Deciphering Bacterial Chemorepulsion: The Complex Response of Microbes to Environmental Stimuli
Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemot...
Saved in:
Published in | Microorganisms (Basel) Vol. 12; no. 8; p. 1706 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens. |
---|---|
AbstractList | Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens. Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens.Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens. |
Audience | Academic |
Author | Fu, Ruixin Feng, Haichao |
AuthorAffiliation | 1 School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; ruixinfu2022@163.com 3 Food Laboratory of Zhongyuan, Henan University, Luohe 462300, China 2 College of Agriculture, Henan University, Kaifeng 475004, China |
AuthorAffiliation_xml | – name: 3 Food Laboratory of Zhongyuan, Henan University, Luohe 462300, China – name: 1 School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; ruixinfu2022@163.com – name: 2 College of Agriculture, Henan University, Kaifeng 475004, China |
Author_xml | – sequence: 1 givenname: Ruixin surname: Fu fullname: Fu, Ruixin – sequence: 2 givenname: Haichao surname: Feng fullname: Feng, Haichao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39203548$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFr1TAUx4tM3Jz7CqPgiy93Jk3TJCLIvE4dTASdzyFNT-7NaJOatEO_ved659wdg7UPDcnv_Hpy-D8v9kIMUBTHlJwwpsjrwdsUY1qZ4POQaUUkFaR5UhxURDSLqiFi7856vzjK-YrgoyiTnD4r9pmqCOO1PCj0B7B-XEPyYVW-N3bClenL5RqGmGCc--xjeFNerqFcxmHs4Vf5DfIYQ4YyuvLLppMWcjnF8ixc-xTDAGFCw_fJD3PvXxRPnekzHN18D4sfH88ul58XF18_nS9PLxa2IWpaSG6k4y1XdYuNUac6ItvWdpW0DoCzSrEWBDe8c050Thg8a7ir64a0xtaUHRbnW28XzZUekx9M-q2j8frvBg5LmzR524MGrphz6K8Eq5uqM4ybTpnG2Ko1Ukp0vdu6xrkdoLN4oWT6HenuSfBrvYrXmlLGRUUIGl7dGFL8OUOe9OCzhb43AeKcNaOciUYxwR5HiVJCMUo4oi_voVdxTgHHuqEkqZni7D-1MnhZH1zEHu1Gqk8lETXj-GOkTh6g8O0A04Vxcx73dwqO7w7ldhr_ooRAswUwETkncLcIJXoTW_1wbLHw7b1C6yczYe6wJd8_Vv4HDQX5IA |
CitedBy_id | crossref_primary_10_1016_j_tim_2025_02_019 crossref_primary_10_3390_biom15040465 |
Cites_doi | 10.1111/mmi.13215 10.1021/bi00439a037 10.1111/mmi.12255 10.1074/jbc.274.16.11092 10.1126/scisignal.2000724 10.1128/AEM.00115-14 10.1126/sciadv.aaz6153 10.1146/annurev-micro-121809-151631 10.1128/mBio.03066-19 10.1038/srep20866 10.1128/JB.00071-16 10.1128/MMBR.00033-17 10.1111/mmi.13045 10.1002/bies.20343 10.1128/mbio.02099-23 10.1007/BF01661982 10.1126/science.153.3737.708 10.1038/nrmicro2505 10.1128/JB.188.7.2656-2665.2006 10.1099/00221287-78-2-287 10.1016/j.ceb.2011.11.008 10.1128/jb.176.9.2727-2735.1994 10.1111/mmi.12400 10.1021/es035236s 10.1126/science.181.4094.60 10.1099/00221287-115-1-167 10.1126/science.808854 10.1016/j.tim.2010.07.004 10.1128/aem.63.10.4111-4115.1997 10.1371/journal.ppat.1003822 10.1093/genetics/41.6.845 10.1016/S0301-4622(02)00157-6 10.1128/jb.00441-21 10.1128/AEM.01898-07 10.1073/pnas.2201747119 10.1016/j.tim.2004.10.003 10.1094/MPMI-04-17-0096-R 10.1007/s00253-004-1685-4 10.1038/s41579-019-0182-9 10.1016/S0006-291X(02)02601-3 10.1099/jmm.0.45636-0 10.1111/j.1365-2958.1988.tb00085.x 10.1074/jbc.M201334200 10.1016/j.tim.2015.03.003 10.1128/JB.00779-18 10.1038/s41564-023-01419-6 10.1128/mbio.02526-23 10.1128/mBio.00379-15 10.1111/1462-2920.13170 10.1111/mmi.13006 10.1038/ncomms13206 10.1073/pnas.011589998 10.1094/MPMI-01-18-0003-R 10.1099/mic.0.049353-0 10.1073/pnas.1916974117 10.1128/am.25.6.972-975.1973 10.1128/AEM.01870-15 10.1073/pnas.0609359104 10.1128/JB.02065-14 10.1016/j.tim.2008.07.003 10.1007/978-1-4939-7577-8_23 10.1016/S0021-9258(17)46672-5 10.1002/jss.400040302 10.1128/MMBR.00002-06 10.1021/acsbiomedchemau.1c00055 10.1128/mBio.01664-16 10.1093/bioinformatics/bti1204 10.1038/280279a0 10.1073/pnas.85.24.9451 10.1007/BF00409860 10.1038/s41396-018-0227-5 10.1038/s41598-023-42840-5 10.1128/jb.118.2.560-576.1974 10.1128/MMBR.68.2.301-319.2004 10.1016/j.mib.2018.02.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms12081706 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_e593ff08b273462da35ad9a6ac2ba888 PMC11357200 A807435693 39203548 10_3390_microorganisms12081706 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Project for Youth Talent Lifting of Henan Province grantid: 2024HYTP008 – fundername: National Natural Science Foundation of China grantid: 32270125 – fundername: Natural Science Foundation of Henan Province grantid: 242300421586; 242300421100; 222300420259 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM NPM PMFND 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c609t-85a8f5b594b0351f9d08bbcd28cfee53293be75a5dff7df7abcd65f4460bac413 |
IEDL.DBID | M48 |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:17:30 EDT 2025 Thu Aug 21 18:32:03 EDT 2025 Fri Jul 11 06:46:07 EDT 2025 Fri Jul 11 10:23:00 EDT 2025 Fri Jul 25 11:50:46 EDT 2025 Tue Jun 17 22:04:36 EDT 2025 Tue Jun 10 21:06:17 EDT 2025 Thu Jan 02 22:33:08 EST 2025 Tue Jul 01 00:27:37 EDT 2025 Thu Apr 24 22:50:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | chemorepulsion biphasic chemotaxis plant growth-promoting rhizobacteria (PGPR) chemorepellent methyl-accepting chemotaxis protein (MCP) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-85a8f5b594b0351f9d08bbcd28cfee53293be75a5dff7df7abcd65f4460bac413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms12081706 |
PMID | 39203548 |
PQID | 3098043953 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e593ff08b273462da35ad9a6ac2ba888 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11357200 proquest_miscellaneous_3153769373 proquest_miscellaneous_3099793105 proquest_journals_3098043953 gale_infotracmisc_A807435693 gale_infotracacademiconefile_A807435693 pubmed_primary_39203548 crossref_primary_10_3390_microorganisms12081706 crossref_citationtrail_10_3390_microorganisms12081706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240818 |
PublicationDateYYYYMMDD | 2024-08-18 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240818 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationTitleAlternate | Microorganisms |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Webb (ref_38) 2017; 30 Yang (ref_23) 2015; 31 Takahashi (ref_76) 2019; 201 Pandey (ref_17) 2002; 299 Alexander (ref_25) 2007; 104 Young (ref_56) 1973; 25 Tsang (ref_57) 1973; 181 Gallacher (ref_68) 1987; 40 Alirezaeizanjani (ref_15) 2020; 6 Wuichet (ref_26) 2010; 3 Feng (ref_20) 2018; 31 Springer (ref_45) 1979; 280 Grimm (ref_19) 1997; 63 Adler (ref_4) 1976; 4 Lederberg (ref_53) 1956; 41 Collins (ref_73) 2016; 198 Griswold (ref_44) 2002; 101–102 Sourjik (ref_61) 2004; 12 Clayton (ref_54) 1958; 29 Worku (ref_67) 2004; 53 Pasupuleti (ref_62) 2014; 196 Ordal (ref_16) 1979; 115 Sourjik (ref_43) 2002; 99 Feng (ref_30) 2022; 119 Day (ref_32) 2016; 7 Tessier (ref_8) 2016; 7 Ulrich (ref_27) 2005; 21 Parkinson (ref_28) 2015; 23 Irazoki (ref_78) 2023; 8 Ordal (ref_6) 1975; 189 Vardar (ref_58) 2005; 66 Matilla (ref_9) 2016; 18 Li (ref_59) 1988; 85 Yang (ref_65) 2015; 96 Bi (ref_42) 2018; 45 Zhu (ref_2) 2023; 14 Harwood (ref_18) 2007; 73 Baker (ref_39) 2006; 28 Fernandez (ref_22) 2018; 1729 Ortega (ref_14) 2017; 81 Kirby (ref_47) 1999; 274 Lopes (ref_21) 2018; 12 Engelmann (ref_3) 1881; 25 Henry (ref_29) 2011; 65 ref_71 ref_70 Ni (ref_11) 2013; 90 Alexander (ref_51) 2010; 18 Raina (ref_1) 2019; 17 Keshavan (ref_69) 2006; 70 ref_77 Olson (ref_13) 2004; 38 ref_31 ref_74 Gavira (ref_34) 2020; 11 Lesouhaitier (ref_36) 2015; 97 Sourjik (ref_41) 2012; 24 Xu (ref_60) 2023; 14 Kristich (ref_49) 2002; 277 Tso (ref_52) 1974; 118 Adler (ref_5) 1966; 153 Bodhankar (ref_66) 2022; 204 Thoelke (ref_48) 1989; 28 Hida (ref_12) 2015; 81 Fredrick (ref_50) 1994; 176 Yang (ref_64) 2020; 117 Morel (ref_35) 2016; 99 Chen (ref_63) 2022; 2 Szurmant (ref_24) 2004; 68 Croxen (ref_72) 2006; 188 Ji (ref_75) 2018; 58 Kirsch (ref_46) 1993; 268 Webb (ref_37) 2014; 80 Armitage (ref_10) 1988; 2 Seymour (ref_55) 1973; 78 Porter (ref_40) 2011; 9 Rao (ref_7) 2008; 16 Fernandez (ref_33) 2013; 88 |
References_xml | – volume: 99 start-page: 34 year: 2016 ident: ref_35 article-title: Identification of a Chemoreceptor That Specifically Mediates Chemotaxis toward Metabolizable Purine Derivatives publication-title: Mol. Microbiol. doi: 10.1111/mmi.13215 – volume: 28 start-page: 5585 year: 1989 ident: ref_48 article-title: Novel Methyl Transfer during Chemotaxis in Bacillus Subtilis publication-title: Biochemistry doi: 10.1021/bi00439a037 – volume: 88 start-page: 1230 year: 2013 ident: ref_33 article-title: Paralogous Chemoreceptors Mediate Chemotaxis towards Protein Amino Acids and the Non-Protein Amino Acid Gamma-Aminobutyrate (GABA) publication-title: Mol. Microbiol. doi: 10.1111/mmi.12255 – volume: 274 start-page: 11092 year: 1999 ident: ref_47 article-title: CheY-Dependent Methylation of the Asparagine Receptor, McpB, during Chemotaxis in Bacillus Subtilis publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.16.11092 – volume: 58 start-page: 2078 year: 2018 ident: ref_75 article-title: Roles of D-Amino Acids on the Physiological Structure and Regulatory Function of Bacteria publication-title: Acta Microbiol. Sin. – volume: 3 start-page: ra50 year: 2010 ident: ref_26 article-title: Origins and Diversification of a Complex Signal Transduction System in Prokaryotes publication-title: Sci. Signal. doi: 10.1126/scisignal.2000724 – volume: 80 start-page: 3404 year: 2014 ident: ref_37 article-title: Sinorhizobium Meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00115-14 – volume: 6 start-page: eaaz6153 year: 2020 ident: ref_15 article-title: Chemotaxis Strategies of Bacteria with Multiple Run Modes publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6153 – volume: 65 start-page: 261 year: 2011 ident: ref_29 article-title: Ligand-Binding PAS Domains in a Genomic, Cellular, and Structural Context publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-121809-151631 – volume: 11 start-page: e03066-19 year: 2020 ident: ref_34 article-title: How Bacterial Chemoreceptors Evolve Novel Ligand Specificities publication-title: mBio doi: 10.1128/mBio.03066-19 – ident: ref_77 doi: 10.1038/srep20866 – volume: 198 start-page: 1563 year: 2016 ident: ref_73 article-title: The Helicobacter Pylori CZB Cytoplasmic Chemoreceptor TlpD Forms an Autonomous Polar Chemotaxis Signaling Complex That Mediates a Tactic Response to Oxidative Stress publication-title: J. Bacteriol. doi: 10.1128/JB.00071-16 – volume: 81 start-page: e00033-17 year: 2017 ident: ref_14 article-title: Sensory Repertoire of Bacterial Chemoreceptors publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00033-17 – volume: 97 start-page: 488 year: 2015 ident: ref_36 article-title: Specific Gamma-Aminobutyrate Chemotaxis in Pseudomonads with Different Lifestyle publication-title: Mol. Microbiol. doi: 10.1111/mmi.13045 – volume: 28 start-page: 9 year: 2006 ident: ref_39 article-title: Signal Transduction in Bacterial Chemotaxis publication-title: Bioessays doi: 10.1002/bies.20343 – volume: 14 start-page: 2 year: 2023 ident: ref_60 article-title: Systematic Mapping of Chemoreceptor Specificities for Pseudomonas aeruginosa publication-title: mBio doi: 10.1128/mbio.02099-23 – volume: 25 start-page: 285 year: 1881 ident: ref_3 article-title: Neue Methode Zur Untersuchung Der Sauerstoffausscheidung Pflanzlicher Und Thierischer Organismen publication-title: Arch. Gesamte Physiol. Menschen Tiere doi: 10.1007/BF01661982 – volume: 153 start-page: 708 year: 1966 ident: ref_5 article-title: Chemotaxis in Bacteria publication-title: Science doi: 10.1126/science.153.3737.708 – volume: 9 start-page: 153 year: 2011 ident: ref_40 article-title: Signal Processing in Complex Chemotaxis Pathways publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2505 – volume: 188 start-page: 2656 year: 2006 ident: ref_72 article-title: The Helicobacter Pylori Chemotaxis Receptor TlpB (HP0103) Is Required for PH Taxis and for Colonization of the Gastric Mucosa publication-title: J. Bacteriol. doi: 10.1128/JB.188.7.2656-2665.2006 – volume: 78 start-page: 287 year: 1973 ident: ref_55 article-title: Chemotactic Responses by Motile Bacteria publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-78-2-287 – volume: 24 start-page: 262 year: 2012 ident: ref_41 article-title: Responding to Chemical Gradients: Bacterial Chemotaxis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2011.11.008 – volume: 176 start-page: 2727 year: 1994 ident: ref_50 article-title: Dual Chemotaxis Signaling Pathways in Bacillus Subtilis: A σ(D)-Dependent Gene Encodes a Novel Protein with Both CheW and CheY Homologous Domains publication-title: J. Bacteriol. doi: 10.1128/jb.176.9.2727-2735.1994 – volume: 90 start-page: 813 year: 2013 ident: ref_11 article-title: Comamonas Testosteroni Uses a Chemoreceptor for Tricarboxylic Acid Cycle Intermediates to Trigger Chemotactic Responses towards Aromatic Compounds publication-title: Mol. Microbiol. doi: 10.1111/mmi.12400 – volume: 38 start-page: 3864 year: 2004 ident: ref_13 article-title: Quantification of Bacterial Chemotaxis in Porous Media Using Magnetic Resonance Imaging publication-title: Environ. Sci. Technol. doi: 10.1021/es035236s – volume: 181 start-page: 60 year: 1973 ident: ref_57 article-title: Common Mechanism for Repellents and Attractants in Bacterial Chemotaxis publication-title: Science doi: 10.1126/science.181.4094.60 – volume: 115 start-page: 167 year: 1979 ident: ref_16 article-title: Chemotaxis towards Sugars by Bacillus Subtilis publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-115-1-167 – volume: 189 start-page: 802 year: 1975 ident: ref_6 article-title: Chemotaxis Away from Uncouplers of Oxidative Phosphorylation in Bacillus Subtilis publication-title: Science doi: 10.1126/science.808854 – volume: 18 start-page: 494 year: 2010 ident: ref_51 article-title: CheV: CheW-like Coupling Proteins at the Core of the Chemotaxis Signaling Network publication-title: Trends Microbiol. doi: 10.1016/j.tim.2010.07.004 – volume: 63 start-page: 4111 year: 1997 ident: ref_19 article-title: Chemotaxis of Pseudomonas Spp. to the Polyaromatic Hydrocarbon Naphthalene publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.10.4111-4115.1997 – ident: ref_31 doi: 10.1371/journal.ppat.1003822 – volume: 41 start-page: 845 year: 1956 ident: ref_53 article-title: Linear Inheritance in Transductional Clones publication-title: Genetics doi: 10.1093/genetics/41.6.845 – volume: 101–102 start-page: 359 year: 2002 ident: ref_44 article-title: The Dynamic Behavior of CheW from Thermotoga Maritima in Solution, as Determined by Nuclear Magnetic Resonance: Implications for Potential Protein–Protein Interaction Sites publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(02)00157-6 – volume: 204 start-page: e00441-21 year: 2022 ident: ref_66 article-title: Characterization of Opposing Responses to Phenol by Bacillus Subtilis Chemoreceptors publication-title: J. Bacteriol. doi: 10.1128/jb.00441-21 – volume: 73 start-page: 7793 year: 2007 ident: ref_18 article-title: Identification of a Malate Chemoreceptor in Pseudomonas aeruginosa by Screening for Chemotaxis Defects in an Energy Taxis-Deficient Mutant publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01898-07 – volume: 119 start-page: e2201747119 year: 2022 ident: ref_30 article-title: Signal Binding at Both Modules of Its DCache Domain Enables the McpA Chemoreceptor of Bacillus Velezensis to Sense Different Ligands publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2201747119 – volume: 12 start-page: 569 year: 2004 ident: ref_61 article-title: Receptor Clustering and Signal Processing in E. Coli Chemotaxis publication-title: Trends Microbiol. doi: 10.1016/j.tim.2004.10.003 – volume: 30 start-page: 770 year: 2017 ident: ref_38 article-title: Sinorhizobium Meliloti Chemotaxis to Multiple Amino Acids Is Mediated by the Chemoreceptor Mcp U publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-04-17-0096-R – volume: 66 start-page: 696 year: 2005 ident: ref_58 article-title: Chemotaxis of Pseudomonas Stutzeri OX1 and Burkholderia Cepacia G4 toward Chlorinated Ethenes publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1685-4 – volume: 40 start-page: 1387 year: 1987 ident: ref_68 article-title: Campylobacter Pylori, Acid, and Bile publication-title: J. Epidemiol. Community Health – volume: 17 start-page: 284 year: 2019 ident: ref_1 article-title: The Role of Microbial Motility and Chemotaxis in Symbiosis publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0182-9 – volume: 299 start-page: 404 year: 2002 ident: ref_17 article-title: Chemotaxis of a Ralstonia Sp. SJ98 toward Co-Metabolizable Nitroaromatic Compounds publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)02601-3 – volume: 53 start-page: 807 year: 2004 ident: ref_67 article-title: Chemotactic Response of Helicobacter Pylori to Human Plasma and Bile publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.45636-0 – volume: 2 start-page: 743 year: 1988 ident: ref_10 article-title: Comparison of the Chemotactic Behaviour of Rhizobium Leguminosarum with and without the Nodulation Plasmid publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1988.tb00085.x – volume: 277 start-page: 25356 year: 2002 ident: ref_49 article-title: Bacillus Subtilis CheD Is a Chemoreceptor Modification Enzyme Required for Chemotaxis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201334200 – volume: 23 start-page: 257 year: 2015 ident: ref_28 article-title: Signaling and Sensory Adaptation in Escherichia Coli Chemoreceptors: 2015 Update publication-title: Trends Microbiol. doi: 10.1016/j.tim.2015.03.003 – volume: 201 start-page: e00779-18 year: 2019 ident: ref_76 article-title: Calcium Ions Modulate Amino Acid Sensing of the Chemoreceptor Mlp24 of Vibrio Cholerae publication-title: J. Bacteriol. doi: 10.1128/JB.00779-18 – volume: 8 start-page: 1549 year: 2023 ident: ref_78 article-title: D-Amino Acids Signal a Stress-Dependent Run-Away Response in Vibrio Cholerae publication-title: Nat. Microbiol. doi: 10.1038/s41564-023-01419-6 – volume: 14 start-page: e02526-23 year: 2023 ident: ref_2 article-title: The Common Origin and Degenerative Evolution of Flagella in Actinobacteria publication-title: mBio doi: 10.1128/mbio.02526-23 – ident: ref_71 doi: 10.1128/mBio.00379-15 – volume: 18 start-page: 3355 year: 2016 ident: ref_9 article-title: Assessment of the Contribution of Chemoreceptor-Based Signalling to Biofilm Formation publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13170 – volume: 96 start-page: 1272 year: 2015 ident: ref_65 article-title: Relation between Chemotaxis and Consumption of Amino Acids in Bacteria publication-title: Mol. Microbiol. doi: 10.1111/mmi.13006 – volume: 7 start-page: 13206 year: 2016 ident: ref_32 article-title: A Direct-Sensing Galactose Chemoreceptor Recently Evolved in Invasive Strains of Campylobacter Jejuni publication-title: Nat. Commun. doi: 10.1038/ncomms13206 – volume: 99 start-page: 123 year: 2002 ident: ref_43 article-title: Receptor Sensitivity in Bacterial Chemotaxis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.011589998 – volume: 31 start-page: 995 year: 2018 ident: ref_20 article-title: Identification of Chemotaxis Compounds in Root Exudates and Their Sensing Chemoreceptors in Plant Growth-Promoting Rhizobacteria Bacillus Amyloliquefaciens SQR9 publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-01-18-0003-R – ident: ref_70 doi: 10.1099/mic.0.049353-0 – volume: 117 start-page: 6114 year: 2020 ident: ref_64 article-title: Biphasic Chemotaxis of Escherichia Coli to the Microbiota Metabolite Indole publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1916974117 – volume: 25 start-page: 972 year: 1973 ident: ref_56 article-title: Negative Chemotaxis of Marine Bacteria to Toxic Chemicals publication-title: Appl. Microbiol. doi: 10.1128/am.25.6.972-975.1973 – volume: 81 start-page: 7420 year: 2015 ident: ref_12 article-title: Identification of the mcpA and mcpM Genes, Encoding Methyl-Accepting Proteins Involved in Amino Acid and L-Malate Chemotaxis, and Involvement of McpM-Mediated Chemotaxis in Plant Infection by Ralstonia pseudosolanacearum (Formerly Ralstonia solanacearum Phylotypes I and III) publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01870-15 – volume: 104 start-page: 2885 year: 2007 ident: ref_25 article-title: Evolutionary Genomics Reveals Conserved Structural Determinants of Signaling and Adaptation in Microbial Chemoreceptors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0609359104 – volume: 196 start-page: 3992 year: 2014 ident: ref_62 article-title: Chemotaxis of Escherichia Coli to Norepinephrine (NE) Requires Conversion of NE to 3,4-Dihydroxymandelic Acid publication-title: J. Bacteriol. doi: 10.1128/JB.02065-14 – volume: 16 start-page: 480 year: 2008 ident: ref_7 article-title: The Three Adaptation Systems of Bacillus Subtilis Chemotaxis publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.07.003 – volume: 1729 start-page: 291 year: 2018 ident: ref_22 article-title: High-Throughput Screening to Identify Chemoreceptor Ligands publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7577-8_23 – volume: 268 start-page: 18610 year: 1993 ident: ref_46 article-title: Chemotactic Methylesterase Promotes Adaptation to High Concentrations of Attractant in Bacillus Subtilis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)46672-5 – volume: 4 start-page: 305 year: 1976 ident: ref_4 article-title: Chemotaxis in Bacteria publication-title: J. Supramol. Struct. doi: 10.1002/jss.400040302 – volume: 70 start-page: 859 year: 2006 ident: ref_69 article-title: Messing with Bacterial Quorum Sensing publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00002-06 – volume: 2 start-page: 386 year: 2022 ident: ref_63 article-title: Discovery of a New Chemoeffector for Escherichia Coli Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing publication-title: ACS Bio Med. Chem. Au doi: 10.1021/acsbiomedchemau.1c00055 – volume: 7 start-page: e01664-16 year: 2016 ident: ref_8 article-title: Bacillus Subtilis Early Colonization of Arabidopsis Thaliana Roots Involves Multiple Chemotaxis Receptors publication-title: mBio doi: 10.1128/mBio.01664-16 – volume: 21 start-page: iii45 year: 2005 ident: ref_27 article-title: Four-Helix Bundle: A Ubiquitous Sensory Module in Prokaryotic Signal Transduction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1204 – volume: 280 start-page: 279 year: 1979 ident: ref_45 article-title: Protein Methylation in Behavioural Control Mechanisms and in Signal Transduction publication-title: Nature doi: 10.1038/280279a0 – volume: 85 start-page: 9451 year: 1988 ident: ref_59 article-title: Osmotaxis in Escherichia Coli publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.85.24.9451 – volume: 31 start-page: 121 year: 2015 ident: ref_23 article-title: Progress in Bacterial Chemotaxis publication-title: Chin. Agric. Sci. Bull. – volume: 29 start-page: 189 year: 1958 ident: ref_54 article-title: On the Interplay of Environmental Factors Affecting Taxis and Motility in Rhodospirillum Rubrum publication-title: Arch. Mikrobiol. doi: 10.1007/BF00409860 – volume: 12 start-page: 2736 year: 2018 ident: ref_21 article-title: Chemotaxis of Escherichia Coli to Major Hormones and Polyamines Present in Human Gut publication-title: ISME J. doi: 10.1038/s41396-018-0227-5 – ident: ref_74 doi: 10.1038/s41598-023-42840-5 – volume: 118 start-page: 560 year: 1974 ident: ref_52 article-title: Negative Chemotaxis in Escherichia Coli publication-title: J. Bacteriol. doi: 10.1128/jb.118.2.560-576.1974 – volume: 68 start-page: 301 year: 2004 ident: ref_24 article-title: Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.68.2.301-319.2004 – volume: 45 start-page: 22 year: 2018 ident: ref_42 article-title: Stimulus Sensing and Signal Processing in Bacterial Chemotaxis publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2018.02.002 |
SSID | ssj0000913851 |
Score | 2.2861333 |
SecondaryResourceType | review_article |
Snippet | Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1706 |
SubjectTerms | Amino acids Attractants Bacteria bacterial motility biphasic chemotaxis chemoattractants chemorepellent chemorepulsion Chemotactic factors Chemotaxis E coli Environmental effects Flagella flagellum Gliding Kinases Ligands methyl-accepting chemotaxis protein (MCP) Molecular modelling Motility Phosphorylation plant growth-promoting rhizobacteria (PGPR) Polyamines Probiotics Proteins Review Rhizosphere rhizosphere bacteria Signal transduction Swarming Swimming Twitching |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv71aJYLg03KbzSab9K3VliLUB7XQt5BPPbjuHr090P--M5vteYtiX3y9TJadzGQ-9mZ-Q8i7FDzEwbUrouJ1UbOGFU5UugBvKyPzgTcNNieff5ZnF_WnS3G5M-oLa8IyPHA-uHkUmqdUKoc4LLIKlgsbtJXWV85C-obWF3zeTjI12GDNOMQSuSWYQ14_v8L6tjwpaX21ZlWJyHRy4o0G0P4_TfOOb5rWTe44otNH5OEYQdKj_OaPyb3YPiH380zJX0-J-Rj9YjV09X2nxxmLGcgRGKC7jqvNEj-PHVJQD4q2YBl_0i-5TjbSLtFzZMDFNe07evK7CQ6e8LVfYCnVM3JxevLtw1kxTlEovCx1XyhhVRJO6Nrhv4ZJBzhM50OlfIpRcPD3LjbCipBSE1JjYU2KBGli6awHH_ec7LVdG18SKlmEdEorXweICoJ3pY1aWcWkF9o5PiPi9jSNHyHGcdLF0kCqgVIwf5fCjMy3-1YZZOPOHccorC01gmQPPwClGVXH3KU6M_IeRW3wKsNrejt2JACzCIpljhAoiAPDwNjBhBKuoJ8u3yqLGU3A2vBSK-w7FrD8druMO7GsrY3dZqDRYCAhxv0HDUPEHYgi4Tkvsv5t2YbgFmRaAydqopmTc5mutIsfA4g4Y1w0YCL3_8dJviIPKgj28Fs7Uwdkr7_exNcQrPXuzXAvbwCJ20HC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0iuCL-O1plRUEn8Il2Wyy64v09EoRWqRa6Nuyn_Xgmpy9HOh_70yylzYo9TU7GzKZ3ZnZ2ZnfEPIuOAt-cGESL1iRFFmVJYbnMgFrW_rMOlZVWJx8fFIenRVfzvl5DLhtYlrlTid2ito1FmPkM5ZKgWWcnH1c_0ywaxTersYWGnfJHqhgISZkb744-Xo6RFkQ9RJ8ir40mMH5fnaJeW59x6TN5SbLU0SoK0dWqQPv_1tF37BR4_zJGwbp8CF5ED1JetCL_hG54-vH5F7fW_L3E6I-e7tcd9V9F3TeYzIDOQIENFd-vV1hmOwDhWVCUSes_C962ufLetoEeowMGL-hbUMX18Vw8IZv7RJTqp6Ss8PF909HSeymkNgylW0iuBaBGy4Lg7eHQbpUGGNdLmzwnjOw-8ZXXHMXQuVCpWGs5AGOi6nRFmzdMzKpm9q_ILTMPByrpLCFA-_AWZNqL4UWWWm5NIZNCd_9TWUj1Dh2vFgpOHKgFNS_pTAls2Heugfb-O-MOQproEaw7O4BUKq495TnkoUA3CKUT5k7zbh2Upfa5kYLIabkPYpa4ZaGz7Q6ViYAswiOpQ4QMIgBw8DY_ogStqIdD-8Wi4qqYKOuF-6UvB2GcSamt9W-2XY0EhQl-Lq30GSIvAPeJLzneb_-BrbByQWZFsCJGK3M0X8Zj9TLHx2YeJYxXoGqfHn7t78i93Nw5zCanol9Mmmvtv41uGOteRP33B8Cijoq priority: 102 providerName: ProQuest |
Title | Deciphering Bacterial Chemorepulsion: The Complex Response of Microbes to Environmental Stimuli |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39203548 https://www.proquest.com/docview/3098043953 https://www.proquest.com/docview/3099793105 https://www.proquest.com/docview/3153769373 https://pubmed.ncbi.nlm.nih.gov/PMC11357200 https://doaj.org/article/e593ff08b273462da35ad9a6ac2ba888 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swEBZdy2AvY7-XrQsaDPbk1bIsWxqM0WwpZZAyugX6JiRZ6gKpnSUOtP_97mwnq1nJXq2T8Ukn3Xey7jtC3oXCAQ5ObeQlT6OU5SyyIlEReNvMM1fwPMfk5MlZdjpNv12Iiz2yKZfaDeDqztAO60lNl_MP179vPsOC_4QRJ4TsR1d4da0tgrS6WrEkRtK57B45AO-UY1WDSQf5m91ZMQ4oo00W3tG956caOv9_N-1bXqt_o_KWizp5RB522JIet8bwmOz58gm531abvHlK9FfvZosm3--SjlqWZhBHyoBq6RfrOR6cfaRgOBR3ibm_puftDVpPq0AnqID1K1pXdPw3PQ7e8KOe4SWrZ2R6Mv755TTq6itELotVHUlhZBBWqNTi_8Sgilha64pEuuC94IAErM-FEUUIeRFyA22ZCBBAxtY48H7PyX5Zlf4loRnzEGgp6dIC8ELhbGy8kkayzAllLR8QsRlN7TrycayBMdcQhOAs6LtnYUCOtv0WLf3Gf3uMcLK20kif3TwASd2tRu2F4iGAtkjukyWF4cIUymTGJdZIKQfkPU61RrODz3Smy1UAZZEuSx8jhRAHhUGxw54kLE7Xb94Yi97YtuaxkpiRLKD57bYZe-KFt9JX60ZGwdYJ6HeHDEMuHsCX8J4Xrf1t1QbYC3OagiayZ5m9cem3lLNfDb04Y1zksHm-2v3tr8mDBAAenq8zeUj26-XavwGAVtshORiNz76fD5sDjmGz_v4ADNdCPg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8KA4IE4ilqEseJjYTQyjp1bK3Q2KS9GX9Cpa4payvYP8XfyF0-ukWg8bTX-BzlfOe7s3P3O0Jee2sgDk516DhNwzTO41CzRITgbTMXG0vzHIuTR-NseJx-OmEnG-R3UwuDaZWNTSwNtS0M3pH3aCQ4lnEy-mH-I8SuUfh3tWmhUanFvjv_CUe2xfu9HZDvmyTZHRx9HIZ1V4HQZJFYhpwp7plmItX4F80LG3GtjU248c4xCv5Pu5wpZr3Prc8VjGXMw7Ep0sqAzYf33iCbKc2ipEM2-4Px58P1rQ6ibEIMU5UiUyqi3inm1VUdmhaniziJEBEva3nBslnA3y7hkk9s52tecoC7d8mdOnINtitVu0c23Ow-uVn1sjx_QOSOM5N5WU34LehXGNBAjoAExZmbr6Z4LfcuALUM0AZN3a_gsMrPdUHhgxEyoN0iWBbB4KL4Dt7wZTnBFK6H5Pha1vkR6cyKmXtCgix2cIwT3KQWohFrdKSc4IrHmWFCa9olrFlNaWpoc-ywMZVwxEEpyH9LoUt663nzCtzjvzP6KKw1NYJzlw-AUtZ7XTomqPfALUIHZYlVlCkrVKZMohXnvEveoqglmhD4TKPqSghgFsG45DYCFFFgGBjbalHC1jft4UZZZG16FvJio3TJq_UwzsR0upkrViWNAMMMsfUVNDEi_UD0Cu95XOnfmm0IqkGmKXDCW5rZWpf2yGzyvQQvj2PKcjDNT6_-9pfk1vBodCAP9sb7z8jtBEJJvMmP-RbpLM9W7jmEgkv9ot5_Afl63Vv-Dxr-eSU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxAviP8UBhgJxFPUJI4TGwmhlbbaGKumwaS9ebZjQ6UuKWsr2Ffj03GXpN0i0Hjaa3yOcr7z3dm5-x0hr31uIQ5OTOAES4IkyqLA8FgG4G1TF9mcZRkWJ--P052j5NMxP94gv1e1MJhWubKJlaHOS4t35D0WSoFlnJz1fJMWcTAYfZj9CLCDFP5pXbXTqFVkz53_hOPb_P3uAGT9Jo5Hw68fd4Kmw0Bg01AuAsG18NxwmRj8o-ZlHgpjbB4L653jDHyhcRnXPPc-y32mYSzlHo5QodEW7D-89wbZzPBU1CGb_eH44HB9w4OImxDP1GXJjMmwd4o5dnW3pvnpPIpDRMdLWx6xahzwt3u45B_buZuXnOHoLrnTRLF0u1a7e2TDFffJzbqv5fkDogbOTmZVZeE32q_xoIEcwQnKMzdbTvGK7h0FFaVoj6buFz2sc3UdLT3dRwaMm9NFSYcXhXjwhi-LCaZzPSRH17LOj0inKAv3hNA0cnCkk8ImOUQmuTWhdlJoEaWWS2NYl_DVairbwJxjt42pguMOSkH9Wwpd0lvPm9VAH_-d0UdhrakRqLt6AJSq2ffKccm8B24RRiiNc824zqVOtY2NFkJ0yVsUtUJzAp9pdVMVAcwiMJfaRrAiBgwDY1stSjADtj28UhbVmKG5utg0XfJqPYwzMbWucOWyopFgpCHOvoImQtQfiGThPY9r_VuzDQE2yDQBTkRLM1vr0h4pJt8rIPMoYjwDM_306m9_SW7BVlefd8d7z8jtGKJKvNSPxBbpLM6W7jlEhQvzotl-lJxc947_A1bdfVo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+Bacterial+Chemorepulsion%3A+The+Complex+Response+of+Microbes+to+Environmental+Stimuli&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Fu%2C+Ruixin&rft.au=Feng%2C+Haichao&rft.date=2024-08-18&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=12&rft.issue=8&rft.spage=1706&rft_id=info:doi/10.3390%2Fmicroorganisms12081706&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |