01pt2cNa4MUfdPxB9-DP6lVqGayUxZZzBIvBmLxDD941LWQ0-GdeXMbqyEoUZFYwIVjqZVK8fQa_CJo5lVArzssqSBM4PohjlooEINwX16n_ffw3fZ6IA5A5gtiuPrlPGZ5192Lbhe4Wg2iZQ7RKoSgLVXQLV1gF-RL1XP0giO1Iq4HHp4j_bB1h_AIs97Tc |
CitedBy_id | crossref_primary_10_1002_cssc_202400999 crossref_primary_10_1002_adfm_202214353 crossref_primary_10_1039_D4TA08712G crossref_primary_10_1016_j_jcis_2022_12_111 crossref_primary_10_1002_adma_202202256 crossref_primary_10_1002_adfm_202200424 crossref_primary_10_1039_D5GC00414D crossref_primary_10_12677_JOCR_2023_114030 crossref_primary_10_1021_acs_jpcc_3c06017 crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1002_smll_202300065 crossref_primary_10_1016_j_mtener_2023_101344 crossref_primary_10_1007_s40820_021_00756_7 crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1002_batt_202200494 crossref_primary_10_1016_j_cej_2024_151938 crossref_primary_10_1002_smll_202409674 crossref_primary_10_1016_j_cej_2021_134163 crossref_primary_10_1016_j_cej_2022_137777 crossref_primary_10_1039_D3RA00502J crossref_primary_10_1007_s40820_023_01064_y crossref_primary_10_1016_j_cej_2024_157004 crossref_primary_10_3389_fbioe_2022_997622 crossref_primary_10_1007_s40820_022_00954_x crossref_primary_10_1016_j_jallcom_2024_175810 crossref_primary_10_1021_acsami_2c12114 crossref_primary_10_1007_s12274_023_6063_6 crossref_primary_10_1016_j_ensm_2025_104207 crossref_primary_10_1016_j_apsusc_2023_157068 crossref_primary_10_1021_acsaem_3c01137 crossref_primary_10_1021_acs_chemmater_4c02120 crossref_primary_10_1002_asia_202400177 crossref_primary_10_1002_smll_202409740 crossref_primary_10_1039_D4CC05742B crossref_primary_10_1007_s40820_023_01037_1 crossref_primary_10_3390_en15217961 crossref_primary_10_1016_j_ijhydene_2022_04_292 crossref_primary_10_1016_j_cclet_2022_01_014 crossref_primary_10_1016_j_jallcom_2021_162831 crossref_primary_10_1016_j_cej_2024_150886 crossref_primary_10_1016_j_jechem_2022_02_046 crossref_primary_10_1007_s12274_022_4662_2 crossref_primary_10_1016_j_cej_2022_138046 crossref_primary_10_1016_j_cej_2022_139410 crossref_primary_10_3390_pr10030566 crossref_primary_10_1002_smll_202405148 crossref_primary_10_1007_s40820_022_00935_0 crossref_primary_10_1002_adfm_202204635 crossref_primary_10_1039_D3TA03098A crossref_primary_10_1007_s11581_023_05155_z crossref_primary_10_1016_j_cej_2024_153826 crossref_primary_10_1002_aenm_202202094 crossref_primary_10_1002_eem2_12703 crossref_primary_10_1021_acs_iecr_1c04634 |
Cites_doi | 10.1002/adma.201970236 10.1016/j.ensm.2020.07.034 10.1002/adma.201706758 10.1002/adma.201601759 10.1002/adma.201904876 10.1002/aenm.202000091 10.1021/acsnano.0c03325 10.1002/adma.201903813 10.1016/j.ensm.2020.05.022 10.1002/aenm.201802768 10.1002/anie.201901109 10.1016/j.progpolymsci.2018.12.002 10.1039/C0JM01921F 10.1016/j.jallcom.2003.12.011 10.1007/s40820-020-00449-7 10.1021/acsnano.0c00799 10.1002/anie.201909339 10.1039/C8EE02694G 10.1021/acs.nanolett.9b04719 10.1039/C9TA11680J 10.1016/j.nantod.2017.12.010 10.1039/C9NH00730J 10.1016/j.ensm.2020.03.008 10.1021/acsnano.0c10603 10.1002/adfm.201702046 10.1007/s40820-019-0341-6 10.1021/acsnano.0c03403 10.1021/jacs.8b12973 10.1002/adma.202002168 10.1002/aenm.201803774 10.1002/adma.201903955 10.1002/adma.202000315 10.1002/adfm.202001165 10.1016/j.cej.2018.08.136 10.1016/j.matt.2020.06.002 10.1021/acsnano.9b02231 10.1039/C5CS00410A 10.1002/adma.201802146 10.1021/jacs.0c07790 10.1021/acsnano.9b04519 10.1007/s12274-017-1709-x 10.1002/adma.201901220 10.1016/j.cej.2020.125686 10.1016/S0925-8388(02)01045-9 10.1021/acsnano.9b02928 10.1002/adma.201603401 10.1039/C9TA12921A 10.1002/aenm.202002592 10.1038/s42004-019-0166-8 10.1016/j.carbon.2018.09.067 10.1039/C8TA11615F 10.1007/s40820-021-00609-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-021-00676-6 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_ff862cb63621461d88741a166b77dff6 PMC8245650 34195913 10_1007_s40820_021_00676_6 |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c609t-9b748a81256d5dca9f123421873d7dc9a706dd8e61ec05339396ce7dd4f884463 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:26:42 EDT 2025 Thu Aug 21 14:12:55 EDT 2025 Tue Aug 05 10:47:37 EDT 2025 Wed Aug 13 03:33:28 EDT 2025 Wed Aug 13 04:14:12 EDT 2025 Thu Apr 03 07:06:02 EDT 2025 Tue Jul 01 00:55:46 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Fri Feb 21 02:44:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 3D porous carbon architecture Single-atom Co Cathode Lithium–sulfur battery |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-9b748a81256d5dca9f123421873d7dc9a706dd8e61ec05339396ce7dd4f884463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-021-00676-6 |
PMID | 34195913 |
PQID | 2546790129 |
PQPubID | 2044332 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff862cb63621461d88741a166b77dff6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8245650 proquest_miscellaneous_2547537505 proquest_journals_2619582066 proquest_journals_2546790129 pubmed_primary_34195913 crossref_citationtrail_10_1007_s40820_021_00676_6 crossref_primary_10_1007_s40820_021_00676_6 springer_journals_10_1007_s40820_021_00676_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2021 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Liu, Chen, Jia, Xu, Liu (CR7) 2019; 13 Tian, Li, Zhang, Luo, Wang (CR53) 2020; 32 Ma, Wan, Wang, Wang, Liang (CR34) 2020; 14 Li, Wu, Zhang, Wang, Zhang (CR30) 2020; 30 Wang, Li, Lai, Hou, Gao (CR5) 2019; 355 An, Luo, Yao, Wen, Zheng (CR12) 2021; 13 Zhang, Liu, Muhammad, Wan, Xie (CR47) 2019; 31 Zhu, Zhu, Yan, Dong, Zhang (CR27) 2019; 90 Wang, Zhang, Yan, Zhang, Wu (CR10) 2020; 12 Xie, Li, Peng, Song, Zhao (CR33) 2019; 31 Li, Wu, Lou (CR21) 2016; 9 Yang, Gao, Sun, Jand, Yu (CR54) 2019; 31 Du, Chen, Hu, Chuang, Xie (CR32) 2019; 141 Park, Yu, Sung (CR22) 2018; 18 Yang, Wang, Li, Li, Zhang (CR51) 2020; 8 Zhao, Li, Peng, Yuan, Wei (CR15) 2020; 59 Ha, Fei, Yan, Xu, Chen (CR38) 2020; 10 Yuan, Peng, Li, Xie, Kong (CR41) 2019; 9 Pan, Liu, Gao, Lei, Wang (CR3) 2005; 150 Seh, Sun, Zhang, Cui (CR25) 2016; 45 He, Hwang, Cullen, Uddin, Langhorst (CR37) 2019; 12 Peng, Zhang, Huang, Zhang, Xie (CR42) 2016; 28 Fei, Zhang, Cai, Zheng, Chen (CR45) 2021; 15 Wu, Zhou, Xu, Cao, Li (CR43) 2019; 13 Li, Chen, Mou, Liu, Xue (CR31) 2020; 28 Chen, Wu, Liu, Wang, Xu (CR52) 2017; 27 Zhang, Luo, Li, Gao, Li (CR9) 2020; 3 Luo, Zhang, Li, Cheng, Li (CR50) 2020; 14 Pan, Liu, Gao, Zhu, Lei (CR2) 2003; 351 Zheng, Ji, Fan, Chen, Li (CR18) 2019; 9 Zhang, Li, Wang, Cui, Wei (CR24) 2020; 30 Han, Ling, Wang, Ma, Zhong (CR35) 2019; 58 Wang, Luo, Wang, Zhou, Deng (CR48) 2020; 32 Wang, Song, Yu, Ullah, Guan (CR29) 2020; 8 Zhang, Zhong, Zhou, Zhang, Huang (CR8) 2020; 12 Fei, Dong, Wan, Zhao, Xu (CR36) 2018; 30 Wang, Cullen, Pan, Hwang, Wang (CR39) 2018; 30 Zhou, Zhao, Wang, Yang, Chen (CR28) 2020; 20 Wang, Shen, Liu, Xu, Liu (CR46) 2019; 31 Ye, Jiang, Li, Wu, Chen (CR11) 2020; 32 Chen, Wu, Wang, Zhang, Song (CR6) 2018; 11 Zhou, Yang, Ding, Lai, Nie (CR16) 2020; 14 Wang, Chen, Sun, Chang, Ding (CR49) 2020; 399 Liu, Pan, Gao, Wang (CR1) 2011; 21 Zhang, Wang, Niu, Chen (CR19) 2019; 141 Gao, Zhou, Chen, Wu, Su (CR44) 2019; 2 Liao, Lei, Chen, Lu, Pan (CR4) 2004; 376 Li, Zhou, Shen, Yang, Li (CR23) 2019; 13 Zhang, Luo, Deng, Huang, Zhou (CR13) 2020; 10 Wu, Pan, He, Han, Ma (CR40) 2020; 142 Cha, Patel, Bhoyate, Prasad, Choi (CR14) 2020; 5 Xu, Liu, Bai, Wu (CR20) 2019; 7 Liu, Huang, Zhang, Mai (CR26) 2017; 29 Ma, Feng, Liu, Yang, Zhou (CR17) 2020; 32 RR Li (676_CR23) 2019; 13 F Ma (676_CR34) 2020; 14 Z Li (676_CR21) 2016; 9 ZL Chen (676_CR52) 2017; 27 ZQ Ye (676_CR11) 2020; 32 YN An (676_CR12) 2021; 13 XP Han (676_CR35) 2019; 58 YF Yang (676_CR51) 2020; 8 HG Pan (676_CR3) 2005; 150 ZL Chen (676_CR6) 2018; 11 HG Pan (676_CR2) 2003; 351 RC Wang (676_CR48) 2020; 32 YF Liu (676_CR1) 2011; 21 ZS Wang (676_CR46) 2019; 31 LL Zhang (676_CR47) 2019; 31 GM Zhou (676_CR28) 2020; 20 YH He (676_CR37) 2019; 12 J Zheng (676_CR18) 2019; 9 Z Zhang (676_CR9) 2020; 3 JJ Park (676_CR22) 2018; 18 ZW Seh (676_CR25) 2016; 45 SZ Zhang (676_CR8) 2020; 12 D Luo (676_CR50) 2020; 14 JL Wang (676_CR10) 2020; 12 E Cha (676_CR14) 2020; 5 SY Zhou (676_CR16) 2020; 14 J Xie (676_CR33) 2019; 31 XX Wang (676_CR39) 2018; 30 CG Wang (676_CR29) 2020; 8 HL Fei (676_CR36) 2018; 30 H Yuan (676_CR41) 2019; 9 B Zhang (676_CR13) 2020; 10 YJ Li (676_CR31) 2020; 28 XC Gao (676_CR44) 2019; 2 HB Xu (676_CR20) 2019; 7 Y Tian (676_CR53) 2020; 32 X Liu (676_CR26) 2017; 29 RR Wang (676_CR49) 2020; 399 HJ Peng (676_CR42) 2016; 28 B Fei (676_CR45) 2021; 15 C Ma (676_CR17) 2020; 32 ZZ Du (676_CR32) 2019; 141 B Liao (676_CR4) 2004; 376 Y Ha (676_CR38) 2020; 10 Y Liu (676_CR7) 2019; 13 YG Zhang (676_CR24) 2020; 30 RR Wang (676_CR5) 2019; 355 LL Zhang (676_CR19) 2019; 141 YJ Li (676_CR30) 2020; 30 F Wu (676_CR40) 2020; 142 QP Wu (676_CR43) 2019; 13 M Zhao (676_CR15) 2020; 59 JD Zhu (676_CR27) 2019; 90 XF Yang (676_CR54) 2019; 31 |
References_xml | – volume: 31 start-page: 1902228 year: 2019 ident: CR46 article-title: Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201970236 – volume: 32 start-page: 46 year: 2020 end-page: 54 ident: CR17 article-title: Dual-engineered separator for highly robust, all-climate lithium–sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.034 – volume: 30 start-page: 1706758 year: 2018 ident: CR39 article-title: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 29 start-page: 1601759 year: 2017 ident: CR26 article-title: Nanostructured metal oxides and sulfides for lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201601759 – volume: 32 start-page: 1904876 year: 2020 ident: CR53 article-title: Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201904876 – volume: 10 start-page: 2000091 year: 2020 ident: CR13 article-title: Optimized catalytic WS –WO heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000091 – volume: 14 start-page: 10115 year: 2020 end-page: 10126 ident: CR34 article-title: Bifunctional atomically dispersed Mo–N /C nanosheets boost lithium sulfide deposition decomposition for stable lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c03325 – volume: 31 start-page: 1903813 year: 2019 ident: CR33 article-title: Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201903813 – volume: 30 start-page: 250 year: 2020 end-page: 259 ident: CR30 article-title: Fast conversion and controlled deposition of lithium(poly)sulfides in lithium–sulfur batteries using high-loading cobalt single atoms publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.022 – volume: 9 start-page: 1802768 year: 2019 ident: CR41 article-title: Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802768 – volume: 58 start-page: 5359 year: 2019 end-page: 5364 ident: CR35 article-title: Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901109 – volume: 90 start-page: 118 year: 2019 end-page: 163 ident: CR27 article-title: Recent progress in polymer materials for advanced lithium–sulfur batteries publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.12.002 – volume: 21 start-page: 4743 year: 2011 end-page: 4755 ident: CR1 article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries publication-title: J. Mater. Chem. doi: 10.1039/C0JM01921F – volume: 150 start-page: 565 year: 2005 end-page: 570 ident: CR3 article-title: A study of the structural and electrochemical properties of La Mg (Ni Co ) (x=2.5–5.0) hydrogen storage alloys publication-title: J. Electrochem. Soc. doi: 10.1016/j.jallcom.2003.12.011 – volume: 12 start-page: 112 year: 2020 ident: CR8 article-title: Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00449-7 – volume: 376 start-page: 186 year: 2004 end-page: 195 ident: CR4 article-title: A study on the structure and electrochemical properties of La Mg(Ni M ) (M= Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.12.011 – volume: 14 start-page: 4849 year: 2020 end-page: 4860 ident: CR50 article-title: Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb O nanocluster toward superior Li–S performance publication-title: ACS Nano doi: 10.1021/acsnano.0c00799 – volume: 59 start-page: 12636 year: 2020 end-page: 12652 ident: CR15 article-title: Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909339 – volume: 12 start-page: 250 year: 2019 end-page: 260 ident: CR37 article-title: Highly active atomically dispersed CoN fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 20 start-page: 1252 year: 2020 end-page: 1261 ident: CR28 article-title: Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04719 – volume: 8 start-page: 3421 year: 2020 end-page: 3430 ident: CR29 article-title: Iron single-atom catalyst anchored on nitrogenrich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11680J – volume: 9 start-page: 3061 year: 2016 end-page: 3070 ident: CR21 article-title: Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries publication-title: Energy Environ. Sci. doi: 10.1016/j.nantod.2017.12.010 – volume: 5 start-page: 808 year: 2020 end-page: 831 ident: CR14 article-title: Nanoengineering to achieve high efficiency practical lithium–sulfur batteries publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00730J – volume: 28 start-page: 196 year: 2020 end-page: 204 ident: CR31 article-title: Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.008 – volume: 15 start-page: 6849 year: 2021 end-page: 6860 ident: CR45 article-title: Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c10603 – volume: 27 start-page: 1702046 year: 2017 ident: CR52 article-title: General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702046 – volume: 12 start-page: 4 year: 2020 ident: CR10 article-title: Rational design of porous N–Ti C MXene@CNT microspheres for high cycling stability in Li–S battery publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0341-6 – volume: 14 start-page: 7538 year: 2020 end-page: 7551 ident: CR16 article-title: Dual-regulation strategy to improve anchoring and conversion of polysulfides in lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c03403 – volume: 141 start-page: 3977 year: 2019 end-page: 3985 ident: CR32 article-title: Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12973 – volume: 32 start-page: 2002168 year: 2020 ident: CR11 article-title: A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries publication-title: Adv. Mater. doi: 10.1002/adma.202002168 – volume: 9 start-page: 1803774 year: 2019 ident: CR18 article-title: High-fluorinated electrolytes for Li–S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803774 – volume: 31 start-page: 1903955 year: 2019 ident: CR47 article-title: Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201903955 – volume: 32 start-page: 2000315 year: 2020 ident: CR48 article-title: Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.202000315 – volume: 30 start-page: 2001165 year: 2020 ident: CR24 article-title: Hierarchical defective Fe C@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001165 – volume: 355 start-page: 752 year: 2019 end-page: 759 ident: CR5 article-title: 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.136 – volume: 3 start-page: 1 year: 2020 end-page: 15 ident: CR9 article-title: Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium–sulfur batteries publication-title: Matter doi: 10.1016/j.matt.2020.06.002 – volume: 18 start-page: 35 year: 2018 end-page: 64 ident: CR22 article-title: Design of structural and functional nanomaterials for lithium–sulfur batteries publication-title: Nano Today doi: 10.1016/j.nantod.2017.12.010 – volume: 13 start-page: 10049 year: 2019 end-page: 10061 ident: CR23 article-title: Conductive holey MoO –Mo N heterojunctions as job-synergistic cathode host with low surface area for high-loading Li–S batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b02231 – volume: 45 start-page: 5605 year: 2016 end-page: 5634 ident: CR25 article-title: Designing high-energy lithium–sulfur batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00410A – volume: 30 start-page: 1802146 year: 2018 ident: CR36 article-title: Microwave-assisted rapid synthesis of graphene-supported single atomic metals publication-title: Adv. Mater. doi: 10.1002/adma.201802146 – volume: 142 start-page: 16861 year: 2020 end-page: 16867 ident: CR40 article-title: A single-atom Co–N electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07790 – volume: 13 start-page: 9520 year: 2019 end-page: 9532 ident: CR43 article-title: Adenine derivative host with interlaced 2d structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li–S batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b04519 – volume: 11 start-page: 966 year: 2018 end-page: 978 ident: CR6 article-title: Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage publication-title: Nano Res. doi: 10.1007/s12274-017-1709-x – volume: 31 start-page: 1901220 year: 2019 ident: CR54 article-title: Promoting the transformation of Li S to Li S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901220 – volume: 399 year: 2020 ident: CR49 article-title: Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium–sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125686 – volume: 351 start-page: 228 year: 2003 end-page: 234 ident: CR2 article-title: An investigation on the structural and electrochemical properties of La Mg (Ni Co ) (x=3.15–3.80) hydrogen storage electrode alloys publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01045-9 – volume: 13 start-page: 6113 year: 2019 end-page: 6124 ident: CR7 article-title: Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage publication-title: ACS Nano doi: 10.1021/acsnano.9b02928 – volume: 28 start-page: 9551 year: 2016 end-page: 9558 ident: CR42 article-title: A cooperative interface for highly efficient lithium–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201603401 – volume: 8 start-page: 3692 year: 2020 end-page: 3700 ident: CR51 article-title: Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12921A – volume: 10 start-page: 2002592 year: 2020 ident: CR38 article-title: Atomically dispersed co-pyridinic N–C for superior oxygen reduction reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002592 – volume: 2 start-page: 66 year: 2019 ident: CR44 article-title: Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium–sulfur batteries publication-title: Commun. Chem. doi: 10.1038/s42004-019-0166-8 – volume: 141 start-page: 400 year: 2019 end-page: 416 ident: CR19 article-title: Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2018.09.067 – volume: 7 start-page: 3558 year: 2019 end-page: 3562 ident: CR20 article-title: Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11615F – volume: 13 start-page: 84 year: 2021 ident: CR12 article-title: Natural cocoons enabling flexible and stable fabric lithium–sulfur full batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00609-3 – volume: 27 start-page: 1702046 year: 2017 ident: 676_CR52 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702046 – volume: 9 start-page: 1803774 year: 2019 ident: 676_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803774 – volume: 399 year: 2020 ident: 676_CR49 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125686 – volume: 10 start-page: 2002592 year: 2020 ident: 676_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002592 – volume: 32 start-page: 2002168 year: 2020 ident: 676_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202002168 – volume: 12 start-page: 4 year: 2020 ident: 676_CR10 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0341-6 – volume: 351 start-page: 228 year: 2003 ident: 676_CR2 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(02)01045-9 – volume: 29 start-page: 1601759 year: 2017 ident: 676_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201601759 – volume: 14 start-page: 10115 year: 2020 ident: 676_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.0c03325 – volume: 20 start-page: 1252 year: 2020 ident: 676_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04719 – volume: 12 start-page: 112 year: 2020 ident: 676_CR8 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00449-7 – volume: 18 start-page: 35 year: 2018 ident: 676_CR22 publication-title: Nano Today doi: 10.1016/j.nantod.2017.12.010 – volume: 30 start-page: 2001165 year: 2020 ident: 676_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001165 – volume: 141 start-page: 3977 year: 2019 ident: 676_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12973 – volume: 9 start-page: 1802768 year: 2019 ident: 676_CR41 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802768 – volume: 14 start-page: 4849 year: 2020 ident: 676_CR50 publication-title: ACS Nano doi: 10.1021/acsnano.0c00799 – volume: 2 start-page: 66 year: 2019 ident: 676_CR44 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0166-8 – volume: 31 start-page: 1903813 year: 2019 ident: 676_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201903813 – volume: 355 start-page: 752 year: 2019 ident: 676_CR5 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.136 – volume: 30 start-page: 1802146 year: 2018 ident: 676_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201802146 – volume: 5 start-page: 808 year: 2020 ident: 676_CR14 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00730J – volume: 142 start-page: 16861 year: 2020 ident: 676_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07790 – volume: 14 start-page: 7538 year: 2020 ident: 676_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.0c03403 – volume: 32 start-page: 1904876 year: 2020 ident: 676_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201904876 – volume: 31 start-page: 1902228 year: 2019 ident: 676_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201970236 – volume: 10 start-page: 2000091 year: 2020 ident: 676_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000091 – volume: 31 start-page: 1901220 year: 2019 ident: 676_CR54 publication-title: Adv. Mater. doi: 10.1002/adma.201901220 – volume: 8 start-page: 3421 year: 2020 ident: 676_CR29 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11680J – volume: 376 start-page: 186 year: 2004 ident: 676_CR4 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2003.12.011 – volume: 13 start-page: 6113 year: 2019 ident: 676_CR7 publication-title: ACS Nano doi: 10.1021/acsnano.9b02928 – volume: 59 start-page: 12636 year: 2020 ident: 676_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909339 – volume: 9 start-page: 3061 year: 2016 ident: 676_CR21 publication-title: Energy Environ. Sci. doi: 10.1016/j.nantod.2017.12.010 – volume: 30 start-page: 250 year: 2020 ident: 676_CR30 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.022 – volume: 7 start-page: 3558 year: 2019 ident: 676_CR20 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11615F – volume: 3 start-page: 1 year: 2020 ident: 676_CR9 publication-title: Matter doi: 10.1016/j.matt.2020.06.002 – volume: 12 start-page: 250 year: 2019 ident: 676_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 28 start-page: 196 year: 2020 ident: 676_CR31 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.008 – volume: 150 start-page: 565 year: 2005 ident: 676_CR3 publication-title: J. Electrochem. Soc. doi: 10.1016/j.jallcom.2003.12.011 – volume: 31 start-page: 1903955 year: 2019 ident: 676_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201903955 – volume: 28 start-page: 9551 year: 2016 ident: 676_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201603401 – volume: 15 start-page: 6849 year: 2021 ident: 676_CR45 publication-title: ACS Nano doi: 10.1021/acsnano.0c10603 – volume: 13 start-page: 84 year: 2021 ident: 676_CR12 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00609-3 – volume: 45 start-page: 5605 year: 2016 ident: 676_CR25 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00410A – volume: 90 start-page: 118 year: 2019 ident: 676_CR27 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.12.002 – volume: 21 start-page: 4743 year: 2011 ident: 676_CR1 publication-title: J. Mater. Chem. doi: 10.1039/C0JM01921F – volume: 32 start-page: 46 year: 2020 ident: 676_CR17 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.034 – volume: 30 start-page: 1706758 year: 2018 ident: 676_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201706758 – volume: 11 start-page: 966 year: 2018 ident: 676_CR6 publication-title: Nano Res. doi: 10.1007/s12274-017-1709-x – volume: 8 start-page: 3692 year: 2020 ident: 676_CR51 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12921A – volume: 32 start-page: 2000315 year: 2020 ident: 676_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.202000315 – volume: 141 start-page: 400 year: 2019 ident: 676_CR19 publication-title: Carbon doi: 10.1016/j.carbon.2018.09.067 – volume: 58 start-page: 5359 year: 2019 ident: 676_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901109 – volume: 13 start-page: 9520 year: 2019 ident: 676_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.9b04519 – volume: 13 start-page: 10049 year: 2019 ident: 676_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.9b02231 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.475763 |
Snippet | Highlights
SiO
2
-mediated ZIF-L is developed to prepare Co–N
4
@2D/3D carbon.
Co–N
4
@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon... The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics... The practical application of lithium-sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction kinetics... HighlightsSiO2-mediated ZIF-L is developed to prepare Co–N4@2D/3D carbon.Co–N4@2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon... SiO 2 -mediated ZIF-L is developed to prepare Co–N 4 @2D/3D carbon. Co–N 4 @2D/3D integrates the advantages of 0D Co single atom and 2D/3D carbon support. Co–N... Abstract The practical application of lithium–sulfur batteries is severely hampered by the poor conductivity, polysulfide shuttle effect and sluggish reaction... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151 |
SubjectTerms | 3D porous carbon architecture Artilce Carbon Cathode Cathodes Crosslinking Electrochemical analysis Electron transfer Engineering Fading Li-S batteries Lithium sulfur batteries Lithium–sulfur battery Metal-organic frameworks Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Polysulfides Reaction kinetics Silicon dioxide Single-atom Co Sulfur Zeolites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZCRuYJGHn8dlRVWhgipBpd4ivyIqlSzaTZG4ceEX8A_5Jcw42SQLBS4cd-1dOTNjz0zG832EPOVK5hUXnpXORsa9s0xr2bA8GCdiCFqmDrk3b-XhCX99Kk5nVF94J6yHB-4F96JpIOb2TsJBixTUATYFL2whpVMqNE0C2wafN0umwJJKhYxMU30QaZX5DKWGI6ZLNQGZCQQuUxM-pig5-PXB0faBtMISVmKqKwomVS6HDpzUh4eszTnD2w54-ksmd7xcIgO4LIL9_SLmL9XY5OQObpDrQ3RKF71UbpIrsb1Frs0wC2-Tb8er9epiQ5d27VYtXcwKERQryB_deQzUfaFLXBnDXBc-D7OPov0cNxRf_lLEJUa1BrrosDWaLhGapKMQRVO8fcKOp54GenT24-v3d7RHA4Xk_g45OXj1fnnIBi4H5mVuOmac4tpCNCFkEMFb04DLBJVoVQUVvLEgUbCMKIvosT3YVEb6qELgjdaQslZ3yV67auN9QoUNEBSCIYjG8Bi0jbEoc1uCY41BepWRYiv72g9A58i3cV6PEM1JXzXoq076qmVGno2_-dTDfPx19ktU6TgTIbrTF2C49WC49b8MNyP7W4Ooh3NjUyM7gTL4cvDyYYnYQIjAn5En4zAcCFjlsW0E9eNfQAoKgaDIyL3evMaFInifMEWVEbVjeDtPsjvSnn1IoOM6VcjzjDzfmui0rD9L6sH_kNRDcrXEvZUuEe2TvW59ER9BKNi5x2nX_wQ6m05K priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQkJG4gUVefuSEtqtWFSrVCqjUW-TYDlQqSdlNkbhx4RfwD_klzDhOsgulx107keMZe2Y8nu8j5EUuRZzl3LC00o7lptJMKVGz2BYVd9Yq4Svk3h2Jg-P87Qk_CQduq3CtctgT_UZtW4Nn5K_R0-cefPzN-VeGrFGYXQ0UGtfJNmzBCoKv7d29o8X7QaNSicxMU54Q6ZXzNbSaHLFdsgnQjCOAmZxwMnmag30PBrd3qCWmsjxjXZIwIWMRKnF8PR6yN8cMbz2gFRBMbFg7TwpwmSf774XMv7Ky3tjt3ya3gpdKZ71a3SHXXHOX3FzDLrxHfi7aZXuxonO9rNqGztYSEhQzyV-qM2dp9Z3OcWQMY174HXofOv3NrSgeAlPEJ0bxWjrrsESazhGipKPgTVO8hcIWU20DPTz9_ePXB9qjgkKQf58c7-99nB-wwOnAjIiLjhWVzJUGr4ILy63RRQ2mE0SiZGalNYWGGQUNcSJxBsuEi6wQxklr81opCF2zB2SraRv3iFCuLTiHVileF7mzSjuXpLFOwcA6K4yMSDLMfWkC4DnybpyVI1Szl1cJ8iq9vEoRkZfjM-c93MeVvXdRpGNPhOr2f7TLT2VY-WVdQ9BoKgGeAnKow3jBidOJEJWUtq7hJTuDQpRh_1iVyFIgCzwkvLx5XAwReT42w8aA2R7dOBA_vgJCUXAIeUQe9uo1DhRB_HiRZBGRG4q38SWbLc3pZw8-rnymPI7Iq0FFp2H9f6YeX_0VT8iNFFeNvya0Q7a65YV7Cs5eVz0LK_oP2rBHvQ priority: 102 providerName: ProQuest |
Title | Porous Carbon Architecture Assembled by Cross-Linked Carbon Leaves with Implanted Atomic Cobalt for High-Performance Li–S Batteries |
URI | https://link.springer.com/article/10.1007/s40820-021-00676-6 https://www.ncbi.nlm.nih.gov/pubmed/34195913 https://www.proquest.com/docview/2546790129 https://www.proquest.com/docview/2619582066 https://www.proquest.com/docview/2547537505 https://pubmed.ncbi.nlm.nih.gov/PMC8245650 https://doaj.org/article/ff862cb63621461d88741a166b77dff6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZoe4ED4s1CiYzEDSztw689JktDhUoVAZV6W3nXXqhUdlGSInHjwi_gH_JLmPG-EghIXBIldlYTz9gz45n5hpBnXMkw4aJkcWEc42VhmNayYqFNC-Gs1dJXyL05lcdn_PW5OO-KwlZ9tnsfkvQn9VDshq2RQ4YpBXjESib3yIEA3x3lOhsxx2OF3ZjG2CC2VOYbCDUc8VySEcRMIGiZGrExRcxBp3dKtjWiFYavfJe6KGJShbKrvtlN1paG840AdlmvfyZh_haJ9Qpufovc7CxTOm1F6Ta55uo75MYGXuFd8n3RLJurFc3MsmhqOt0IQlCMHn8qLp2lxVeaIWUM_Vz43M0-ceaLW1G8-KWISYwstXS6xrJomiEsyZqCBU0x84QtxnoGenLx89uPd7RFAgXH_h45mx-9z45Z18eBlTJM1ywtFNcGLAkhrbClSStQl8ASrRKrbJkaWFGQCicjV2JpcJqksnTKWl5pDe5qcp_s103tHhIqjAWD0GotqpQ7q41zURyaGJSqs7JUAYn6tc_LDuQce21c5gM8s-dXDvzKPb9yGZDnw28-txAf_5w9Q5YOMxGe23_RLD_k3W7PqwocxbKQYB1g33SgFww3E0lZKGWrCh5y2AtE3p0Zqxw7E6gULwZ3D0vEBUL0_YA8HYbhMMAIj6kdsB8fAe4nGIEiIA9a8RoIReA-kUZJQNSW4G39k-2R-uKjBxzXPjoeBuRFL6IjWX9fqUf_N_0xuR7jLvKpQodkf728ck_A4FsXE7Kn568m5GA6ezmbw_vs6HTxduJ3Pb7KbOKvUn4BoMpIuw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCSzy8CM5ILQsLFu6rSrRSr2lTuy0K5Wk7G5BvXHhF_A_-FH8Emacx-5C6a3HXTvWJDOeh8fzDSHPuJJ-xEXOwkxbxvNMsziWBfNNkglrTCxdhdzmlhzu8o97Ym-F_GprYfBaZasTnaI2VY5n5K_Q0xcOfPzN8ReGXaMwu9q20KjFYsOefoOQbfp6_R3w93kYDt7v9Ies6SrAcuknM5Zkisca7JqQRphcJwUobw6WTkVGmTzRypdAo5WBzbFQNYkSmVtlDC_iGIKnCNa9RC5zGMEdFQ8-tPIbKuwDNc9KYjNnvoCNwxFJJprDpwmES1NzVE4RcvAmGvNeu-8KE2euP14QMAmUNXU_rvoPe0X7DO9YoM2RTC7ZVteC4Cy_-d_rn3_lgJ1pHdwg1xufmPZqIb5JVmx5i1xbQEq8TX5sV5PqZEr7epJVJe0tpD8o5q0_Z0fW0OyU9pEyhhE2_G5mj6z-aqcUj5wpoiGjMBnam2FBNu0jIMqMgu9O8c4L255XUtDR-Pf3n59ojUE6ttM7ZPdCeH2XrJZVae8TKrQBV9TEsSgSbk2srQ1CX4dgzq2RufJI0H77NG_g1bHLx1HaAUM7fqXAr9TxK5UeedE9c1yDi5w7-y2ytJuJwODuj2pykDZ6Ji0KCFHzTIJfgh3bgV5wGXUgZaaUKQpYZK0ViLTRVtMUeyKoBI8kzx7utp5HnnbDoIYwt6RLC-zHJSDwBfdTeOReLV4doQgZKJIg8ohaErylN1keKceHDuo8dnl53yMvWxGdk_X_L_Xg_Ld4Qq4MdzZH6Wh9a-MhuRriDnIXlNbI6mxyYh-BmznLHru9Tcn-RSuTP4xBgis |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkRB7QLw3sICRuIG1efmRYwlUC5RVJVhpb5EdO7DSkqzaLBI3LvwC_iG_hBknTVooSBxbu5HrGXu-ycx8Q8jTVIowSXnJYqMdS0ujmVKiYqHNDHfWKuEr5N4dicPj9M0JP1mr4vfZ7quQZFfTgCxNdXtwbquDofAN2ySHDNML8LoVTFwmV8BTiTCpLx_5x2OJnZnGOCG2V07X2GpS5HZJRkIzjgRmcuTJ5HEK9r03uB2glhjK8h3roogJGYq-Emf7sjasnW8KsA3J_pmQ-VtU1hu76Q1yvUepdNKp1U1yydW3yO4ad-Ft8n3eLJqLJc31wjQ1nawFJChGkj-bM2ep-UpzXBlDnxc-97NnTn9xS4ovgSnyE6N4LZ20WCJNc6QoaSmgaYpZKGw-1jbQ2enPbz_e044VFJz8O-R4-upDfsj6ng6sFGHWsszIVGlAFVxYbkudVWA6QSRKJlbaMtOwo6AhTkSuxDLhLMlE6aS1aaUUuK7JXbJTN7XbI5RrC-DQKsWrLHVWaeeiONQxGFhnRSkDEq32vih7wnPsu3FWDFTNXl4FyKvw8ipEQJ4Nvznv6D7-OfsFinSYiVTd_otm8bHoT35RVeA0lkYAUsAe6rBeAHE6EsJIaasKHrK_Uoiivz-WBXYpkBm-JNw-LJAjCJn4A_JkGIaLAaM9unYgfnwEuKIACHlA7nXqNSwUSfx4FiUBkRuKt_FPNkfq00-efFz5SHkYkOcrFR2X9feduv9_0x-Tq_OX02L2-ujtA3ItxgPlM4j2yU67uHAPAQe25pE_6r8AZpJKKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Carbon+Architecture+Assembled+by+Cross-Linked+Carbon+Leaves+with+Implanted+Atomic+Cobalt+for+High-Performance+Li%E2%80%93S+Batteries&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Ruirui&rft.au=Wu%2C+Renbing&rft.au=Ding%2C+Chaofan&rft.au=Chen%2C+Ziliang&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-021-00676-6&rft.externalDocID=10_1007_s40820_021_00676_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |