Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes
• The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr. • The rootstocks studied were full sibs from a controlle...
Saved in:
Published in | The New phytologist Vol. 194; no. 2; pp. 416 - 429 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2012
New Phytologist Trust Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr. • The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. • Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. • Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. |
---|---|
AbstractList | Summary
•
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr.
•
The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis.
•
Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation.
•
Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
See also the Commentary by Jones The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3yr. See also the Commentary by Jones The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon x Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined delta C-13 values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr.• The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis.• Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation.• Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. |
Author | Lebon, Eric Ollat, Nathalie Brendel, Oliver Marguerit, Elisa Van Leeuwen, Cornelis |
Author_xml | – sequence: 1 fullname: Marguerit, Elisa – sequence: 2 fullname: Brendel, Oliver – sequence: 3 fullname: Lebon, Eric – sequence: 4 fullname: Van Leeuwen, Cornelis – sequence: 5 fullname: Ollat, Nathalie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22335501$$D View this record in MEDLINE/PubMed https://hal.science/hal-01267814$$DView record in HAL |
BookMark | eNqNkkFv0zAYhiM0xLrBXwBLXNghxY6dxD4waZoYRaoAAZO4WY79pXNJ42K7dP33OMvawy7UF8fO8762v-89y05610OWIYKnJI33yylhlcg5ofW0wKSYYoZLMb1_lk0OP06yCcYFzytW_TrNzkJYYoxFWRUvstOioLQsMZlk7rtzMUSnfyPt-uhdh1yLgrauR9GrPqytV3FYqd4gGwNSWnd2Ne5Fh7YqgkcGWqttRMrD3qcDg5odMrZtwUMf0QJ6CC-z563qArx6nM-z25uPP69n-fzrp8_XV_NcV1iIXFR1zblqBW4LoCDAGNCGadGAKQ0XplLc0KaFtiFMNJwJRVVTAQFSaGg4Pc8uRt871cm1Txf2O-mUlbOruRz2UtWqmhP2lyT23ciuvfuzgRDlygYNXad6cJsgiUijxOli_0dTxTHhVPAjUCw4wTVnCX37BF26je9TfWRRElrQWlCaqNeP1KZZgTm8at_MBFyOgPYuBA-tTC15aFTqpO3SiXJIj1zKISRyCIkc0iMf0iPvkwF_YrA_4wjph1G6tR3sjtbJL99mw1fS56N-mcLoD_oetuu7XXSdW9hUFiKYLCQjVeLfjHyrnFQLb4O8_ZGcWQp5agKh9B-Ji_Wx |
CitedBy_id | crossref_primary_10_3389_fmicb_2015_01372 crossref_primary_10_3389_fpls_2022_1015317 crossref_primary_10_1016_j_scienta_2017_10_014 crossref_primary_10_1093_jxb_erw221 crossref_primary_10_1016_j_scienta_2024_113538 crossref_primary_10_1093_jxb_ers385 crossref_primary_10_1093_jxb_eraf044 crossref_primary_10_17660_ActaHortic_2016_1136_2 crossref_primary_10_1186_s12870_023_04109_x crossref_primary_10_1111_ajgw_12463 crossref_primary_10_1093_hr_uhae291 crossref_primary_10_1186_s12870_016_0778_4 crossref_primary_10_3389_fpls_2021_634237 crossref_primary_10_1016_j_agwat_2015_09_023 crossref_primary_10_1111_pce_12497 crossref_primary_10_17660_ActaHortic_2017_1188_28 crossref_primary_10_17660_ActaHortic_2017_1188_27 crossref_primary_10_17221_152_2022_HORTSCI crossref_primary_10_1111_nph_13301 crossref_primary_10_1186_1471_2229_12_173 crossref_primary_10_1186_s12870_016_0804_6 crossref_primary_10_1007_s40626_016_0070_x crossref_primary_10_1016_j_scienta_2023_111984 crossref_primary_10_1007_s13593_014_0280_z crossref_primary_10_3389_fpls_2014_00253 crossref_primary_10_1016_j_agwat_2018_07_012 crossref_primary_10_1093_g3journal_jkab248 crossref_primary_10_3390_agronomy10050708 crossref_primary_10_1093_jxb_erv027 crossref_primary_10_1108_17568691211277746 crossref_primary_10_3389_fpls_2022_1083374 crossref_primary_10_17660_ActaHortic_2024_1391_17 crossref_primary_10_1186_1471_2229_13_147 crossref_primary_10_1093_jxb_eru215 crossref_primary_10_34133_plantphenomics_0280 crossref_primary_10_1007_s00425_019_03111_8 crossref_primary_10_1515_opag_2022_0258 crossref_primary_10_3390_agronomy9090514 crossref_primary_10_1111_ajgw_12071 crossref_primary_10_3390_rs14061519 crossref_primary_10_3389_fpls_2021_693344 crossref_primary_10_3389_fpls_2016_01994 crossref_primary_10_17660_ActaHortic_2019_1248_68 crossref_primary_10_3390_genes11020228 crossref_primary_10_1016_j_plantsci_2016_06_015 crossref_primary_10_3389_fpls_2019_00427 crossref_primary_10_1016_j_envexpbot_2013_04_001 crossref_primary_10_1093_jxb_erv355 crossref_primary_10_17660_ActaHortic_2024_1390_12 crossref_primary_10_1007_s00468_013_0909_6 crossref_primary_10_1016_j_scienta_2016_02_032 crossref_primary_10_1155_2024_5655916 crossref_primary_10_3389_fpls_2021_633846 crossref_primary_10_1038_hortres_2016_56 crossref_primary_10_1017_jwe_2015_16 crossref_primary_10_3390_horticulturae6040088 crossref_primary_10_1016_j_agwat_2024_108669 crossref_primary_10_3389_fpls_2023_1162506 crossref_primary_10_3390_plants12051080 crossref_primary_10_1016_j_scienta_2019_109031 crossref_primary_10_1186_s12864_019_6124_0 crossref_primary_10_1007_s00122_017_3046_6 crossref_primary_10_1016_j_envexpbot_2021_104437 crossref_primary_10_3389_fpls_2019_01522 crossref_primary_10_17660_ActaHortic_2019_1248_31 crossref_primary_10_1016_j_jplph_2018_04_013 crossref_primary_10_1017_jwe_2015_21 crossref_primary_10_1017_jwe_2016_3 crossref_primary_10_17660_ActaHortic_2020_1273_58 crossref_primary_10_3390_agronomy11020289 crossref_primary_10_1111_ajgw_12054 crossref_primary_10_1007_s40626_019_00162_w crossref_primary_10_3390_rs16142626 crossref_primary_10_3390_plants10061197 crossref_primary_10_1016_j_eja_2016_04_004 crossref_primary_10_1007_s40626_016_0057_7 crossref_primary_10_1093_jxb_eraa449 crossref_primary_10_1093_jxb_erab537 crossref_primary_10_1093_aob_mcx141 crossref_primary_10_1007_s11104_024_07185_6 crossref_primary_10_1016_j_hpj_2021_06_001 crossref_primary_10_1111_ppl_12530 crossref_primary_10_3390_horticulturae10050490 crossref_primary_10_1016_j_scienta_2022_111157 crossref_primary_10_1093_jxb_eraf006 crossref_primary_10_1016_j_scienta_2016_11_012 crossref_primary_10_1051_bioconf_20213401002 crossref_primary_10_3390_plants10112236 crossref_primary_10_1186_s12870_015_0588_0 crossref_primary_10_1007_s10681_022_03054_4 crossref_primary_10_1111_j_1469_8137_2012_04110_x crossref_primary_10_3923_jas_2019_837_847 crossref_primary_10_2139_ssrn_4010318 crossref_primary_10_1186_s12870_018_1308_3 crossref_primary_10_1016_j_fcr_2018_09_014 crossref_primary_10_1016_j_agwat_2023_108560 crossref_primary_10_1093_plphys_kiac420 crossref_primary_10_1186_s12864_020_06795_5 crossref_primary_10_1007_s00709_019_01357_3 crossref_primary_10_1093_jxb_erac487 crossref_primary_10_1051_e3sconf_202125402022 crossref_primary_10_1038_srep13094 crossref_primary_10_1111_ajgw_12553 crossref_primary_10_1186_s12870_022_04010_z crossref_primary_10_1016_j_plaphy_2018_03_034 crossref_primary_10_1038_s41477_020_0684_5 crossref_primary_10_32615_ps_2019_109 crossref_primary_10_1071_FP18110 crossref_primary_10_3389_fenvs_2020_00110 crossref_primary_10_3389_fpls_2016_00069 crossref_primary_10_1038_srep20212 crossref_primary_10_1093_hr_uhae128 crossref_primary_10_1111_1462_2920_12439 crossref_primary_10_3390_agronomy11010075 crossref_primary_10_1016_j_plantsci_2016_03_001 crossref_primary_10_1038_s43017_024_00521_5 crossref_primary_10_1093_jxb_erv274 crossref_primary_10_1093_jxb_ery422 crossref_primary_10_1093_jxb_eru228 crossref_primary_10_1093_jxb_eru226 crossref_primary_10_3389_fpls_2017_00654 crossref_primary_10_1016_j_scienta_2017_02_034 crossref_primary_10_1051_ctv_20203502133 crossref_primary_10_1186_s12870_020_02739_z crossref_primary_10_1016_j_tplants_2015_11_008 crossref_primary_10_46653_jhst21044128 crossref_primary_10_3390_plants13233427 crossref_primary_10_1007_s00122_023_04472_1 crossref_primary_10_3390_agronomy14091959 crossref_primary_10_1007_s12010_014_0888_0 crossref_primary_10_1007_s00122_012_1993_5 crossref_primary_10_1016_j_agwat_2019_105897 crossref_primary_10_1007_s00299_021_02744_y crossref_primary_10_1016_j_heliyon_2020_e05708 crossref_primary_10_1016_j_scienta_2013_07_041 crossref_primary_10_17660_ActaHortic_2022_1346_85 crossref_primary_10_3390_agronomy10050680 crossref_primary_10_3390_horticulturae7120542 crossref_primary_10_1016_j_atech_2023_100192 crossref_primary_10_1155_2024_7586202 crossref_primary_10_1016_j_scienta_2016_03_040 crossref_primary_10_1093_treephys_tpx153 crossref_primary_10_3389_fpls_2022_866053 crossref_primary_10_3390_molecules27072065 |
Cites_doi | 10.1038/nature03835 10.1007/s10681-005-9061-8 10.1007/s00122-010-1294-9 10.1104/pp.013839 10.1016/S1360-1385(97)82562-9 10.1105/tpc.010362 10.1016/S0378-4290(97)00111-1 10.1101/gad.852200 10.1105/tpc.105.033043 10.1534/genetics.109.103929 10.1046/j.1365-313X.2001.2641048.x 10.5344/ajev.2005.56.1.68 10.1146/annurev.pp.24.060173.002511 10.1093/jxb/erh277 10.1002/j.1460-2075.1996.tb00589.x 10.1104/pp.108.118117 10.1071/FP02222 10.1111/j.1365-313X.2004.02255.x 10.1007/s11032-007-9153-3 10.1016/S0065-2660(08)60048-6 10.1016/j.fcr.2008.06.010 10.1111/j.1365-3040.2006.01629.x 10.1071/PP9860329 10.1071/FPv37n2_FO 10.1016/S0169-5347(00)89061-8 10.1071/FP02076 10.1046/j.1365-313x.2000.00812.x 10.1038/nrg1206 10.1007/s00122-009-0979-4 10.1093/jxb/erh200 10.2135/cropsci1996.0011183X003600020020x 10.1016/j.eja.2008.02.001 10.1046/j.1365-294X.2003.01833.x 10.1038/nrg1804 10.1093/genetics/136.4.1447 10.1016/S0167-7799(02)02058-9 10.1111/j.1469-8137.2005.01543.x 10.1007/s11032-009-9258-y 10.1104/pp.106.093161 10.1016/j.pbi.2010.01.001 10.1111/j.1365-313X.2006.02864.x 10.1007/s11295-007-0107-z 10.5344/ajev.1985.36.3.195 10.1126/science.218.4571.443 10.1073/pnas.0306778101 10.1016/0016-7037(57)90024-8 10.1016/S0092-8674(01)00460-3 10.21273/JASHS.134.2.261 10.1126/science.8197457 10.1093/jexbot/53.371.989 10.1046/j.1365-2540.1999.00617.x 10.1016/0378-4290(96)00014-7 10.1111/j.1469-8137.2008.02592.x 10.1111/j.1744-7348.1987.tb03230.x 10.1111/j.1755-0238.2009.00073.x 10.1111/j.1755-0238.2009.00057.x 10.1038/nature06148 10.1038/hdy.1996.23 10.1007/s00122-004-1789-3 10.1007/s10681-009-0091-5 10.1071/FP09139 10.1016/j.tplants.2006.03.006 10.1017/S0016672396002558 10.1105/tpc.007906 10.1071/FP03238 10.1093/jxb/erq247 10.1093/jxb/erq152 10.1093/genetics/148.4.2015 10.1073/pnas.0503960102 10.1111/j.1365-3040.2010.02181.x 10.1534/genetics.109.105429 10.1104/pp.108.128645 10.1073/pnas.0609929104 10.1007/s00425-007-0515-1 10.1111/j.1365-3040.2006.01611.x 10.1046/j.1365-3040.2002.00872.x 10.1071/PP9840539 10.1007/BF00220855 10.1007/s00122-004-1866-7 10.1046/j.1365-2540.1998.00369.x 10.1104/pp.105.1.9 |
ContentType | Journal Article |
Copyright | 2012 New Phytologist Trust 2012 INRA. New Phytologist © 2012 New Phytologist Trust 2012 INRA. New Phytologist © 2012 New Phytologist Trust. Copyright Wiley Subscription Services, Inc. Apr 2012 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2012 New Phytologist Trust – notice: 2012 INRA. New Phytologist © 2012 New Phytologist Trust – notice: 2012 INRA. New Phytologist © 2012 New Phytologist Trust. – notice: Copyright Wiley Subscription Services, Inc. Apr 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QH 7UA H96 7S9 L.6 1XC |
DOI | 10.1111/j.1469-8137.2012.04059.x |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Aqualine Water Resources Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 429 |
ExternalDocumentID | oai_HAL_hal_01267814v1 22335501 10_1111_j_1469_8137_2012_04059_x NPH4059 newphytologist.194.2.416 US201400010213 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B AAHBH AAHQN AAMMB AAMNL AAYCA ABSQW ABVKB ABXSQ ACHIC AEFGJ AEYWJ AFWVQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM HGLYW IPSME OIG ABGDZ ADXHL AGHNM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QH 7UA H96 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c6099-967788af90f2e3e9eddecd4c9bed5d89d6a8d3bfefb149b849a3ab6e1e12ceb83 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jun 13 07:01:51 EDT 2025 Fri Jul 11 18:34:35 EDT 2025 Thu Jul 10 17:39:12 EDT 2025 Thu Jul 10 18:56:10 EDT 2025 Fri Jul 25 09:43:45 EDT 2025 Thu Apr 03 07:06:41 EDT 2025 Tue Jul 01 03:09:09 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 Wed Aug 20 07:27:50 EDT 2025 Thu Jul 03 22:56:13 EDT 2025 Wed Dec 27 19:16:13 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | transpiration grapevine response curves carbon isotope discrimination rootstock water deficit quantitative trait locus (QTL) multienvironment |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012 INRA. New Phytologist © 2012 New Phytologist Trust. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6099-967788af90f2e3e9eddecd4c9bed5d89d6a8d3bfefb149b849a3ab6e1e12ceb83 |
Notes | http://dx.doi.org/10.1111/j.1469-8137.2012.04059.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3252-0273 0000-0002-9428-0167 0000-0002-6182-9686 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2012.04059.x |
PMID | 22335501 |
PQID | 2513237933 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01267814v1 proquest_miscellaneous_1999950609 proquest_miscellaneous_1028018398 proquest_miscellaneous_1009810784 proquest_journals_2513237933 pubmed_primary_22335501 crossref_citationtrail_10_1111_j_1469_8137_2012_04059_x crossref_primary_10_1111_j_1469_8137_2012_04059_x wiley_primary_10_1111_j_1469_8137_2012_04059_x_NPH4059 jstor_primary_newphytologist_194_2_416 fao_agris_US201400010213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd New Phytologist Trust Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2007; 104 2002; 14 2010; 16 1965; 13 2007; 226 1994; 136 2009; 43 2010; 13 2002; 53 2007; 143 2011; 62 2008; 109 1998; 81 1997; 2 1971 2008; 147 1996; 142 2008; 4 2007; 30 1999; 83 1996; 36 2009; 118 1976; 26 1996; 76 2010; 61 2001; 106 1957; 12 2003; 12 1994; 264 2004; 31 1994; 105 1982; 218 1990 2000; 14 2005; 102 1984; 11 2008; 28 2003; 4 2008; 22 1998; 57 2009; 23 2004; 101 2010; 33 2010; 37 2007; 449 2004; 40 1995; 91 2005; 110 2006; 12 2000; 23 2006; 11 1997; 69 1986; 13 2005; 436 1995; 10 2010; 121 2006; 7 1990; XVII 2009; 134 2006 2001; 26 2004; 109 2003; 30 1996; 15 2003; 131 2004; 55 2008; 180 2002; 25 2006; 40 2002; 20 1973; 24 2005; 168 2006; 48 2010; 174 2009; 183 1998; 148 2006; 149 1996; 47 2005; 17 2005; 56 2009; 149 1985; 36 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 Van Leeuwen C (e_1_2_6_83_1) 2009; 43 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Samson C (e_1_2_6_72_1) 1971 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 Gallais A (e_1_2_6_30_1) 1990 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 Soar CJ (e_1_2_6_76_1) 2006; 12 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_90_1 De Herralde F (e_1_2_6_23_1) 2006; 40 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 Carbonneau A (e_1_2_6_12_1) 1976; 26 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Bindi M (e_1_2_6_5_1) 2005; 56 Carbonneau A (e_1_2_6_13_1) 1985; 36 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Peterlunger E (e_1_2_6_62_1) 1990 Parelle J (e_1_2_6_60_1) 2006 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 22428698 - New Phytol. 2012 Apr;194(2):301-3 |
References_xml | – volume: 11 start-page: 539 year: 1984 end-page: 552 article-title: Isotopic composition of plant carbon correlates with water‐use efficiency of wheat genotypes publication-title: Functional Plant Biology – volume: 183 start-page: 1127 year: 2009 end-page: 1139 article-title: Quantitative genetic bases of anthocyanin variation in grape ( L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study publication-title: Genetics – volume: 55 start-page: 2461 year: 2004 end-page: 2472 article-title: Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters publication-title: Journal of Experimental of Botany – volume: 13 start-page: 193 year: 2010 end-page: 205 article-title: Detection and use of QTL for complex traits in multiple environments publication-title: Current Opinion in Plant Biology – volume: 4 start-page: 263 year: 2008 end-page: 278 article-title: Quantitative trait loci controlling water use efficiency and related traits in L publication-title: Tree Genetics & Genomes – volume: 33 start-page: 1419 year: 2010 end-page: 1438 article-title: An overview of models of stomatal conductance at the leaf level publication-title: Plant, Cell & Environment – volume: 56 start-page: 68 year: 2005 end-page: 72 article-title: Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevine grown in pots publication-title: American Journal of Enology and Viticulture – volume: 26 start-page: 327 year: 1976 end-page: 343 article-title: Principes et méthodes de mesure de la surface foliaire. Essai de caractérisation des types de feuilles dans le genre Vitis publication-title: Annales de l’Amélioration des Plantes – volume: 40 start-page: 133 year: 2006 end-page: 139 article-title: Effects of rootstock and irrigation regime on hydraulic architecture of L. cv. Tempranillo publication-title: Journal International Des Sciences De La Vigne Et Du Vin – volume: 12 start-page: 1137 year: 2003 end-page: 1151 article-title: Genetics of drought adaptation in : I. Pleiotropy contributes to genetic correlations among ecological traits publication-title: Molecular Ecology – start-page: 1 year: 1971 end-page: 200 – volume: 23 start-page: 591 year: 2009 end-page: 606 article-title: Genetic engineering of chickpea ( L.) with the gene for osmoregulation with implications on drought tolerance publication-title: Molecular Breeding – volume: 30 start-page: 135 year: 2007 end-page: 146 article-title: Leaf growth rate per unit thermal time follows QTL‐dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions publication-title: Plant, Cell & Environment – volume: 48 start-page: 321 year: 2006 end-page: 341 article-title: The genetics and genomics of the drought response in publication-title: The Plant Journal – year: 1990 – volume: 36 start-page: 331 year: 1996 end-page: 335 article-title: Field pea transpiration and leaf growth in response to soil water deficits publication-title: Crop Science – volume: 37 start-page: iii year: 2010 end-page: vi article-title: Drought effects and water use efficiency: improving crop production in dry environments publication-title: Functional Plant Biology – volume: 13 start-page: 115 year: 1965 end-page: 155 article-title: Evolutionary significance of phenotypic plasticity in plants publication-title: Advances in genetics – volume: 142 start-page: 285 year: 1996 end-page: 294 article-title: Permutation tests for multiple loci affecting a quantitative character publication-title: Genetics – volume: 2 start-page: 48 year: 1997 end-page: 54 article-title: Plant responses to water deficit publication-title: Trends in Plant Science – volume: 147 start-page: 469 year: 2008 end-page: 486 article-title: Quantitative trait loci and crop performance under abiotic stress: where do we stand? publication-title: Plant Physiology – volume: 104 start-page: 4724 year: 2007 end-page: 4729 article-title: A gene essential for hydrotropism in roots publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: 229 year: 2006 end-page: 237 article-title: Functional mapping – how to map and study the genetic architecture of dynamic complex traits publication-title: Nature Reviews Genetics – volume: 81 start-page: 144 year: 1998 end-page: 155 article-title: Reaction norm functions and QTL‐environment interactions for flowering time in publication-title: Heredity – volume: 16 start-page: 106 issue: Suppl 1 year: 2010 end-page: 121 article-title: Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement publication-title: Australian Journal of Grape and Wine Research – volume: 15 start-page: 2331 year: 1996 end-page: 2342 article-title: Molecular identification of zeaxanthin epoxidase of , a gene involved in abscissic acid biosynthesis and corresponding the ABA locus of publication-title: The EMBO Journal – volume: 4 start-page: 911 year: 2003 end-page: 916 article-title: The nature and identification of quantitative trait loci: a community’s view publication-title: Nature Reviews Genetics – volume: 36 start-page: 195 year: 1985 end-page: 198 article-title: The early selection of grapevine rootstocks for resistance to drought conditions publication-title: American Journal of Enology and Viticulture – volume: 17 start-page: 2384 year: 2005 end-page: 2396 article-title: Role of an AP2/EREBP‐type transcriptional repressor in abscisic acid and drought stress responses publication-title: The Plant Cell – volume: 180 start-page: 642 year: 2008 end-page: 651 article-title: An abscisic acid‐related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought publication-title: New Phytologist – volume: 20 start-page: 472 year: 2002 end-page: 478 article-title: Genetically tailored grapevines for the wine industry publication-title: Trends in Biotechnology – volume: 53 start-page: 989 year: 2002 end-page: 1004 article-title: Linking drought‐resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses publication-title: Journal Experimental of Botany – volume: 61 start-page: 3211 year: 2010 end-page: 3222 article-title: Genetic and genomic tools to improve drought tolerance in wheat publication-title: Journal Experimental of Botany – volume: 23 start-page: 481 year: 2000 end-page: 488 article-title: Abscisic aldehyde oxidase in leaves of publication-title: The Plant Journal – volume: 436 start-page: 866 year: 2005 end-page: 870 article-title: The ERECTA gene regulates plant transpiration efficiency in publication-title: Nature – volume: XVII start-page: 43 year: 1990 end-page: 46 article-title: Conducibilità idrica radicale di portinnesti di vite publication-title: Vignevini – volume: 76 start-page: 156 year: 1996 end-page: 165 article-title: Power of tests for quantitative trait loci detection using full‐sib families in different schemes publication-title: Heredity – volume: 83 start-page: 363 year: 1999 end-page: 372 article-title: Transgressive segregation, adaptation and speciation publication-title: Heredity – volume: 91 start-page: 33 year: 1995 end-page: 37 article-title: Genotype‐by‐environment interaction in genetic mapping of multiple quantitative trait loci publication-title: Theoretical and Applied Genetics – volume: 43 start-page: 121 year: 2009 end-page: 134 article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? publication-title: Journal International des Sciences de la Vigne et du Vin – volume: 109 start-page: 1648 year: 2004 end-page: 1659 article-title: Detection of quantitative trait loci controlling bud burst and height growth in L publication-title: Theoretical and Applied Genetics – volume: 47 start-page: 253 year: 1996 end-page: 266 article-title: Soil‐water thresholds for the responses of leaf expansion and gas exchange : a review publication-title: Field Crops Research – volume: 264 start-page: 1452 year: 1994 end-page: 1455 article-title: A protein phosphatase 2C involved in ABA signal transduction in publication-title: Science – volume: 143 start-page: 19 year: 2007 end-page: 27 article-title: The control of transpiration. Insights from publication-title: Plant Physiology – volume: 134 start-page: 261 year: 2009 end-page: 272 article-title: Mapping of photoperiod‐induced growth cessation in the wild grape publication-title: Journal of the American Society for Horticultutral Science – volume: 449 start-page: 463 year: 2007 end-page: 467 article-title: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla publication-title: Nature – volume: 121 start-page: 105 year: 2010 end-page: 115 article-title: Genetic analysis of physiological components of salt tolerance conferred by rootstocks. What is the rootstock doing for the scion? publication-title: Theoretical and Applied Genetics – volume: 105 start-page: 9 year: 1994 end-page: 13 article-title: Aquaporins: the molecular basis of facilitated water movement through living plant cells? publication-title: Plant Physiology – volume: 136 start-page: 1447 year: 1994 end-page: 1455 article-title: High resolution of quantitative traits into multiple loci via interval mapping publication-title: Genetics – volume: 226 start-page: 671 year: 2007 end-page: 681 article-title: Aquaporin expression in response to different water stress intensities and recovery in Richter‐110 ( sp.): relationship with ecophysiological status publication-title: Planta – volume: 174 start-page: 165 year: 2010 end-page: 177 article-title: Meta‐analysis of constitutive and adaptive QTL for drought tolerance in maize publication-title: Euphytica – volume: 14 start-page: 3024 year: 2000 end-page: 3036 article-title: NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development publication-title: Genes & Development – volume: 183 start-page: 1507 year: 2009 end-page: 1523 article-title: Simulating the yield impacts of organ‐level quantitative trait loci associated with drought response in maize: a “gene‐to‐phenotype” modeling approach publication-title: Genetics – volume: 149 start-page: 445 year: 2009 end-page: 460 article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine publication-title: Plant Physiology – volume: 25 start-page: 945 year: 2002 end-page: 953 article-title: Genetic parameters and QTL analysis of δ C and ring width in maritime pine publication-title: Plant, Cell & Environment – volume: 106 start-page: 477 year: 2001 end-page: 487 article-title: An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in publication-title: Cell – volume: 11 start-page: 213 year: 2006 end-page: 216 article-title: Believe it or not, QTLs are accurate! publication-title: Trends in Plant Science – volume: 118 start-page: 1261 year: 2009 end-page: 1278 article-title: Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine publication-title: Theoretical and Applied Genetics – volume: 22 start-page: 25 year: 2008 end-page: 38 article-title: Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat region publication-title: Molecular Breeding – volume: 57 start-page: 29 year: 1998 end-page: 43 article-title: Relationship between plant and soil water status in five field‐grown cotton ( L.) cultivars publication-title: Field Crops Research – volume: 69 start-page: 69 year: 1997 end-page: 74 article-title: Comparison of methods for regression interval mapping in QTL analysis with non‐normal traits publication-title: Genetic Research – volume: 12 start-page: 133 year: 1957 end-page: 149 article-title: Isotopic standards for carbon and oxygen and correction factors for mass‐spectrometric analysis of carbon dioxide publication-title: Geochimica et Cosmochimica Acta – volume: 16 start-page: 33 issue: Suppl 1 year: 2010 end-page: 46 article-title: Grapevine genetics after the genome sequence: challenges and limitations publication-title: Australian Journal of Grape and Wine Research – volume: 101 start-page: 3281 year: 2004 end-page: 3285 article-title: FRIGIDA‐related genes are required for the winter‐annual habit in publication-title: PNAS – volume: 131 start-page: 664 year: 2003 end-page: 675 article-title: Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit publication-title: Plant Physiology – volume: 14 start-page: 343 year: 2002 end-page: 357 article-title: basic leucine zipper proteins that mediate stress‐responsive abscisic acid signaling publication-title: The Plant Cell – volume: 110 start-page: 537 year: 2005 end-page: 549 article-title: QTL analyses of drought tolerance and growth for × hybrid in contrasting water regimes publication-title: Theoretical and Applied Genetics – volume: 12 start-page: 82 year: 2006 end-page: 96 article-title: Scion photosynthesis and leaf gas exchange in L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA publication-title: Australian Journal of Agricultural Research – volume: 218 start-page: 443 year: 1982 end-page: 448 article-title: Plant productivity and environment publication-title: Science – volume: 24 start-page: 519 year: 1973 end-page: 570 article-title: Plant responses to water stress publication-title: Annual Review Plant Physiology – volume: 62 start-page: 99 year: 2011 end-page: 109 article-title: Seasonal changes of whole root system conductance by a drought‐tolerant grape root system publication-title: Journal Experimental of Botany – volume: 13 start-page: 329 year: 1986 end-page: 341 article-title: Influence of soil water supply on the plant water balance of four tropical grain legumes publication-title: Australian Journal Plant Physiology – volume: 109 start-page: 1 year: 2008 end-page: 23 article-title: Phenotypic and genotypic analysis of drought‐resistance traits for development of rice cultivars adapted to rainfed environments publication-title: Field Crops Research – volume: 28 start-page: 646 year: 2008 end-page: 654 article-title: Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes publication-title: European Journal of Agronomy – year: 2006 – volume: 10 start-page: 212 year: 1995 end-page: 217 article-title: Adaptive phenotypic plasticity: consensus and controversy publication-title: Trends in Ecology & Evolution – volume: 14 start-page: 3089 year: 2002 end-page: 3099 article-title: OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production publication-title: The Plant Cell – volume: 30 start-page: 239 year: 2003 end-page: 264 article-title: Understanding plant responses to drought : from genes to the whole plant publication-title: Functional Plant Biology – volume: 30 start-page: 699 year: 2003 end-page: 710 article-title: Modeling the seasonal dynamics of the soil water balance of vineyards publication-title: Functional Plant Biology – volume: 37 start-page: 117 year: 2010 end-page: 127 article-title: Adaptative phenotypic plasticity and plant water use publication-title: Functional Plant Biology – volume: 31 start-page: 659 year: 2004 end-page: 669 article-title: Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of cv. Shiraz: molecular and physiological studies investigating their sources publication-title: Functional Plant Biology – volume: 40 start-page: 813 year: 2004 end-page: 825 article-title: ACC synthase expression regulates leaf performance and drought tolerance in maize publication-title: The Plant Journal – volume: 26 start-page: 461 year: 2001 end-page: 470 article-title: Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in publication-title: The Plant Journal – volume: 168 start-page: 275 year: 2005 end-page: 292 article-title: The control of stomata by water balance publication-title: New Phytologist – volume: 148 start-page: 2015 year: 1998 end-page: 2028 article-title: Approximate analysis of QTL‐environment interaction with no limits on the number of environments publication-title: Genetics – volume: 102 start-page: 9966 year: 2005 end-page: 9971 article-title: HOS10 encodes an R2R3‐type MYB transcription factor essential for cold acclimation in plants publication-title: PNAS – volume: 55 start-page: 2447 year: 2004 end-page: 2460 article-title: Breeding for high water use efficiency publication-title: Journal of Experimental of Botany – volume: 149 start-page: 133 year: 2006 end-page: 144 article-title: A genetic map of Welschriesling × Sirius for the identification of magnesium‐deficiency by QTL analysis publication-title: Euphytica – volume: 30 start-page: 422 year: 2007 end-page: 434 article-title: Quantitative trait loci of tolerance to waterlogging in a European oak : physiological relevance and temporal effect patterns publication-title: Plant, Cell & Environment – ident: e_1_2_6_51_1 doi: 10.1038/nature03835 – ident: e_1_2_6_47_1 doi: 10.1007/s10681-005-9061-8 – ident: e_1_2_6_3_1 doi: 10.1007/s00122-010-1294-9 – ident: e_1_2_6_66_1 doi: 10.1104/pp.013839 – ident: e_1_2_6_8_1 doi: 10.1016/S1360-1385(97)82562-9 – ident: e_1_2_6_40_1 doi: 10.1105/tpc.010362 – ident: e_1_2_6_43_1 doi: 10.1016/S0378-4290(97)00111-1 – ident: e_1_2_6_88_1 doi: 10.1101/gad.852200 – volume-title: Réponses de jeunes chênes de deux espèces (Quercus robur L., Q. petrea [Matt] Liebl.) à l’hypoxie racinaire year: 2006 ident: e_1_2_6_60_1 – ident: e_1_2_6_78_1 doi: 10.1105/tpc.105.033043 – ident: e_1_2_6_29_1 doi: 10.1534/genetics.109.103929 – volume-title: Théorie de la sélection en amélioration des plantes year: 1990 ident: e_1_2_6_30_1 – ident: e_1_2_6_81_1 doi: 10.1046/j.1365-313X.2001.2641048.x – volume: 56 start-page: 68 year: 2005 ident: e_1_2_6_5_1 article-title: Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevine grown in pots publication-title: American Journal of Enology and Viticulture doi: 10.5344/ajev.2005.56.1.68 – ident: e_1_2_6_34_1 doi: 10.1146/annurev.pp.24.060173.002511 – ident: e_1_2_6_20_1 doi: 10.1093/jxb/erh277 – ident: e_1_2_6_49_1 doi: 10.1002/j.1460-2075.1996.tb00589.x – ident: e_1_2_6_19_1 doi: 10.1104/pp.108.118117 – ident: e_1_2_6_44_1 doi: 10.1071/FP02222 – volume: 26 start-page: 327 year: 1976 ident: e_1_2_6_12_1 article-title: Principes et méthodes de mesure de la surface foliaire. Essai de caractérisation des types de feuilles dans le genre Vitis publication-title: Annales de l’Amélioration des Plantes – ident: e_1_2_6_89_1 doi: 10.1111/j.1365-313X.2004.02255.x – ident: e_1_2_6_24_1 doi: 10.1007/s11032-007-9153-3 – ident: e_1_2_6_7_1 doi: 10.1016/S0065-2660(08)60048-6 – ident: e_1_2_6_39_1 doi: 10.1016/j.fcr.2008.06.010 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-3040.2006.01629.x – ident: e_1_2_6_75_1 doi: 10.1071/PP9860329 – ident: e_1_2_6_15_1 doi: 10.1071/FPv37n2_FO – ident: e_1_2_6_85_1 doi: 10.1016/S0169-5347(00)89061-8 – ident: e_1_2_6_16_1 doi: 10.1071/FP02076 – ident: e_1_2_6_74_1 doi: 10.1046/j.1365-313x.2000.00812.x – ident: e_1_2_6_53_1 doi: 10.1038/nrg1206 – ident: e_1_2_6_48_1 doi: 10.1007/s00122-009-0979-4 – ident: e_1_2_6_67_1 doi: 10.1093/jxb/erh200 – ident: e_1_2_6_45_1 doi: 10.2135/cropsci1996.0011183X003600020020x – ident: e_1_2_6_14_1 doi: 10.1016/j.eja.2008.02.001 – ident: e_1_2_6_52_1 doi: 10.1046/j.1365-294X.2003.01833.x – ident: e_1_2_6_87_1 doi: 10.1038/nrg1804 – ident: e_1_2_6_37_1 doi: 10.1093/genetics/136.4.1447 – ident: e_1_2_6_86_1 doi: 10.1016/S0167-7799(02)02058-9 – ident: e_1_2_6_11_1 doi: 10.1111/j.1469-8137.2005.01543.x – ident: e_1_2_6_4_1 doi: 10.1007/s11032-009-9258-y – ident: e_1_2_6_59_1 doi: 10.1104/pp.106.093161 – ident: e_1_2_6_82_1 doi: 10.1016/j.pbi.2010.01.001 – ident: e_1_2_6_80_1 doi: 10.1111/j.1365-313X.2006.02864.x – ident: e_1_2_6_9_1 doi: 10.1007/s11295-007-0107-z – volume: 36 start-page: 195 year: 1985 ident: e_1_2_6_13_1 article-title: The early selection of grapevine rootstocks for resistance to drought conditions publication-title: American Journal of Enology and Viticulture doi: 10.5344/ajev.1985.36.3.195 – ident: e_1_2_6_6_1 doi: 10.1126/science.218.4571.443 – ident: e_1_2_6_55_1 doi: 10.1073/pnas.0306778101 – ident: e_1_2_6_21_1 doi: 10.1016/0016-7037(57)90024-8 – ident: e_1_2_6_35_1 doi: 10.1016/S0092-8674(01)00460-3 – ident: e_1_2_6_32_1 doi: 10.21273/JASHS.134.2.261 – ident: e_1_2_6_54_1 doi: 10.1126/science.8197457 – ident: e_1_2_6_64_1 doi: 10.1093/jexbot/53.371.989 – ident: e_1_2_6_68_1 doi: 10.1046/j.1365-2540.1999.00617.x – ident: e_1_2_6_71_1 doi: 10.1016/0378-4290(96)00014-7 – ident: e_1_2_6_46_1 doi: 10.1111/j.1469-8137.2008.02592.x – start-page: 43 year: 1990 ident: e_1_2_6_62_1 article-title: Conducibilità idrica radicale di portinnesti di vite publication-title: Vignevini – ident: e_1_2_6_25_1 doi: 10.1111/j.1744-7348.1987.tb03230.x – ident: e_1_2_6_50_1 doi: 10.1111/j.1755-0238.2009.00073.x – ident: e_1_2_6_28_1 doi: 10.1111/j.1755-0238.2009.00057.x – ident: e_1_2_6_36_1 doi: 10.1038/nature06148 – ident: e_1_2_6_56_1 doi: 10.1038/hdy.1996.23 – ident: e_1_2_6_73_1 doi: 10.1007/s00122-004-1789-3 – ident: e_1_2_6_33_1 doi: 10.1007/s10681-009-0091-5 – ident: e_1_2_6_58_1 doi: 10.1071/FP09139 – start-page: 1 volume-title: Sciences et techniques de la vigne. Tome 2 – Culture, pathologie, défense sanitaire de la vigne year: 1971 ident: e_1_2_6_72_1 – ident: e_1_2_6_63_1 doi: 10.1016/j.tplants.2006.03.006 – ident: e_1_2_6_65_1 doi: 10.1017/S0016672396002558 – ident: e_1_2_6_57_1 doi: 10.1105/tpc.007906 – volume: 12 start-page: 82 year: 2006 ident: e_1_2_6_76_1 article-title: Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA publication-title: Australian Journal of Agricultural Research – ident: e_1_2_6_77_1 doi: 10.1071/FP03238 – ident: e_1_2_6_2_1 doi: 10.1093/jxb/erq247 – ident: e_1_2_6_27_1 doi: 10.1093/jxb/erq152 – ident: e_1_2_6_42_1 doi: 10.1093/genetics/148.4.2015 – ident: e_1_2_6_90_1 doi: 10.1073/pnas.0503960102 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-3040.2010.02181.x – ident: e_1_2_6_17_1 doi: 10.1534/genetics.109.105429 – ident: e_1_2_6_84_1 doi: 10.1104/pp.108.128645 – volume: 40 start-page: 133 year: 2006 ident: e_1_2_6_23_1 article-title: Effects of rootstock and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. Tempranillo publication-title: Journal International Des Sciences De La Vigne Et Du Vin – ident: e_1_2_6_41_1 doi: 10.1073/pnas.0609929104 – ident: e_1_2_6_31_1 doi: 10.1007/s00425-007-0515-1 – ident: e_1_2_6_70_1 doi: 10.1111/j.1365-3040.2006.01611.x – volume: 43 start-page: 121 year: 2009 ident: e_1_2_6_83_1 article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? publication-title: Journal International des Sciences de la Vigne et du Vin – ident: e_1_2_6_10_1 doi: 10.1046/j.1365-3040.2002.00872.x – ident: e_1_2_6_26_1 doi: 10.1071/PP9840539 – ident: e_1_2_6_38_1 doi: 10.1007/BF00220855 – ident: e_1_2_6_69_1 doi: 10.1007/s00122-004-1866-7 – ident: e_1_2_6_79_1 doi: 10.1046/j.1365-2540.1998.00369.x – ident: e_1_2_6_18_1 doi: 10.1104/pp.105.1.9 – reference: 22428698 - New Phytol. 2012 Apr;194(2):301-3 |
SSID | ssj0009562 |
Score | 2.4635503 |
Snippet | • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture... The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of... Summary • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic... See also the Commentary by Jones |
SourceID | hal proquest pubmed crossref wiley jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | abscisic acid Acclimation Acclimatization Acclimatization - genetics carbon isotope discrimination Control DNA sequences Environment Gene mapping Genes Genes, Plant Genes, Plant - genetics genetics Genotypes grapevine Interspecific hybridization Life Sciences multienvironment Phenotype Phenotypic traits physiology Plant genetics Plant Roots Plant Roots - genetics Plant Roots - physiology Plant Transpiration Plant Transpiration - genetics Plant Transpiration - physiology Plants Quantitative trait loci Quantitative Trait Loci - genetics quantitative trait locus (QTL) Quantitative Trait, Heritable response curves Riparian environments rootstock Rootstocks Scions Soil water deficit Stomata Transpiration Vitis Vitis - genetics Vitis - physiology Vitis riparia Vitis vinifera Water Water - physiology Water deficit Water stress Water supply |
Title | Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes |
URI | https://www.jstor.org/stable/newphytologist.194.2.416 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2012.04059.x https://www.ncbi.nlm.nih.gov/pubmed/22335501 https://www.proquest.com/docview/2513237933 https://www.proquest.com/docview/1009810784 https://www.proquest.com/docview/1028018398 https://www.proquest.com/docview/1999950609 https://hal.science/hal-01267814 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZg4oEXfsMyBjII8daqcRInfhyIqUJoQoNKfbP8c1St4qlNGeOv5y5OIjpN04R4aavUvtbu3fk798tnQt7lhU8NV5NRUeJuVeHYSGjmMfCMVmlm4AnZFid8Oss_z4t5x3_Ce2GiPsSw4YaR0eZrDHClN1eDHLewshIZWmwM7liIMeJJpG4hPjplf-nvctYLMvOcz3dJPdca2lmp7noV4PEHsiUjcfE6SLqLcNsl6vghWfaDi8yU5Xjb6LH5fUX38f-M_hF50CFZehRd7zG54-on5N6HAGjz8ikJpyE0MACzpB0bngZPYb0NNW1aQfVF9D2qaksXzYYqY1aLeCMlbQK9ABC8ptahwkVD1dr1dlbOUn1J-5NdGnqG6foZmR1_-v5xOuoOdxgZHlVBS6i-lRcTz1zmhIM8a2xuhHa2sJWwXFU20955DUWcrnKhMqW5S13KjNNV9pzs1aF2-4RypzVU-A6xVW4cWC9KW1mvPSuZMS4hZf9DStMpn-MBHCu5UwEJibMpcTZlO5vyV0LSoed5VP-4RZ998BWpziBJy9k3hiVsq9yXZgl5Cw40WEJl7-nRF4nXwABH9bGfaULet_41NIPyCiKuPc0YIl-mIpdMAo5OyGHvgLJLPBsJcDVjGSRd-LA3w9uQMvB_IFW7sN2gTLWooOyv8pvaMMAugJ6rG9pAcSFQoFIk5EUMgOFLA-oEJDuB0fDWjW89ffLk6xRfHfxrx5fkPl6O7KpDstest-4VAMdGv25Twh-dtF0W |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMEL32OBAQYh3lo1TuLEjwMxFSgVGqvUN8ufo1qVoDYFxl_PXZxEdJqmCfGSRql9qd278--cy-8IeZ1mPjZcjQZZjrtVmWMDoZlHwzNaxYmBD8y2mPLxLP04z-ZtOSB8FybwQ_QbbmgZjb9GA8cN6fNWjntYSY4pWmwI-piJIQDKG1jgu4mvjthfDLycdZTMPOXz7bSeCyVtrVXXvarg-A3zJUPq4kWgdBvjNovU4V2y7IYXclNOh5taD83vc8yP_2n898idFszSg6B998k1Vz4gN99WADjPHpLqqKpqGIE5pW1CPK08hSW3KmndcKovgvpRVVq6qNdUGbNchHcpaV3Rn4CDV9Q6JLmoqVq5Ts7SWarPaFfcpaYn6LEfkdnh--N340Fb32FgeCAGzSEAV16MPHOJEw5crbGpEdrZzBbCclXYRHvnNcRxukiFSpTmLnYxM04XyS7ZKavS7RHKndYQ5DuEV6lxID3LbWG99ixnxriI5N0_KU1Lfo41OJZyKwgSEmdT4mzKZjblr4jEfc_vgQDkCn32QFmkOgE_LWdfGUaxDXlfnETkFWhQLwnJvccHE4nXQABHArIfcUTeNArWN4MIC4yuKWgMxi9jkUomAUpHZL_TQNn6nrUExJqwBPwu3Oxl_zV4DXwUpEpXbdbIVC0KiPyL9LI2DOALAOjikjYQXwjkqBQReRwsoP_RADwBzI5gNLzR4ytPn5x-GePZk3_t-ILcGh9_nsjJh-mnp-Q2NgnJVvtkp15t3DPAkbV-3viHP1muYTE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIMQL4zYWNsAgxFurxkmc-HEwqgJTNQ0q9c3ydVStkqlNge3X75zcRKdpmhAvbdXaJ7X7nePvuCefCXkfJz40XA16SYq7VYljPaGZR8czWoWRgSesthjz0ST-Ok2mTf0T3gtT60N0G27oGVW8Rgc_s_6qk-MWVpRihRbrAxwT0Qc-eS_mgwwRfnjC_hLg5axVZOYxn25W9VxraWOpuutVAY8_sVyyrly8jpNuUtxqjRpuk3k7uro0Zd5fl7pvLq4IP_6f4T8mjxoqSw9q7D0hd1z-lNz_WADdPH9GipOiKGEAZk6bcnhaeAoLbpHTslJUn9Xgoyq3dFauqDJmMavvpKRlQX8DC15S61DioqRq6Vo7C2epPqft0S4lPcV4_ZxMhp9_fBr1mtMdeobXsqAppN_Ki4FnLnLCQaA1NjZCO5vYTFiuMhtp77yGLE5nsVCR0tyFLmTG6SzaIVt5kbtdQrnTGlJ8h-QqNg6sJ6nNrNeepcwYF5C0_SGlaaTP8QSOhdxIgYTE2ZQ4m7KaTfknIGHX86yW_7hFn13AilSnEKXl5DvDHLaS7gujgLwDAHWWUNp7dHAk8T0wwFF-7FcYkA8VvrpmkF-By1XHGYPry1DEkkkg0gHZbwEom8izksBXIxZB1IWLve0-hpiBfwSp3BXrFepUiwzy_iy-qQ0D8gL0ObuhDWQXAhUqRUBe1A7QfWmgnUBlBzAaXsH41tMnx8cjfPXyXzu-IQ-OD4fy6Mv42x55iC3qSqt9slUu1-4VkMhSv66iwyX26V_p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rootstock+control+of+scion+transpiration+and+its+acclimation+to+water+deficit+are+controlled+by+different+genes&rft.jtitle=The+New+phytologist&rft.au=Marguerit%2C+Elisa&rft.au=Brendel%2C+Oliver&rft.au=Lebon%2C+Eric&rft.au=Van+Leeuwen%2C+Cornelis&rft.date=2012-04-01&rft.eissn=1469-8137&rft.volume=194&rft.issue=2&rft.spage=416&rft_id=info:doi/10.1111%2Fj.1469-8137.2012.04059.x&rft_id=info%3Apmid%2F22335501&rft.externalDocID=22335501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |