Topological correction of brain surface meshes using spherical harmonics
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be correc...
Saved in:
Published in | Human brain mapping Vol. 32; no. 7; pp. 1109 - 1124 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
Wiley-Liss John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.21095 |
Cover
Abstract | Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a “fill” or “cut” operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low‐pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self‐intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a “gold standard” surface created by averaging 12 scans of the same brain. Ninety‐three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6–8 min of computation time. Further improvements are discussed, especially regarding the use of the T1‐weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a “fill” or “cut” operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low‐pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self‐intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a “gold standard” surface created by averaging 12 scans of the same brain. Ninety‐three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6–8 min of computation time. Further improvements are discussed, especially regarding the use of the T1‐weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc. Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a 'fill' or 'cut' operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a 'gold standard' surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Hum Brain Mapp, 2011. ? 2010 Wiley-Liss, Inc. Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. [PUBLICATION ABSTRACT] |
Author | Dahnke, Robert Yotter, Rachel Aine Gaser, Christian Thompson, Paul M. |
AuthorAffiliation | 1 Department of Psychiatry, Friedrich‐Schiller University, Jena, Germany 2 Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California |
AuthorAffiliation_xml | – name: 2 Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California – name: 1 Department of Psychiatry, Friedrich‐Schiller University, Jena, Germany |
Author_xml | – sequence: 1 givenname: Rachel Aine surname: Yotter fullname: Yotter, Rachel Aine email: rachel.yotter@uni-jena.de organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany – sequence: 2 givenname: Robert surname: Dahnke fullname: Dahnke, Robert organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany – sequence: 3 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California – sequence: 4 givenname: Christian surname: Gaser fullname: Gaser, Christian organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24266585$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20665722$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB-w4A-gSAgVFmntOH5kUwkq6CDKYzESqBvLuXEmLok92Emh_x5PZzpAJbq6lvydo6tzzz7acd4ZhJ4SfEQwLo67ejgqCK7YA7SXhsgxqejO6s1ZXpWC7KL9GC8xJoRh8gjtFphzJopiD83mful7v7Cg-wx8CAZG613m26wO2rosTqHVYLLBxM7EbIrWLbK47Ey4kXQ6DN5ZiI_Rw1b30TzZzAM0f_d2fjrLzz-fvT99fZ4DTwvmDSEcoGlagxtZUAEgJW8omIY3uJZUk7IttQEuuJFAGg3AaspaIisQYOgBOlnbLqd6MA0YNwbdq2Wwgw7Xymur_v1xtlMLf6W45FVV8mRwuDEI_sdk4qgGG8H0vXbGT1FJQSpeyqJI5Mt7SYKJqDjFskzo8zvopZ-CSzkowoigrCwrkqhnf---Xfr2Ggl4sQF0TOG2QTuw8Q9XFgmULHGv1hwEH2Mw7RYhWK0aoVIj1E0jEnt8hwU76tWNUzy2v0_x0_bm-v_Wavbm460iXytsHM2vrUKH74oLKpj6-ulMffn2oSpmF1Rd0N925Nb5 |
CitedBy_id | crossref_primary_10_1161_CIRCULATIONAHA_123_067022 crossref_primary_10_1016_j_jpsychires_2024_07_042 crossref_primary_10_1002_acn3_51860 crossref_primary_10_1007_s11682_020_00263_0 crossref_primary_10_1016_j_neurobiolaging_2022_07_013 crossref_primary_10_18632_aging_103402 crossref_primary_10_1016_j_neulet_2022_136683 crossref_primary_10_3389_fnhum_2022_959710 crossref_primary_10_1111_ejn_16612 crossref_primary_10_1007_s11682_022_00683_0 crossref_primary_10_1016_j_neuroimage_2023_120349 crossref_primary_10_1016_j_cortex_2023_07_005 crossref_primary_10_1017_S0952523821000080 crossref_primary_10_1590_1414_431x2023e12945 crossref_primary_10_1016_j_mri_2023_08_001 crossref_primary_10_1093_cercor_bhaa397 crossref_primary_10_26442_20751753_2022_2_201353 crossref_primary_10_1007_s12264_020_00520_8 crossref_primary_10_1089_brain_2022_0043 crossref_primary_10_3390_tomography10090104 crossref_primary_10_1111_ene_15263 crossref_primary_10_1186_s13195_025_01683_0 crossref_primary_10_1016_j_pscychresns_2018_06_013 crossref_primary_10_1097_WNR_0000000000001336 crossref_primary_10_1016_j_jpsychires_2021_01_032 crossref_primary_10_1002_mds_27857 crossref_primary_10_1007_s00415_023_11859_z crossref_primary_10_1038_s41380_024_02854_5 crossref_primary_10_1177_0333102420920005 crossref_primary_10_1016_j_bbr_2018_06_013 crossref_primary_10_1002_brb3_3160 crossref_primary_10_3233_JAD_230068 crossref_primary_10_1002_eat_22918 crossref_primary_10_1016_j_neuroimage_2022_119664 crossref_primary_10_1002_hbm_26388 crossref_primary_10_1159_000506258 crossref_primary_10_1002_oby_23042 crossref_primary_10_1097_WNR_0000000000001448 crossref_primary_10_1016_j_neuroimage_2020_116749 crossref_primary_10_1016_j_nicl_2019_101746 crossref_primary_10_1002_eng2_12063 crossref_primary_10_1016_j_ebiom_2024_105160 crossref_primary_10_1007_s10851_024_01172_3 crossref_primary_10_1093_texcom_tgaa071 crossref_primary_10_1097_j_pain_0000000000003557 crossref_primary_10_1016_j_neuroimage_2021_118018 crossref_primary_10_3389_fnimg_2022_807850 crossref_primary_10_1016_j_pscychresns_2020_111239 crossref_primary_10_1109_TMI_2012_2224879 crossref_primary_10_1002_hbm_23824 crossref_primary_10_1016_j_jpsychires_2017_08_012 crossref_primary_10_3389_fpsyt_2021_721720 crossref_primary_10_1016_j_bandl_2022_105148 crossref_primary_10_1007_s00234_019_02347_1 crossref_primary_10_1016_j_neuroimage_2023_120020 crossref_primary_10_1016_j_neuroimage_2022_119651 crossref_primary_10_1016_j_neuroscience_2022_05_007 crossref_primary_10_1016_j_nicl_2024_103691 crossref_primary_10_1002_brb3_2896 crossref_primary_10_1111_nyas_14971 crossref_primary_10_1007_s11682_021_00565_x crossref_primary_10_1016_j_ebr_2023_100643 crossref_primary_10_1016_j_nicl_2022_103249 crossref_primary_10_3233_JAD_220377 crossref_primary_10_1016_j_nicl_2022_102953 crossref_primary_10_1016_j_nicl_2023_103425 crossref_primary_10_1017_S0033291721001082 crossref_primary_10_2174_0115672050347905240918094644 crossref_primary_10_1093_braincomms_fcaa015 crossref_primary_10_3389_fnagi_2022_809281 crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_3389_fnins_2024_1210939 crossref_primary_10_1016_j_jad_2023_12_054 crossref_primary_10_1016_j_jpain_2024_01_001 crossref_primary_10_3389_fnhum_2021_717130 crossref_primary_10_4103_1673_5374_371371 crossref_primary_10_3389_fonc_2021_641359 crossref_primary_10_1093_cercor_bhz278 crossref_primary_10_1016_j_jocn_2021_06_026 crossref_primary_10_1016_j_neuroimage_2019_05_037 crossref_primary_10_1016_j_neuroimage_2024_120671 crossref_primary_10_1016_j_neuroimage_2022_119721 crossref_primary_10_3389_fnins_2023_1267700 crossref_primary_10_1016_j_biopsycho_2023_108726 crossref_primary_10_4103_1673_5374_313055 crossref_primary_10_1016_j_neuroimage_2020_116576 crossref_primary_10_1155_2020_1521679 crossref_primary_10_1186_s43045_022_00220_1 crossref_primary_10_3389_fnagi_2022_935055 crossref_primary_10_1016_j_ebr_2019_100341 crossref_primary_10_1093_cercor_bhaa237 crossref_primary_10_1093_cercor_bhab045 crossref_primary_10_1007_s11682_024_00905_7 crossref_primary_10_1155_2020_7364649 crossref_primary_10_1016_j_hroo_2024_01_002 crossref_primary_10_1002_hbm_25344 crossref_primary_10_1103_PhysRevE_96_052410 crossref_primary_10_1093_cercor_bhab293 crossref_primary_10_1016_j_nicl_2021_102910 crossref_primary_10_1093_schbul_sbae218 crossref_primary_10_1111_jon_12521 crossref_primary_10_1017_jfm_2024_380 crossref_primary_10_1063_5_0045701 crossref_primary_10_1177_13872877241284211 crossref_primary_10_1016_j_bandl_2019_104680 crossref_primary_10_1002_hbm_70148 crossref_primary_10_1177_03057356221110634 crossref_primary_10_2478_s13380_014_0202_1 crossref_primary_10_1093_texcom_tgaa027 crossref_primary_10_1016_j_jad_2020_07_139 crossref_primary_10_1016_j_neuroimage_2023_120434 crossref_primary_10_1523_JNEUROSCI_1081_21_2021 crossref_primary_10_1016_j_jpain_2024_104523 crossref_primary_10_1080_00207454_2020_1766459 crossref_primary_10_1080_09291016_2021_1990501 crossref_primary_10_3389_fpsyt_2020_594466 crossref_primary_10_3233_JAD_230863 crossref_primary_10_1007_s00062_023_01351_6 crossref_primary_10_3389_fneur_2021_713388 crossref_primary_10_1002_mrm_30363 crossref_primary_10_1038_s41598_023_38185_8 crossref_primary_10_1111_nmo_13164 crossref_primary_10_1007_s10439_022_03023_x crossref_primary_10_1093_sleep_zsz216 crossref_primary_10_1007_s00429_022_02546_2 crossref_primary_10_1001_jamanetworkopen_2020_15428 crossref_primary_10_1093_scan_nsab049 crossref_primary_10_1103_PhysRevE_99_062304 crossref_primary_10_1016_j_neurobiolaging_2021_01_016 crossref_primary_10_1016_j_cortex_2023_03_004 crossref_primary_10_1073_pnas_2217232120 crossref_primary_10_3390_bioengineering11040373 crossref_primary_10_1093_cercor_bhab463 crossref_primary_10_1002_hbm_25408 crossref_primary_10_1093_braincomms_fcae001 crossref_primary_10_1162_imag_a_00143 crossref_primary_10_3389_fneur_2023_1214083 crossref_primary_10_1177_13524585241280842 crossref_primary_10_1038_s41598_020_62832_z crossref_primary_10_1007_s10548_021_00852_2 crossref_primary_10_1093_cercor_bhz286 crossref_primary_10_37394_23208_2025_22_1 crossref_primary_10_1016_j_pscychresns_2021_111283 crossref_primary_10_1371_journal_pone_0228092 crossref_primary_10_1038_s41539_023_00201_x crossref_primary_10_1016_j_neurobiolaging_2022_03_015 crossref_primary_10_1212_WNL_0000000000013140 crossref_primary_10_1016_j_neuroimage_2012_09_050 crossref_primary_10_1016_j_neuroimage_2024_120918 crossref_primary_10_1111_ejn_16391 crossref_primary_10_1093_gigascience_giae049 crossref_primary_10_3389_fnagi_2017_00405 crossref_primary_10_1007_s00406_022_01454_0 crossref_primary_10_1002_hbm_24027 crossref_primary_10_1017_S1355617720000697 crossref_primary_10_1186_s41983_022_00576_5 |
Cites_doi | 10.1006/cviu.2001.0920 10.1006/nimg.1999.0534 10.1109/PCCGA.2002.1167868 10.1109/42.781013 10.1117/12.185176 10.1002/cne.901910208 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1109/42.963819 10.1002/hbm.20404 10.1007/11866763_38 10.1007/11505730_33 10.1016/j.apnum.2006.07.031 10.1007/BF01250286 10.1109/TVCG.2007.1015 10.1006/nimg.1998.0395 10.1109/TMI.2002.806590 10.1111/1467-8659.00674 10.1016/j.neuroimage.2006.06.018 10.1016/j.neuroimage.2008.10.045 10.1145/990002.990007 10.1016/j.neuroimage.2009.10.086 10.1109/TPAMI.2003.1201824 10.1006/nimg.1998.0396 10.1007/BF00133570 10.1088/0031-9155/39/3/022 10.1176/appi.ajp.161.11.2091 10.1016/j.neuroimage.2004.06.043 10.1145/37401.37422 10.1016/S0925-4927(02)00025-2 10.1109/42.511745 10.1093/cercor/bhn152 10.1007/11505730_20 10.1109/TMI.2004.826049 10.1016/S1361-8415(96)80007-7 10.1007/978-3-540-45087-0_36 10.1016/S0262-8856(01)00064-6 10.1109/42.811260 10.1006/cviu.1995.1013 10.1016/j.neuroimage.2004.07.071 10.1016/j.cmpb.2007.08.006 10.1016/j.neuroimage.2007.10.033 10.1006/jcph.2000.6551 10.1109/TMI.2007.892519 10.1016/S1361-8415(99)80006-1 10.1016/j.mri.2004.10.020 10.1016/j.neuroimage.2007.05.007 10.1016/j.neuroimage.2005.02.018 10.1016/j.neuroimage.2005.03.024 10.1093/cercor/bhl097 10.1109/42.906426 10.1093/cercor/bhh172 10.1007/11812715_5 10.1007/11566489_82 10.1016/j.neuroimage.2005.06.058 10.1093/cercor/bhl109 10.1023/A:1007979827043 10.1006/nimg.2001.0831 10.1023/A:1008157432188 10.1109/ICPR.2006.627 10.1523/JNEUROSCI.0165-05.2005 10.1109/TMI.2006.887364 10.1109/TMI.2007.893283 10.1109/42.993130 10.1016/j.neuroimage.2004.07.024 10.1007/978-3-540-85988-8_70 10.1093/cercor/bhh200 10.1016/S1361-8415(00)00008-6 10.1523/JNEUROSCI.17-18-07079.1997 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2015 INIST-CNRS Copyright © 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.21095 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Cortical Surface Topology Correction |
EISSN | 1097-0193 |
EndPage | 1124 |
ExternalDocumentID | PMC6869946 3278338701 20665722 24266585 10_1002_hbm_21095 HBM21095 ark_67375_WNG_PXK92HZ3_Z |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: EB008432; EB008281; EB007813; HD050735 – fundername: German Bundesministerium für Bildung und Forschung funderid: BMBF 01EV0709; BMBF 01GW0740 – fundername: NIBIB NIH HHS grantid: EB007813 – fundername: NICHD NIH HHS grantid: HD050735 – fundername: NIBIB NIH HHS grantid: EB008432 – fundername: NIBIB NIH HHS grantid: EB008281 – fundername: NIH grantid: EB008432; EB008281; EB007813; HD050735 – fundername: German Bundesministerium für Bildung und Forschung grantid: BMBF 01EV0709; BMBF 01GW0740 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c6095-d116ccddfe0d8237cc886d3ced6d0b83a14f4aec676e8c1dacc5b35f189c7ce3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:14:19 EDT 2025 Thu Sep 04 20:21:37 EDT 2025 Thu Sep 04 17:23:11 EDT 2025 Sat Jul 26 02:36:32 EDT 2025 Wed Feb 19 01:57:12 EST 2025 Mon Jul 21 09:16:13 EDT 2025 Tue Jul 01 04:25:57 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Wed Jan 22 16:51:54 EST 2025 Wed Oct 30 09:51:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Reconstruction Nervous system diseases Radiodiagnosis Noise MRI topological defects Central nervous system topology correction surface reconstruction Nuclear magnetic resonance imaging Encephalon self-intersections spherical harmonics Spherical harmonic Corrections |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1 CC BY 4.0 Copyright © 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6095-d116ccddfe0d8237cc886d3ced6d0b83a14f4aec676e8c1dacc5b35f189c7ce3 |
Notes | istex:E13A5ADA5AC996B863739BD2C084BBC8E94B4C97 ark:/67375/WNG-PXK92HZ3-Z NIH - No. EB008432; No. EB008281; No. EB007813; No. HD050735 ArticleID:HBM21095 German Bundesministerium für Bildung und Forschung - No. BMBF 01EV0709; No. BMBF 01GW0740 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21095?download=true |
PMID | 20665722 |
PQID | 1517354491 |
PQPubID | 996345 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869946 proquest_miscellaneous_871964822 proquest_miscellaneous_1017963084 proquest_journals_1517354491 pubmed_primary_20665722 pascalfrancis_primary_24266585 crossref_primary_10_1002_hbm_21095 crossref_citationtrail_10_1002_hbm_21095 wiley_primary_10_1002_hbm_21095_HBM21095 istex_primary_ark_67375_WNG_PXK92HZ3_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
References | Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2006): Increased local gyrification mapped in Williams syndrome. Neuroimage 33: 46-54. Kass M, Witkin A, Terzopoulos D ( 1988): Snakes: Active contour models. Int J Comput Vis 1: 321-331. Ballmaier M, Kumar A, Thompson PM, Narr KL, Lavretsky H, Estanol L, DeLuca H, Toga AW ( 2004): Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods. Am J Psychiatry 161: 2091-2099. Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J Jr, Thompson PM ( 2007): Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex 17: 2007-2018. Van Essen DC, Maunsell JHR ( 1980): Two-dimensional maps of the cerebral cortex. J Comp Neurol 191: 255-281. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang Y-P, DeLuca H, Thompson PM ( 2005): Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15: 708-719. McInerney T, Terzopoulos D ( 1996): Deformable models in medical image analysis: A survey. Med Image Anal 1: 91-108. Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TGM, Cannon TD, Toga AW ( 2004): Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23: S2-S18. Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B ( 2008): Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39: 1585-1599. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC ( 2005): Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15: 995-1001. Chung MK, Dalton KM, Li S, Evans AC, Davidson RJ ( 2007): Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans Med Imaging 26: 566-581. Kostelec PJ, Rockmore DN ( 2004): S2kit: A Lite Version of SpharmonicKit. Hanover, NH: Department of Mathematics, Dartmouth College. Bazin P-L, Pham DL ( 2007a): Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88: 182-190. Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504. Hurdal MK, Stephenson K ( 2009): Discrete conformal methods for cortical brain flattening. Neuroimage 45: S86-S98. Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL ( 2004): 3RUISE: Cortical reconstruction using implicit surface evolution. Neuroimage 23: 997-1012. Abrams L, Fishkind DE, Priebe CE ( 2002): A proof of the spherical homeomorphism conjecture for surfaces. IEEE Trans Med Imaging 21: 1564-1566. Christensen GE, Rabbitt RD, Miller MI ( 1994): 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39: 609-618. Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR ( 2005): Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26: 1019-1029. Kostelec PJ, Maslen DK, Dennis M, Healy J, Rockmore DN ( 2000): Computational harmonic analysis for tensor fields on the two-sphere. J Comput Phys 162: 514-535. Fischl B, Sereno MI, Tootell RBH, Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284. MacDonald D, Kabani N, Avis D, Evans AC ( 2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356. Ashburner J, Friston KJ ( 2005): Unified segmentation. Neuroimage 26: 839-851. Zhou Q-Y, Ju T, Hu S-M ( 2007): Topology repair of solid models using skeletons. IEEE Trans Visual Comput Graph 13: 675-685. Brechbühler C, Gerig G, Kübler O ( 1995): Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Understand 61: 154-170. Wood Z, Hoppe H, Desbrun M, Schröder P ( 2004): Removing excess topology from isosurfaces. ACM Trans Graph 23: 190-208. McInerney T, Terzopoulos D ( 2000): T-snakes: Topology adaptive snakes. Med Image Anal 4: 73-91. Van Essen DC ( 2005): A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28: 635-662. Dale AM, Fischl B, Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194. Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA, Group THS ( 2009): Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex 19: 1107-1123. Delingette H ( 1999): General object reconstruction based on simplex meshes. Int J Comput Vis 32: 111-146. Thompson PM, Toga AW ( 1996): A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15: 402-417. Fischl B, Sereno MI, Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207. Abrams L, Fishkind DE, Priebe CE ( 2004): The generalized spherical homeomorphism theorem for digital images. IEEE Trans Med Imaging 23: 655-657. Van Essen DC, Drury HA ( 1997): Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17: 7079-7102. Kelemen A, Szekely G, Gerig G ( 1999): Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18: 828-839. Montagnat J, Delingette H, Ayache N ( 2001): A review of deformable surfaces: Topology, geometry and deformation. Image Vis Comput 19: 1023-1040. Kriegeskorte N, Goebel R ( 2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346. Lachaud J-O, Montanvert A ( 1999): Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3: 187-207. Segonne F, Pacheco J, Fischl B ( 2007): Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26: 518-529. Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J ( 1995): From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5: 297-318. Bearden CE, Erp TGMv, Thompson PM, Toga AW, Cannon TD ( 2007a): Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 28: 519-532. Lui LM, Wang Y, Chan TF, Thompson P ( 2007): Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl Numer Math 57: 847-858. Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI ( 2007): Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. Neuroimage 37: 821-833. Yotter RA, Thompson PM, Gaser C: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes. 2000 J Neuroimag, in-press. Delingette H, Montagnat J ( 2001): Shape and topology constraints on parametric active contours. Comput Vis Image Understand 83: 140-171. Xiao H, Chenyang X, Prince JL ( 2003): A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25: 755-768. Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM ( 2010): Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49: 2141-2157. Bischoff S, Kobbelt L ( 2004): Topologically correct extraction of the cortical surface of a brain using level-set methods. In: Tolxdorff T, Braun J, Handels H, Horsch A, Meinzer H-P, editors. Proceedings of BVM. Berlin: Springer-Verlag. pp 50-54. Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL ( 1999): Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18: 467-480. Van Essen DC ( 2004): Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23: S97-S107. Shenton ME, Gerig G, McCarley RW, SzÈkely Gb, Kikinis R ( 2002): Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data. Psychiatry Res 115: 15-35. Bazin P-L, Pham DL ( 2007b): Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26: 487-496. Bearden CE, van Erp TGM, Dutton RA, Tran H, Zimmermann L, Sun D, Geaga JA, Simon TJ, Glahn DC, Cannon TD, Emanuel BS, Toga AW, Thompson PM ( 2007b): Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17: 1889-1898. Han X, Xu C, Braga-Neto U, Prince JL ( 2002): Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21: 109-121. Fischl B, Liu A, Dale AM ( 2001): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70-80. Shattuck DW, Leahy RM ( 2001): Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20: 1167-1177. Bischoff S, Kobbelt L ( 2003): Sub-voxel topology control for level-set surfaces. Comput Graph Forum 22: 273-280. Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2005): Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neuros 2009; 45 2004; 22 2007a; 28 2000; 4 2006; 33 2004; 23 2004; 161 2008; 39 2002; 115 2005; 26 2007b; 26 2005; 28 2007; 37 2005; 25 1995; 61 2005b 2001 2005a 2000 1999a; 9 2000; 12 1999; 18 1987 2001; 19 2000; 162 1997; 17 1996; 1 1994; 39 2009; 19 2001; 14 2007; 26 2007; 17 1997; 22 1999b; 8 2007a; 88 2009 2008 1996 2006 2005 1994 1980; 191 2004 1999; 3 2003 2002 1996; 15 2007; 57 2007; 13 1995; 5 2001; 20 1999; 9 1988; 1 2001; 83 2010; 49 2002; 21 2003; 25 1999; 32 2007b; 17 2005; 15 2003; 22 Chung (10.1002/hbm.21095-BIB19|cit19) 2007; 26 Van Essen (10.1002/hbm.21095-BIB71|cit71) 1997; 17 Ballmaier (10.1002/hbm.21095-BIB4|cit4) 2004; 161 Xu (10.1002/hbm.21095-BIB79|cit79) 1999; 18 Bearden (10.1002/hbm.21095-BIB9|cit9) 2007a; 28 Yotter (10.1002/hbm.21095-BIB80|cit80) 2000 Chung (10.1002/hbm.21095-BIB18|cit18) 2006 Segonne (10.1002/hbm.21095-BIB60|cit60) 2007; 26 Thompson (10.1002/hbm.21095-BIB66|cit66) 2005; 25 Wood (10.1002/hbm.21095-BIB77|cit77) 2004; 23 Ségonne (10.1002/hbm.21095-BIB59|cit59) 2005 Brechbühler (10.1002/hbm.21095-BIB14|cit14) 1995; 61 Bazin (10.1002/hbm.21095-BIB5|cit5) 2005a Bazin (10.1002/hbm.21095-BIB7|cit7) 2007a; 88 Bazin (10.1002/hbm.21095-BIB6|cit6) 2005b Hurdal (10.1002/hbm.21095-BIB36|cit36) 2009; 45 Mangin (10.1002/hbm.21095-BIB52|cit52) 1995; 5 Tosun (10.1002/hbm.21095-BIB68|cit68) 2006 Wang (10.1002/hbm.21095-BIB73|cit73) 2005 Lachaud (10.1002/hbm.21095-BIB44|cit44) 1999; 3 Lerch (10.1002/hbm.21095-BIB45|cit45) 2005; 15 Xiao (10.1002/hbm.21095-BIB78|cit78) 2003; 25 Thompson (10.1002/hbm.21095-BIB67|cit67) 2009; 19 Formisano (10.1002/hbm.21095-BIB27|cit27) 2004; 22 Fischl (10.1002/hbm.21095-BIB26|cit26) 2001; 20 Shattuck (10.1002/hbm.21095-BIB61|cit61) 2001; 20 Bischoff (10.1002/hbm.21095-BIB11|cit11) 2002 Han (10.1002/hbm.21095-BIB33|cit33) 2004; 23 Ashburner (10.1002/hbm.21095-BIB3|cit3) 2005; 26 Gutman (10.1002/hbm.21095-BIB31|cit31) 2006 Kostelec (10.1002/hbm.21095-BIB41|cit41) 2004 Wang (10.1002/hbm.21095-BIB74|cit74) 2008 Han (10.1002/hbm.21095-BIB32|cit32) 2002; 21 McInerney (10.1002/hbm.21095-BIB54|cit54) 2000; 4 Lin (10.1002/hbm.21095-BIB46|cit46) 2007; 17 Bearden (10.1002/hbm.21095-BIB10|cit10) 2007b; 17 Hinds (10.1002/hbm.21095-BIB35|cit35) 2008; 39 Kostelec (10.1002/hbm.21095-BIB42|cit42) 2000; 162 Qiu (10.1002/hbm.21095-BIB57|cit57) 2007; 37 Van Essen (10.1002/hbm.21095-BIB72|cit72) 1980; 191 Abrams (10.1002/hbm.21095-BIB2|cit2) 2004; 23 Lui (10.1002/hbm.21095-BIB49|cit49) 2007; 57 Jaume (10.1002/hbm.21095-BIB37|cit37) 2005 Kass (10.1002/hbm.21095-BIB39|cit39) 1988; 1 Fischl (10.1002/hbm.21095-BIB25|cit25) 1999b; 8 Karaçali (10.1002/hbm.21095-BIB38|cit38) 2003 Bischoff (10.1002/hbm.21095-BIB13|cit13) 2004 Desai (10.1002/hbm.21095-BIB23|cit23) 2005; 26 Shenton (10.1002/hbm.21095-BIB63|cit63) 2002; 115 Chen (10.1002/hbm.21095-BIB16|cit16) 2006 Bischoff (10.1002/hbm.21095-BIB12|cit12) 2003; 22 Bazin (10.1002/hbm.21095-BIB8|cit8) 2007b; 26 Gerig (10.1002/hbm.21095-BIB29|cit29) 2001 Lui (10.1002/hbm.21095-BIB48|cit48) 2006 Guskov (10.1002/hbm.21095-BIB30|cit30) 2001 Dale (10.1002/hbm.21095-BIB20|cit20) 1999; 9 Montagnat (10.1002/hbm.21095-BIB55|cit55) 2001; 19 Thompson (10.1002/hbm.21095-BIB65|cit65) 2004; 23 Gaser (10.1002/hbm.21095-BIB28|cit28) 2006; 33 Kelemen (10.1002/hbm.21095-BIB40|cit40) 1999; 18 Thompson (10.1002/hbm.21095-BIB64|cit64) 1996; 15 Fischl (10.1002/hbm.21095-BIB24|cit24) 1999a; 9 Ségonne (10.1002/hbm.21095-BIB58|cit58) 2003 Zhou (10.1002/hbm.21095-BIB81|cit81) 2007; 13 Lorensen (10.1002/hbm.21095-BIB47|cit47) 1987 Shen (10.1002/hbm.21095-BIB62|cit62) 2006 Wang (10.1002/hbm.21095-BIB76|cit76) 2010; 49 Abrams (10.1002/hbm.21095-BIB1|cit1) 2002; 21 Van Essen (10.1002/hbm.21095-BIB70|cit70) 2005; 28 Caselles (10.1002/hbm.21095-BIB15|cit15) 1997; 22 Kriegeskorte (10.1002/hbm.21095-BIB43|cit43) 2001; 14 Delingette (10.1002/hbm.21095-BIB22|cit22) 2001; 83 10.1002/hbm.21095-BIB34|cit34 Delingette (10.1002/hbm.21095-BIB21|cit21) 1999; 32 Christensen (10.1002/hbm.21095-BIB17|cit17) 1994; 39 MacDonald (10.1002/hbm.21095-BIB50|cit50) 1994 Van Essen (10.1002/hbm.21095-BIB69|cit69) 2004; 23 MacDonald (10.1002/hbm.21095-BIB51|cit51) 2000; 12 Wang (10.1002/hbm.21095-BIB75|cit75) 2009 Narr (10.1002/hbm.21095-BIB56|cit56) 2005; 15 McInerney (10.1002/hbm.21095-BIB53|cit53) 1996; 1 |
References_xml | – reference: Zhou Q-Y, Ju T, Hu S-M ( 2007): Topology repair of solid models using skeletons. IEEE Trans Visual Comput Graph 13: 675-685. – reference: Xiao H, Chenyang X, Prince JL ( 2003): A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25: 755-768. – reference: Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2005): Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neurosci 25: 4146-4158. – reference: Ashburner J, Friston KJ ( 2005): Unified segmentation. Neuroimage 26: 839-851. – reference: Bearden CE, van Erp TGM, Dutton RA, Tran H, Zimmermann L, Sun D, Geaga JA, Simon TJ, Glahn DC, Cannon TD, Emanuel BS, Toga AW, Thompson PM ( 2007b): Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17: 1889-1898. – reference: Van Essen DC ( 2004): Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23: S97-S107. – reference: Chung MK, Dalton KM, Li S, Evans AC, Davidson RJ ( 2007): Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans Med Imaging 26: 566-581. – reference: Kostelec PJ, Maslen DK, Dennis M, Healy J, Rockmore DN ( 2000): Computational harmonic analysis for tensor fields on the two-sphere. J Comput Phys 162: 514-535. – reference: Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA, Group THS ( 2009): Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex 19: 1107-1123. – reference: Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL ( 2004): 3RUISE: Cortical reconstruction using implicit surface evolution. Neuroimage 23: 997-1012. – reference: Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504. – reference: MacDonald D, Kabani N, Avis D, Evans AC ( 2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356. – reference: Ballmaier M, Kumar A, Thompson PM, Narr KL, Lavretsky H, Estanol L, DeLuca H, Toga AW ( 2004): Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods. Am J Psychiatry 161: 2091-2099. – reference: Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2006): Increased local gyrification mapped in Williams syndrome. Neuroimage 33: 46-54. – reference: Hurdal MK, Stephenson K ( 2009): Discrete conformal methods for cortical brain flattening. Neuroimage 45: S86-S98. – reference: Fischl B, Sereno MI, Tootell RBH, Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284. – reference: Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B ( 2008): Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39: 1585-1599. – reference: Bazin P-L, Pham DL ( 2007b): Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26: 487-496. – reference: Kelemen A, Szekely G, Gerig G ( 1999): Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18: 828-839. – reference: Christensen GE, Rabbitt RD, Miller MI ( 1994): 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39: 609-618. – reference: Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J ( 1995): From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5: 297-318. – reference: Kriegeskorte N, Goebel R ( 2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346. – reference: Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR ( 2005): Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26: 1019-1029. – reference: Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC ( 2005): Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15: 995-1001. – reference: Brechbühler C, Gerig G, Kübler O ( 1995): Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Understand 61: 154-170. – reference: Van Essen DC, Maunsell JHR ( 1980): Two-dimensional maps of the cerebral cortex. J Comp Neurol 191: 255-281. – reference: Yotter RA, Thompson PM, Gaser C: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes. 2000 J Neuroimag, in-press. – reference: Delingette H ( 1999): General object reconstruction based on simplex meshes. Int J Comput Vis 32: 111-146. – reference: Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL ( 1999): Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18: 467-480. – reference: Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM ( 2010): Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49: 2141-2157. – reference: Delingette H, Montagnat J ( 2001): Shape and topology constraints on parametric active contours. Comput Vis Image Understand 83: 140-171. – reference: Dale AM, Fischl B, Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194. – reference: Shenton ME, Gerig G, McCarley RW, SzÈkely Gb, Kikinis R ( 2002): Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data. Psychiatry Res 115: 15-35. – reference: Bearden CE, Erp TGMv, Thompson PM, Toga AW, Cannon TD ( 2007a): Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 28: 519-532. – reference: Han X, Xu C, Braga-Neto U, Prince JL ( 2002): Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21: 109-121. – reference: Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI ( 2007): Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. Neuroimage 37: 821-833. – reference: Montagnat J, Delingette H, Ayache N ( 2001): A review of deformable surfaces: Topology, geometry and deformation. Image Vis Comput 19: 1023-1040. – reference: Van Essen DC, Drury HA ( 1997): Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17: 7079-7102. – reference: Kostelec PJ, Rockmore DN ( 2004): S2kit: A Lite Version of SpharmonicKit. Hanover, NH: Department of Mathematics, Dartmouth College. – reference: Bischoff S, Kobbelt L ( 2004): Topologically correct extraction of the cortical surface of a brain using level-set methods. In: Tolxdorff T, Braun J, Handels H, Horsch A, Meinzer H-P, editors. Proceedings of BVM. Berlin: Springer-Verlag. pp 50-54. – reference: Caselles V, Kimmel R, Sapiro G ( 1997): Geodesic active contours. Int J Comput Vis 22: 61-79. – reference: Fischl B, Liu A, Dale AM ( 2001): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70-80. – reference: Abrams L, Fishkind DE, Priebe CE ( 2004): The generalized spherical homeomorphism theorem for digital images. IEEE Trans Med Imaging 23: 655-657. – reference: Lui LM, Wang Y, Chan TF, Thompson P ( 2007): Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl Numer Math 57: 847-858. – reference: Abrams L, Fishkind DE, Priebe CE ( 2002): A proof of the spherical homeomorphism conjecture for surfaces. IEEE Trans Med Imaging 21: 1564-1566. – reference: Van Essen DC ( 2005): A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28: 635-662. – reference: McInerney T, Terzopoulos D ( 2000): T-snakes: Topology adaptive snakes. Med Image Anal 4: 73-91. – reference: Wood Z, Hoppe H, Desbrun M, Schröder P ( 2004): Removing excess topology from isosurfaces. ACM Trans Graph 23: 190-208. – reference: Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J Jr, Thompson PM ( 2007): Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex 17: 2007-2018. – reference: Shattuck DW, Leahy RM ( 2001): Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20: 1167-1177. – reference: Bischoff S, Kobbelt L ( 2003): Sub-voxel topology control for level-set surfaces. Comput Graph Forum 22: 273-280. – reference: Kass M, Witkin A, Terzopoulos D ( 1988): Snakes: Active contour models. Int J Comput Vis 1: 321-331. – reference: McInerney T, Terzopoulos D ( 1996): Deformable models in medical image analysis: A survey. Med Image Anal 1: 91-108. – reference: Fischl B, Sereno MI, Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207. – reference: Bazin P-L, Pham DL ( 2007a): Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88: 182-190. – reference: Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang Y-P, DeLuca H, Thompson PM ( 2005): Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15: 708-719. – reference: Lachaud J-O, Montanvert A ( 1999): Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3: 187-207. – reference: Segonne F, Pacheco J, Fischl B ( 2007): Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26: 518-529. – reference: Thompson PM, Toga AW ( 1996): A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15: 402-417. – reference: Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TGM, Cannon TD, Toga AW ( 2004): Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23: S2-S18. – volume: 25 start-page: 4146 year: 2005 end-page: 4158 article-title: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome publication-title: J Neurosci – volume: 23 start-page: S97 year: 2004 end-page: S107 article-title: Surface‐based approaches to spatial localization and registration in primate cerebral cortex publication-title: Neuroimage – start-page: 585 year: 2008 end-page: 593 – volume: 20 start-page: 70 year: 2001 end-page: 80 article-title: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans Med Imaging – start-page: 426 year: 2003 end-page: 437 – year: 2005 – volume: 8 start-page: 272 year: 1999b end-page: 284 article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp – volume: 115 start-page: 15 year: 2002 end-page: 35 article-title: Amygdala‐hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data publication-title: Psychiatry Res – volume: 26 start-page: 1019 year: 2005 end-page: 1029 article-title: Volumetric vs. surface‐based alignment for localization of auditory cortex activation publication-title: Neuroimage – volume: 45 start-page: S86 year: 2009 end-page: S98 article-title: Discrete conformal methods for cortical brain flattening publication-title: Neuroimage – volume: 191 start-page: 255 year: 1980 end-page: 281 article-title: Two‐dimensional maps of the cerebral cortex publication-title: J Comp Neurol – start-page: 131 year: 2009 end-page: 140 – volume: 3 start-page: 187 year: 1999 end-page: 207 article-title: Deformable meshes with automated topology changes for coarse‐to‐fine three‐dimensional surface extraction publication-title: Med Image Anal – volume: 9 start-page: 195 year: 1999a end-page: 207 article-title: Cortical surface‐based analysis. II. Inflation, flattening, and a surface‐based coordinate system publication-title: Neuroimage – volume: 33 start-page: 46 year: 2006 end-page: 54 article-title: Increased local gyrification mapped in Williams syndrome publication-title: Neuroimage – start-page: 163 year: 1987 end-page: 169 – start-page: 234 year: 2005b end-page: 245 – volume: 22 start-page: 1493 year: 2004 end-page: 1504 article-title: Cortex‐based independent component analysis of fMRI time series publication-title: Magn Reson Imaging – volume: 5 start-page: 297 year: 1995 end-page: 318 article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations publication-title: J Math Imaging Vis – start-page: 964 year: 2006 end-page: 967 – volume: 22 start-page: 61 year: 1997 end-page: 79 article-title: Geodesic active contours publication-title: Int J Comput Vis – start-page: 294 year: 2006 end-page: 301 – volume: 23 start-page: 655 year: 2004 end-page: 657 article-title: The generalized spherical homeomorphism theorem for digital images publication-title: IEEE Trans Med Imaging – volume: 161 start-page: 2091 year: 2004 end-page: 2099 article-title: Localizing gray matter deficits in late‐onset depression using computational cortical pattern matching methods publication-title: Am J Psychiatry – volume: 23 start-page: 190 year: 2004 end-page: 208 article-title: Removing excess topology from isosurfaces publication-title: ACM Trans Graph – volume: 61 start-page: 154 year: 1995 end-page: 170 article-title: Parametrization of closed surfaces for 3‐D shape description publication-title: Comput Vis Image Understand – year: 2004 – start-page: 36 year: 2006 end-page: 43 – volume: 39 start-page: 1585 year: 2008 end-page: 1599 article-title: Accurate prediction of V1 location from cortical folds in a surface coordinate system publication-title: Neuroimage – volume: 26 start-page: 518 year: 2007 end-page: 529 article-title: Geometrically accurate topology‐correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans Med Imaging – volume: 15 start-page: 995 year: 2005 end-page: 1001 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb Cortex – volume: 20 start-page: 1167 year: 2001 end-page: 1177 article-title: Automated graph‐based analysis and correction of cortical volume topology publication-title: IEEE Trans Med Imaging – volume: 28 start-page: 519 year: 2007a end-page: 532 article-title: Cortical mapping of genotype‐phenotype relationships in schizophrenia publication-title: Hum Brain Mapp – start-page: 695 year: 2003 end-page: 702 – volume: 19 start-page: 1107 year: 2009 end-page: 1123 article-title: Time‐lapse mapping of cortical changes in schizophrenia with different treatments publication-title: Cereb Cortex – start-page: 666 year: 2005 end-page: 674 – year: 2000 article-title: Algorithms to improve the re‐parameterization of spherical mappings of brain surface meshes publication-title: J Neuroimag – start-page: 19 year: 2001 end-page: 26 – volume: 14 start-page: 329 year: 2001 end-page: 346 article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes publication-title: Neuroimage – volume: 39 start-page: 609 year: 1994 end-page: 618 article-title: 3D brain mapping using a deformable neuroanatomy publication-title: Phys Med Biol – start-page: 160 year: 1994 end-page: 169 – volume: 9 start-page: 179 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage – volume: 32 start-page: 111 year: 1999 end-page: 146 article-title: General object reconstruction based on simplex meshes publication-title: Int J Comput Vis – volume: 18 start-page: 467 year: 1999 end-page: 480 article-title: Reconstruction of the human cerebral cortex from magnetic resonance images publication-title: IEEE Trans Med Imaging – volume: 21 start-page: 1564 year: 2002 end-page: 1566 article-title: A proof of the spherical homeomorphism conjecture for surfaces publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 1023 year: 2001 end-page: 1040 article-title: A review of deformable surfaces: Topology, geometry and deformation publication-title: Image Vis Comput – volume: 15 start-page: 708 year: 2005 end-page: 719 article-title: Mapping cortical thickness and gray matter concentration in first episode schizophrenia publication-title: Cereb Cortex – volume: 1 start-page: 91 year: 1996 end-page: 108 article-title: Deformable models in medical image analysis: A survey publication-title: Med Image Anal – volume: 17 start-page: 7079 year: 1997 end-page: 7102 article-title: Structural and functional analyses of human cerebral cortex using a surface‐based atlas publication-title: J Neurosci – volume: 83 start-page: 140 year: 2001 end-page: 171 article-title: Shape and topology constraints on parametric active contours publication-title: Comput Vis Image Understand – year: 1996 – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 1 start-page: 321 year: 1988 end-page: 331 article-title: Snakes: Active contour models publication-title: Int J Comput Vis – volume: 17 start-page: 2007 year: 2007 end-page: 2018 article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis publication-title: Cereb Cortex – volume: 57 start-page: 847 year: 2007 end-page: 858 article-title: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research publication-title: Appl Numer Math – volume: 22 start-page: 273 year: 2003 end-page: 280 article-title: Sub‐voxel topology control for level‐set surfaces publication-title: Comput Graph Forum – volume: 28 start-page: 635 year: 2005 end-page: 662 article-title: A population‐average, landmark‐ and surface‐based (PALS) atlas of human cerebral cortex publication-title: Neuroimage – volume: 49 start-page: 2141 year: 2010 end-page: 2157 article-title: Multivariate tensor‐based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS publication-title: Neuroimage – volume: 25 start-page: 755 year: 2003 end-page: 768 article-title: A topology preserving level set method for geometric deformable models publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 246 year: 2002 end-page: 255 – start-page: 50 year: 2004 end-page: 54 – start-page: 308 year: 2006 end-page: 315 – volume: 88 start-page: 182 year: 2007a end-page: 190 article-title: Topology correction of segmented medical images using a fast marching algorithm publication-title: Comput Methods Programs Biomed – start-page: 316 year: 2006 end-page: 323 – volume: 23 start-page: S2 year: 2004 end-page: S18 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage – volume: 4 start-page: 73 year: 2000 end-page: 91 article-title: T‐snakes: Topology adaptive snakes publication-title: Med Image Anal – volume: 37 start-page: 821 year: 2007 end-page: 833 article-title: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia publication-title: Neuroimage – volume: 18 start-page: 828 year: 1999 end-page: 839 article-title: Elastic model‐based segmentation of 3‐D neuroradiological data sets publication-title: IEEE Trans Med Imaging – year: 2006 – volume: 12 start-page: 340 year: 2000 end-page: 356 article-title: Automated 3‐D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage – start-page: 484 year: 2005a end-page: 491 – volume: 21 start-page: 109 year: 2002 end-page: 121 article-title: Topology correction in brain cortex segmentation using a multiscale, graph‐based algorithm publication-title: IEEE Trans Med Imaging – volume: 23 start-page: 997 year: 2004 end-page: 1012 article-title: 3RUISE: Cortical reconstruction using implicit surface evolution publication-title: Neuroimage – start-page: 171 year: 2001 end-page: 178 – volume: 17 start-page: 1889 year: 2007b end-page: 1898 article-title: Mapping cortical thickness in children with 22q11.2 deletions publication-title: Cereb Cortex – volume: 15 start-page: 402 year: 1996 end-page: 417 article-title: A surface‐based technique for warping three‐dimensional images of the brain publication-title: IEEE Trans Med Imaging – volume: 26 start-page: 487 year: 2007b end-page: 496 article-title: Topology‐preserving tissue classification of magnetic resonance brain images publication-title: IEEE Trans Med Imaging – volume: 26 start-page: 566 year: 2007 end-page: 581 article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter publication-title: IEEE Trans Med Imaging – volume: 162 start-page: 514 year: 2000 end-page: 535 article-title: Computational harmonic analysis for tensor fields on the two‐sphere publication-title: J Comput Phys – volume: 13 start-page: 675 year: 2007 end-page: 685 article-title: Topology repair of solid models using skeletons publication-title: IEEE Trans Visual Comput Graph – start-page: 393 year: 2005 end-page: 405 – volume: 83 start-page: 140 year: 2001 ident: 10.1002/hbm.21095-BIB22|cit22 article-title: Shape and topology constraints on parametric active contours publication-title: Comput Vis Image Understand doi: 10.1006/cviu.2001.0920 – volume: 12 start-page: 340 year: 2000 ident: 10.1002/hbm.21095-BIB51|cit51 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage doi: 10.1006/nimg.1999.0534 – start-page: 246 volume-title: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications year: 2002 ident: 10.1002/hbm.21095-BIB11|cit11 doi: 10.1109/PCCGA.2002.1167868 – volume-title: MICCAI year: 2005 ident: 10.1002/hbm.21095-BIB37|cit37 – volume: 18 start-page: 467 year: 1999 ident: 10.1002/hbm.21095-BIB79|cit79 article-title: Reconstruction of the human cerebral cortex from magnetic resonance images publication-title: IEEE Trans Med Imaging doi: 10.1109/42.781013 – ident: 10.1002/hbm.21095-BIB34|cit34 – start-page: 160 volume-title: Visualization in Biomedical Computing 1994 year: 1994 ident: 10.1002/hbm.21095-BIB50|cit50 doi: 10.1117/12.185176 – volume: 191 start-page: 255 year: 1980 ident: 10.1002/hbm.21095-BIB72|cit72 article-title: Two-dimensional maps of the cerebral cortex publication-title: J Comp Neurol doi: 10.1002/cne.901910208 – volume: 8 start-page: 272 year: 1999b ident: 10.1002/hbm.21095-BIB25|cit25 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 20 start-page: 1167 year: 2001 ident: 10.1002/hbm.21095-BIB61|cit61 article-title: Automated graph-based analysis and correction of cortical volume topology publication-title: IEEE Trans Med Imaging doi: 10.1109/42.963819 – volume: 28 start-page: 519 year: 2007a ident: 10.1002/hbm.21095-BIB9|cit9 article-title: Cortical mapping of genotype-phenotype relationships in schizophrenia publication-title: Hum Brain Mapp doi: 10.1002/hbm.20404 – start-page: 308 volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006 year: 2006 ident: 10.1002/hbm.21095-BIB48|cit48 doi: 10.1007/11866763_38 – start-page: 393 volume-title: Proceedings of Information Processing in Medical Imaging year: 2005 ident: 10.1002/hbm.21095-BIB59|cit59 doi: 10.1007/11505730_33 – volume: 57 start-page: 847 year: 2007 ident: 10.1002/hbm.21095-BIB49|cit49 article-title: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research publication-title: Appl Numer Math doi: 10.1016/j.apnum.2006.07.031 – volume: 5 start-page: 297 year: 1995 ident: 10.1002/hbm.21095-BIB52|cit52 article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations publication-title: J Math Imaging Vis doi: 10.1007/BF01250286 – volume: 13 start-page: 675 year: 2007 ident: 10.1002/hbm.21095-BIB81|cit81 article-title: Topology repair of solid models using skeletons publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2007.1015 – volume: 9 start-page: 179 year: 1999 ident: 10.1002/hbm.21095-BIB20|cit20 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 21 start-page: 1564 year: 2002 ident: 10.1002/hbm.21095-BIB1|cit1 article-title: A proof of the spherical homeomorphism conjecture for surfaces publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.806590 – volume: 22 start-page: 273 year: 2003 ident: 10.1002/hbm.21095-BIB12|cit12 article-title: Sub-voxel topology control for level-set surfaces publication-title: Comput Graph Forum doi: 10.1111/1467-8659.00674 – volume: 33 start-page: 46 year: 2006 ident: 10.1002/hbm.21095-BIB28|cit28 article-title: Increased local gyrification mapped in Williams syndrome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.06.018 – volume: 45 start-page: S86 year: 2009 ident: 10.1002/hbm.21095-BIB36|cit36 article-title: Discrete conformal methods for cortical brain flattening publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.045 – volume: 23 start-page: 190 year: 2004 ident: 10.1002/hbm.21095-BIB77|cit77 article-title: Removing excess topology from isosurfaces publication-title: ACM Trans Graph doi: 10.1145/990002.990007 – volume: 49 start-page: 2141 year: 2010 ident: 10.1002/hbm.21095-BIB76|cit76 article-title: Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.086 – volume: 25 start-page: 755 year: 2003 ident: 10.1002/hbm.21095-BIB78|cit78 article-title: A topology preserving level set method for geometric deformable models publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2003.1201824 – volume: 9 start-page: 195 year: 1999a ident: 10.1002/hbm.21095-BIB24|cit24 article-title: Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – start-page: 484 volume-title: MICCAI year: 2005a ident: 10.1002/hbm.21095-BIB5|cit5 – volume: 1 start-page: 321 year: 1988 ident: 10.1002/hbm.21095-BIB39|cit39 article-title: Snakes: Active contour models publication-title: Int J Comput Vis doi: 10.1007/BF00133570 – start-page: 294 volume-title: 3DPVT year: 2006 ident: 10.1002/hbm.21095-BIB62|cit62 – volume: 39 start-page: 609 year: 1994 ident: 10.1002/hbm.21095-BIB17|cit17 article-title: 3D brain mapping using a deformable neuroanatomy publication-title: Phys Med Biol doi: 10.1088/0031-9155/39/3/022 – volume: 161 start-page: 2091 year: 2004 ident: 10.1002/hbm.21095-BIB4|cit4 article-title: Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.11.2091 – volume: 23 start-page: 997 year: 2004 ident: 10.1002/hbm.21095-BIB33|cit33 article-title: 3RUISE: Cortical reconstruction using implicit surface evolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.06.043 – start-page: 19 volume-title: Proceedings of Graphics Interface year: 2001 ident: 10.1002/hbm.21095-BIB30|cit30 – start-page: 163 volume-title: SIGGRAPH: 14th Annual Conference on Computer Graphics and Interactive Techniques year: 1987 ident: 10.1002/hbm.21095-BIB47|cit47 doi: 10.1145/37401.37422 – volume: 115 start-page: 15 year: 2002 ident: 10.1002/hbm.21095-BIB63|cit63 article-title: Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data publication-title: Psychiatry Res doi: 10.1016/S0925-4927(02)00025-2 – volume: 15 start-page: 402 year: 1996 ident: 10.1002/hbm.21095-BIB64|cit64 article-title: A surface-based technique for warping three-dimensional images of the brain publication-title: IEEE Trans Med Imaging doi: 10.1109/42.511745 – volume: 19 start-page: 1107 year: 2009 ident: 10.1002/hbm.21095-BIB67|cit67 article-title: Time-lapse mapping of cortical changes in schizophrenia with different treatments publication-title: Cereb Cortex doi: 10.1093/cercor/bhn152 – start-page: 234 volume-title: Information Processing in Medical Imaging year: 2005b ident: 10.1002/hbm.21095-BIB6|cit6 doi: 10.1007/11505730_20 – volume: 23 start-page: 655 year: 2004 ident: 10.1002/hbm.21095-BIB2|cit2 article-title: The generalized spherical homeomorphism theorem for digital images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.826049 – volume: 1 start-page: 91 year: 1996 ident: 10.1002/hbm.21095-BIB53|cit53 article-title: Deformable models in medical image analysis: A survey publication-title: Med Image Anal doi: 10.1016/S1361-8415(96)80007-7 – start-page: 426 volume-title: Information Processing in Medical Imaging year: 2003 ident: 10.1002/hbm.21095-BIB38|cit38 doi: 10.1007/978-3-540-45087-0_36 – volume: 19 start-page: 1023 year: 2001 ident: 10.1002/hbm.21095-BIB55|cit55 article-title: A review of deformable surfaces: Topology, geometry and deformation publication-title: Image Vis Comput doi: 10.1016/S0262-8856(01)00064-6 – volume: 18 start-page: 828 year: 1999 ident: 10.1002/hbm.21095-BIB40|cit40 article-title: Elastic model-based segmentation of 3-D neuroradiological data sets publication-title: IEEE Trans Med Imaging doi: 10.1109/42.811260 – start-page: 131 volume-title: Medical Image Computing and Computer Assisted Intervention (MICCAI2009) year: 2009 ident: 10.1002/hbm.21095-BIB75|cit75 – volume: 61 start-page: 154 year: 1995 ident: 10.1002/hbm.21095-BIB14|cit14 article-title: Parametrization of closed surfaces for 3-D shape description publication-title: Comput Vis Image Understand doi: 10.1006/cviu.1995.1013 – volume: 23 start-page: S2 year: 2004 ident: 10.1002/hbm.21095-BIB65|cit65 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.071 – volume: 88 start-page: 182 year: 2007a ident: 10.1002/hbm.21095-BIB7|cit7 article-title: Topology correction of segmented medical images using a fast marching algorithm publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2007.08.006 – volume: 39 start-page: 1585 year: 2008 ident: 10.1002/hbm.21095-BIB35|cit35 article-title: Accurate prediction of V1 location from cortical folds in a surface coordinate system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.033 – volume: 162 start-page: 514 year: 2000 ident: 10.1002/hbm.21095-BIB42|cit42 article-title: Computational harmonic analysis for tensor fields on the two-sphere publication-title: J Comput Phys doi: 10.1006/jcph.2000.6551 – volume: 26 start-page: 566 year: 2007 ident: 10.1002/hbm.21095-BIB19|cit19 article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2007.892519 – volume: 3 start-page: 187 year: 1999 ident: 10.1002/hbm.21095-BIB44|cit44 article-title: Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction publication-title: Med Image Anal doi: 10.1016/S1361-8415(99)80006-1 – volume-title: IEEE International Symposium on Biomedical Imaging (ISBI2006) year: 2006 ident: 10.1002/hbm.21095-BIB68|cit68 – volume: 22 start-page: 1493 year: 2004 ident: 10.1002/hbm.21095-BIB27|cit27 article-title: Cortex-based independent component analysis of fMRI time series publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2004.10.020 – volume: 37 start-page: 821 year: 2007 ident: 10.1002/hbm.21095-BIB57|cit57 article-title: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.007 – volume: 26 start-page: 839 year: 2005 ident: 10.1002/hbm.21095-BIB3|cit3 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 26 start-page: 1019 year: 2005 ident: 10.1002/hbm.21095-BIB23|cit23 article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.03.024 – volume: 17 start-page: 1889 year: 2007b ident: 10.1002/hbm.21095-BIB10|cit10 article-title: Mapping cortical thickness in children with 22q11.2 deletions publication-title: Cereb Cortex doi: 10.1093/cercor/bhl097 – volume: 20 start-page: 70 year: 2001 ident: 10.1002/hbm.21095-BIB26|cit26 article-title: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906426 – volume: 15 start-page: 708 year: 2005 ident: 10.1002/hbm.21095-BIB56|cit56 article-title: Mapping cortical thickness and gray matter concentration in first episode schizophrenia publication-title: Cereb Cortex doi: 10.1093/cercor/bhh172 – start-page: 695 volume-title: MICCAI year: 2003 ident: 10.1002/hbm.21095-BIB58|cit58 – start-page: 36 volume-title: Medical Imaging and Augmented Reality year: 2006 ident: 10.1002/hbm.21095-BIB18|cit18 doi: 10.1007/11812715_5 – start-page: 666 volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2005 year: 2005 ident: 10.1002/hbm.21095-BIB73|cit73 doi: 10.1007/11566489_82 – volume: 28 start-page: 635 year: 2005 ident: 10.1002/hbm.21095-BIB70|cit70 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 17 start-page: 2007 year: 2007 ident: 10.1002/hbm.21095-BIB46|cit46 article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis publication-title: Cereb Cortex doi: 10.1093/cercor/bhl109 – volume: 22 start-page: 61 year: 1997 ident: 10.1002/hbm.21095-BIB15|cit15 article-title: Geodesic active contours publication-title: Int J Comput Vis doi: 10.1023/A:1007979827043 – volume: 14 start-page: 329 year: 2001 ident: 10.1002/hbm.21095-BIB43|cit43 article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes publication-title: Neuroimage doi: 10.1006/nimg.2001.0831 – start-page: 171 volume-title: Mathematical Methods in Biomedical Image Analysis (MMBIA) year: 2001 ident: 10.1002/hbm.21095-BIB29|cit29 – year: 2000 ident: 10.1002/hbm.21095-BIB80|cit80 article-title: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes publication-title: J Neuroimag – volume-title: S2kit: A Lite Version of SpharmonicKit year: 2004 ident: 10.1002/hbm.21095-BIB41|cit41 – volume: 32 start-page: 111 year: 1999 ident: 10.1002/hbm.21095-BIB21|cit21 article-title: General object reconstruction based on simplex meshes publication-title: Int J Comput Vis doi: 10.1023/A:1008157432188 – start-page: 964 volume-title: International Conference on Pattern Recognition (ICPR) year: 2006 ident: 10.1002/hbm.21095-BIB31|cit31 doi: 10.1109/ICPR.2006.627 – volume: 25 start-page: 4146 year: 2005 ident: 10.1002/hbm.21095-BIB66|cit66 article-title: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0165-05.2005 – volume: 26 start-page: 518 year: 2007 ident: 10.1002/hbm.21095-BIB60|cit60 article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.887364 – volume: 26 start-page: 487 year: 2007b ident: 10.1002/hbm.21095-BIB8|cit8 article-title: Topology-preserving tissue classification of magnetic resonance brain images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2007.893283 – volume: 21 start-page: 109 year: 2002 ident: 10.1002/hbm.21095-BIB32|cit32 article-title: Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.993130 – volume: 23 start-page: S97 year: 2004 ident: 10.1002/hbm.21095-BIB69|cit69 article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.024 – start-page: 585 volume-title: International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI 2008 year: 2008 ident: 10.1002/hbm.21095-BIB74|cit74 doi: 10.1007/978-3-540-85988-8_70 – volume: 15 start-page: 995 year: 2005 ident: 10.1002/hbm.21095-BIB45|cit45 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb Cortex doi: 10.1093/cercor/bhh200 – start-page: 316 volume-title: MICCAI year: 2006 ident: 10.1002/hbm.21095-BIB16|cit16 – start-page: 50 volume-title: Proceedings of BVM year: 2004 ident: 10.1002/hbm.21095-BIB13|cit13 – volume: 4 start-page: 73 year: 2000 ident: 10.1002/hbm.21095-BIB54|cit54 article-title: T-snakes: Topology adaptive snakes publication-title: Med Image Anal doi: 10.1016/S1361-8415(00)00008-6 – volume: 17 start-page: 7079 year: 1997 ident: 10.1002/hbm.21095-BIB71|cit71 article-title: Structural and functional analyses of human cerebral cortex using a surface-based atlas publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-18-07079.1997 |
SSID | ssj0011501 |
Score | 2.435333 |
Snippet | Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1109 |
SubjectTerms | Algorithms Biological and medical sciences Brain - anatomy & histology Brain mapping Brain Mapping - methods Cortex Data processing Electrocardiography. Vectocardiography Electrodiagnosis. Electric activity recording Humans Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Medical sciences MRI Nervous system noise Patched protein Radiodiagnosis. Nmr imagery. Nmr spectrometry self-intersections spherical harmonics Structure-function relationships surface reconstruction topological defects topology correction |
Title | Topological correction of brain surface meshes using spherical harmonics |
URI | https://api.istex.fr/ark:/67375/WNG-PXK92HZ3-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21095 https://www.ncbi.nlm.nih.gov/pubmed/20665722 https://www.proquest.com/docview/1517354491 https://www.proquest.com/docview/1017963084 https://www.proquest.com/docview/871964822 https://pubmed.ncbi.nlm.nih.gov/PMC6869946 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0K88LHxkTEmg9DES7qkTtxYPI2PUYE2IVRENSFZ9tmhaGuKmlYC_np8TppR2CTEWySflfhyZ9_ZP_8O4ClaWbhEe0dy0sR-9rOxSS1hGqzE0vBSNCjfEzH8mL0d5-MNeL66C9PwQ3QbbuQZYb4mB9emPrggDZ2Yac_nK5IumKdcEG_-qw8ddRQFOiHZ8ktsLP03rFiFkv5B13NtLbpGav1O2Ehde_WUTV2LywLPv_GTv8e1YWE6ugWfV0Nq8ChnveXC9PDnH2yP_znm23CzDVjZYWNhd2DDVVuwfVj5ZH36g-2zACENe_NbcP24PanfhuGoqb5ANsCQSoCECxRsVjJDVSlYvZyXGh2bunriakb4-y-sJpKD0IUYtYm1t74Lo6PXo5fDuK3aECOR18U2TQWitaVLLDHhIBaFsBydFTYxBddpVmbaoRgIV2BqNWJueF6mhcQBOn4PNqtZ5R4AKyw3HCXmmS593mllH63Qae4SIwppkgierX6fwpbRnAprnKuGi7mvvL5U0FcETzrRbw2Nx2VC-8EGOgk9PyPc2yBXn07eqPfjd7I_POXqNIK9NSPpOoR4xydgEeyurEa1c0KtfGw14HmWyTSCx12z92Y6otGVmy1rFSZIwZMii4BdIeNTXCkyH9hFcL-xw4v3h4M0ahmsWWgnQGTi6y3V10kgFReFkDITXqfBAK_Wkhq-OA4PO_8u-hBuNHvxBHPehc3FfOke-WBuYfaC1_4CmSxH7w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQJe-LEBC4xhEJp4SZc0iRtLvIwfI7C1QqiIahKy4rNDp9EUNa0E_PX4nCajsEmIt0o-q831zv7O_vIdwFPUIjVBbhPJCOXb1U_7KtTEadACCxUVvGb5Dnj2MX43SkZr8Lx5F6bWh2gP3Cgz3HpNCU4H0vvnqqFjNenYgkUkV2AjtkCDSq9XH1rxKII6rtyym6wv7K9odIWC7n47dWU32iDHfid2ZF5ZBxV1Z4uLoOffDMrfka3bmg5vwufmoWpGyllnMVcd_PmH3uP_PvUtuLHErOygDrLbsGbKTdg6KG29PvnB9phjkbrj-U242l9e1m9BNqwbMFAYMKQuIO4dCjYtmKLGFKxazIocDZuYamwqRhT8L6winQM3hUS1Sbi3ugPDw9fDl5m_bNzgI-nX-ToMOaLWhQk0ieEgpinXERrNdaDSKA_jIs4N8h43KYY6R0xUlBRhKrCHJroL6-W0NNvAUh2pCAUmcV7Y0lOLLmqeh4kJFE-FCjx41vx_Epei5tRb46us5Zi70vpLOn958KQ1_VYreVxktOeCoLXIZ2dEfesl8tPgjXw_OhLd7CSSJx7srkRJO8FBHluDebDThI1cLguVtPCqFyVxLEIPHrfDNqHpliYvzXRRSbdG8ihIYw_YJTa2yhU8ttjOg3t1IJ5_v7tLo5HeSoi2BqQnvjpSno6drjhPuRAxtz51EXi5l2T2ou8-3P9300dwLRv2j-Xx28HRA7heH80T63kH1uezhXlosd1c7boU_gXu9EwO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTZr4wsvGS2AMg9DEl3RJk7ix-DReSmCsmlAR1TTJis8ORaPp1LQS8OvxOWlGYZMQ3yr5rDbXO_s5-8lzAM9Qi9QEuU0kI5RvVz_tq1ATp0ELLFRU8JrlO-DZp_j9KBmtwYvluzC1PkR74EaZ4dZrSvBzXexfiIaO1aRj6xWRXIONmFskQYjoY6sdRUjHVVt2j_WF_RFLWaGgu99OXdmMNsiv34kcmVfWP0Xd2OIy5Pk3gfJ3YOt2pv5NOF0-U01IOess5qqDP_-Qe_zPh74FNxrEyg7qELsNa6bcgu2D0lbrkx9sjzkOqTuc34LNo-aqfhuyYd1-gYKAIfUAcW9QsGnBFLWlYNViVuRo2MRUY1MxIuB_YRWpHLgpJKlNsr3VHRj23wxfZX7TtsFHUq_zdRhyRK0LE2iSwkFMU64jNJrrQKVRHsZFnBvkPW5SDHWOmKgoKcJUYA9NdBfWy2lp7gNLdaQiFJjEeWELTy26qHkeJiZQPBUq8OD58u-T2EiaU2eNb7IWY-5K6y_p_OXB09b0vNbxuMxoz8VAa5HPzoj41kvk58FbeTw6FN3sJJInHuyuBEk7wQEeW4F5sLOMGtksCpW04KoXJXEsQg-etMM2nemOJi_NdFFJt0LyKEhjD9gVNrbGFTy2yM6De3UcXny_u0mjkd5KhLYGpCa-OlJ-HTtVcZ5yIWJufeoC8Govyezlkfvw4N9NH8Pm8eu-_PBucPgQrtfn8kR53oH1-WxhHllgN1e7LoF_AdsGSr0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+correction+of+brain+surface+meshes+using+spherical+harmonics&rft.jtitle=Human+brain+mapping&rft.au=Yotter%2C+Rachel+Aine&rft.au=Dahnke%2C+Robert&rft.au=Thompson%2C+Paul+M.&rft.au=Gaser%2C+Christian&rft.date=2011-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=32&rft.issue=7&rft.spage=1109&rft.epage=1124&rft_id=info:doi/10.1002%2Fhbm.21095&rft.externalDBID=10.1002%252Fhbm.21095&rft.externalDocID=HBM21095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |