Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions

Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous flui...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 12; p. e1009240
Main Authors Maxian, Ondrej, Peláez, Raúl P., Mogilner, Alex, Donev, Aleksandar
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.12.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1009240

Cover

Loading…
Abstract Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.
AbstractList Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. The cytoskeleton is composed of semiflexible, inextensible actin filaments, dynamic cross linkers, and molecular motors, and makes the primary contribution to the structural properties of the cell. Despite its being so fundamental to cell biology, the biological complexity of the cytoskeleton hinders our ability to understand its mechanical properties through in vitro experiments. In this paper, we perform microscopic simulations of actin fibers and transient cross linkers to quantify the principle timescales involved in the network, study how these timescales influence the morphology and rheology of the system, and examine the role of hydrodynamic interactions in cytoskeletal networks. We find three principle timescales which we associate with fiber flexibility, cross linker detachment, and network remodeling, respectively. We show that the morphology of the network is more important on longer timescales, where the viscosity of links inside of fiber bundles is enhanced. We also show that hydrodynamic interactions reduce the stress inside of bundles because of entrainment flows. Finally, we propose a continuum model which can be used to coarse-grain our agent-based simulations and enable modeling of larger systems.
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.
Audience Academic
Author Maxian, Ondrej
Mogilner, Alex
Donev, Aleksandar
Peláez, Raúl P.
AuthorAffiliation 1 Courant Institute, New York University, New York, New York, United States of America
2 Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
Leiden University Faculty of Science: Universiteit Leiden Faculteit der Wiskunde en Natuurwetenschappen, NETHERLANDS
3 Department of Biology, New York University, New York, New York, United States of America
AuthorAffiliation_xml – name: Leiden University Faculty of Science: Universiteit Leiden Faculteit der Wiskunde en Natuurwetenschappen, NETHERLANDS
– name: 1 Courant Institute, New York University, New York, New York, United States of America
– name: 2 Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
– name: 3 Department of Biology, New York University, New York, New York, United States of America
Author_xml – sequence: 1
  givenname: Ondrej
  orcidid: 0000-0002-4770-1723
  surname: Maxian
  fullname: Maxian, Ondrej
– sequence: 2
  givenname: Raúl P.
  orcidid: 0000-0003-3393-7329
  surname: Peláez
  fullname: Peláez, Raúl P.
– sequence: 3
  givenname: Alex
  orcidid: 0000-0001-5302-2404
  surname: Mogilner
  fullname: Mogilner, Alex
– sequence: 4
  givenname: Aleksandar
  surname: Donev
  fullname: Donev, Aleksandar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34871298$$D View this record in MEDLINE/PubMed
BookMark eNqVku-L0zAYx4OceHfT_0Ck4BsFO5M0TZN7IRyHPwangqevQ5qmW7Ys2SWpuv_ebKvHTUSQQvuQfr4f2ofvOThx3mkAniI4RVWDXi_9EJy0041qzRRByDGBD8AZquuqbKqandybT8F5jEsI88jpI3BaEdYgzNkZWN2Y9WBlMt7FwvdFt3VybZS0dluo4GMsrXEr3RVSJeMKp9MPH1bxovjow2bhrZ9vXxVhocdJuq5YbLvgR09hXNJhl83-x-BhL23UT8bnBHx79_br1Yfy-vP72dXldako5KlESvWaE0y6qqkhZggxBEmDFFZUEqoRa5HUjcZNr7u2RwxyRAjXiiHK25ZUEzA7eDsvl2ITzFqGrfDSiP2BD3MhQzLKalH3SrWStgQ2nNAe8paqtsO0qiuYbyq73hxcm6Fd605pl4K0R9LjN84sxNx_F4w2Nc-aCXgxCoK_HXRMYm2i0tZKp_0QBaawqRnGEGf0-QGdy_xpxvU-G9UOF5eUMV5xglimpn-h8tXpvPDckd7k86PAy6NAZpL-meZyiFHMbr78B_vpmH12fzV3O_ldrgyQA7AvUtD9HYKg2HVYjB0Wuw6LscM5dvFHTJm0b2j-UWP_Hf4FPET7kQ
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112473
crossref_primary_10_1063_5_0233168
crossref_primary_10_1016_j_cub_2024_07_014
crossref_primary_10_1103_PhysRevFluids_7_074101
crossref_primary_10_1016_j_bpj_2022_02_030
crossref_primary_10_1016_j_cpc_2024_109363
crossref_primary_10_1063_5_0144242
crossref_primary_10_1016_j_jbiomech_2025_112579
crossref_primary_10_1063_5_0139036
crossref_primary_10_1063_5_0243074
Cites_doi 10.1103/PhysRevLett.93.188102
10.1016/j.jcp.2003.10.017
10.1103/PhysRevE.68.041914
10.1103/PhysRevLett.122.218102
10.1017/S0962492902000077
10.1016/j.bpj.2009.03.038
10.1371/journal.pcbi.1004877
10.1083/jcb.200801027
10.1021/ma00011a013
10.1083/jcb.110.6.2013
10.1021/ma946418x
10.1017/S0022112096008889
10.1016/j.celrep.2017.11.040
10.1103/PhysRevE.84.016310
10.1039/D1SM00412C
10.1038/ncb3252
10.1103/PhysRevFluids.6.014102
10.1021/ma9803032
10.1074/jbc.273.16.9570
10.1039/B912163N
10.1063/1.4978242
10.1063/1.5009464
10.1017/S0022112076000475
10.1063/1.5005887
10.1016/S0021-9258(18)31663-6
10.1103/PhysRevLett.112.238102
10.1016/S0006-3495(94)80856-2
10.1073/pnas.1616133114
10.1073/pnas.1820814116
10.1017/S002211207000191X
10.1122/1.4870967
10.1103/PhysRevLett.91.108102
10.1016/j.bpj.2009.04.040
10.1016/S0377-0257(96)01512-1
10.1063/1.857683
10.1103/PhysRevLett.81.2614
10.1137/16M1065975
10.1016/S0006-3495(93)81059-2
10.1093/oso/9780198803195.001.0001
10.1038/ncb3137
10.1103/PhysRevLett.87.148102
10.1016/S0014-5793(97)00214-7
10.1016/S0006-3495(03)74753-5
10.1063/1.2799998
10.1093/jmicro/dfx015
10.1134/S0965545X06010068
10.1074/jbc.M202609200
10.1017/S0022112080000687
10.1083/jcb.120.4.923
10.1016/j.bpj.2010.06.025
10.1371/journal.pcbi.1006150
10.1529/biophysj.104.050278
10.1007/BF01332922
10.1152/japplphysiol.00255.2002
10.1016/j.jcp.2014.10.004
10.1074/jbc.M110.123117
10.1016/j.jmb.2011.06.049
10.1103/PhysRevLett.110.018103
10.1016/j.cub.2005.03.042
10.1016/0014-5793(94)80434-6
10.1073/pnas.0510190103
10.1105/tpc.111.090670
10.1038/352126a0
10.1016/S0006-3495(94)81017-3
10.1091/mbc.E19-09-0504
10.1126/science.1095087
10.1074/jbc.M110868200
10.1016/j.jbiomech.2009.09.003
10.1371/journal.pcbi.1007693
10.1007/BF00213554
10.1017/S0022112070000745
10.1016/j.bpj.2021.03.026
10.1063/1.1699180
10.1101/cshperspect.a022038
10.1016/j.bpj.2015.03.030
10.1146/annurev.physchem.58.032806.104637
10.1103/PhysRevE.77.051913
10.1017/S1446181118000081
10.1371/journal.pcbi.1000439
10.1016/j.jcp.2016.10.026
10.1103/PhysRevLett.105.238101
10.1103/PhysRevLett.75.4425
10.1146/annurev.fluid.010908.165236
10.4171/078
10.1103/PhysRevLett.101.108101
10.1039/b814555p
10.1017/jfm.2013.402
10.1021/ma00229a017
10.1016/j.bpj.2013.12.031
10.1007/s11340-007-9091-3
10.1111/gtc.12204
10.1073/pnas.100023397
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Maxian et al 2021 Maxian et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Maxian et al 2021 Maxian et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009240
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Computational rheology of cross-linked actin networks
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_5fccba6b407946f09b6cbd263530635c
PMC8675935
A688939418
34871298
10_1371_journal_pcbi_1009240
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ;
  grantid: GRFP/DGE-1342536
– fundername: ;
  grantid: DMS-2052515
– fundername: ;
  grantid: DMS1953430
– fundername: ;
  grantid: RTG/DMS-1646339
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c609t-1ccfe9424d37502811810471c2c6a46e18b1ae7e27fedbf18091449ec8169bb43
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Wed Aug 27 01:27:37 EDT 2025
Thu Aug 21 13:52:50 EDT 2025
Fri Jul 11 07:45:58 EDT 2025
Tue Jun 17 21:27:31 EDT 2025
Tue Jun 10 20:33:54 EDT 2025
Fri Jun 27 04:42:37 EDT 2025
Fri Jun 27 03:39:47 EDT 2025
Wed Feb 19 02:28:16 EST 2025
Tue Jul 01 04:07:01 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-1ccfe9424d37502811810471c2c6a46e18b1ae7e27fedbf18091449ec8169bb43
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-4770-1723
0000-0003-3393-7329
0000-0001-5302-2404
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009240
PMID 34871298
PQID 2607582202
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5fccba6b407946f09b6cbd263530635c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675935
proquest_miscellaneous_2607582202
gale_infotracmisc_A688939418
gale_infotracacademiconefile_A688939418
gale_incontextgauss_ISR_A688939418
gale_incontextgauss_ISN_A688939418
pubmed_primary_34871298
crossref_primary_10_1371_journal_pcbi_1009240
crossref_citationtrail_10_1371_journal_pcbi_1009240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211206
PublicationDateYYYYMMDD 2021-12-06
PublicationDate_xml – month: 12
  year: 2021
  text: 20211206
  day: 6
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Donev (pcbi.1009240.ref064) 2018; 148
K Zero (pcbi.1009240.ref051) 1982; 15
G Batchelor (pcbi.1009240.ref086) 1970; 44
AY Malkin (pcbi.1009240.ref092) 2006; 48
M Baumgaertel (pcbi.1009240.ref091) 1989; 28
DS Courson (pcbi.1009240.ref067) 2010; 285
AF Pegoraro (pcbi.1009240.ref029) 2017; 9
AK Tornberg (pcbi.1009240.ref048) 2004; 196
PA Janmey (pcbi.1009240.ref004) 1994; 269
O Maxian (pcbi.1009240.ref044) 2021; 6
MB Mackaplow (pcbi.1009240.ref088) 1996; 329
K Schmoller (pcbi.1009240.ref084) 2009; 97
O Lieleg (pcbi.1009240.ref045) 2010; 6
M Gardel (pcbi.1009240.ref010) 2004; 93
F Ziemann (pcbi.1009240.ref020) 1994; 66
AB Johnston (pcbi.1009240.ref068) 2015; 17
pcbi.1009240.ref078
B Fabry (pcbi.1009240.ref019) 2003; 68
J Xu (pcbi.1009240.ref061) 1998; 273
ES Shaqfeh (pcbi.1009240.ref087) 1990; 2
YH Tee (pcbi.1009240.ref098) 2015; 17
CS Peskin (pcbi.1009240.ref032) 2002; 11
HH Winter (pcbi.1009240.ref089) 1997; 68
KL Weirich (pcbi.1009240.ref100) 2021; 120
SL Freedman (pcbi.1009240.ref022) 2019; 116
SM Mijailovich (pcbi.1009240.ref034) 2002; 93
CA Copos (pcbi.1009240.ref036) 2018; 59
NY Yao (pcbi.1009240.ref013) 2011; 411
MP Allen (pcbi.1009240.ref065) 2017
DR Scheff (pcbi.1009240.ref097) 2021; 17
H Holden (pcbi.1009240.ref082) 2010
AM Fiore (pcbi.1009240.ref075) 2017; 146
S Le (pcbi.1009240.ref058) 2017; 21
B Wagner (pcbi.1009240.ref024) 2006; 103
Y Mulla (pcbi.1009240.ref014) 2019; 122
A Manhart (pcbi.1009240.ref070) 2018
W Strychalski (pcbi.1009240.ref035) 2015; 282
J Stricker (pcbi.1009240.ref095) 2010; 43
I McDougall (pcbi.1009240.ref090) 2014; 58
F MacKintosh (pcbi.1009240.ref027) 1995; 75
RK Meyer (pcbi.1009240.ref059) 1990; 110
RD Guy (pcbi.1009240.ref037) 2011; 84
DT Gillespie (pcbi.1009240.ref062) 2007; 58
H Isambert (pcbi.1009240.ref028) 1996; 29
M Gardel (pcbi.1009240.ref009) 2004; 304
X Li (pcbi.1009240.ref042) 2020; 16
Y Tseng (pcbi.1009240.ref026) 2002; 277
DH Wachsstock (pcbi.1009240.ref008) 1994; 66
B Alberts (pcbi.1009240.ref002) 2002
S Stam (pcbi.1009240.ref079) 2015; 108
T Kim (pcbi.1009240.ref066) 2009; 5
T Kim (pcbi.1009240.ref040) 2009; 49
JA Åström (pcbi.1009240.ref096) 2008; 77
Y Tseng (pcbi.1009240.ref025) 2002; 277
MR Mofrad (pcbi.1009240.ref001) 2009; 41
O Lieleg (pcbi.1009240.ref015) 2009; 96
X Wei (pcbi.1009240.ref043) 2021
O Lieleg (pcbi.1009240.ref006) 2008; 101
Y Zhang (pcbi.1009240.ref055) 2017; 66
R Ma (pcbi.1009240.ref085) 2018; 14
E Grazi (pcbi.1009240.ref052) 1997; 405
JB Keller (pcbi.1009240.ref072) 1976; 75
PE Rouse (pcbi.1009240.ref021) 1953; 21
O Müller (pcbi.1009240.ref011) 1991; 24
E Nazockdast (pcbi.1009240.ref071) 2017; 329
N Desprat (pcbi.1009240.ref038) 2005; 88
T Kim (pcbi.1009240.ref094) 2014; 106
AM Fiore (pcbi.1009240.ref076) 2018; 148
L af Klinteberg (pcbi.1009240.ref077) 2020
B Hinner (pcbi.1009240.ref003) 1998; 81
O Lieleg (pcbi.1009240.ref083) 2009; 5
JA Theriot (pcbi.1009240.ref047) 1991; 352
E Wajnryb (pcbi.1009240.ref074) 2013; 731
F Gittes (pcbi.1009240.ref057) 1993; 120
HY Kueh (pcbi.1009240.ref069) 2008; 182
KW Müller (pcbi.1009240.ref031) 2014; 112
B Fabry (pcbi.1009240.ref018) 2001; 87
JL Aurentz (pcbi.1009240.ref049) 2017; 59
KL Weirich (pcbi.1009240.ref099) 2017; 114
FA Morrison (pcbi.1009240.ref080) 2001
G Batchelor (pcbi.1009240.ref081) 1970; 41
DC Morse (pcbi.1009240.ref017) 1998; 31
CP Broedersz (pcbi.1009240.ref030) 2010; 105
A Yoshida (pcbi.1009240.ref054) 2015; 20
L Chaubet (pcbi.1009240.ref007) 2020; 31
NY Yao (pcbi.1009240.ref016) 2013; 110
JL Henty (pcbi.1009240.ref093) 2011; 23
DF Anderson (pcbi.1009240.ref063) 2007; 127
TA Driscoll (pcbi.1009240.ref050) 2015; 36
K Popov (pcbi.1009240.ref041) 2016; 12
RE Johnson (pcbi.1009240.ref073) 1980; 99
H Karcher (pcbi.1009240.ref033) 2003; 85
R Ruddies (pcbi.1009240.ref012) 1993; 22
JL McGrath (pcbi.1009240.ref053) 2000; 97
DA Head (pcbi.1009240.ref039) 2003; 91
PA Kuhlman (pcbi.1009240.ref060) 1994; 339
K Luby-Phelps (pcbi.1009240.ref056) 1999
M Guha (pcbi.1009240.ref046) 2005; 15
DH Wachsstock (pcbi.1009240.ref005) 1993; 65
K Kasza (pcbi.1009240.ref023) 2010; 99
References_xml – volume: 93
  start-page: 188102
  issue: 18
  year: 2004
  ident: pcbi.1009240.ref010
  article-title: Scaling of F-actin network rheology to probe single filament elasticity and dynamics
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.93.188102
– volume: 196
  start-page: 8
  issue: 1
  year: 2004
  ident: pcbi.1009240.ref048
  article-title: Simulating the dynamics and interactions of flexible fibers in Stokes flows
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2003.10.017
– volume: 68
  start-page: 041914
  issue: 4
  year: 2003
  ident: pcbi.1009240.ref019
  article-title: Time scale and other invariants of integrative mechanical behavior in living cells
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.68.041914
– start-page: 189
  volume-title: International review of cytology
  year: 1999
  ident: pcbi.1009240.ref056
– volume: 122
  start-page: 218102
  issue: 21
  year: 2019
  ident: pcbi.1009240.ref014
  article-title: Origin of slow stress relaxation in the cytoskeleton
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.122.218102
– volume: 11
  start-page: 479
  year: 2002
  ident: pcbi.1009240.ref032
  article-title: The immersed boundary method
  publication-title: Acta Numer
  doi: 10.1017/S0962492902000077
– volume: 96
  start-page: 4725
  issue: 11
  year: 2009
  ident: pcbi.1009240.ref015
  article-title: Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links
  publication-title: Biophysical journal
  doi: 10.1016/j.bpj.2009.03.038
– volume-title: Molecular biology of the cell
  year: 2002
  ident: pcbi.1009240.ref002
– volume: 12
  start-page: e1004877
  issue: 4
  year: 2016
  ident: pcbi.1009240.ref041
  article-title: MEDYAN: Mechanochemical simulations of contraction and polarity alignment in actomyosin networks
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1004877
– volume: 182
  start-page: 341
  issue: 2
  year: 2008
  ident: pcbi.1009240.ref069
  article-title: Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers
  publication-title: The Journal of cell biology
  doi: 10.1083/jcb.200801027
– volume-title: Understanding rheology
  year: 2001
  ident: pcbi.1009240.ref080
– volume: 24
  start-page: 3111
  issue: 11
  year: 1991
  ident: pcbi.1009240.ref011
  article-title: Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime: measurements by oscillating disk rheometer
  publication-title: Macromolecules
  doi: 10.1021/ma00011a013
– volume: 110
  start-page: 2013
  issue: 6
  year: 1990
  ident: pcbi.1009240.ref059
  article-title: Bundling of actin filaments by alpha-actinin depends on its molecular length
  publication-title: The Journal of cell biology
  doi: 10.1083/jcb.110.6.2013
– volume: 29
  start-page: 1036
  issue: 3
  year: 1996
  ident: pcbi.1009240.ref028
  article-title: Dynamics and rheology of actin solutions
  publication-title: Macromolecules
  doi: 10.1021/ma946418x
– volume: 329
  start-page: 155
  year: 1996
  ident: pcbi.1009240.ref088
  article-title: A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112096008889
– volume: 21
  start-page: 2714
  issue: 10
  year: 2017
  ident: pcbi.1009240.ref058
  article-title: Mechanotransmission and mechanosensing of human alpha-actinin 1
  publication-title: Cell reports
  doi: 10.1016/j.celrep.2017.11.040
– volume: 84
  start-page: 016310
  issue: 1
  year: 2011
  ident: pcbi.1009240.ref037
  article-title: Flow-induced channel formation in the cytoplasm of motile cells
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.84.016310
– volume: 17
  start-page: 5499
  issue: 22
  year: 2021
  ident: pcbi.1009240.ref097
  article-title: Actin filament alignment causes mechanical hysteresis in cross-linked networks
  publication-title: Soft Matter
  doi: 10.1039/D1SM00412C
– volume: 17
  start-page: 1504
  issue: 11
  year: 2015
  ident: pcbi.1009240.ref068
  article-title: High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP
  publication-title: Nature cell biology
  doi: 10.1038/ncb3252
– volume: 6
  start-page: 014102
  issue: 1
  year: 2021
  ident: pcbi.1009240.ref044
  article-title: Integral-based spectral method for inextensible slender fibers in Stokes flow
  publication-title: Physical Review Fluids
  doi: 10.1103/PhysRevFluids.6.014102
– volume: 31
  start-page: 7030
  issue: 20
  year: 1998
  ident: pcbi.1009240.ref017
  article-title: Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor
  publication-title: Macromolecules
  doi: 10.1021/ma9803032
– ident: pcbi.1009240.ref078
– volume: 273
  start-page: 9570
  issue: 16
  year: 1998
  ident: pcbi.1009240.ref061
  article-title: Dynamic cross-linking by α-actinin determines the mechanical properties of actin filament networks
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.273.16.9570
– volume: 6
  start-page: 218
  issue: 2
  year: 2010
  ident: pcbi.1009240.ref045
  article-title: Structure and dynamics of cross-linked actin networks
  publication-title: Soft Matter
  doi: 10.1039/B912163N
– volume: 146
  start-page: 124116
  issue: 12
  year: 2017
  ident: pcbi.1009240.ref075
  article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations
  publication-title: The Journal of chemical physics
  doi: 10.1063/1.4978242
– volume: 148
  start-page: 034103
  issue: 3
  year: 2018
  ident: pcbi.1009240.ref064
  article-title: Efficient reactive Brownian dynamics
  publication-title: The Journal of chemical physics
  doi: 10.1063/1.5009464
– volume: 75
  start-page: 705
  issue: 4
  year: 1976
  ident: pcbi.1009240.ref072
  article-title: Slender-body theory for slow viscous flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112076000475
– volume: 148
  start-page: 044114
  issue: 4
  year: 2018
  ident: pcbi.1009240.ref076
  article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints
  publication-title: The Journal of chemical physics
  doi: 10.1063/1.5005887
– volume: 269
  start-page: 32503
  issue: 51
  year: 1994
  ident: pcbi.1009240.ref004
  article-title: The mechanical properties of actin gels. Elastic modulus and filament motions
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(18)31663-6
– volume: 112
  start-page: 238102
  issue: 23
  year: 2014
  ident: pcbi.1009240.ref031
  article-title: Rheology of semiflexible bundle networks with transient linkers
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.112.238102
– volume: 66
  start-page: 801
  issue: 3
  year: 1994
  ident: pcbi.1009240.ref008
  article-title: Cross-linker dynamics determine the mechanical properties of actin gels
  publication-title: Biophysical journal
  doi: 10.1016/S0006-3495(94)80856-2
– volume: 36
  start-page: 108
  issue: 1
  year: 2015
  ident: pcbi.1009240.ref050
  article-title: Rectangular spectral collocation
  publication-title: IMA Journal of Numerical Analysis
– volume: 114
  start-page: 2131
  issue: 9
  year: 2017
  ident: pcbi.1009240.ref099
  article-title: Liquid behavior of cross-linked actin bundles
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1616133114
– volume: 116
  start-page: 16192
  issue: 33
  year: 2019
  ident: pcbi.1009240.ref022
  article-title: Mechanical and kinetic factors drive sorting of F-actin cross-linkers on bundles
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1820814116
– volume: 44
  start-page: 419
  issue: 3
  year: 1970
  ident: pcbi.1009240.ref086
  article-title: Slender-body theory for particles of arbitrary cross-section in Stokes flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S002211207000191X
– volume: 58
  start-page: 779
  issue: 3
  year: 2014
  ident: pcbi.1009240.ref090
  article-title: Inferring meaningful relaxation spectra from experimental data
  publication-title: Journal of Rheology
  doi: 10.1122/1.4870967
– volume: 91
  start-page: 108102
  issue: 10
  year: 2003
  ident: pcbi.1009240.ref039
  article-title: Deformation of cross-linked semiflexible polymer networks
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.91.108102
– volume: 97
  start-page: 83
  issue: 1
  year: 2009
  ident: pcbi.1009240.ref084
  article-title: Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks
  publication-title: Biophysical journal
  doi: 10.1016/j.bpj.2009.04.040
– volume: 68
  start-page: 225
  issue: 2-3
  year: 1997
  ident: pcbi.1009240.ref089
  article-title: Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check
  publication-title: Journal of Non-Newtonian Fluid Mechanics
  doi: 10.1016/S0377-0257(96)01512-1
– volume: 2
  start-page: 7
  issue: 1
  year: 1990
  ident: pcbi.1009240.ref087
  article-title: The hydrodynamic stress in a suspension of rods
  publication-title: Physics of Fluids A: Fluid Dynamics
  doi: 10.1063/1.857683
– volume: 81
  start-page: 2614
  issue: 12
  year: 1998
  ident: pcbi.1009240.ref003
  article-title: Entanglement, elasticity, and viscous relaxation of actin solutions
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.81.2614
– volume: 59
  start-page: 423
  issue: 2
  year: 2017
  ident: pcbi.1009240.ref049
  article-title: Block operators and spectral discretizations
  publication-title: SIAM Review
  doi: 10.1137/16M1065975
– volume: 65
  start-page: 205
  issue: 1
  year: 1993
  ident: pcbi.1009240.ref005
  article-title: Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels
  publication-title: Biophysical journal
  doi: 10.1016/S0006-3495(93)81059-2
– volume-title: Computer simulation of liquids
  year: 2017
  ident: pcbi.1009240.ref065
  doi: 10.1093/oso/9780198803195.001.0001
– volume: 17
  start-page: 445
  issue: 4
  year: 2015
  ident: pcbi.1009240.ref098
  article-title: Cellular chirality arising from the self-organization of the actin cytoskeleton
  publication-title: Nature cell biology
  doi: 10.1038/ncb3137
– volume: 87
  start-page: 148102
  issue: 14
  year: 2001
  ident: pcbi.1009240.ref018
  article-title: Scaling the microrheology of living cells
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.87.148102
– volume: 405
  start-page: 249
  issue: 3
  year: 1997
  ident: pcbi.1009240.ref052
  article-title: What is the diameter of the actin filament?
  publication-title: FEBS letters
  doi: 10.1016/S0014-5793(97)00214-7
– volume: 85
  start-page: 3336
  issue: 5
  year: 2003
  ident: pcbi.1009240.ref033
  article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification
  publication-title: Biophysical journal
  doi: 10.1016/S0006-3495(03)74753-5
– volume: 127
  start-page: 214107
  issue: 21
  year: 2007
  ident: pcbi.1009240.ref063
  article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays
  publication-title: The Journal of chemical physics
  doi: 10.1063/1.2799998
– start-page: 1
  year: 2020
  ident: pcbi.1009240.ref077
  article-title: Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping
  publication-title: BIT Numerical Mathematics
– volume: 66
  start-page: 272
  issue: 4
  year: 2017
  ident: pcbi.1009240.ref055
  article-title: In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy
  publication-title: Microscopy
  doi: 10.1093/jmicro/dfx015
– volume: 48
  start-page: 39
  issue: 1
  year: 2006
  ident: pcbi.1009240.ref092
  article-title: The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers
  publication-title: Polymer Science Series A
  doi: 10.1134/S0965545X06010068
– volume: 277
  start-page: 25609
  issue: 28
  year: 2002
  ident: pcbi.1009240.ref026
  article-title: Functional synergy of actin filament cross-linking proteins
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M202609200
– volume: 99
  start-page: 411
  issue: 2
  year: 1980
  ident: pcbi.1009240.ref073
  article-title: An improved slender-body theory for Stokes flow
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112080000687
– volume: 120
  start-page: 923
  issue: 4
  year: 1993
  ident: pcbi.1009240.ref057
  article-title: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
  publication-title: The Journal of cell biology
  doi: 10.1083/jcb.120.4.923
– volume: 99
  start-page: 1091
  issue: 4
  year: 2010
  ident: pcbi.1009240.ref023
  article-title: Actin filament length tunes elasticity of flexibly cross-linked actin networks
  publication-title: Biophysical journal
  doi: 10.1016/j.bpj.2010.06.025
– volume: 14
  start-page: e1006150
  issue: 5
  year: 2018
  ident: pcbi.1009240.ref085
  article-title: Structural organization and energy storage in crosslinked actin assemblies
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1006150
– volume: 88
  start-page: 2224
  issue: 3
  year: 2005
  ident: pcbi.1009240.ref038
  article-title: Creep function of a single living cell
  publication-title: Biophysical journal
  doi: 10.1529/biophysj.104.050278
– year: 2021
  ident: pcbi.1009240.ref043
  article-title: Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers
  publication-title: Soft Matter
– volume: 28
  start-page: 511
  issue: 6
  year: 1989
  ident: pcbi.1009240.ref091
  article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data
  publication-title: Rheologica Acta
  doi: 10.1007/BF01332922
– volume: 93
  start-page: 1429
  issue: 4
  year: 2002
  ident: pcbi.1009240.ref034
  article-title: A finite element model of cell deformation during magnetic bead twisting
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00255.2002
– volume: 282
  start-page: 77
  year: 2015
  ident: pcbi.1009240.ref035
  article-title: A poroelastic immersed boundary method with applications to cell biology
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2014.10.004
– volume: 285
  start-page: 26350
  issue: 34
  year: 2010
  ident: pcbi.1009240.ref067
  article-title: Actin cross-link assembly and disassembly mechanics for α-actinin and fascin
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M110.123117
– volume: 411
  start-page: 1062
  issue: 5
  year: 2011
  ident: pcbi.1009240.ref013
  article-title: Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4
  publication-title: Journal of molecular biology
  doi: 10.1016/j.jmb.2011.06.049
– volume: 110
  start-page: 018103
  issue: 1
  year: 2013
  ident: pcbi.1009240.ref016
  article-title: Stress-enhanced gelation: A dynamic nonlinearity of elasticity
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.110.018103
– volume: 15
  start-page: 732
  issue: 8
  year: 2005
  ident: pcbi.1009240.ref046
  article-title: Cortical actin turnover during cytokinesis requires myosin II
  publication-title: Current biology
  doi: 10.1016/j.cub.2005.03.042
– volume: 339
  start-page: 297
  issue: 3
  year: 1994
  ident: pcbi.1009240.ref060
  article-title: The kinetics of the interaction between the actin-binding domain of α-actinin and F-actin
  publication-title: FEBS letters
  doi: 10.1016/0014-5793(94)80434-6
– year: 2018
  ident: pcbi.1009240.ref070
  article-title: Reconstitution of the equilibrium state of dynamic actin networks
  publication-title: bioRxiv
– volume: 103
  start-page: 13974
  issue: 38
  year: 2006
  ident: pcbi.1009240.ref024
  article-title: Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0510190103
– volume: 23
  start-page: 3711
  issue: 10
  year: 2011
  ident: pcbi.1009240.ref093
  article-title: Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells
  publication-title: The Plant Cell
  doi: 10.1105/tpc.111.090670
– volume: 352
  start-page: 126
  issue: 6331
  year: 1991
  ident: pcbi.1009240.ref047
  article-title: Actin microfilament dynamics in locomoting cells
  publication-title: Nature
  doi: 10.1038/352126a0
– volume: 66
  start-page: 2210
  issue: 6
  year: 1994
  ident: pcbi.1009240.ref020
  article-title: Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer
  publication-title: Biophysical journal
  doi: 10.1016/S0006-3495(94)81017-3
– volume: 31
  start-page: 1744
  issue: 16
  year: 2020
  ident: pcbi.1009240.ref007
  article-title: Dynamic actin cross-linking governs the cytoplasm’s transition to fluid-like behavior
  publication-title: Molecular biology of the cell
  doi: 10.1091/mbc.E19-09-0504
– volume: 304
  start-page: 1301
  issue: 5675
  year: 2004
  ident: pcbi.1009240.ref009
  article-title: Elastic behavior of cross-linked and bundled actin networks
  publication-title: Science
  doi: 10.1126/science.1095087
– volume: 277
  start-page: 18143
  issue: 20
  year: 2002
  ident: pcbi.1009240.ref025
  article-title: Microheterogeneity controls the rate of gelation of actin filament networks
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M110868200
– volume: 43
  start-page: 9
  issue: 1
  year: 2010
  ident: pcbi.1009240.ref095
  article-title: Mechanics of the F-actin cytoskeleton
  publication-title: Journal of biomechanics
  doi: 10.1016/j.jbiomech.2009.09.003
– volume: 16
  start-page: e1007693
  issue: 6
  year: 2020
  ident: pcbi.1009240.ref042
  article-title: Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1007693
– volume: 22
  start-page: 309
  issue: 5
  year: 1993
  ident: pcbi.1009240.ref012
  article-title: The viscoelasticity of entangled actin networks: the influence of defects and modulation by talin and vinculin
  publication-title: European biophysics journal
  doi: 10.1007/BF00213554
– volume: 41
  start-page: 545
  issue: 3
  year: 1970
  ident: pcbi.1009240.ref081
  article-title: The stress system in a suspension of force-free particles
  publication-title: Journal of fluid mechanics
  doi: 10.1017/S0022112070000745
– volume: 120
  start-page: 1957
  issue: 10
  year: 2021
  ident: pcbi.1009240.ref100
  article-title: Actin bundle architecture and mechanics regulate myosin II force generation
  publication-title: Biophysical Journal
  doi: 10.1016/j.bpj.2021.03.026
– volume: 21
  start-page: 1272
  issue: 7
  year: 1953
  ident: pcbi.1009240.ref021
  article-title: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.1699180
– volume: 9
  start-page: a022038
  issue: 11
  year: 2017
  ident: pcbi.1009240.ref029
  article-title: Mechanical properties of the cytoskeleton and cells
  publication-title: Cold Spring Harbor perspectives in biology
  doi: 10.1101/cshperspect.a022038
– volume: 108
  start-page: 1997
  issue: 8
  year: 2015
  ident: pcbi.1009240.ref079
  article-title: Isoforms confer characteristic force generation and mechanosensation by myosin II filaments
  publication-title: Biophysical journal
  doi: 10.1016/j.bpj.2015.03.030
– volume: 58
  start-page: 35
  year: 2007
  ident: pcbi.1009240.ref062
  article-title: Stochastic simulation of chemical kinetics
  publication-title: Annu Rev Phys Chem
  doi: 10.1146/annurev.physchem.58.032806.104637
– volume: 77
  start-page: 051913
  issue: 5
  year: 2008
  ident: pcbi.1009240.ref096
  article-title: Strain hardening, avalanches, and strain softening in dense cross-linked actin networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.77.051913
– volume: 59
  start-page: 472
  issue: 4
  year: 2018
  ident: pcbi.1009240.ref036
  article-title: A porous viscoelastic model for the cell cytoskeleton
  publication-title: The ANZIAM Journal
  doi: 10.1017/S1446181118000081
– volume: 5
  start-page: e1000439
  issue: 7
  year: 2009
  ident: pcbi.1009240.ref066
  article-title: Computational analysis of viscoelastic properties of crosslinked actin networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000439
– volume: 329
  start-page: 173
  year: 2017
  ident: pcbi.1009240.ref071
  article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.10.026
– volume: 105
  start-page: 238101
  issue: 23
  year: 2010
  ident: pcbi.1009240.ref030
  article-title: Cross-link-governed dynamics of biopolymer networks
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.105.238101
– volume: 75
  start-page: 4425
  issue: 24
  year: 1995
  ident: pcbi.1009240.ref027
  article-title: Elasticity of semiflexible biopolymer networks
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.75.4425
– volume: 41
  start-page: 433
  year: 2009
  ident: pcbi.1009240.ref001
  article-title: Rheology of the cytoskeleton
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.010908.165236
– volume-title: Splitting methods for partial differential equations with rough solutions: Analysis and MATLAB programs
  year: 2010
  ident: pcbi.1009240.ref082
  doi: 10.4171/078
– volume: 101
  start-page: 108101
  issue: 10
  year: 2008
  ident: pcbi.1009240.ref006
  article-title: Transient binding and dissipation in cross-linked actin networks
  publication-title: Physical review letters
  doi: 10.1103/PhysRevLett.101.108101
– volume: 5
  start-page: 1796
  issue: 9
  year: 2009
  ident: pcbi.1009240.ref083
  article-title: Structural polymorphism in heterogeneous cytoskeletal networks
  publication-title: Soft Matter
  doi: 10.1039/b814555p
– volume: 731
  year: 2013
  ident: pcbi.1009240.ref074
  article-title: Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2013.402
– volume: 15
  start-page: 87
  issue: 1
  year: 1982
  ident: pcbi.1009240.ref051
  article-title: Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules
  publication-title: Macromolecules
  doi: 10.1021/ma00229a017
– volume: 106
  start-page: 526
  issue: 3
  year: 2014
  ident: pcbi.1009240.ref094
  article-title: Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks
  publication-title: Biophysical journal
  doi: 10.1016/j.bpj.2013.12.031
– volume: 49
  start-page: 91
  issue: 1
  year: 2009
  ident: pcbi.1009240.ref040
  article-title: Computational analysis of a cross-linked actin-like network
  publication-title: Experimental Mechanics
  doi: 10.1007/s11340-007-9091-3
– volume: 20
  start-page: 85
  issue: 2
  year: 2015
  ident: pcbi.1009240.ref054
  article-title: Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy
  publication-title: Genes to Cells
  doi: 10.1111/gtc.12204
– volume: 97
  start-page: 6532
  issue: 12
  year: 2000
  ident: pcbi.1009240.ref053
  article-title: Regulation of the actin cycle in vivo by actin filament severing
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.100023397
SSID ssj0035896
Score 2.4252772
Snippet Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009240
SubjectTerms Actin
Actin Cytoskeleton - chemistry
Actin Cytoskeleton - metabolism
Actins - chemistry
Actins - metabolism
Biology and Life Sciences
Cell research
Computational Biology
Computer simulation
Computer-generated environments
Cytoskeleton
Elastic Modulus
Hydrodynamics
Mechanical properties
Methods
Molecular Dynamics Simulation
Physical Sciences
Protein binding
Protein-protein interactions
Rheology
Statistical models
Structure
Viscosity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJCReEN8UNmQQEi-EJbGT2LwNxDSQtgfGpL5Z_qTVSjI17UP_-93FbtUIob3wVtXntL672PeT735HyHshtAHQ5TLrOACUhsnMyIJlZcGD8IVuCo2FwucX9dkV_zGtpnutvjAnLNIDR8UdV8Fao2sDwEPyOuTS1NY4pFCBYJdVFndfOPO2YCruwawSQ2cubIqTNYxPU9Eca4rjZKNPN9bMMUcAAEg-OpQG7v6_d-i9I2qcPrl3Hp0-Ig9TIElP4gIek3u-fULux9aSm6fk-nL-J3Xm6mkXqIud5_VisaHDn8jw6tY7ioUNLW1jNnj_mZ53oPnhIR_pcubTJ906Ots42G3jcyjSTCxjUUT_jFydfvv19SxLjRUyW-dylRXWBi95yR2DgKEUWHyawyllS1trXvtCGDBR48smeGcCUnwB7pLeiqKWxnD2nBy0XetfEhpcCA6vFmEyzzXEn1J60wgDcSH8mJkQttWssol1HJtfLNRwldYA-oj6UmgPlewxIdlu1k1k3bhD_gsabSeLnNnDF-BJKnmSusuTJuQdmlwhK0aLaTe_9brv1ffLC3VSC4jrJC_EP4V-joQ-JKHQwWKtTqUOoDJk2xpJHo4k4d22o-G3W_dTOIQJca3v1r0CGApIryzzckJeRHfcrZ4BCIUwDmY3I0cdqWc80s5nA7W4APwoWfXqf-jzNXlQYgIQ5v7Uh-RgtVz7I4jgVubN8LLeAuKsRcI
  priority: 102
  providerName: Directory of Open Access Journals
Title Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/34871298
https://www.proquest.com/docview/2607582202
https://pubmed.ncbi.nlm.nih.gov/PMC8675935
https://doaj.org/article/5fccba6b407946f09b6cbd263530635c
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJtBeEJ-jMKqAkHghUz7c2EZCqIWVgdQKbVTqmxV_rRUlGU0r0f-eu8StFsGExEtb1Wen8dm5-9V39yPkFee5AtBlQm0oABSWilCJOA2TmDpu45zFOSYKj8bZ2YR-mfame2TL2eonsPortEM-qclycfLr5-Y9bPh3NWsDi7edTq60muOpP0AKAPEHYJsYkjmM6O5cIe3xmrELyXJCltKpT6a7aZRDcicFjx5sIm_Zrbq8_58P8WtWrB1hec1kDe-Ru97XDPrN4rhP9mzxgNxu2Cc3D8n3i_kPT95VBaULTENOny8Wm6D-ESGe7loTYO5DERRNwHj1NhiVoJx6kDfBcmb9p7wwwWxj4IHcjBNgJYplkzdRPSKT4em3D2eh514IdRaJVRhr7aygCTUp-BQJx_zUCAyZTnSW08zGXIEWmU2Ys0Y5rAIG0ExYzeNMKEXTx2S_KAv7hATOOGfw9BE60ygHF1UIqxhX4DrCxVSHpNuZldoXJkd-jIWsT9sYAJRmviSqRnrVdEi463XVFOb4h_wAlbaTxbLa9Rfl8lL6XSp7TmuVZwpQrqCZi4TKtDJYrweQVdrTHfISVS6xcEaBkTmX-bqq5OeLsexnHFw_QWN-o9B5S-i1F3Il3KzOfTYETBkW5GpJHrckYfvrVvOL7fKT2IQxc4Ut15UEpApgMEmipEOOmuW4u_vtqu4Q1lqorelptxTzWV19nAPEFGnv6X_3fEYOEwwMwpig7Jjsr5Zr-xw8u5XqkltsyuCVDz91yUF_8HEwhPfB6fjrebf-t6Rbb-ffRCFWHA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulations+of+dynamically+cross-linked+actin+networks%3A+Morphology%2C+rheology%2C+and+hydrodynamic+interactions&rft.jtitle=PLoS+computational+biology&rft.au=Maxian%2C+Ondrej&rft.au=Pel%C3%A1ez%2C+Ra%C3%BAl+P.&rft.au=Mogilner%2C+Alex&rft.au=Donev%2C+Aleksandar&rft.date=2021-12-06&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009240&rft_id=info%3Apmid%2F34871298&rft.externalDocID=PMC8675935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon