Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous flui...
Saved in:
Published in | PLoS computational biology Vol. 17; no. 12; p. e1009240 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.12.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1009240 |
Cover
Loading…
Abstract | Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. |
---|---|
AbstractList | Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. The cytoskeleton is composed of semiflexible, inextensible actin filaments, dynamic cross linkers, and molecular motors, and makes the primary contribution to the structural properties of the cell. Despite its being so fundamental to cell biology, the biological complexity of the cytoskeleton hinders our ability to understand its mechanical properties through in vitro experiments. In this paper, we perform microscopic simulations of actin fibers and transient cross linkers to quantify the principle timescales involved in the network, study how these timescales influence the morphology and rheology of the system, and examine the role of hydrodynamic interactions in cytoskeletal networks. We find three principle timescales which we associate with fiber flexibility, cross linker detachment, and network remodeling, respectively. We show that the morphology of the network is more important on longer timescales, where the viscosity of links inside of fiber bundles is enhanced. We also show that hydrodynamic interactions reduce the stress inside of bundles because of entrainment flows. Finally, we propose a continuum model which can be used to coarse-grain our agent-based simulations and enable modeling of larger systems. Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks. |
Audience | Academic |
Author | Maxian, Ondrej Mogilner, Alex Donev, Aleksandar Peláez, Raúl P. |
AuthorAffiliation | 1 Courant Institute, New York University, New York, New York, United States of America 2 Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain Leiden University Faculty of Science: Universiteit Leiden Faculteit der Wiskunde en Natuurwetenschappen, NETHERLANDS 3 Department of Biology, New York University, New York, New York, United States of America |
AuthorAffiliation_xml | – name: Leiden University Faculty of Science: Universiteit Leiden Faculteit der Wiskunde en Natuurwetenschappen, NETHERLANDS – name: 1 Courant Institute, New York University, New York, New York, United States of America – name: 2 Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain – name: 3 Department of Biology, New York University, New York, New York, United States of America |
Author_xml | – sequence: 1 givenname: Ondrej orcidid: 0000-0002-4770-1723 surname: Maxian fullname: Maxian, Ondrej – sequence: 2 givenname: Raúl P. orcidid: 0000-0003-3393-7329 surname: Peláez fullname: Peláez, Raúl P. – sequence: 3 givenname: Alex orcidid: 0000-0001-5302-2404 surname: Mogilner fullname: Mogilner, Alex – sequence: 4 givenname: Aleksandar surname: Donev fullname: Donev, Aleksandar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34871298$$D View this record in MEDLINE/PubMed |
BookMark | eNqVku-L0zAYx4OceHfT_0Ck4BsFO5M0TZN7IRyHPwangqevQ5qmW7Ys2SWpuv_ebKvHTUSQQvuQfr4f2ofvOThx3mkAniI4RVWDXi_9EJy0041qzRRByDGBD8AZquuqbKqandybT8F5jEsI88jpI3BaEdYgzNkZWN2Y9WBlMt7FwvdFt3VybZS0dluo4GMsrXEr3RVSJeMKp9MPH1bxovjow2bhrZ9vXxVhocdJuq5YbLvgR09hXNJhl83-x-BhL23UT8bnBHx79_br1Yfy-vP72dXldako5KlESvWaE0y6qqkhZggxBEmDFFZUEqoRa5HUjcZNr7u2RwxyRAjXiiHK25ZUEzA7eDsvl2ITzFqGrfDSiP2BD3MhQzLKalH3SrWStgQ2nNAe8paqtsO0qiuYbyq73hxcm6Fd605pl4K0R9LjN84sxNx_F4w2Nc-aCXgxCoK_HXRMYm2i0tZKp_0QBaawqRnGEGf0-QGdy_xpxvU-G9UOF5eUMV5xglimpn-h8tXpvPDckd7k86PAy6NAZpL-meZyiFHMbr78B_vpmH12fzV3O_ldrgyQA7AvUtD9HYKg2HVYjB0Wuw6LscM5dvFHTJm0b2j-UWP_Hf4FPET7kQ |
CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112473 crossref_primary_10_1063_5_0233168 crossref_primary_10_1016_j_cub_2024_07_014 crossref_primary_10_1103_PhysRevFluids_7_074101 crossref_primary_10_1016_j_bpj_2022_02_030 crossref_primary_10_1016_j_cpc_2024_109363 crossref_primary_10_1063_5_0144242 crossref_primary_10_1016_j_jbiomech_2025_112579 crossref_primary_10_1063_5_0139036 crossref_primary_10_1063_5_0243074 |
Cites_doi | 10.1103/PhysRevLett.93.188102 10.1016/j.jcp.2003.10.017 10.1103/PhysRevE.68.041914 10.1103/PhysRevLett.122.218102 10.1017/S0962492902000077 10.1016/j.bpj.2009.03.038 10.1371/journal.pcbi.1004877 10.1083/jcb.200801027 10.1021/ma00011a013 10.1083/jcb.110.6.2013 10.1021/ma946418x 10.1017/S0022112096008889 10.1016/j.celrep.2017.11.040 10.1103/PhysRevE.84.016310 10.1039/D1SM00412C 10.1038/ncb3252 10.1103/PhysRevFluids.6.014102 10.1021/ma9803032 10.1074/jbc.273.16.9570 10.1039/B912163N 10.1063/1.4978242 10.1063/1.5009464 10.1017/S0022112076000475 10.1063/1.5005887 10.1016/S0021-9258(18)31663-6 10.1103/PhysRevLett.112.238102 10.1016/S0006-3495(94)80856-2 10.1073/pnas.1616133114 10.1073/pnas.1820814116 10.1017/S002211207000191X 10.1122/1.4870967 10.1103/PhysRevLett.91.108102 10.1016/j.bpj.2009.04.040 10.1016/S0377-0257(96)01512-1 10.1063/1.857683 10.1103/PhysRevLett.81.2614 10.1137/16M1065975 10.1016/S0006-3495(93)81059-2 10.1093/oso/9780198803195.001.0001 10.1038/ncb3137 10.1103/PhysRevLett.87.148102 10.1016/S0014-5793(97)00214-7 10.1016/S0006-3495(03)74753-5 10.1063/1.2799998 10.1093/jmicro/dfx015 10.1134/S0965545X06010068 10.1074/jbc.M202609200 10.1017/S0022112080000687 10.1083/jcb.120.4.923 10.1016/j.bpj.2010.06.025 10.1371/journal.pcbi.1006150 10.1529/biophysj.104.050278 10.1007/BF01332922 10.1152/japplphysiol.00255.2002 10.1016/j.jcp.2014.10.004 10.1074/jbc.M110.123117 10.1016/j.jmb.2011.06.049 10.1103/PhysRevLett.110.018103 10.1016/j.cub.2005.03.042 10.1016/0014-5793(94)80434-6 10.1073/pnas.0510190103 10.1105/tpc.111.090670 10.1038/352126a0 10.1016/S0006-3495(94)81017-3 10.1091/mbc.E19-09-0504 10.1126/science.1095087 10.1074/jbc.M110868200 10.1016/j.jbiomech.2009.09.003 10.1371/journal.pcbi.1007693 10.1007/BF00213554 10.1017/S0022112070000745 10.1016/j.bpj.2021.03.026 10.1063/1.1699180 10.1101/cshperspect.a022038 10.1016/j.bpj.2015.03.030 10.1146/annurev.physchem.58.032806.104637 10.1103/PhysRevE.77.051913 10.1017/S1446181118000081 10.1371/journal.pcbi.1000439 10.1016/j.jcp.2016.10.026 10.1103/PhysRevLett.105.238101 10.1103/PhysRevLett.75.4425 10.1146/annurev.fluid.010908.165236 10.4171/078 10.1103/PhysRevLett.101.108101 10.1039/b814555p 10.1017/jfm.2013.402 10.1021/ma00229a017 10.1016/j.bpj.2013.12.031 10.1007/s11340-007-9091-3 10.1111/gtc.12204 10.1073/pnas.100023397 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Maxian et al 2021 Maxian et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Maxian et al 2021 Maxian et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1009240 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Computational rheology of cross-linked actin networks |
EISSN | 1553-7358 |
ExternalDocumentID | oai_doaj_org_article_5fccba6b407946f09b6cbd263530635c PMC8675935 A688939418 34871298 10_1371_journal_pcbi_1009240 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: ; grantid: GRFP/DGE-1342536 – fundername: ; grantid: DMS-2052515 – fundername: ; grantid: DMS1953430 – fundername: ; grantid: RTG/DMS-1646339 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c609t-1ccfe9424d37502811810471c2c6a46e18b1ae7e27fedbf18091449ec8169bb43 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Wed Aug 27 01:27:37 EDT 2025 Thu Aug 21 13:52:50 EDT 2025 Fri Jul 11 07:45:58 EDT 2025 Tue Jun 17 21:27:31 EDT 2025 Tue Jun 10 20:33:54 EDT 2025 Fri Jun 27 04:42:37 EDT 2025 Fri Jun 27 03:39:47 EDT 2025 Wed Feb 19 02:28:16 EST 2025 Tue Jul 01 04:07:01 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c609t-1ccfe9424d37502811810471c2c6a46e18b1ae7e27fedbf18091449ec8169bb43 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-4770-1723 0000-0003-3393-7329 0000-0001-5302-2404 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009240 |
PMID | 34871298 |
PQID | 2607582202 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5fccba6b407946f09b6cbd263530635c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675935 proquest_miscellaneous_2607582202 gale_infotracmisc_A688939418 gale_infotracacademiconefile_A688939418 gale_incontextgauss_ISR_A688939418 gale_incontextgauss_ISN_A688939418 pubmed_primary_34871298 crossref_primary_10_1371_journal_pcbi_1009240 crossref_citationtrail_10_1371_journal_pcbi_1009240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211206 |
PublicationDateYYYYMMDD | 2021-12-06 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211206 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Donev (pcbi.1009240.ref064) 2018; 148 K Zero (pcbi.1009240.ref051) 1982; 15 G Batchelor (pcbi.1009240.ref086) 1970; 44 AY Malkin (pcbi.1009240.ref092) 2006; 48 M Baumgaertel (pcbi.1009240.ref091) 1989; 28 DS Courson (pcbi.1009240.ref067) 2010; 285 AF Pegoraro (pcbi.1009240.ref029) 2017; 9 AK Tornberg (pcbi.1009240.ref048) 2004; 196 PA Janmey (pcbi.1009240.ref004) 1994; 269 O Maxian (pcbi.1009240.ref044) 2021; 6 MB Mackaplow (pcbi.1009240.ref088) 1996; 329 K Schmoller (pcbi.1009240.ref084) 2009; 97 O Lieleg (pcbi.1009240.ref045) 2010; 6 M Gardel (pcbi.1009240.ref010) 2004; 93 F Ziemann (pcbi.1009240.ref020) 1994; 66 AB Johnston (pcbi.1009240.ref068) 2015; 17 pcbi.1009240.ref078 B Fabry (pcbi.1009240.ref019) 2003; 68 J Xu (pcbi.1009240.ref061) 1998; 273 ES Shaqfeh (pcbi.1009240.ref087) 1990; 2 YH Tee (pcbi.1009240.ref098) 2015; 17 CS Peskin (pcbi.1009240.ref032) 2002; 11 HH Winter (pcbi.1009240.ref089) 1997; 68 KL Weirich (pcbi.1009240.ref100) 2021; 120 SL Freedman (pcbi.1009240.ref022) 2019; 116 SM Mijailovich (pcbi.1009240.ref034) 2002; 93 CA Copos (pcbi.1009240.ref036) 2018; 59 NY Yao (pcbi.1009240.ref013) 2011; 411 MP Allen (pcbi.1009240.ref065) 2017 DR Scheff (pcbi.1009240.ref097) 2021; 17 H Holden (pcbi.1009240.ref082) 2010 AM Fiore (pcbi.1009240.ref075) 2017; 146 S Le (pcbi.1009240.ref058) 2017; 21 B Wagner (pcbi.1009240.ref024) 2006; 103 Y Mulla (pcbi.1009240.ref014) 2019; 122 A Manhart (pcbi.1009240.ref070) 2018 W Strychalski (pcbi.1009240.ref035) 2015; 282 J Stricker (pcbi.1009240.ref095) 2010; 43 I McDougall (pcbi.1009240.ref090) 2014; 58 F MacKintosh (pcbi.1009240.ref027) 1995; 75 RK Meyer (pcbi.1009240.ref059) 1990; 110 RD Guy (pcbi.1009240.ref037) 2011; 84 DT Gillespie (pcbi.1009240.ref062) 2007; 58 H Isambert (pcbi.1009240.ref028) 1996; 29 M Gardel (pcbi.1009240.ref009) 2004; 304 X Li (pcbi.1009240.ref042) 2020; 16 Y Tseng (pcbi.1009240.ref026) 2002; 277 DH Wachsstock (pcbi.1009240.ref008) 1994; 66 B Alberts (pcbi.1009240.ref002) 2002 S Stam (pcbi.1009240.ref079) 2015; 108 T Kim (pcbi.1009240.ref066) 2009; 5 T Kim (pcbi.1009240.ref040) 2009; 49 JA Åström (pcbi.1009240.ref096) 2008; 77 Y Tseng (pcbi.1009240.ref025) 2002; 277 MR Mofrad (pcbi.1009240.ref001) 2009; 41 O Lieleg (pcbi.1009240.ref015) 2009; 96 X Wei (pcbi.1009240.ref043) 2021 O Lieleg (pcbi.1009240.ref006) 2008; 101 Y Zhang (pcbi.1009240.ref055) 2017; 66 R Ma (pcbi.1009240.ref085) 2018; 14 E Grazi (pcbi.1009240.ref052) 1997; 405 JB Keller (pcbi.1009240.ref072) 1976; 75 PE Rouse (pcbi.1009240.ref021) 1953; 21 O Müller (pcbi.1009240.ref011) 1991; 24 E Nazockdast (pcbi.1009240.ref071) 2017; 329 N Desprat (pcbi.1009240.ref038) 2005; 88 T Kim (pcbi.1009240.ref094) 2014; 106 AM Fiore (pcbi.1009240.ref076) 2018; 148 L af Klinteberg (pcbi.1009240.ref077) 2020 B Hinner (pcbi.1009240.ref003) 1998; 81 O Lieleg (pcbi.1009240.ref083) 2009; 5 JA Theriot (pcbi.1009240.ref047) 1991; 352 E Wajnryb (pcbi.1009240.ref074) 2013; 731 F Gittes (pcbi.1009240.ref057) 1993; 120 HY Kueh (pcbi.1009240.ref069) 2008; 182 KW Müller (pcbi.1009240.ref031) 2014; 112 B Fabry (pcbi.1009240.ref018) 2001; 87 JL Aurentz (pcbi.1009240.ref049) 2017; 59 KL Weirich (pcbi.1009240.ref099) 2017; 114 FA Morrison (pcbi.1009240.ref080) 2001 G Batchelor (pcbi.1009240.ref081) 1970; 41 DC Morse (pcbi.1009240.ref017) 1998; 31 CP Broedersz (pcbi.1009240.ref030) 2010; 105 A Yoshida (pcbi.1009240.ref054) 2015; 20 L Chaubet (pcbi.1009240.ref007) 2020; 31 NY Yao (pcbi.1009240.ref016) 2013; 110 JL Henty (pcbi.1009240.ref093) 2011; 23 DF Anderson (pcbi.1009240.ref063) 2007; 127 TA Driscoll (pcbi.1009240.ref050) 2015; 36 K Popov (pcbi.1009240.ref041) 2016; 12 RE Johnson (pcbi.1009240.ref073) 1980; 99 H Karcher (pcbi.1009240.ref033) 2003; 85 R Ruddies (pcbi.1009240.ref012) 1993; 22 JL McGrath (pcbi.1009240.ref053) 2000; 97 DA Head (pcbi.1009240.ref039) 2003; 91 PA Kuhlman (pcbi.1009240.ref060) 1994; 339 K Luby-Phelps (pcbi.1009240.ref056) 1999 M Guha (pcbi.1009240.ref046) 2005; 15 DH Wachsstock (pcbi.1009240.ref005) 1993; 65 K Kasza (pcbi.1009240.ref023) 2010; 99 |
References_xml | – volume: 93 start-page: 188102 issue: 18 year: 2004 ident: pcbi.1009240.ref010 article-title: Scaling of F-actin network rheology to probe single filament elasticity and dynamics publication-title: Physical review letters doi: 10.1103/PhysRevLett.93.188102 – volume: 196 start-page: 8 issue: 1 year: 2004 ident: pcbi.1009240.ref048 article-title: Simulating the dynamics and interactions of flexible fibers in Stokes flows publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2003.10.017 – volume: 68 start-page: 041914 issue: 4 year: 2003 ident: pcbi.1009240.ref019 article-title: Time scale and other invariants of integrative mechanical behavior in living cells publication-title: Physical Review E doi: 10.1103/PhysRevE.68.041914 – start-page: 189 volume-title: International review of cytology year: 1999 ident: pcbi.1009240.ref056 – volume: 122 start-page: 218102 issue: 21 year: 2019 ident: pcbi.1009240.ref014 article-title: Origin of slow stress relaxation in the cytoskeleton publication-title: Physical review letters doi: 10.1103/PhysRevLett.122.218102 – volume: 11 start-page: 479 year: 2002 ident: pcbi.1009240.ref032 article-title: The immersed boundary method publication-title: Acta Numer doi: 10.1017/S0962492902000077 – volume: 96 start-page: 4725 issue: 11 year: 2009 ident: pcbi.1009240.ref015 article-title: Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links publication-title: Biophysical journal doi: 10.1016/j.bpj.2009.03.038 – volume-title: Molecular biology of the cell year: 2002 ident: pcbi.1009240.ref002 – volume: 12 start-page: e1004877 issue: 4 year: 2016 ident: pcbi.1009240.ref041 article-title: MEDYAN: Mechanochemical simulations of contraction and polarity alignment in actomyosin networks publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1004877 – volume: 182 start-page: 341 issue: 2 year: 2008 ident: pcbi.1009240.ref069 article-title: Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers publication-title: The Journal of cell biology doi: 10.1083/jcb.200801027 – volume-title: Understanding rheology year: 2001 ident: pcbi.1009240.ref080 – volume: 24 start-page: 3111 issue: 11 year: 1991 ident: pcbi.1009240.ref011 article-title: Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime: measurements by oscillating disk rheometer publication-title: Macromolecules doi: 10.1021/ma00011a013 – volume: 110 start-page: 2013 issue: 6 year: 1990 ident: pcbi.1009240.ref059 article-title: Bundling of actin filaments by alpha-actinin depends on its molecular length publication-title: The Journal of cell biology doi: 10.1083/jcb.110.6.2013 – volume: 29 start-page: 1036 issue: 3 year: 1996 ident: pcbi.1009240.ref028 article-title: Dynamics and rheology of actin solutions publication-title: Macromolecules doi: 10.1021/ma946418x – volume: 329 start-page: 155 year: 1996 ident: pcbi.1009240.ref088 article-title: A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112096008889 – volume: 21 start-page: 2714 issue: 10 year: 2017 ident: pcbi.1009240.ref058 article-title: Mechanotransmission and mechanosensing of human alpha-actinin 1 publication-title: Cell reports doi: 10.1016/j.celrep.2017.11.040 – volume: 84 start-page: 016310 issue: 1 year: 2011 ident: pcbi.1009240.ref037 article-title: Flow-induced channel formation in the cytoplasm of motile cells publication-title: Physical Review E doi: 10.1103/PhysRevE.84.016310 – volume: 17 start-page: 5499 issue: 22 year: 2021 ident: pcbi.1009240.ref097 article-title: Actin filament alignment causes mechanical hysteresis in cross-linked networks publication-title: Soft Matter doi: 10.1039/D1SM00412C – volume: 17 start-page: 1504 issue: 11 year: 2015 ident: pcbi.1009240.ref068 article-title: High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP publication-title: Nature cell biology doi: 10.1038/ncb3252 – volume: 6 start-page: 014102 issue: 1 year: 2021 ident: pcbi.1009240.ref044 article-title: Integral-based spectral method for inextensible slender fibers in Stokes flow publication-title: Physical Review Fluids doi: 10.1103/PhysRevFluids.6.014102 – volume: 31 start-page: 7030 issue: 20 year: 1998 ident: pcbi.1009240.ref017 article-title: Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor publication-title: Macromolecules doi: 10.1021/ma9803032 – ident: pcbi.1009240.ref078 – volume: 273 start-page: 9570 issue: 16 year: 1998 ident: pcbi.1009240.ref061 article-title: Dynamic cross-linking by α-actinin determines the mechanical properties of actin filament networks publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.273.16.9570 – volume: 6 start-page: 218 issue: 2 year: 2010 ident: pcbi.1009240.ref045 article-title: Structure and dynamics of cross-linked actin networks publication-title: Soft Matter doi: 10.1039/B912163N – volume: 146 start-page: 124116 issue: 12 year: 2017 ident: pcbi.1009240.ref075 article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations publication-title: The Journal of chemical physics doi: 10.1063/1.4978242 – volume: 148 start-page: 034103 issue: 3 year: 2018 ident: pcbi.1009240.ref064 article-title: Efficient reactive Brownian dynamics publication-title: The Journal of chemical physics doi: 10.1063/1.5009464 – volume: 75 start-page: 705 issue: 4 year: 1976 ident: pcbi.1009240.ref072 article-title: Slender-body theory for slow viscous flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112076000475 – volume: 148 start-page: 044114 issue: 4 year: 2018 ident: pcbi.1009240.ref076 article-title: Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints publication-title: The Journal of chemical physics doi: 10.1063/1.5005887 – volume: 269 start-page: 32503 issue: 51 year: 1994 ident: pcbi.1009240.ref004 article-title: The mechanical properties of actin gels. Elastic modulus and filament motions publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(18)31663-6 – volume: 112 start-page: 238102 issue: 23 year: 2014 ident: pcbi.1009240.ref031 article-title: Rheology of semiflexible bundle networks with transient linkers publication-title: Physical review letters doi: 10.1103/PhysRevLett.112.238102 – volume: 66 start-page: 801 issue: 3 year: 1994 ident: pcbi.1009240.ref008 article-title: Cross-linker dynamics determine the mechanical properties of actin gels publication-title: Biophysical journal doi: 10.1016/S0006-3495(94)80856-2 – volume: 36 start-page: 108 issue: 1 year: 2015 ident: pcbi.1009240.ref050 article-title: Rectangular spectral collocation publication-title: IMA Journal of Numerical Analysis – volume: 114 start-page: 2131 issue: 9 year: 2017 ident: pcbi.1009240.ref099 article-title: Liquid behavior of cross-linked actin bundles publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1616133114 – volume: 116 start-page: 16192 issue: 33 year: 2019 ident: pcbi.1009240.ref022 article-title: Mechanical and kinetic factors drive sorting of F-actin cross-linkers on bundles publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1820814116 – volume: 44 start-page: 419 issue: 3 year: 1970 ident: pcbi.1009240.ref086 article-title: Slender-body theory for particles of arbitrary cross-section in Stokes flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S002211207000191X – volume: 58 start-page: 779 issue: 3 year: 2014 ident: pcbi.1009240.ref090 article-title: Inferring meaningful relaxation spectra from experimental data publication-title: Journal of Rheology doi: 10.1122/1.4870967 – volume: 91 start-page: 108102 issue: 10 year: 2003 ident: pcbi.1009240.ref039 article-title: Deformation of cross-linked semiflexible polymer networks publication-title: Physical review letters doi: 10.1103/PhysRevLett.91.108102 – volume: 97 start-page: 83 issue: 1 year: 2009 ident: pcbi.1009240.ref084 article-title: Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks publication-title: Biophysical journal doi: 10.1016/j.bpj.2009.04.040 – volume: 68 start-page: 225 issue: 2-3 year: 1997 ident: pcbi.1009240.ref089 article-title: Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check publication-title: Journal of Non-Newtonian Fluid Mechanics doi: 10.1016/S0377-0257(96)01512-1 – volume: 2 start-page: 7 issue: 1 year: 1990 ident: pcbi.1009240.ref087 article-title: The hydrodynamic stress in a suspension of rods publication-title: Physics of Fluids A: Fluid Dynamics doi: 10.1063/1.857683 – volume: 81 start-page: 2614 issue: 12 year: 1998 ident: pcbi.1009240.ref003 article-title: Entanglement, elasticity, and viscous relaxation of actin solutions publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.81.2614 – volume: 59 start-page: 423 issue: 2 year: 2017 ident: pcbi.1009240.ref049 article-title: Block operators and spectral discretizations publication-title: SIAM Review doi: 10.1137/16M1065975 – volume: 65 start-page: 205 issue: 1 year: 1993 ident: pcbi.1009240.ref005 article-title: Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels publication-title: Biophysical journal doi: 10.1016/S0006-3495(93)81059-2 – volume-title: Computer simulation of liquids year: 2017 ident: pcbi.1009240.ref065 doi: 10.1093/oso/9780198803195.001.0001 – volume: 17 start-page: 445 issue: 4 year: 2015 ident: pcbi.1009240.ref098 article-title: Cellular chirality arising from the self-organization of the actin cytoskeleton publication-title: Nature cell biology doi: 10.1038/ncb3137 – volume: 87 start-page: 148102 issue: 14 year: 2001 ident: pcbi.1009240.ref018 article-title: Scaling the microrheology of living cells publication-title: Physical review letters doi: 10.1103/PhysRevLett.87.148102 – volume: 405 start-page: 249 issue: 3 year: 1997 ident: pcbi.1009240.ref052 article-title: What is the diameter of the actin filament? publication-title: FEBS letters doi: 10.1016/S0014-5793(97)00214-7 – volume: 85 start-page: 3336 issue: 5 year: 2003 ident: pcbi.1009240.ref033 article-title: A three-dimensional viscoelastic model for cell deformation with experimental verification publication-title: Biophysical journal doi: 10.1016/S0006-3495(03)74753-5 – volume: 127 start-page: 214107 issue: 21 year: 2007 ident: pcbi.1009240.ref063 article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays publication-title: The Journal of chemical physics doi: 10.1063/1.2799998 – start-page: 1 year: 2020 ident: pcbi.1009240.ref077 article-title: Accurate quadrature of nearly singular line integrals in two and three dimensions by singularity swapping publication-title: BIT Numerical Mathematics – volume: 66 start-page: 272 issue: 4 year: 2017 ident: pcbi.1009240.ref055 article-title: In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy publication-title: Microscopy doi: 10.1093/jmicro/dfx015 – volume: 48 start-page: 39 issue: 1 year: 2006 ident: pcbi.1009240.ref092 article-title: The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers publication-title: Polymer Science Series A doi: 10.1134/S0965545X06010068 – volume: 277 start-page: 25609 issue: 28 year: 2002 ident: pcbi.1009240.ref026 article-title: Functional synergy of actin filament cross-linking proteins publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M202609200 – volume: 99 start-page: 411 issue: 2 year: 1980 ident: pcbi.1009240.ref073 article-title: An improved slender-body theory for Stokes flow publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112080000687 – volume: 120 start-page: 923 issue: 4 year: 1993 ident: pcbi.1009240.ref057 article-title: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape publication-title: The Journal of cell biology doi: 10.1083/jcb.120.4.923 – volume: 99 start-page: 1091 issue: 4 year: 2010 ident: pcbi.1009240.ref023 article-title: Actin filament length tunes elasticity of flexibly cross-linked actin networks publication-title: Biophysical journal doi: 10.1016/j.bpj.2010.06.025 – volume: 14 start-page: e1006150 issue: 5 year: 2018 ident: pcbi.1009240.ref085 article-title: Structural organization and energy storage in crosslinked actin assemblies publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1006150 – volume: 88 start-page: 2224 issue: 3 year: 2005 ident: pcbi.1009240.ref038 article-title: Creep function of a single living cell publication-title: Biophysical journal doi: 10.1529/biophysj.104.050278 – year: 2021 ident: pcbi.1009240.ref043 article-title: Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers publication-title: Soft Matter – volume: 28 start-page: 511 issue: 6 year: 1989 ident: pcbi.1009240.ref091 article-title: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data publication-title: Rheologica Acta doi: 10.1007/BF01332922 – volume: 93 start-page: 1429 issue: 4 year: 2002 ident: pcbi.1009240.ref034 article-title: A finite element model of cell deformation during magnetic bead twisting publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00255.2002 – volume: 282 start-page: 77 year: 2015 ident: pcbi.1009240.ref035 article-title: A poroelastic immersed boundary method with applications to cell biology publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2014.10.004 – volume: 285 start-page: 26350 issue: 34 year: 2010 ident: pcbi.1009240.ref067 article-title: Actin cross-link assembly and disassembly mechanics for α-actinin and fascin publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M110.123117 – volume: 411 start-page: 1062 issue: 5 year: 2011 ident: pcbi.1009240.ref013 article-title: Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4 publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2011.06.049 – volume: 110 start-page: 018103 issue: 1 year: 2013 ident: pcbi.1009240.ref016 article-title: Stress-enhanced gelation: A dynamic nonlinearity of elasticity publication-title: Physical review letters doi: 10.1103/PhysRevLett.110.018103 – volume: 15 start-page: 732 issue: 8 year: 2005 ident: pcbi.1009240.ref046 article-title: Cortical actin turnover during cytokinesis requires myosin II publication-title: Current biology doi: 10.1016/j.cub.2005.03.042 – volume: 339 start-page: 297 issue: 3 year: 1994 ident: pcbi.1009240.ref060 article-title: The kinetics of the interaction between the actin-binding domain of α-actinin and F-actin publication-title: FEBS letters doi: 10.1016/0014-5793(94)80434-6 – year: 2018 ident: pcbi.1009240.ref070 article-title: Reconstitution of the equilibrium state of dynamic actin networks publication-title: bioRxiv – volume: 103 start-page: 13974 issue: 38 year: 2006 ident: pcbi.1009240.ref024 article-title: Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0510190103 – volume: 23 start-page: 3711 issue: 10 year: 2011 ident: pcbi.1009240.ref093 article-title: Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells publication-title: The Plant Cell doi: 10.1105/tpc.111.090670 – volume: 352 start-page: 126 issue: 6331 year: 1991 ident: pcbi.1009240.ref047 article-title: Actin microfilament dynamics in locomoting cells publication-title: Nature doi: 10.1038/352126a0 – volume: 66 start-page: 2210 issue: 6 year: 1994 ident: pcbi.1009240.ref020 article-title: Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer publication-title: Biophysical journal doi: 10.1016/S0006-3495(94)81017-3 – volume: 31 start-page: 1744 issue: 16 year: 2020 ident: pcbi.1009240.ref007 article-title: Dynamic actin cross-linking governs the cytoplasm’s transition to fluid-like behavior publication-title: Molecular biology of the cell doi: 10.1091/mbc.E19-09-0504 – volume: 304 start-page: 1301 issue: 5675 year: 2004 ident: pcbi.1009240.ref009 article-title: Elastic behavior of cross-linked and bundled actin networks publication-title: Science doi: 10.1126/science.1095087 – volume: 277 start-page: 18143 issue: 20 year: 2002 ident: pcbi.1009240.ref025 article-title: Microheterogeneity controls the rate of gelation of actin filament networks publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M110868200 – volume: 43 start-page: 9 issue: 1 year: 2010 ident: pcbi.1009240.ref095 article-title: Mechanics of the F-actin cytoskeleton publication-title: Journal of biomechanics doi: 10.1016/j.jbiomech.2009.09.003 – volume: 16 start-page: e1007693 issue: 6 year: 2020 ident: pcbi.1009240.ref042 article-title: Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1007693 – volume: 22 start-page: 309 issue: 5 year: 1993 ident: pcbi.1009240.ref012 article-title: The viscoelasticity of entangled actin networks: the influence of defects and modulation by talin and vinculin publication-title: European biophysics journal doi: 10.1007/BF00213554 – volume: 41 start-page: 545 issue: 3 year: 1970 ident: pcbi.1009240.ref081 article-title: The stress system in a suspension of force-free particles publication-title: Journal of fluid mechanics doi: 10.1017/S0022112070000745 – volume: 120 start-page: 1957 issue: 10 year: 2021 ident: pcbi.1009240.ref100 article-title: Actin bundle architecture and mechanics regulate myosin II force generation publication-title: Biophysical Journal doi: 10.1016/j.bpj.2021.03.026 – volume: 21 start-page: 1272 issue: 7 year: 1953 ident: pcbi.1009240.ref021 article-title: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers publication-title: The Journal of Chemical Physics doi: 10.1063/1.1699180 – volume: 9 start-page: a022038 issue: 11 year: 2017 ident: pcbi.1009240.ref029 article-title: Mechanical properties of the cytoskeleton and cells publication-title: Cold Spring Harbor perspectives in biology doi: 10.1101/cshperspect.a022038 – volume: 108 start-page: 1997 issue: 8 year: 2015 ident: pcbi.1009240.ref079 article-title: Isoforms confer characteristic force generation and mechanosensation by myosin II filaments publication-title: Biophysical journal doi: 10.1016/j.bpj.2015.03.030 – volume: 58 start-page: 35 year: 2007 ident: pcbi.1009240.ref062 article-title: Stochastic simulation of chemical kinetics publication-title: Annu Rev Phys Chem doi: 10.1146/annurev.physchem.58.032806.104637 – volume: 77 start-page: 051913 issue: 5 year: 2008 ident: pcbi.1009240.ref096 article-title: Strain hardening, avalanches, and strain softening in dense cross-linked actin networks publication-title: Physical Review E doi: 10.1103/PhysRevE.77.051913 – volume: 59 start-page: 472 issue: 4 year: 2018 ident: pcbi.1009240.ref036 article-title: A porous viscoelastic model for the cell cytoskeleton publication-title: The ANZIAM Journal doi: 10.1017/S1446181118000081 – volume: 5 start-page: e1000439 issue: 7 year: 2009 ident: pcbi.1009240.ref066 article-title: Computational analysis of viscoelastic properties of crosslinked actin networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000439 – volume: 329 start-page: 173 year: 2017 ident: pcbi.1009240.ref071 article-title: A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.10.026 – volume: 105 start-page: 238101 issue: 23 year: 2010 ident: pcbi.1009240.ref030 article-title: Cross-link-governed dynamics of biopolymer networks publication-title: Physical review letters doi: 10.1103/PhysRevLett.105.238101 – volume: 75 start-page: 4425 issue: 24 year: 1995 ident: pcbi.1009240.ref027 article-title: Elasticity of semiflexible biopolymer networks publication-title: Physical review letters doi: 10.1103/PhysRevLett.75.4425 – volume: 41 start-page: 433 year: 2009 ident: pcbi.1009240.ref001 article-title: Rheology of the cytoskeleton publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.010908.165236 – volume-title: Splitting methods for partial differential equations with rough solutions: Analysis and MATLAB programs year: 2010 ident: pcbi.1009240.ref082 doi: 10.4171/078 – volume: 101 start-page: 108101 issue: 10 year: 2008 ident: pcbi.1009240.ref006 article-title: Transient binding and dissipation in cross-linked actin networks publication-title: Physical review letters doi: 10.1103/PhysRevLett.101.108101 – volume: 5 start-page: 1796 issue: 9 year: 2009 ident: pcbi.1009240.ref083 article-title: Structural polymorphism in heterogeneous cytoskeletal networks publication-title: Soft Matter doi: 10.1039/b814555p – volume: 731 year: 2013 ident: pcbi.1009240.ref074 article-title: Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2013.402 – volume: 15 start-page: 87 issue: 1 year: 1982 ident: pcbi.1009240.ref051 article-title: Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules publication-title: Macromolecules doi: 10.1021/ma00229a017 – volume: 106 start-page: 526 issue: 3 year: 2014 ident: pcbi.1009240.ref094 article-title: Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks publication-title: Biophysical journal doi: 10.1016/j.bpj.2013.12.031 – volume: 49 start-page: 91 issue: 1 year: 2009 ident: pcbi.1009240.ref040 article-title: Computational analysis of a cross-linked actin-like network publication-title: Experimental Mechanics doi: 10.1007/s11340-007-9091-3 – volume: 20 start-page: 85 issue: 2 year: 2015 ident: pcbi.1009240.ref054 article-title: Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy publication-title: Genes to Cells doi: 10.1111/gtc.12204 – volume: 97 start-page: 6532 issue: 12 year: 2000 ident: pcbi.1009240.ref053 article-title: Regulation of the actin cycle in vivo by actin filament severing publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.100023397 |
SSID | ssj0035896 |
Score | 2.4252772 |
Snippet | Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009240 |
SubjectTerms | Actin Actin Cytoskeleton - chemistry Actin Cytoskeleton - metabolism Actins - chemistry Actins - metabolism Biology and Life Sciences Cell research Computational Biology Computer simulation Computer-generated environments Cytoskeleton Elastic Modulus Hydrodynamics Mechanical properties Methods Molecular Dynamics Simulation Physical Sciences Protein binding Protein-protein interactions Rheology Statistical models Structure Viscosity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJCReEN8UNmQQEi-EJbGT2LwNxDSQtgfGpL5Z_qTVSjI17UP_-93FbtUIob3wVtXntL672PeT735HyHshtAHQ5TLrOACUhsnMyIJlZcGD8IVuCo2FwucX9dkV_zGtpnutvjAnLNIDR8UdV8Fao2sDwEPyOuTS1NY4pFCBYJdVFndfOPO2YCruwawSQ2cubIqTNYxPU9Eca4rjZKNPN9bMMUcAAEg-OpQG7v6_d-i9I2qcPrl3Hp0-Ig9TIElP4gIek3u-fULux9aSm6fk-nL-J3Xm6mkXqIud5_VisaHDn8jw6tY7ioUNLW1jNnj_mZ53oPnhIR_pcubTJ906Ots42G3jcyjSTCxjUUT_jFydfvv19SxLjRUyW-dylRXWBi95yR2DgKEUWHyawyllS1trXvtCGDBR48smeGcCUnwB7pLeiqKWxnD2nBy0XetfEhpcCA6vFmEyzzXEn1J60wgDcSH8mJkQttWssol1HJtfLNRwldYA-oj6UmgPlewxIdlu1k1k3bhD_gsabSeLnNnDF-BJKnmSusuTJuQdmlwhK0aLaTe_9brv1ffLC3VSC4jrJC_EP4V-joQ-JKHQwWKtTqUOoDJk2xpJHo4k4d22o-G3W_dTOIQJca3v1r0CGApIryzzckJeRHfcrZ4BCIUwDmY3I0cdqWc80s5nA7W4APwoWfXqf-jzNXlQYgIQ5v7Uh-RgtVz7I4jgVubN8LLeAuKsRcI priority: 102 providerName: Directory of Open Access Journals |
Title | Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34871298 https://www.proquest.com/docview/2607582202 https://pubmed.ncbi.nlm.nih.gov/PMC8675935 https://doaj.org/article/5fccba6b407946f09b6cbd263530635c |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJtBeEJ-jMKqAkHghUz7c2EZCqIWVgdQKbVTqmxV_rRUlGU0r0f-eu8StFsGExEtb1Wen8dm5-9V39yPkFee5AtBlQm0oABSWilCJOA2TmDpu45zFOSYKj8bZ2YR-mfame2TL2eonsPortEM-qclycfLr5-Y9bPh3NWsDi7edTq60muOpP0AKAPEHYJsYkjmM6O5cIe3xmrELyXJCltKpT6a7aZRDcicFjx5sIm_Zrbq8_58P8WtWrB1hec1kDe-Ru97XDPrN4rhP9mzxgNxu2Cc3D8n3i_kPT95VBaULTENOny8Wm6D-ESGe7loTYO5DERRNwHj1NhiVoJx6kDfBcmb9p7wwwWxj4IHcjBNgJYplkzdRPSKT4em3D2eh514IdRaJVRhr7aygCTUp-BQJx_zUCAyZTnSW08zGXIEWmU2Ys0Y5rAIG0ExYzeNMKEXTx2S_KAv7hATOOGfw9BE60ygHF1UIqxhX4DrCxVSHpNuZldoXJkd-jIWsT9sYAJRmviSqRnrVdEi463XVFOb4h_wAlbaTxbLa9Rfl8lL6XSp7TmuVZwpQrqCZi4TKtDJYrweQVdrTHfISVS6xcEaBkTmX-bqq5OeLsexnHFw_QWN-o9B5S-i1F3Il3KzOfTYETBkW5GpJHrckYfvrVvOL7fKT2IQxc4Ut15UEpApgMEmipEOOmuW4u_vtqu4Q1lqorelptxTzWV19nAPEFGnv6X_3fEYOEwwMwpig7Jjsr5Zr-xw8u5XqkltsyuCVDz91yUF_8HEwhPfB6fjrebf-t6Rbb-ffRCFWHA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulations+of+dynamically+cross-linked+actin+networks%3A+Morphology%2C+rheology%2C+and+hydrodynamic+interactions&rft.jtitle=PLoS+computational+biology&rft.au=Maxian%2C+Ondrej&rft.au=Pel%C3%A1ez%2C+Ra%C3%BAl+P.&rft.au=Mogilner%2C+Alex&rft.au=Donev%2C+Aleksandar&rft.date=2021-12-06&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009240&rft_id=info%3Apmid%2F34871298&rft.externalDocID=PMC8675935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |