Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes

• The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr. • The rootstocks studied were full sibs from a controlle...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 194; no. 2; pp. 416 - 429
Main Authors Marguerit, Elisa, Brendel, Oliver, Lebon, Eric, Van Leeuwen, Cornelis, Ollat, Nathalie
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr. • The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. • Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. • Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
AbstractList Summary • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr. • The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. • Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. • Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. See also the Commentary by Jones
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3yr.
See also the Commentary by Jones
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon x Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined delta C-13 values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
• The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration‐related traits over a period of 3 yr.• The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ13C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis.• Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation.• Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.
Author Lebon, Eric
Ollat, Nathalie
Brendel, Oliver
Marguerit, Elisa
Van Leeuwen, Cornelis
Author_xml – sequence: 1
  fullname: Marguerit, Elisa
– sequence: 2
  fullname: Brendel, Oliver
– sequence: 3
  fullname: Lebon, Eric
– sequence: 4
  fullname: Van Leeuwen, Cornelis
– sequence: 5
  fullname: Ollat, Nathalie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22335501$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01267814$$DView record in HAL
BookMark eNqNkkFv0zAYhiM0xLrBXwBLXNghxY6dxD4waZoYRaoAAZO4WY79pXNJ42K7dP33OMvawy7UF8fO8762v-89y05610OWIYKnJI33yylhlcg5ofW0wKSYYoZLMb1_lk0OP06yCcYFzytW_TrNzkJYYoxFWRUvstOioLQsMZlk7rtzMUSnfyPt-uhdh1yLgrauR9GrPqytV3FYqd4gGwNSWnd2Ne5Fh7YqgkcGWqttRMrD3qcDg5odMrZtwUMf0QJ6CC-z563qArx6nM-z25uPP69n-fzrp8_XV_NcV1iIXFR1zblqBW4LoCDAGNCGadGAKQ0XplLc0KaFtiFMNJwJRVVTAQFSaGg4Pc8uRt871cm1Txf2O-mUlbOruRz2UtWqmhP2lyT23ciuvfuzgRDlygYNXad6cJsgiUijxOli_0dTxTHhVPAjUCw4wTVnCX37BF26je9TfWRRElrQWlCaqNeP1KZZgTm8at_MBFyOgPYuBA-tTC15aFTqpO3SiXJIj1zKISRyCIkc0iMf0iPvkwF_YrA_4wjph1G6tR3sjtbJL99mw1fS56N-mcLoD_oetuu7XXSdW9hUFiKYLCQjVeLfjHyrnFQLb4O8_ZGcWQp5agKh9B-Ji_Wx
CitedBy_id crossref_primary_10_3389_fmicb_2015_01372
crossref_primary_10_3389_fpls_2022_1015317
crossref_primary_10_1016_j_scienta_2017_10_014
crossref_primary_10_1093_jxb_erw221
crossref_primary_10_1016_j_scienta_2024_113538
crossref_primary_10_1093_jxb_ers385
crossref_primary_10_1093_jxb_eraf044
crossref_primary_10_17660_ActaHortic_2016_1136_2
crossref_primary_10_1186_s12870_023_04109_x
crossref_primary_10_1111_ajgw_12463
crossref_primary_10_1093_hr_uhae291
crossref_primary_10_1186_s12870_016_0778_4
crossref_primary_10_3389_fpls_2021_634237
crossref_primary_10_1016_j_agwat_2015_09_023
crossref_primary_10_1111_pce_12497
crossref_primary_10_17660_ActaHortic_2017_1188_28
crossref_primary_10_17660_ActaHortic_2017_1188_27
crossref_primary_10_17221_152_2022_HORTSCI
crossref_primary_10_1111_nph_13301
crossref_primary_10_1186_1471_2229_12_173
crossref_primary_10_1186_s12870_016_0804_6
crossref_primary_10_1007_s40626_016_0070_x
crossref_primary_10_1016_j_scienta_2023_111984
crossref_primary_10_1007_s13593_014_0280_z
crossref_primary_10_3389_fpls_2014_00253
crossref_primary_10_1016_j_agwat_2018_07_012
crossref_primary_10_1093_g3journal_jkab248
crossref_primary_10_3390_agronomy10050708
crossref_primary_10_1093_jxb_erv027
crossref_primary_10_1108_17568691211277746
crossref_primary_10_3389_fpls_2022_1083374
crossref_primary_10_17660_ActaHortic_2024_1391_17
crossref_primary_10_1186_1471_2229_13_147
crossref_primary_10_1093_jxb_eru215
crossref_primary_10_34133_plantphenomics_0280
crossref_primary_10_1007_s00425_019_03111_8
crossref_primary_10_1515_opag_2022_0258
crossref_primary_10_3390_agronomy9090514
crossref_primary_10_1111_ajgw_12071
crossref_primary_10_3390_rs14061519
crossref_primary_10_3389_fpls_2021_693344
crossref_primary_10_3389_fpls_2016_01994
crossref_primary_10_17660_ActaHortic_2019_1248_68
crossref_primary_10_3390_genes11020228
crossref_primary_10_1016_j_plantsci_2016_06_015
crossref_primary_10_3389_fpls_2019_00427
crossref_primary_10_1016_j_envexpbot_2013_04_001
crossref_primary_10_1093_jxb_erv355
crossref_primary_10_17660_ActaHortic_2024_1390_12
crossref_primary_10_1007_s00468_013_0909_6
crossref_primary_10_1016_j_scienta_2016_02_032
crossref_primary_10_1155_2024_5655916
crossref_primary_10_3389_fpls_2021_633846
crossref_primary_10_1038_hortres_2016_56
crossref_primary_10_1017_jwe_2015_16
crossref_primary_10_3390_horticulturae6040088
crossref_primary_10_1016_j_agwat_2024_108669
crossref_primary_10_3389_fpls_2023_1162506
crossref_primary_10_3390_plants12051080
crossref_primary_10_1016_j_scienta_2019_109031
crossref_primary_10_1186_s12864_019_6124_0
crossref_primary_10_1007_s00122_017_3046_6
crossref_primary_10_1016_j_envexpbot_2021_104437
crossref_primary_10_3389_fpls_2019_01522
crossref_primary_10_17660_ActaHortic_2019_1248_31
crossref_primary_10_1016_j_jplph_2018_04_013
crossref_primary_10_1017_jwe_2015_21
crossref_primary_10_1017_jwe_2016_3
crossref_primary_10_17660_ActaHortic_2020_1273_58
crossref_primary_10_3390_agronomy11020289
crossref_primary_10_1111_ajgw_12054
crossref_primary_10_1007_s40626_019_00162_w
crossref_primary_10_3390_rs16142626
crossref_primary_10_3390_plants10061197
crossref_primary_10_1016_j_eja_2016_04_004
crossref_primary_10_1007_s40626_016_0057_7
crossref_primary_10_1093_jxb_eraa449
crossref_primary_10_1093_jxb_erab537
crossref_primary_10_1093_aob_mcx141
crossref_primary_10_1007_s11104_024_07185_6
crossref_primary_10_1016_j_hpj_2021_06_001
crossref_primary_10_1111_ppl_12530
crossref_primary_10_3390_horticulturae10050490
crossref_primary_10_1016_j_scienta_2022_111157
crossref_primary_10_1093_jxb_eraf006
crossref_primary_10_1016_j_scienta_2016_11_012
crossref_primary_10_1051_bioconf_20213401002
crossref_primary_10_3390_plants10112236
crossref_primary_10_1186_s12870_015_0588_0
crossref_primary_10_1007_s10681_022_03054_4
crossref_primary_10_1111_j_1469_8137_2012_04110_x
crossref_primary_10_3923_jas_2019_837_847
crossref_primary_10_2139_ssrn_4010318
crossref_primary_10_1186_s12870_018_1308_3
crossref_primary_10_1016_j_fcr_2018_09_014
crossref_primary_10_1016_j_agwat_2023_108560
crossref_primary_10_1093_plphys_kiac420
crossref_primary_10_1186_s12864_020_06795_5
crossref_primary_10_1007_s00709_019_01357_3
crossref_primary_10_1093_jxb_erac487
crossref_primary_10_1051_e3sconf_202125402022
crossref_primary_10_1038_srep13094
crossref_primary_10_1111_ajgw_12553
crossref_primary_10_1186_s12870_022_04010_z
crossref_primary_10_1016_j_plaphy_2018_03_034
crossref_primary_10_1038_s41477_020_0684_5
crossref_primary_10_32615_ps_2019_109
crossref_primary_10_1071_FP18110
crossref_primary_10_3389_fenvs_2020_00110
crossref_primary_10_3389_fpls_2016_00069
crossref_primary_10_1038_srep20212
crossref_primary_10_1093_hr_uhae128
crossref_primary_10_1111_1462_2920_12439
crossref_primary_10_3390_agronomy11010075
crossref_primary_10_1016_j_plantsci_2016_03_001
crossref_primary_10_1038_s43017_024_00521_5
crossref_primary_10_1093_jxb_erv274
crossref_primary_10_1093_jxb_ery422
crossref_primary_10_1093_jxb_eru228
crossref_primary_10_1093_jxb_eru226
crossref_primary_10_3389_fpls_2017_00654
crossref_primary_10_1016_j_scienta_2017_02_034
crossref_primary_10_1051_ctv_20203502133
crossref_primary_10_1186_s12870_020_02739_z
crossref_primary_10_1016_j_tplants_2015_11_008
crossref_primary_10_46653_jhst21044128
crossref_primary_10_3390_plants13233427
crossref_primary_10_1007_s00122_023_04472_1
crossref_primary_10_3390_agronomy14091959
crossref_primary_10_1007_s12010_014_0888_0
crossref_primary_10_1007_s00122_012_1993_5
crossref_primary_10_1016_j_agwat_2019_105897
crossref_primary_10_1007_s00299_021_02744_y
crossref_primary_10_1016_j_heliyon_2020_e05708
crossref_primary_10_1016_j_scienta_2013_07_041
crossref_primary_10_17660_ActaHortic_2022_1346_85
crossref_primary_10_3390_agronomy10050680
crossref_primary_10_3390_horticulturae7120542
crossref_primary_10_1016_j_atech_2023_100192
crossref_primary_10_1155_2024_7586202
crossref_primary_10_1016_j_scienta_2016_03_040
crossref_primary_10_1093_treephys_tpx153
crossref_primary_10_3389_fpls_2022_866053
crossref_primary_10_3390_molecules27072065
Cites_doi 10.1038/nature03835
10.1007/s10681-005-9061-8
10.1007/s00122-010-1294-9
10.1104/pp.013839
10.1016/S1360-1385(97)82562-9
10.1105/tpc.010362
10.1016/S0378-4290(97)00111-1
10.1101/gad.852200
10.1105/tpc.105.033043
10.1534/genetics.109.103929
10.1046/j.1365-313X.2001.2641048.x
10.5344/ajev.2005.56.1.68
10.1146/annurev.pp.24.060173.002511
10.1093/jxb/erh277
10.1002/j.1460-2075.1996.tb00589.x
10.1104/pp.108.118117
10.1071/FP02222
10.1111/j.1365-313X.2004.02255.x
10.1007/s11032-007-9153-3
10.1016/S0065-2660(08)60048-6
10.1016/j.fcr.2008.06.010
10.1111/j.1365-3040.2006.01629.x
10.1071/PP9860329
10.1071/FPv37n2_FO
10.1016/S0169-5347(00)89061-8
10.1071/FP02076
10.1046/j.1365-313x.2000.00812.x
10.1038/nrg1206
10.1007/s00122-009-0979-4
10.1093/jxb/erh200
10.2135/cropsci1996.0011183X003600020020x
10.1016/j.eja.2008.02.001
10.1046/j.1365-294X.2003.01833.x
10.1038/nrg1804
10.1093/genetics/136.4.1447
10.1016/S0167-7799(02)02058-9
10.1111/j.1469-8137.2005.01543.x
10.1007/s11032-009-9258-y
10.1104/pp.106.093161
10.1016/j.pbi.2010.01.001
10.1111/j.1365-313X.2006.02864.x
10.1007/s11295-007-0107-z
10.5344/ajev.1985.36.3.195
10.1126/science.218.4571.443
10.1073/pnas.0306778101
10.1016/0016-7037(57)90024-8
10.1016/S0092-8674(01)00460-3
10.21273/JASHS.134.2.261
10.1126/science.8197457
10.1093/jexbot/53.371.989
10.1046/j.1365-2540.1999.00617.x
10.1016/0378-4290(96)00014-7
10.1111/j.1469-8137.2008.02592.x
10.1111/j.1744-7348.1987.tb03230.x
10.1111/j.1755-0238.2009.00073.x
10.1111/j.1755-0238.2009.00057.x
10.1038/nature06148
10.1038/hdy.1996.23
10.1007/s00122-004-1789-3
10.1007/s10681-009-0091-5
10.1071/FP09139
10.1016/j.tplants.2006.03.006
10.1017/S0016672396002558
10.1105/tpc.007906
10.1071/FP03238
10.1093/jxb/erq247
10.1093/jxb/erq152
10.1093/genetics/148.4.2015
10.1073/pnas.0503960102
10.1111/j.1365-3040.2010.02181.x
10.1534/genetics.109.105429
10.1104/pp.108.128645
10.1073/pnas.0609929104
10.1007/s00425-007-0515-1
10.1111/j.1365-3040.2006.01611.x
10.1046/j.1365-3040.2002.00872.x
10.1071/PP9840539
10.1007/BF00220855
10.1007/s00122-004-1866-7
10.1046/j.1365-2540.1998.00369.x
10.1104/pp.105.1.9
ContentType Journal Article
Copyright 2012 New Phytologist Trust
2012 INRA. New Phytologist © 2012 New Phytologist Trust
2012 INRA. New Phytologist © 2012 New Phytologist Trust.
Copyright Wiley Subscription Services, Inc. Apr 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2012 New Phytologist Trust
– notice: 2012 INRA. New Phytologist © 2012 New Phytologist Trust
– notice: 2012 INRA. New Phytologist © 2012 New Phytologist Trust.
– notice: Copyright Wiley Subscription Services, Inc. Apr 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QH
7UA
H96
7S9
L.6
1XC
DOI 10.1111/j.1469-8137.2012.04059.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Aqualine
Water Resources Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 429
ExternalDocumentID oai_HAL_hal_01267814v1
22335501
10_1111_j_1469_8137_2012_04059_x
NPH4059
newphytologist.194.2.416
US201400010213
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
AAHBH
AAHQN
AAMMB
AAMNL
AAYCA
ABSQW
ABVKB
ABXSQ
ACHIC
AEFGJ
AEYWJ
AFWVQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
HGLYW
IPSME
OIG
ABGDZ
ADXHL
AGHNM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QH
7UA
H96
7S9
L.6
1XC
ID FETCH-LOGICAL-c6099-967788af90f2e3e9eddecd4c9bed5d89d6a8d3bfefb149b849a3ab6e1e12ceb83
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jun 13 07:01:51 EDT 2025
Fri Jul 11 18:34:35 EDT 2025
Thu Jul 10 17:39:12 EDT 2025
Thu Jul 10 18:56:10 EDT 2025
Fri Jul 25 09:43:45 EDT 2025
Thu Apr 03 07:06:41 EDT 2025
Tue Jul 01 03:09:09 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Wed Aug 20 07:27:50 EDT 2025
Thu Jul 03 22:56:13 EDT 2025
Wed Dec 27 19:16:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords transpiration
grapevine
response curves
carbon isotope discrimination
rootstock
water deficit
quantitative trait locus (QTL)
multienvironment
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 INRA. New Phytologist © 2012 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6099-967788af90f2e3e9eddecd4c9bed5d89d6a8d3bfefb149b849a3ab6e1e12ceb83
Notes http://dx.doi.org/10.1111/j.1469-8137.2012.04059.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3252-0273
0000-0002-9428-0167
0000-0002-6182-9686
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.2012.04059.x
PMID 22335501
PQID 2513237933
PQPubID 2026848
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01267814v1
proquest_miscellaneous_1999950609
proquest_miscellaneous_1028018398
proquest_miscellaneous_1009810784
proquest_journals_2513237933
pubmed_primary_22335501
crossref_citationtrail_10_1111_j_1469_8137_2012_04059_x
crossref_primary_10_1111_j_1469_8137_2012_04059_x
wiley_primary_10_1111_j_1469_8137_2012_04059_x_NPH4059
jstor_primary_newphytologist_194_2_416
fao_agris_US201400010213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2007; 104
2002; 14
2010; 16
1965; 13
2007; 226
1994; 136
2009; 43
2010; 13
2002; 53
2007; 143
2011; 62
2008; 109
1998; 81
1997; 2
1971
2008; 147
1996; 142
2008; 4
2007; 30
1999; 83
1996; 36
2009; 118
1976; 26
1996; 76
2010; 61
2001; 106
1957; 12
2003; 12
1994; 264
2004; 31
1994; 105
1982; 218
1990
2000; 14
2005; 102
1984; 11
2008; 28
2003; 4
2008; 22
1998; 57
2009; 23
2004; 101
2010; 33
2010; 37
2007; 449
2004; 40
1995; 91
2005; 110
2006; 12
2000; 23
2006; 11
1997; 69
1986; 13
2005; 436
1995; 10
2010; 121
2006; 7
1990; XVII
2009; 134
2006
2001; 26
2004; 109
2003; 30
1996; 15
2003; 131
2004; 55
2008; 180
2002; 25
2006; 40
2002; 20
1973; 24
2005; 168
2006; 48
2010; 174
2009; 183
1998; 148
2006; 149
1996; 47
2005; 17
2005; 56
2009; 149
1985; 36
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
Van Leeuwen C (e_1_2_6_83_1) 2009; 43
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Samson C (e_1_2_6_72_1) 1971
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
Gallais A (e_1_2_6_30_1) 1990
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
Soar CJ (e_1_2_6_76_1) 2006; 12
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_90_1
De Herralde F (e_1_2_6_23_1) 2006; 40
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
Carbonneau A (e_1_2_6_12_1) 1976; 26
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Bindi M (e_1_2_6_5_1) 2005; 56
Carbonneau A (e_1_2_6_13_1) 1985; 36
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Peterlunger E (e_1_2_6_62_1) 1990
Parelle J (e_1_2_6_60_1) 2006
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
22428698 - New Phytol. 2012 Apr;194(2):301-3
References_xml – volume: 11
  start-page: 539
  year: 1984
  end-page: 552
  article-title: Isotopic composition of plant carbon correlates with water‐use efficiency of wheat genotypes
  publication-title: Functional Plant Biology
– volume: 183
  start-page: 1127
  year: 2009
  end-page: 1139
  article-title: Quantitative genetic bases of anthocyanin variation in grape ( L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study
  publication-title: Genetics
– volume: 55
  start-page: 2461
  year: 2004
  end-page: 2472
  article-title: Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters
  publication-title: Journal of Experimental of Botany
– volume: 13
  start-page: 193
  year: 2010
  end-page: 205
  article-title: Detection and use of QTL for complex traits in multiple environments
  publication-title: Current Opinion in Plant Biology
– volume: 4
  start-page: 263
  year: 2008
  end-page: 278
  article-title: Quantitative trait loci controlling water use efficiency and related traits in L
  publication-title: Tree Genetics & Genomes
– volume: 33
  start-page: 1419
  year: 2010
  end-page: 1438
  article-title: An overview of models of stomatal conductance at the leaf level
  publication-title: Plant, Cell & Environment
– volume: 56
  start-page: 68
  year: 2005
  end-page: 72
  article-title: Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevine grown in pots
  publication-title: American Journal of Enology and Viticulture
– volume: 26
  start-page: 327
  year: 1976
  end-page: 343
  article-title: Principes et méthodes de mesure de la surface foliaire. Essai de caractérisation des types de feuilles dans le genre Vitis
  publication-title: Annales de l’Amélioration des Plantes
– volume: 40
  start-page: 133
  year: 2006
  end-page: 139
  article-title: Effects of rootstock and irrigation regime on hydraulic architecture of L. cv. Tempranillo
  publication-title: Journal International Des Sciences De La Vigne Et Du Vin
– volume: 12
  start-page: 1137
  year: 2003
  end-page: 1151
  article-title: Genetics of drought adaptation in : I. Pleiotropy contributes to genetic correlations among ecological traits
  publication-title: Molecular Ecology
– start-page: 1
  year: 1971
  end-page: 200
– volume: 23
  start-page: 591
  year: 2009
  end-page: 606
  article-title: Genetic engineering of chickpea ( L.) with the gene for osmoregulation with implications on drought tolerance
  publication-title: Molecular Breeding
– volume: 30
  start-page: 135
  year: 2007
  end-page: 146
  article-title: Leaf growth rate per unit thermal time follows QTL‐dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions
  publication-title: Plant, Cell & Environment
– volume: 48
  start-page: 321
  year: 2006
  end-page: 341
  article-title: The genetics and genomics of the drought response in
  publication-title: The Plant Journal
– year: 1990
– volume: 36
  start-page: 331
  year: 1996
  end-page: 335
  article-title: Field pea transpiration and leaf growth in response to soil water deficits
  publication-title: Crop Science
– volume: 37
  start-page: iii
  year: 2010
  end-page: vi
  article-title: Drought effects and water use efficiency: improving crop production in dry environments
  publication-title: Functional Plant Biology
– volume: 13
  start-page: 115
  year: 1965
  end-page: 155
  article-title: Evolutionary significance of phenotypic plasticity in plants
  publication-title: Advances in genetics
– volume: 142
  start-page: 285
  year: 1996
  end-page: 294
  article-title: Permutation tests for multiple loci affecting a quantitative character
  publication-title: Genetics
– volume: 2
  start-page: 48
  year: 1997
  end-page: 54
  article-title: Plant responses to water deficit
  publication-title: Trends in Plant Science
– volume: 147
  start-page: 469
  year: 2008
  end-page: 486
  article-title: Quantitative trait loci and crop performance under abiotic stress: where do we stand?
  publication-title: Plant Physiology
– volume: 104
  start-page: 4724
  year: 2007
  end-page: 4729
  article-title: A gene essential for hydrotropism in roots
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 229
  year: 2006
  end-page: 237
  article-title: Functional mapping – how to map and study the genetic architecture of dynamic complex traits
  publication-title: Nature Reviews Genetics
– volume: 81
  start-page: 144
  year: 1998
  end-page: 155
  article-title: Reaction norm functions and QTL‐environment interactions for flowering time in
  publication-title: Heredity
– volume: 16
  start-page: 106
  issue: Suppl 1
  year: 2010
  end-page: 121
  article-title: Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement
  publication-title: Australian Journal of Grape and Wine Research
– volume: 15
  start-page: 2331
  year: 1996
  end-page: 2342
  article-title: Molecular identification of zeaxanthin epoxidase of , a gene involved in abscissic acid biosynthesis and corresponding the ABA locus of
  publication-title: The EMBO Journal
– volume: 4
  start-page: 911
  year: 2003
  end-page: 916
  article-title: The nature and identification of quantitative trait loci: a community’s view
  publication-title: Nature Reviews Genetics
– volume: 36
  start-page: 195
  year: 1985
  end-page: 198
  article-title: The early selection of grapevine rootstocks for resistance to drought conditions
  publication-title: American Journal of Enology and Viticulture
– volume: 17
  start-page: 2384
  year: 2005
  end-page: 2396
  article-title: Role of an AP2/EREBP‐type transcriptional repressor in abscisic acid and drought stress responses
  publication-title: The Plant Cell
– volume: 180
  start-page: 642
  year: 2008
  end-page: 651
  article-title: An abscisic acid‐related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought
  publication-title: New Phytologist
– volume: 20
  start-page: 472
  year: 2002
  end-page: 478
  article-title: Genetically tailored grapevines for the wine industry
  publication-title: Trends in Biotechnology
– volume: 53
  start-page: 989
  year: 2002
  end-page: 1004
  article-title: Linking drought‐resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses
  publication-title: Journal Experimental of Botany
– volume: 61
  start-page: 3211
  year: 2010
  end-page: 3222
  article-title: Genetic and genomic tools to improve drought tolerance in wheat
  publication-title: Journal Experimental of Botany
– volume: 23
  start-page: 481
  year: 2000
  end-page: 488
  article-title: Abscisic aldehyde oxidase in leaves of
  publication-title: The Plant Journal
– volume: 436
  start-page: 866
  year: 2005
  end-page: 870
  article-title: The ERECTA gene regulates plant transpiration efficiency in
  publication-title: Nature
– volume: XVII
  start-page: 43
  year: 1990
  end-page: 46
  article-title: Conducibilità idrica radicale di portinnesti di vite
  publication-title: Vignevini
– volume: 76
  start-page: 156
  year: 1996
  end-page: 165
  article-title: Power of tests for quantitative trait loci detection using full‐sib families in different schemes
  publication-title: Heredity
– volume: 83
  start-page: 363
  year: 1999
  end-page: 372
  article-title: Transgressive segregation, adaptation and speciation
  publication-title: Heredity
– volume: 91
  start-page: 33
  year: 1995
  end-page: 37
  article-title: Genotype‐by‐environment interaction in genetic mapping of multiple quantitative trait loci
  publication-title: Theoretical and Applied Genetics
– volume: 43
  start-page: 121
  year: 2009
  end-page: 134
  article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes?
  publication-title: Journal International des Sciences de la Vigne et du Vin
– volume: 109
  start-page: 1648
  year: 2004
  end-page: 1659
  article-title: Detection of quantitative trait loci controlling bud burst and height growth in L
  publication-title: Theoretical and Applied Genetics
– volume: 47
  start-page: 253
  year: 1996
  end-page: 266
  article-title: Soil‐water thresholds for the responses of leaf expansion and gas exchange : a review
  publication-title: Field Crops Research
– volume: 264
  start-page: 1452
  year: 1994
  end-page: 1455
  article-title: A protein phosphatase 2C involved in ABA signal transduction in
  publication-title: Science
– volume: 143
  start-page: 19
  year: 2007
  end-page: 27
  article-title: The control of transpiration. Insights from
  publication-title: Plant Physiology
– volume: 134
  start-page: 261
  year: 2009
  end-page: 272
  article-title: Mapping of photoperiod‐induced growth cessation in the wild grape
  publication-title: Journal of the American Society for Horticultutral Science
– volume: 449
  start-page: 463
  year: 2007
  end-page: 467
  article-title: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla
  publication-title: Nature
– volume: 121
  start-page: 105
  year: 2010
  end-page: 115
  article-title: Genetic analysis of physiological components of salt tolerance conferred by rootstocks. What is the rootstock doing for the scion?
  publication-title: Theoretical and Applied Genetics
– volume: 105
  start-page: 9
  year: 1994
  end-page: 13
  article-title: Aquaporins: the molecular basis of facilitated water movement through living plant cells?
  publication-title: Plant Physiology
– volume: 136
  start-page: 1447
  year: 1994
  end-page: 1455
  article-title: High resolution of quantitative traits into multiple loci via interval mapping
  publication-title: Genetics
– volume: 226
  start-page: 671
  year: 2007
  end-page: 681
  article-title: Aquaporin expression in response to different water stress intensities and recovery in Richter‐110 ( sp.): relationship with ecophysiological status
  publication-title: Planta
– volume: 174
  start-page: 165
  year: 2010
  end-page: 177
  article-title: Meta‐analysis of constitutive and adaptive QTL for drought tolerance in maize
  publication-title: Euphytica
– volume: 14
  start-page: 3024
  year: 2000
  end-page: 3036
  article-title: NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development
  publication-title: Genes & Development
– volume: 183
  start-page: 1507
  year: 2009
  end-page: 1523
  article-title: Simulating the yield impacts of organ‐level quantitative trait loci associated with drought response in maize: a “gene‐to‐phenotype” modeling approach
  publication-title: Genetics
– volume: 149
  start-page: 445
  year: 2009
  end-page: 460
  article-title: The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
  publication-title: Plant Physiology
– volume: 25
  start-page: 945
  year: 2002
  end-page: 953
  article-title: Genetic parameters and QTL analysis of δ C and ring width in maritime pine
  publication-title: Plant, Cell & Environment
– volume: 106
  start-page: 477
  year: 2001
  end-page: 487
  article-title: An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in
  publication-title: Cell
– volume: 11
  start-page: 213
  year: 2006
  end-page: 216
  article-title: Believe it or not, QTLs are accurate!
  publication-title: Trends in Plant Science
– volume: 118
  start-page: 1261
  year: 2009
  end-page: 1278
  article-title: Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine
  publication-title: Theoretical and Applied Genetics
– volume: 22
  start-page: 25
  year: 2008
  end-page: 38
  article-title: Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat region
  publication-title: Molecular Breeding
– volume: 57
  start-page: 29
  year: 1998
  end-page: 43
  article-title: Relationship between plant and soil water status in five field‐grown cotton ( L.) cultivars
  publication-title: Field Crops Research
– volume: 69
  start-page: 69
  year: 1997
  end-page: 74
  article-title: Comparison of methods for regression interval mapping in QTL analysis with non‐normal traits
  publication-title: Genetic Research
– volume: 12
  start-page: 133
  year: 1957
  end-page: 149
  article-title: Isotopic standards for carbon and oxygen and correction factors for mass‐spectrometric analysis of carbon dioxide
  publication-title: Geochimica et Cosmochimica Acta
– volume: 16
  start-page: 33
  issue: Suppl 1
  year: 2010
  end-page: 46
  article-title: Grapevine genetics after the genome sequence: challenges and limitations
  publication-title: Australian Journal of Grape and Wine Research
– volume: 101
  start-page: 3281
  year: 2004
  end-page: 3285
  article-title: FRIGIDA‐related genes are required for the winter‐annual habit in
  publication-title: PNAS
– volume: 131
  start-page: 664
  year: 2003
  end-page: 675
  article-title: Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit
  publication-title: Plant Physiology
– volume: 14
  start-page: 343
  year: 2002
  end-page: 357
  article-title: basic leucine zipper proteins that mediate stress‐responsive abscisic acid signaling
  publication-title: The Plant Cell
– volume: 110
  start-page: 537
  year: 2005
  end-page: 549
  article-title: QTL analyses of drought tolerance and growth for × hybrid in contrasting water regimes
  publication-title: Theoretical and Applied Genetics
– volume: 12
  start-page: 82
  year: 2006
  end-page: 96
  article-title: Scion photosynthesis and leaf gas exchange in L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA
  publication-title: Australian Journal of Agricultural Research
– volume: 218
  start-page: 443
  year: 1982
  end-page: 448
  article-title: Plant productivity and environment
  publication-title: Science
– volume: 24
  start-page: 519
  year: 1973
  end-page: 570
  article-title: Plant responses to water stress
  publication-title: Annual Review Plant Physiology
– volume: 62
  start-page: 99
  year: 2011
  end-page: 109
  article-title: Seasonal changes of whole root system conductance by a drought‐tolerant grape root system
  publication-title: Journal Experimental of Botany
– volume: 13
  start-page: 329
  year: 1986
  end-page: 341
  article-title: Influence of soil water supply on the plant water balance of four tropical grain legumes
  publication-title: Australian Journal Plant Physiology
– volume: 109
  start-page: 1
  year: 2008
  end-page: 23
  article-title: Phenotypic and genotypic analysis of drought‐resistance traits for development of rice cultivars adapted to rainfed environments
  publication-title: Field Crops Research
– volume: 28
  start-page: 646
  year: 2008
  end-page: 654
  article-title: Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes
  publication-title: European Journal of Agronomy
– year: 2006
– volume: 10
  start-page: 212
  year: 1995
  end-page: 217
  article-title: Adaptive phenotypic plasticity: consensus and controversy
  publication-title: Trends in Ecology & Evolution
– volume: 14
  start-page: 3089
  year: 2002
  end-page: 3099
  article-title: OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production
  publication-title: The Plant Cell
– volume: 30
  start-page: 239
  year: 2003
  end-page: 264
  article-title: Understanding plant responses to drought : from genes to the whole plant
  publication-title: Functional Plant Biology
– volume: 30
  start-page: 699
  year: 2003
  end-page: 710
  article-title: Modeling the seasonal dynamics of the soil water balance of vineyards
  publication-title: Functional Plant Biology
– volume: 37
  start-page: 117
  year: 2010
  end-page: 127
  article-title: Adaptative phenotypic plasticity and plant water use
  publication-title: Functional Plant Biology
– volume: 31
  start-page: 659
  year: 2004
  end-page: 669
  article-title: Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of cv. Shiraz: molecular and physiological studies investigating their sources
  publication-title: Functional Plant Biology
– volume: 40
  start-page: 813
  year: 2004
  end-page: 825
  article-title: ACC synthase expression regulates leaf performance and drought tolerance in maize
  publication-title: The Plant Journal
– volume: 26
  start-page: 461
  year: 2001
  end-page: 470
  article-title: Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in
  publication-title: The Plant Journal
– volume: 168
  start-page: 275
  year: 2005
  end-page: 292
  article-title: The control of stomata by water balance
  publication-title: New Phytologist
– volume: 148
  start-page: 2015
  year: 1998
  end-page: 2028
  article-title: Approximate analysis of QTL‐environment interaction with no limits on the number of environments
  publication-title: Genetics
– volume: 102
  start-page: 9966
  year: 2005
  end-page: 9971
  article-title: HOS10 encodes an R2R3‐type MYB transcription factor essential for cold acclimation in plants
  publication-title: PNAS
– volume: 55
  start-page: 2447
  year: 2004
  end-page: 2460
  article-title: Breeding for high water use efficiency
  publication-title: Journal of Experimental of Botany
– volume: 149
  start-page: 133
  year: 2006
  end-page: 144
  article-title: A genetic map of Welschriesling × Sirius for the identification of magnesium‐deficiency by QTL analysis
  publication-title: Euphytica
– volume: 30
  start-page: 422
  year: 2007
  end-page: 434
  article-title: Quantitative trait loci of tolerance to waterlogging in a European oak : physiological relevance and temporal effect patterns
  publication-title: Plant, Cell & Environment
– ident: e_1_2_6_51_1
  doi: 10.1038/nature03835
– ident: e_1_2_6_47_1
  doi: 10.1007/s10681-005-9061-8
– ident: e_1_2_6_3_1
  doi: 10.1007/s00122-010-1294-9
– ident: e_1_2_6_66_1
  doi: 10.1104/pp.013839
– ident: e_1_2_6_8_1
  doi: 10.1016/S1360-1385(97)82562-9
– ident: e_1_2_6_40_1
  doi: 10.1105/tpc.010362
– ident: e_1_2_6_43_1
  doi: 10.1016/S0378-4290(97)00111-1
– ident: e_1_2_6_88_1
  doi: 10.1101/gad.852200
– volume-title: Réponses de jeunes chênes de deux espèces (Quercus robur L., Q. petrea [Matt] Liebl.) à l’hypoxie racinaire
  year: 2006
  ident: e_1_2_6_60_1
– ident: e_1_2_6_78_1
  doi: 10.1105/tpc.105.033043
– ident: e_1_2_6_29_1
  doi: 10.1534/genetics.109.103929
– volume-title: Théorie de la sélection en amélioration des plantes
  year: 1990
  ident: e_1_2_6_30_1
– ident: e_1_2_6_81_1
  doi: 10.1046/j.1365-313X.2001.2641048.x
– volume: 56
  start-page: 68
  year: 2005
  ident: e_1_2_6_5_1
  article-title: Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevine grown in pots
  publication-title: American Journal of Enology and Viticulture
  doi: 10.5344/ajev.2005.56.1.68
– ident: e_1_2_6_34_1
  doi: 10.1146/annurev.pp.24.060173.002511
– ident: e_1_2_6_20_1
  doi: 10.1093/jxb/erh277
– ident: e_1_2_6_49_1
  doi: 10.1002/j.1460-2075.1996.tb00589.x
– ident: e_1_2_6_19_1
  doi: 10.1104/pp.108.118117
– ident: e_1_2_6_44_1
  doi: 10.1071/FP02222
– volume: 26
  start-page: 327
  year: 1976
  ident: e_1_2_6_12_1
  article-title: Principes et méthodes de mesure de la surface foliaire. Essai de caractérisation des types de feuilles dans le genre Vitis
  publication-title: Annales de l’Amélioration des Plantes
– ident: e_1_2_6_89_1
  doi: 10.1111/j.1365-313X.2004.02255.x
– ident: e_1_2_6_24_1
  doi: 10.1007/s11032-007-9153-3
– ident: e_1_2_6_7_1
  doi: 10.1016/S0065-2660(08)60048-6
– ident: e_1_2_6_39_1
  doi: 10.1016/j.fcr.2008.06.010
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-3040.2006.01629.x
– ident: e_1_2_6_75_1
  doi: 10.1071/PP9860329
– ident: e_1_2_6_15_1
  doi: 10.1071/FPv37n2_FO
– ident: e_1_2_6_85_1
  doi: 10.1016/S0169-5347(00)89061-8
– ident: e_1_2_6_16_1
  doi: 10.1071/FP02076
– ident: e_1_2_6_74_1
  doi: 10.1046/j.1365-313x.2000.00812.x
– ident: e_1_2_6_53_1
  doi: 10.1038/nrg1206
– ident: e_1_2_6_48_1
  doi: 10.1007/s00122-009-0979-4
– ident: e_1_2_6_67_1
  doi: 10.1093/jxb/erh200
– ident: e_1_2_6_45_1
  doi: 10.2135/cropsci1996.0011183X003600020020x
– ident: e_1_2_6_14_1
  doi: 10.1016/j.eja.2008.02.001
– ident: e_1_2_6_52_1
  doi: 10.1046/j.1365-294X.2003.01833.x
– ident: e_1_2_6_87_1
  doi: 10.1038/nrg1804
– ident: e_1_2_6_37_1
  doi: 10.1093/genetics/136.4.1447
– ident: e_1_2_6_86_1
  doi: 10.1016/S0167-7799(02)02058-9
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1469-8137.2005.01543.x
– ident: e_1_2_6_4_1
  doi: 10.1007/s11032-009-9258-y
– ident: e_1_2_6_59_1
  doi: 10.1104/pp.106.093161
– ident: e_1_2_6_82_1
  doi: 10.1016/j.pbi.2010.01.001
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1365-313X.2006.02864.x
– ident: e_1_2_6_9_1
  doi: 10.1007/s11295-007-0107-z
– volume: 36
  start-page: 195
  year: 1985
  ident: e_1_2_6_13_1
  article-title: The early selection of grapevine rootstocks for resistance to drought conditions
  publication-title: American Journal of Enology and Viticulture
  doi: 10.5344/ajev.1985.36.3.195
– ident: e_1_2_6_6_1
  doi: 10.1126/science.218.4571.443
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.0306778101
– ident: e_1_2_6_21_1
  doi: 10.1016/0016-7037(57)90024-8
– ident: e_1_2_6_35_1
  doi: 10.1016/S0092-8674(01)00460-3
– ident: e_1_2_6_32_1
  doi: 10.21273/JASHS.134.2.261
– ident: e_1_2_6_54_1
  doi: 10.1126/science.8197457
– ident: e_1_2_6_64_1
  doi: 10.1093/jexbot/53.371.989
– ident: e_1_2_6_68_1
  doi: 10.1046/j.1365-2540.1999.00617.x
– ident: e_1_2_6_71_1
  doi: 10.1016/0378-4290(96)00014-7
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1469-8137.2008.02592.x
– start-page: 43
  year: 1990
  ident: e_1_2_6_62_1
  article-title: Conducibilità idrica radicale di portinnesti di vite
  publication-title: Vignevini
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1744-7348.1987.tb03230.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1755-0238.2009.00073.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1755-0238.2009.00057.x
– ident: e_1_2_6_36_1
  doi: 10.1038/nature06148
– ident: e_1_2_6_56_1
  doi: 10.1038/hdy.1996.23
– ident: e_1_2_6_73_1
  doi: 10.1007/s00122-004-1789-3
– ident: e_1_2_6_33_1
  doi: 10.1007/s10681-009-0091-5
– ident: e_1_2_6_58_1
  doi: 10.1071/FP09139
– start-page: 1
  volume-title: Sciences et techniques de la vigne. Tome 2 – Culture, pathologie, défense sanitaire de la vigne
  year: 1971
  ident: e_1_2_6_72_1
– ident: e_1_2_6_63_1
  doi: 10.1016/j.tplants.2006.03.006
– ident: e_1_2_6_65_1
  doi: 10.1017/S0016672396002558
– ident: e_1_2_6_57_1
  doi: 10.1105/tpc.007906
– volume: 12
  start-page: 82
  year: 2006
  ident: e_1_2_6_76_1
  article-title: Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA
  publication-title: Australian Journal of Agricultural Research
– ident: e_1_2_6_77_1
  doi: 10.1071/FP03238
– ident: e_1_2_6_2_1
  doi: 10.1093/jxb/erq247
– ident: e_1_2_6_27_1
  doi: 10.1093/jxb/erq152
– ident: e_1_2_6_42_1
  doi: 10.1093/genetics/148.4.2015
– ident: e_1_2_6_90_1
  doi: 10.1073/pnas.0503960102
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-3040.2010.02181.x
– ident: e_1_2_6_17_1
  doi: 10.1534/genetics.109.105429
– ident: e_1_2_6_84_1
  doi: 10.1104/pp.108.128645
– volume: 40
  start-page: 133
  year: 2006
  ident: e_1_2_6_23_1
  article-title: Effects of rootstock and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. Tempranillo
  publication-title: Journal International Des Sciences De La Vigne Et Du Vin
– ident: e_1_2_6_41_1
  doi: 10.1073/pnas.0609929104
– ident: e_1_2_6_31_1
  doi: 10.1007/s00425-007-0515-1
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1365-3040.2006.01611.x
– volume: 43
  start-page: 121
  year: 2009
  ident: e_1_2_6_83_1
  article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes?
  publication-title: Journal International des Sciences de la Vigne et du Vin
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-3040.2002.00872.x
– ident: e_1_2_6_26_1
  doi: 10.1071/PP9840539
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00220855
– ident: e_1_2_6_69_1
  doi: 10.1007/s00122-004-1866-7
– ident: e_1_2_6_79_1
  doi: 10.1046/j.1365-2540.1998.00369.x
– ident: e_1_2_6_18_1
  doi: 10.1104/pp.105.1.9
– reference: 22428698 - New Phytol. 2012 Apr;194(2):301-3
SSID ssj0009562
Score 2.4635503
Snippet • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture...
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of...
Summary • The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic...
See also the Commentary by Jones
SourceID hal
proquest
pubmed
crossref
wiley
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms abscisic acid
Acclimation
Acclimatization
Acclimatization - genetics
carbon isotope discrimination
Control
DNA sequences
Environment
Gene mapping
Genes
Genes, Plant
Genes, Plant - genetics
genetics
Genotypes
grapevine
Interspecific hybridization
Life Sciences
multienvironment
Phenotype
Phenotypic traits
physiology
Plant genetics
Plant Roots
Plant Roots - genetics
Plant Roots - physiology
Plant Transpiration
Plant Transpiration - genetics
Plant Transpiration - physiology
Plants
Quantitative trait loci
Quantitative Trait Loci - genetics
quantitative trait locus (QTL)
Quantitative Trait, Heritable
response curves
Riparian environments
rootstock
Rootstocks
Scions
Soil water deficit
Stomata
Transpiration
Vitis
Vitis - genetics
Vitis - physiology
Vitis riparia
Vitis vinifera
Water
Water - physiology
Water deficit
Water stress
Water supply
Title Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes
URI https://www.jstor.org/stable/newphytologist.194.2.416
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2012.04059.x
https://www.ncbi.nlm.nih.gov/pubmed/22335501
https://www.proquest.com/docview/2513237933
https://www.proquest.com/docview/1009810784
https://www.proquest.com/docview/1028018398
https://www.proquest.com/docview/1999950609
https://hal.science/hal-01267814
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZg4oEXfsMyBjII8daqcRInfhyIqUJoQoNKfbP8c1St4qlNGeOv5y5OIjpN04R4aavUvtbu3fk798tnQt7lhU8NV5NRUeJuVeHYSGjmMfCMVmlm4AnZFid8Oss_z4t5x3_Ce2GiPsSw4YaR0eZrDHClN1eDHLewshIZWmwM7liIMeJJpG4hPjplf-nvctYLMvOcz3dJPdca2lmp7noV4PEHsiUjcfE6SLqLcNsl6vghWfaDi8yU5Xjb6LH5fUX38f-M_hF50CFZehRd7zG54-on5N6HAGjz8ikJpyE0MACzpB0bngZPYb0NNW1aQfVF9D2qaksXzYYqY1aLeCMlbQK9ABC8ptahwkVD1dr1dlbOUn1J-5NdGnqG6foZmR1_-v5xOuoOdxgZHlVBS6i-lRcTz1zmhIM8a2xuhHa2sJWwXFU20955DUWcrnKhMqW5S13KjNNV9pzs1aF2-4RypzVU-A6xVW4cWC9KW1mvPSuZMS4hZf9DStMpn-MBHCu5UwEJibMpcTZlO5vyV0LSoed5VP-4RZ998BWpziBJy9k3hiVsq9yXZgl5Cw40WEJl7-nRF4nXwABH9bGfaULet_41NIPyCiKuPc0YIl-mIpdMAo5OyGHvgLJLPBsJcDVjGSRd-LA3w9uQMvB_IFW7sN2gTLWooOyv8pvaMMAugJ6rG9pAcSFQoFIk5EUMgOFLA-oEJDuB0fDWjW89ffLk6xRfHfxrx5fkPl6O7KpDstest-4VAMdGv25Twh-dtF0W
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMEL32OBAQYh3lo1TuLEjwMxFSgVGqvUN8ufo1qVoDYFxl_PXZxEdJqmCfGSRql9qd278--cy-8IeZ1mPjZcjQZZjrtVmWMDoZlHwzNaxYmBD8y2mPLxLP04z-ZtOSB8FybwQ_QbbmgZjb9GA8cN6fNWjntYSY4pWmwI-piJIQDKG1jgu4mvjthfDLycdZTMPOXz7bSeCyVtrVXXvarg-A3zJUPq4kWgdBvjNovU4V2y7IYXclNOh5taD83vc8yP_2n898idFszSg6B998k1Vz4gN99WADjPHpLqqKpqGIE5pW1CPK08hSW3KmndcKovgvpRVVq6qNdUGbNchHcpaV3Rn4CDV9Q6JLmoqVq5Ts7SWarPaFfcpaYn6LEfkdnh--N340Fb32FgeCAGzSEAV16MPHOJEw5crbGpEdrZzBbCclXYRHvnNcRxukiFSpTmLnYxM04XyS7ZKavS7RHKndYQ5DuEV6lxID3LbWG99ixnxriI5N0_KU1Lfo41OJZyKwgSEmdT4mzKZjblr4jEfc_vgQDkCn32QFmkOgE_LWdfGUaxDXlfnETkFWhQLwnJvccHE4nXQABHArIfcUTeNArWN4MIC4yuKWgMxi9jkUomAUpHZL_TQNn6nrUExJqwBPwu3Oxl_zV4DXwUpEpXbdbIVC0KiPyL9LI2DOALAOjikjYQXwjkqBQReRwsoP_RADwBzI5gNLzR4ytPn5x-GePZk3_t-ILcGh9_nsjJh-mnp-Q2NgnJVvtkp15t3DPAkbV-3viHP1muYTE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIMQL4zYWNsAgxFurxkmc-HEwqgJTNQ0q9c3ydVStkqlNge3X75zcRKdpmhAvbdXaJ7X7nePvuCefCXkfJz40XA16SYq7VYljPaGZR8czWoWRgSesthjz0ST-Ok2mTf0T3gtT60N0G27oGVW8Rgc_s_6qk-MWVpRihRbrAxwT0Qc-eS_mgwwRfnjC_hLg5axVZOYxn25W9VxraWOpuutVAY8_sVyyrly8jpNuUtxqjRpuk3k7uro0Zd5fl7pvLq4IP_6f4T8mjxoqSw9q7D0hd1z-lNz_WADdPH9GipOiKGEAZk6bcnhaeAoLbpHTslJUn9Xgoyq3dFauqDJmMavvpKRlQX8DC15S61DioqRq6Vo7C2epPqft0S4lPcV4_ZxMhp9_fBr1mtMdeobXsqAppN_Ki4FnLnLCQaA1NjZCO5vYTFiuMhtp77yGLE5nsVCR0tyFLmTG6SzaIVt5kbtdQrnTGlJ8h-QqNg6sJ6nNrNeepcwYF5C0_SGlaaTP8QSOhdxIgYTE2ZQ4m7KaTfknIGHX86yW_7hFn13AilSnEKXl5DvDHLaS7gujgLwDAHWWUNp7dHAk8T0wwFF-7FcYkA8VvrpmkF-By1XHGYPry1DEkkkg0gHZbwEom8izksBXIxZB1IWLve0-hpiBfwSp3BXrFepUiwzy_iy-qQ0D8gL0ObuhDWQXAhUqRUBe1A7QfWmgnUBlBzAaXsH41tMnx8cjfPXyXzu-IQ-OD4fy6Mv42x55iC3qSqt9slUu1-4VkMhSv66iwyX26V_p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rootstock+control+of+scion+transpiration+and+its+acclimation+to+water+deficit+are+controlled+by+different+genes&rft.jtitle=The+New+phytologist&rft.au=Marguerit%2C+Elisa&rft.au=Brendel%2C+Oliver&rft.au=Lebon%2C+Eric&rft.au=Van+Leeuwen%2C+Cornelis&rft.date=2012-04-01&rft.eissn=1469-8137&rft.volume=194&rft.issue=2&rft.spage=416&rft_id=info:doi/10.1111%2Fj.1469-8137.2012.04059.x&rft_id=info%3Apmid%2F22335501&rft.externalDocID=22335501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon