Topological correction of brain surface meshes using spherical harmonics

Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be correc...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 32; no. 7; pp. 1109 - 1124
Main Authors Yotter, Rachel Aine, Dahnke, Robert, Thompson, Paul M., Gaser, Christian
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Wiley-Liss
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.21095

Cover

Abstract Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a “fill” or “cut” operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low‐pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self‐intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a “gold standard” surface created by averaging 12 scans of the same brain. Ninety‐three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6–8 min of computation time. Further improvements are discussed, especially regarding the use of the T1‐weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.
AbstractList Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a “fill” or “cut” operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low‐pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self‐intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a “gold standard” surface created by averaging 12 scans of the same brain. Ninety‐three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6–8 min of computation time. Further improvements are discussed, especially regarding the use of the T1‐weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a 'fill' or 'cut' operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a 'gold standard' surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Hum Brain Mapp, 2011. ? 2010 Wiley-Liss, Inc.
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.
Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. [PUBLICATION ABSTRACT]
Author Dahnke, Robert
Yotter, Rachel Aine
Gaser, Christian
Thompson, Paul M.
AuthorAffiliation 1 Department of Psychiatry, Friedrich‐Schiller University, Jena, Germany
2 Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California
AuthorAffiliation_xml – name: 2 Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California
– name: 1 Department of Psychiatry, Friedrich‐Schiller University, Jena, Germany
Author_xml – sequence: 1
  givenname: Rachel Aine
  surname: Yotter
  fullname: Yotter, Rachel Aine
  email: rachel.yotter@uni-jena.de
  organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany
– sequence: 2
  givenname: Robert
  surname: Dahnke
  fullname: Dahnke, Robert
  organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany
– sequence: 3
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Laboratory of Neuro Imaging, Division of Brain Mapping, Department of Neurology, UCLA School of Medicine, Los Angeles, California
– sequence: 4
  givenname: Christian
  surname: Gaser
  fullname: Gaser, Christian
  organization: Department of Psychiatry, Friedrich-Schiller University, Jena, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24266585$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20665722$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB-w4A-gSAgVFmntOH5kUwkq6CDKYzESqBvLuXEmLok92Emh_x5PZzpAJbq6lvydo6tzzz7acd4ZhJ4SfEQwLo67ejgqCK7YA7SXhsgxqejO6s1ZXpWC7KL9GC8xJoRh8gjtFphzJopiD83mful7v7Cg-wx8CAZG613m26wO2rosTqHVYLLBxM7EbIrWLbK47Ey4kXQ6DN5ZiI_Rw1b30TzZzAM0f_d2fjrLzz-fvT99fZ4DTwvmDSEcoGlagxtZUAEgJW8omIY3uJZUk7IttQEuuJFAGg3AaspaIisQYOgBOlnbLqd6MA0YNwbdq2Wwgw7Xymur_v1xtlMLf6W45FVV8mRwuDEI_sdk4qgGG8H0vXbGT1FJQSpeyqJI5Mt7SYKJqDjFskzo8zvopZ-CSzkowoigrCwrkqhnf---Xfr2Ggl4sQF0TOG2QTuw8Q9XFgmULHGv1hwEH2Mw7RYhWK0aoVIj1E0jEnt8hwU76tWNUzy2v0_x0_bm-v_Wavbm460iXytsHM2vrUKH74oLKpj6-ulMffn2oSpmF1Rd0N925Nb5
CitedBy_id crossref_primary_10_1161_CIRCULATIONAHA_123_067022
crossref_primary_10_1016_j_jpsychires_2024_07_042
crossref_primary_10_1002_acn3_51860
crossref_primary_10_1007_s11682_020_00263_0
crossref_primary_10_1016_j_neurobiolaging_2022_07_013
crossref_primary_10_18632_aging_103402
crossref_primary_10_1016_j_neulet_2022_136683
crossref_primary_10_3389_fnhum_2022_959710
crossref_primary_10_1111_ejn_16612
crossref_primary_10_1007_s11682_022_00683_0
crossref_primary_10_1016_j_neuroimage_2023_120349
crossref_primary_10_1016_j_cortex_2023_07_005
crossref_primary_10_1017_S0952523821000080
crossref_primary_10_1590_1414_431x2023e12945
crossref_primary_10_1016_j_mri_2023_08_001
crossref_primary_10_1093_cercor_bhaa397
crossref_primary_10_26442_20751753_2022_2_201353
crossref_primary_10_1007_s12264_020_00520_8
crossref_primary_10_1089_brain_2022_0043
crossref_primary_10_3390_tomography10090104
crossref_primary_10_1111_ene_15263
crossref_primary_10_1186_s13195_025_01683_0
crossref_primary_10_1016_j_pscychresns_2018_06_013
crossref_primary_10_1097_WNR_0000000000001336
crossref_primary_10_1016_j_jpsychires_2021_01_032
crossref_primary_10_1002_mds_27857
crossref_primary_10_1007_s00415_023_11859_z
crossref_primary_10_1038_s41380_024_02854_5
crossref_primary_10_1177_0333102420920005
crossref_primary_10_1016_j_bbr_2018_06_013
crossref_primary_10_1002_brb3_3160
crossref_primary_10_3233_JAD_230068
crossref_primary_10_1002_eat_22918
crossref_primary_10_1016_j_neuroimage_2022_119664
crossref_primary_10_1002_hbm_26388
crossref_primary_10_1159_000506258
crossref_primary_10_1002_oby_23042
crossref_primary_10_1097_WNR_0000000000001448
crossref_primary_10_1016_j_neuroimage_2020_116749
crossref_primary_10_1016_j_nicl_2019_101746
crossref_primary_10_1002_eng2_12063
crossref_primary_10_1016_j_ebiom_2024_105160
crossref_primary_10_1007_s10851_024_01172_3
crossref_primary_10_1093_texcom_tgaa071
crossref_primary_10_1097_j_pain_0000000000003557
crossref_primary_10_1016_j_neuroimage_2021_118018
crossref_primary_10_3389_fnimg_2022_807850
crossref_primary_10_1016_j_pscychresns_2020_111239
crossref_primary_10_1109_TMI_2012_2224879
crossref_primary_10_1002_hbm_23824
crossref_primary_10_1016_j_jpsychires_2017_08_012
crossref_primary_10_3389_fpsyt_2021_721720
crossref_primary_10_1016_j_bandl_2022_105148
crossref_primary_10_1007_s00234_019_02347_1
crossref_primary_10_1016_j_neuroimage_2023_120020
crossref_primary_10_1016_j_neuroimage_2022_119651
crossref_primary_10_1016_j_neuroscience_2022_05_007
crossref_primary_10_1016_j_nicl_2024_103691
crossref_primary_10_1002_brb3_2896
crossref_primary_10_1111_nyas_14971
crossref_primary_10_1007_s11682_021_00565_x
crossref_primary_10_1016_j_ebr_2023_100643
crossref_primary_10_1016_j_nicl_2022_103249
crossref_primary_10_3233_JAD_220377
crossref_primary_10_1016_j_nicl_2022_102953
crossref_primary_10_1016_j_nicl_2023_103425
crossref_primary_10_1017_S0033291721001082
crossref_primary_10_2174_0115672050347905240918094644
crossref_primary_10_1093_braincomms_fcaa015
crossref_primary_10_3389_fnagi_2022_809281
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_3389_fnins_2024_1210939
crossref_primary_10_1016_j_jad_2023_12_054
crossref_primary_10_1016_j_jpain_2024_01_001
crossref_primary_10_3389_fnhum_2021_717130
crossref_primary_10_4103_1673_5374_371371
crossref_primary_10_3389_fonc_2021_641359
crossref_primary_10_1093_cercor_bhz278
crossref_primary_10_1016_j_jocn_2021_06_026
crossref_primary_10_1016_j_neuroimage_2019_05_037
crossref_primary_10_1016_j_neuroimage_2024_120671
crossref_primary_10_1016_j_neuroimage_2022_119721
crossref_primary_10_3389_fnins_2023_1267700
crossref_primary_10_1016_j_biopsycho_2023_108726
crossref_primary_10_4103_1673_5374_313055
crossref_primary_10_1016_j_neuroimage_2020_116576
crossref_primary_10_1155_2020_1521679
crossref_primary_10_1186_s43045_022_00220_1
crossref_primary_10_3389_fnagi_2022_935055
crossref_primary_10_1016_j_ebr_2019_100341
crossref_primary_10_1093_cercor_bhaa237
crossref_primary_10_1093_cercor_bhab045
crossref_primary_10_1007_s11682_024_00905_7
crossref_primary_10_1155_2020_7364649
crossref_primary_10_1016_j_hroo_2024_01_002
crossref_primary_10_1002_hbm_25344
crossref_primary_10_1103_PhysRevE_96_052410
crossref_primary_10_1093_cercor_bhab293
crossref_primary_10_1016_j_nicl_2021_102910
crossref_primary_10_1093_schbul_sbae218
crossref_primary_10_1111_jon_12521
crossref_primary_10_1017_jfm_2024_380
crossref_primary_10_1063_5_0045701
crossref_primary_10_1177_13872877241284211
crossref_primary_10_1016_j_bandl_2019_104680
crossref_primary_10_1002_hbm_70148
crossref_primary_10_1177_03057356221110634
crossref_primary_10_2478_s13380_014_0202_1
crossref_primary_10_1093_texcom_tgaa027
crossref_primary_10_1016_j_jad_2020_07_139
crossref_primary_10_1016_j_neuroimage_2023_120434
crossref_primary_10_1523_JNEUROSCI_1081_21_2021
crossref_primary_10_1016_j_jpain_2024_104523
crossref_primary_10_1080_00207454_2020_1766459
crossref_primary_10_1080_09291016_2021_1990501
crossref_primary_10_3389_fpsyt_2020_594466
crossref_primary_10_3233_JAD_230863
crossref_primary_10_1007_s00062_023_01351_6
crossref_primary_10_3389_fneur_2021_713388
crossref_primary_10_1002_mrm_30363
crossref_primary_10_1038_s41598_023_38185_8
crossref_primary_10_1111_nmo_13164
crossref_primary_10_1007_s10439_022_03023_x
crossref_primary_10_1093_sleep_zsz216
crossref_primary_10_1007_s00429_022_02546_2
crossref_primary_10_1001_jamanetworkopen_2020_15428
crossref_primary_10_1093_scan_nsab049
crossref_primary_10_1103_PhysRevE_99_062304
crossref_primary_10_1016_j_neurobiolaging_2021_01_016
crossref_primary_10_1016_j_cortex_2023_03_004
crossref_primary_10_1073_pnas_2217232120
crossref_primary_10_3390_bioengineering11040373
crossref_primary_10_1093_cercor_bhab463
crossref_primary_10_1002_hbm_25408
crossref_primary_10_1093_braincomms_fcae001
crossref_primary_10_1162_imag_a_00143
crossref_primary_10_3389_fneur_2023_1214083
crossref_primary_10_1177_13524585241280842
crossref_primary_10_1038_s41598_020_62832_z
crossref_primary_10_1007_s10548_021_00852_2
crossref_primary_10_1093_cercor_bhz286
crossref_primary_10_37394_23208_2025_22_1
crossref_primary_10_1016_j_pscychresns_2021_111283
crossref_primary_10_1371_journal_pone_0228092
crossref_primary_10_1038_s41539_023_00201_x
crossref_primary_10_1016_j_neurobiolaging_2022_03_015
crossref_primary_10_1212_WNL_0000000000013140
crossref_primary_10_1016_j_neuroimage_2012_09_050
crossref_primary_10_1016_j_neuroimage_2024_120918
crossref_primary_10_1111_ejn_16391
crossref_primary_10_1093_gigascience_giae049
crossref_primary_10_3389_fnagi_2017_00405
crossref_primary_10_1007_s00406_022_01454_0
crossref_primary_10_1002_hbm_24027
crossref_primary_10_1017_S1355617720000697
crossref_primary_10_1186_s41983_022_00576_5
Cites_doi 10.1006/cviu.2001.0920
10.1006/nimg.1999.0534
10.1109/PCCGA.2002.1167868
10.1109/42.781013
10.1117/12.185176
10.1002/cne.901910208
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1109/42.963819
10.1002/hbm.20404
10.1007/11866763_38
10.1007/11505730_33
10.1016/j.apnum.2006.07.031
10.1007/BF01250286
10.1109/TVCG.2007.1015
10.1006/nimg.1998.0395
10.1109/TMI.2002.806590
10.1111/1467-8659.00674
10.1016/j.neuroimage.2006.06.018
10.1016/j.neuroimage.2008.10.045
10.1145/990002.990007
10.1016/j.neuroimage.2009.10.086
10.1109/TPAMI.2003.1201824
10.1006/nimg.1998.0396
10.1007/BF00133570
10.1088/0031-9155/39/3/022
10.1176/appi.ajp.161.11.2091
10.1016/j.neuroimage.2004.06.043
10.1145/37401.37422
10.1016/S0925-4927(02)00025-2
10.1109/42.511745
10.1093/cercor/bhn152
10.1007/11505730_20
10.1109/TMI.2004.826049
10.1016/S1361-8415(96)80007-7
10.1007/978-3-540-45087-0_36
10.1016/S0262-8856(01)00064-6
10.1109/42.811260
10.1006/cviu.1995.1013
10.1016/j.neuroimage.2004.07.071
10.1016/j.cmpb.2007.08.006
10.1016/j.neuroimage.2007.10.033
10.1006/jcph.2000.6551
10.1109/TMI.2007.892519
10.1016/S1361-8415(99)80006-1
10.1016/j.mri.2004.10.020
10.1016/j.neuroimage.2007.05.007
10.1016/j.neuroimage.2005.02.018
10.1016/j.neuroimage.2005.03.024
10.1093/cercor/bhl097
10.1109/42.906426
10.1093/cercor/bhh172
10.1007/11812715_5
10.1007/11566489_82
10.1016/j.neuroimage.2005.06.058
10.1093/cercor/bhl109
10.1023/A:1007979827043
10.1006/nimg.2001.0831
10.1023/A:1008157432188
10.1109/ICPR.2006.627
10.1523/JNEUROSCI.0165-05.2005
10.1109/TMI.2006.887364
10.1109/TMI.2007.893283
10.1109/42.993130
10.1016/j.neuroimage.2004.07.024
10.1007/978-3-540-85988-8_70
10.1093/cercor/bhh200
10.1016/S1361-8415(00)00008-6
10.1523/JNEUROSCI.17-18-07079.1997
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2015 INIST-CNRS
Copyright © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21095
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Cortical Surface Topology Correction
EISSN 1097-0193
EndPage 1124
ExternalDocumentID PMC6869946
3278338701
20665722
24266585
10_1002_hbm_21095
HBM21095
ark_67375_WNG_PXK92HZ3_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: EB008432; EB008281; EB007813; HD050735
– fundername: German Bundesministerium für Bildung und Forschung
  funderid: BMBF 01EV0709; BMBF 01GW0740
– fundername: NIBIB NIH HHS
  grantid: EB007813
– fundername: NICHD NIH HHS
  grantid: HD050735
– fundername: NIBIB NIH HHS
  grantid: EB008432
– fundername: NIBIB NIH HHS
  grantid: EB008281
– fundername: NIH
  grantid: EB008432; EB008281; EB007813; HD050735
– fundername: German Bundesministerium für Bildung und Forschung
  grantid: BMBF 01EV0709; BMBF 01GW0740
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6095-d116ccddfe0d8237cc886d3ced6d0b83a14f4aec676e8c1dacc5b35f189c7ce3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:14:19 EDT 2025
Thu Sep 04 20:21:37 EDT 2025
Thu Sep 04 17:23:11 EDT 2025
Sat Jul 26 02:36:32 EDT 2025
Wed Feb 19 01:57:12 EST 2025
Mon Jul 21 09:16:13 EDT 2025
Tue Jul 01 04:25:57 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Wed Jan 22 16:51:54 EST 2025
Wed Oct 30 09:51:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Reconstruction
Nervous system diseases
Radiodiagnosis
Noise
MRI
topological defects
Central nervous system
topology correction
surface reconstruction
Nuclear magnetic resonance imaging
Encephalon
self-intersections
spherical harmonics
Spherical harmonic
Corrections
Language English
License http://doi.wiley.com/10.1002/tdm_license_1
CC BY 4.0
Copyright © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6095-d116ccddfe0d8237cc886d3ced6d0b83a14f4aec676e8c1dacc5b35f189c7ce3
Notes istex:E13A5ADA5AC996B863739BD2C084BBC8E94B4C97
ark:/67375/WNG-PXK92HZ3-Z
NIH - No. EB008432; No. EB008281; No. EB007813; No. HD050735
ArticleID:HBM21095
German Bundesministerium für Bildung und Forschung - No. BMBF 01EV0709; No. BMBF 01GW0740
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21095?download=true
PMID 20665722
PQID 1517354491
PQPubID 996345
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6869946
proquest_miscellaneous_871964822
proquest_miscellaneous_1017963084
proquest_journals_1517354491
pubmed_primary_20665722
pascalfrancis_primary_24266585
crossref_primary_10_1002_hbm_21095
crossref_citationtrail_10_1002_hbm_21095
wiley_primary_10_1002_hbm_21095_HBM21095
istex_primary_ark_67375_WNG_PXK92HZ3_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2006): Increased local gyrification mapped in Williams syndrome. Neuroimage 33: 46-54.
Kass M, Witkin A, Terzopoulos D ( 1988): Snakes: Active contour models. Int J Comput Vis 1: 321-331.
Ballmaier M, Kumar A, Thompson PM, Narr KL, Lavretsky H, Estanol L, DeLuca H, Toga AW ( 2004): Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods. Am J Psychiatry 161: 2091-2099.
Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J Jr, Thompson PM ( 2007): Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex 17: 2007-2018.
Van Essen DC, Maunsell JHR ( 1980): Two-dimensional maps of the cerebral cortex. J Comp Neurol 191: 255-281.
Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang Y-P, DeLuca H, Thompson PM ( 2005): Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15: 708-719.
McInerney T, Terzopoulos D ( 1996): Deformable models in medical image analysis: A survey. Med Image Anal 1: 91-108.
Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TGM, Cannon TD, Toga AW ( 2004): Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23: S2-S18.
Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B ( 2008): Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39: 1585-1599.
Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC ( 2005): Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15: 995-1001.
Chung MK, Dalton KM, Li S, Evans AC, Davidson RJ ( 2007): Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans Med Imaging 26: 566-581.
Kostelec PJ, Rockmore DN ( 2004): S2kit: A Lite Version of SpharmonicKit. Hanover, NH: Department of Mathematics, Dartmouth College.
Bazin P-L, Pham DL ( 2007a): Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88: 182-190.
Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504.
Hurdal MK, Stephenson K ( 2009): Discrete conformal methods for cortical brain flattening. Neuroimage 45: S86-S98.
Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL ( 2004): 3RUISE: Cortical reconstruction using implicit surface evolution. Neuroimage 23: 997-1012.
Abrams L, Fishkind DE, Priebe CE ( 2002): A proof of the spherical homeomorphism conjecture for surfaces. IEEE Trans Med Imaging 21: 1564-1566.
Christensen GE, Rabbitt RD, Miller MI ( 1994): 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39: 609-618.
Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR ( 2005): Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26: 1019-1029.
Kostelec PJ, Maslen DK, Dennis M, Healy J, Rockmore DN ( 2000): Computational harmonic analysis for tensor fields on the two-sphere. J Comput Phys 162: 514-535.
Fischl B, Sereno MI, Tootell RBH, Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284.
MacDonald D, Kabani N, Avis D, Evans AC ( 2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356.
Ashburner J, Friston KJ ( 2005): Unified segmentation. Neuroimage 26: 839-851.
Zhou Q-Y, Ju T, Hu S-M ( 2007): Topology repair of solid models using skeletons. IEEE Trans Visual Comput Graph 13: 675-685.
Brechbühler C, Gerig G, Kübler O ( 1995): Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Understand 61: 154-170.
Wood Z, Hoppe H, Desbrun M, Schröder P ( 2004): Removing excess topology from isosurfaces. ACM Trans Graph 23: 190-208.
McInerney T, Terzopoulos D ( 2000): T-snakes: Topology adaptive snakes. Med Image Anal 4: 73-91.
Van Essen DC ( 2005): A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28: 635-662.
Dale AM, Fischl B, Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194.
Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA, Group THS ( 2009): Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex 19: 1107-1123.
Delingette H ( 1999): General object reconstruction based on simplex meshes. Int J Comput Vis 32: 111-146.
Thompson PM, Toga AW ( 1996): A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15: 402-417.
Fischl B, Sereno MI, Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207.
Abrams L, Fishkind DE, Priebe CE ( 2004): The generalized spherical homeomorphism theorem for digital images. IEEE Trans Med Imaging 23: 655-657.
Van Essen DC, Drury HA ( 1997): Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17: 7079-7102.
Kelemen A, Szekely G, Gerig G ( 1999): Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18: 828-839.
Montagnat J, Delingette H, Ayache N ( 2001): A review of deformable surfaces: Topology, geometry and deformation. Image Vis Comput 19: 1023-1040.
Kriegeskorte N, Goebel R ( 2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346.
Lachaud J-O, Montanvert A ( 1999): Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3: 187-207.
Segonne F, Pacheco J, Fischl B ( 2007): Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26: 518-529.
Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J ( 1995): From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5: 297-318.
Bearden CE, Erp TGMv, Thompson PM, Toga AW, Cannon TD ( 2007a): Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 28: 519-532.
Lui LM, Wang Y, Chan TF, Thompson P ( 2007): Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl Numer Math 57: 847-858.
Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI ( 2007): Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. Neuroimage 37: 821-833.
Yotter RA, Thompson PM, Gaser C: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes. 2000 J Neuroimag, in-press.
Delingette H, Montagnat J ( 2001): Shape and topology constraints on parametric active contours. Comput Vis Image Understand 83: 140-171.
Xiao H, Chenyang X, Prince JL ( 2003): A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25: 755-768.
Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM ( 2010): Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49: 2141-2157.
Bischoff S, Kobbelt L ( 2004): Topologically correct extraction of the cortical surface of a brain using level-set methods. In: Tolxdorff T, Braun J, Handels H, Horsch A, Meinzer H-P, editors. Proceedings of BVM. Berlin: Springer-Verlag. pp 50-54.
Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL ( 1999): Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18: 467-480.
Van Essen DC ( 2004): Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23: S97-S107.
Shenton ME, Gerig G, McCarley RW, SzÈkely Gb, Kikinis R ( 2002): Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data. Psychiatry Res 115: 15-35.
Bazin P-L, Pham DL ( 2007b): Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26: 487-496.
Bearden CE, van Erp TGM, Dutton RA, Tran H, Zimmermann L, Sun D, Geaga JA, Simon TJ, Glahn DC, Cannon TD, Emanuel BS, Toga AW, Thompson PM ( 2007b): Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17: 1889-1898.
Han X, Xu C, Braga-Neto U, Prince JL ( 2002): Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21: 109-121.
Fischl B, Liu A, Dale AM ( 2001): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70-80.
Shattuck DW, Leahy RM ( 2001): Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20: 1167-1177.
Bischoff S, Kobbelt L ( 2003): Sub-voxel topology control for level-set surfaces. Comput Graph Forum 22: 273-280.
Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2005): Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neuros
2009; 45
2004; 22
2007a; 28
2000; 4
2006; 33
2004; 23
2004; 161
2008; 39
2002; 115
2005; 26
2007b; 26
2005; 28
2007; 37
2005; 25
1995; 61
2005b
2001
2005a
2000
1999a; 9
2000; 12
1999; 18
1987
2001; 19
2000; 162
1997; 17
1996; 1
1994; 39
2009; 19
2001; 14
2007; 26
2007; 17
1997; 22
1999b; 8
2007a; 88
2009
2008
1996
2006
2005
1994
1980; 191
2004
1999; 3
2003
2002
1996; 15
2007; 57
2007; 13
1995; 5
2001; 20
1999; 9
1988; 1
2001; 83
2010; 49
2002; 21
2003; 25
1999; 32
2007b; 17
2005; 15
2003; 22
Chung (10.1002/hbm.21095-BIB19|cit19) 2007; 26
Van Essen (10.1002/hbm.21095-BIB71|cit71) 1997; 17
Ballmaier (10.1002/hbm.21095-BIB4|cit4) 2004; 161
Xu (10.1002/hbm.21095-BIB79|cit79) 1999; 18
Bearden (10.1002/hbm.21095-BIB9|cit9) 2007a; 28
Yotter (10.1002/hbm.21095-BIB80|cit80) 2000
Chung (10.1002/hbm.21095-BIB18|cit18) 2006
Segonne (10.1002/hbm.21095-BIB60|cit60) 2007; 26
Thompson (10.1002/hbm.21095-BIB66|cit66) 2005; 25
Wood (10.1002/hbm.21095-BIB77|cit77) 2004; 23
Ségonne (10.1002/hbm.21095-BIB59|cit59) 2005
Brechbühler (10.1002/hbm.21095-BIB14|cit14) 1995; 61
Bazin (10.1002/hbm.21095-BIB5|cit5) 2005a
Bazin (10.1002/hbm.21095-BIB7|cit7) 2007a; 88
Bazin (10.1002/hbm.21095-BIB6|cit6) 2005b
Hurdal (10.1002/hbm.21095-BIB36|cit36) 2009; 45
Mangin (10.1002/hbm.21095-BIB52|cit52) 1995; 5
Tosun (10.1002/hbm.21095-BIB68|cit68) 2006
Wang (10.1002/hbm.21095-BIB73|cit73) 2005
Lachaud (10.1002/hbm.21095-BIB44|cit44) 1999; 3
Lerch (10.1002/hbm.21095-BIB45|cit45) 2005; 15
Xiao (10.1002/hbm.21095-BIB78|cit78) 2003; 25
Thompson (10.1002/hbm.21095-BIB67|cit67) 2009; 19
Formisano (10.1002/hbm.21095-BIB27|cit27) 2004; 22
Fischl (10.1002/hbm.21095-BIB26|cit26) 2001; 20
Shattuck (10.1002/hbm.21095-BIB61|cit61) 2001; 20
Bischoff (10.1002/hbm.21095-BIB11|cit11) 2002
Han (10.1002/hbm.21095-BIB33|cit33) 2004; 23
Ashburner (10.1002/hbm.21095-BIB3|cit3) 2005; 26
Gutman (10.1002/hbm.21095-BIB31|cit31) 2006
Kostelec (10.1002/hbm.21095-BIB41|cit41) 2004
Wang (10.1002/hbm.21095-BIB74|cit74) 2008
Han (10.1002/hbm.21095-BIB32|cit32) 2002; 21
McInerney (10.1002/hbm.21095-BIB54|cit54) 2000; 4
Lin (10.1002/hbm.21095-BIB46|cit46) 2007; 17
Bearden (10.1002/hbm.21095-BIB10|cit10) 2007b; 17
Hinds (10.1002/hbm.21095-BIB35|cit35) 2008; 39
Kostelec (10.1002/hbm.21095-BIB42|cit42) 2000; 162
Qiu (10.1002/hbm.21095-BIB57|cit57) 2007; 37
Van Essen (10.1002/hbm.21095-BIB72|cit72) 1980; 191
Abrams (10.1002/hbm.21095-BIB2|cit2) 2004; 23
Lui (10.1002/hbm.21095-BIB49|cit49) 2007; 57
Jaume (10.1002/hbm.21095-BIB37|cit37) 2005
Kass (10.1002/hbm.21095-BIB39|cit39) 1988; 1
Fischl (10.1002/hbm.21095-BIB25|cit25) 1999b; 8
Karaçali (10.1002/hbm.21095-BIB38|cit38) 2003
Bischoff (10.1002/hbm.21095-BIB13|cit13) 2004
Desai (10.1002/hbm.21095-BIB23|cit23) 2005; 26
Shenton (10.1002/hbm.21095-BIB63|cit63) 2002; 115
Chen (10.1002/hbm.21095-BIB16|cit16) 2006
Bischoff (10.1002/hbm.21095-BIB12|cit12) 2003; 22
Bazin (10.1002/hbm.21095-BIB8|cit8) 2007b; 26
Gerig (10.1002/hbm.21095-BIB29|cit29) 2001
Lui (10.1002/hbm.21095-BIB48|cit48) 2006
Guskov (10.1002/hbm.21095-BIB30|cit30) 2001
Dale (10.1002/hbm.21095-BIB20|cit20) 1999; 9
Montagnat (10.1002/hbm.21095-BIB55|cit55) 2001; 19
Thompson (10.1002/hbm.21095-BIB65|cit65) 2004; 23
Gaser (10.1002/hbm.21095-BIB28|cit28) 2006; 33
Kelemen (10.1002/hbm.21095-BIB40|cit40) 1999; 18
Thompson (10.1002/hbm.21095-BIB64|cit64) 1996; 15
Fischl (10.1002/hbm.21095-BIB24|cit24) 1999a; 9
Ségonne (10.1002/hbm.21095-BIB58|cit58) 2003
Zhou (10.1002/hbm.21095-BIB81|cit81) 2007; 13
Lorensen (10.1002/hbm.21095-BIB47|cit47) 1987
Shen (10.1002/hbm.21095-BIB62|cit62) 2006
Wang (10.1002/hbm.21095-BIB76|cit76) 2010; 49
Abrams (10.1002/hbm.21095-BIB1|cit1) 2002; 21
Van Essen (10.1002/hbm.21095-BIB70|cit70) 2005; 28
Caselles (10.1002/hbm.21095-BIB15|cit15) 1997; 22
Kriegeskorte (10.1002/hbm.21095-BIB43|cit43) 2001; 14
Delingette (10.1002/hbm.21095-BIB22|cit22) 2001; 83
10.1002/hbm.21095-BIB34|cit34
Delingette (10.1002/hbm.21095-BIB21|cit21) 1999; 32
Christensen (10.1002/hbm.21095-BIB17|cit17) 1994; 39
MacDonald (10.1002/hbm.21095-BIB50|cit50) 1994
Van Essen (10.1002/hbm.21095-BIB69|cit69) 2004; 23
MacDonald (10.1002/hbm.21095-BIB51|cit51) 2000; 12
Wang (10.1002/hbm.21095-BIB75|cit75) 2009
Narr (10.1002/hbm.21095-BIB56|cit56) 2005; 15
McInerney (10.1002/hbm.21095-BIB53|cit53) 1996; 1
References_xml – reference: Zhou Q-Y, Ju T, Hu S-M ( 2007): Topology repair of solid models using skeletons. IEEE Trans Visual Comput Graph 13: 675-685.
– reference: Xiao H, Chenyang X, Prince JL ( 2003): A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25: 755-768.
– reference: Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Eckert MA, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2005): Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. J Neurosci 25: 4146-4158.
– reference: Ashburner J, Friston KJ ( 2005): Unified segmentation. Neuroimage 26: 839-851.
– reference: Bearden CE, van Erp TGM, Dutton RA, Tran H, Zimmermann L, Sun D, Geaga JA, Simon TJ, Glahn DC, Cannon TD, Emanuel BS, Toga AW, Thompson PM ( 2007b): Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17: 1889-1898.
– reference: Van Essen DC ( 2004): Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23: S97-S107.
– reference: Chung MK, Dalton KM, Li S, Evans AC, Davidson RJ ( 2007): Weighted Fourier series representation and its application to quantifying the amount of gray matter. IEEE Trans Med Imaging 26: 566-581.
– reference: Kostelec PJ, Maslen DK, Dennis M, Healy J, Rockmore DN ( 2000): Computational harmonic analysis for tensor fields on the two-sphere. J Comput Phys 162: 514-535.
– reference: Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA, Group THS ( 2009): Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex 19: 1107-1123.
– reference: Han X, Pham DL, Tosun D, Rettmann ME, Xu C, Prince JL ( 2004): 3RUISE: Cortical reconstruction using implicit surface evolution. Neuroimage 23: 997-1012.
– reference: Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504.
– reference: MacDonald D, Kabani N, Avis D, Evans AC ( 2000): Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12: 340-356.
– reference: Ballmaier M, Kumar A, Thompson PM, Narr KL, Lavretsky H, Estanol L, DeLuca H, Toga AW ( 2004): Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods. Am J Psychiatry 161: 2091-2099.
– reference: Gaser C, Luders E, Thompson PM, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Bellugi U, Galaburda AM, Korenberg JR, Mills DL, Toga AW, Reiss AL ( 2006): Increased local gyrification mapped in Williams syndrome. Neuroimage 33: 46-54.
– reference: Hurdal MK, Stephenson K ( 2009): Discrete conformal methods for cortical brain flattening. Neuroimage 45: S86-S98.
– reference: Fischl B, Sereno MI, Tootell RBH, Dale AM ( 1999b): High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8: 272-284.
– reference: Hinds OP, Rajendran N, Polimeni JR, Augustinack JC, Wiggins G, Wald LL, Diana Rosas H, Potthast A, Schwartz EL, Fischl B ( 2008): Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage 39: 1585-1599.
– reference: Bazin P-L, Pham DL ( 2007b): Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans Med Imaging 26: 487-496.
– reference: Kelemen A, Szekely G, Gerig G ( 1999): Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans Med Imaging 18: 828-839.
– reference: Christensen GE, Rabbitt RD, Miller MI ( 1994): 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39: 609-618.
– reference: Mangin J-F, Frouin V, Bloch I, Régis J, López-Krahe J ( 1995): From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J Math Imaging Vis 5: 297-318.
– reference: Kriegeskorte N, Goebel R ( 2001): An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14: 329-346.
– reference: Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR ( 2005): Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26: 1019-1029.
– reference: Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC ( 2005): Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15: 995-1001.
– reference: Brechbühler C, Gerig G, Kübler O ( 1995): Parametrization of closed surfaces for 3-D shape description. Comput Vis Image Understand 61: 154-170.
– reference: Van Essen DC, Maunsell JHR ( 1980): Two-dimensional maps of the cerebral cortex. J Comp Neurol 191: 255-281.
– reference: Yotter RA, Thompson PM, Gaser C: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes. 2000 J Neuroimag, in-press.
– reference: Delingette H ( 1999): General object reconstruction based on simplex meshes. Int J Comput Vis 32: 111-146.
– reference: Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL ( 1999): Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 18: 467-480.
– reference: Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM ( 2010): Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49: 2141-2157.
– reference: Delingette H, Montagnat J ( 2001): Shape and topology constraints on parametric active contours. Comput Vis Image Understand 83: 140-171.
– reference: Dale AM, Fischl B, Sereno MI ( 1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9: 179-194.
– reference: Shenton ME, Gerig G, McCarley RW, SzÈkely Gb, Kikinis R ( 2002): Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data. Psychiatry Res 115: 15-35.
– reference: Bearden CE, Erp TGMv, Thompson PM, Toga AW, Cannon TD ( 2007a): Cortical mapping of genotype-phenotype relationships in schizophrenia. Hum Brain Mapp 28: 519-532.
– reference: Han X, Xu C, Braga-Neto U, Prince JL ( 2002): Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm. IEEE Trans Med Imaging 21: 109-121.
– reference: Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI ( 2007): Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. Neuroimage 37: 821-833.
– reference: Montagnat J, Delingette H, Ayache N ( 2001): A review of deformable surfaces: Topology, geometry and deformation. Image Vis Comput 19: 1023-1040.
– reference: Van Essen DC, Drury HA ( 1997): Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17: 7079-7102.
– reference: Kostelec PJ, Rockmore DN ( 2004): S2kit: A Lite Version of SpharmonicKit. Hanover, NH: Department of Mathematics, Dartmouth College.
– reference: Bischoff S, Kobbelt L ( 2004): Topologically correct extraction of the cortical surface of a brain using level-set methods. In: Tolxdorff T, Braun J, Handels H, Horsch A, Meinzer H-P, editors. Proceedings of BVM. Berlin: Springer-Verlag. pp 50-54.
– reference: Caselles V, Kimmel R, Sapiro G ( 1997): Geodesic active contours. Int J Comput Vis 22: 61-79.
– reference: Fischl B, Liu A, Dale AM ( 2001): Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20: 70-80.
– reference: Abrams L, Fishkind DE, Priebe CE ( 2004): The generalized spherical homeomorphism theorem for digital images. IEEE Trans Med Imaging 23: 655-657.
– reference: Lui LM, Wang Y, Chan TF, Thompson P ( 2007): Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl Numer Math 57: 847-858.
– reference: Abrams L, Fishkind DE, Priebe CE ( 2002): A proof of the spherical homeomorphism conjecture for surfaces. IEEE Trans Med Imaging 21: 1564-1566.
– reference: Van Essen DC ( 2005): A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28: 635-662.
– reference: McInerney T, Terzopoulos D ( 2000): T-snakes: Topology adaptive snakes. Med Image Anal 4: 73-91.
– reference: Wood Z, Hoppe H, Desbrun M, Schröder P ( 2004): Removing excess topology from isosurfaces. ACM Trans Graph 23: 190-208.
– reference: Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J Jr, Thompson PM ( 2007): Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex 17: 2007-2018.
– reference: Shattuck DW, Leahy RM ( 2001): Automated graph-based analysis and correction of cortical volume topology. IEEE Trans Med Imaging 20: 1167-1177.
– reference: Bischoff S, Kobbelt L ( 2003): Sub-voxel topology control for level-set surfaces. Comput Graph Forum 22: 273-280.
– reference: Kass M, Witkin A, Terzopoulos D ( 1988): Snakes: Active contour models. Int J Comput Vis 1: 321-331.
– reference: McInerney T, Terzopoulos D ( 1996): Deformable models in medical image analysis: A survey. Med Image Anal 1: 91-108.
– reference: Fischl B, Sereno MI, Dale AM ( 1999a): Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. Neuroimage 9: 195-207.
– reference: Bazin P-L, Pham DL ( 2007a): Topology correction of segmented medical images using a fast marching algorithm. Comput Methods Programs Biomed 88: 182-190.
– reference: Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang Y-P, DeLuca H, Thompson PM ( 2005): Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15: 708-719.
– reference: Lachaud J-O, Montanvert A ( 1999): Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Med Image Anal 3: 187-207.
– reference: Segonne F, Pacheco J, Fischl B ( 2007): Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26: 518-529.
– reference: Thompson PM, Toga AW ( 1996): A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15: 402-417.
– reference: Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TGM, Cannon TD, Toga AW ( 2004): Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. Neuroimage 23: S2-S18.
– volume: 25
  start-page: 4146
  year: 2005
  end-page: 4158
  article-title: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome
  publication-title: J Neurosci
– volume: 23
  start-page: S97
  year: 2004
  end-page: S107
  article-title: Surface‐based approaches to spatial localization and registration in primate cerebral cortex
  publication-title: Neuroimage
– start-page: 585
  year: 2008
  end-page: 593
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  article-title: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans Med Imaging
– start-page: 426
  year: 2003
  end-page: 437
– year: 2005
– volume: 8
  start-page: 272
  year: 1999b
  end-page: 284
  article-title: High‐resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
– volume: 115
  start-page: 15
  year: 2002
  end-page: 35
  article-title: Amygdala‐hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data
  publication-title: Psychiatry Res
– volume: 26
  start-page: 1019
  year: 2005
  end-page: 1029
  article-title: Volumetric vs. surface‐based alignment for localization of auditory cortex activation
  publication-title: Neuroimage
– volume: 45
  start-page: S86
  year: 2009
  end-page: S98
  article-title: Discrete conformal methods for cortical brain flattening
  publication-title: Neuroimage
– volume: 191
  start-page: 255
  year: 1980
  end-page: 281
  article-title: Two‐dimensional maps of the cerebral cortex
  publication-title: J Comp Neurol
– start-page: 131
  year: 2009
  end-page: 140
– volume: 3
  start-page: 187
  year: 1999
  end-page: 207
  article-title: Deformable meshes with automated topology changes for coarse‐to‐fine three‐dimensional surface extraction
  publication-title: Med Image Anal
– volume: 9
  start-page: 195
  year: 1999a
  end-page: 207
  article-title: Cortical surface‐based analysis. II. Inflation, flattening, and a surface‐based coordinate system
  publication-title: Neuroimage
– volume: 33
  start-page: 46
  year: 2006
  end-page: 54
  article-title: Increased local gyrification mapped in Williams syndrome
  publication-title: Neuroimage
– start-page: 163
  year: 1987
  end-page: 169
– start-page: 234
  year: 2005b
  end-page: 245
– volume: 22
  start-page: 1493
  year: 2004
  end-page: 1504
  article-title: Cortex‐based independent component analysis of fMRI time series
  publication-title: Magn Reson Imaging
– volume: 5
  start-page: 297
  year: 1995
  end-page: 318
  article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations
  publication-title: J Math Imaging Vis
– start-page: 964
  year: 2006
  end-page: 967
– volume: 22
  start-page: 61
  year: 1997
  end-page: 79
  article-title: Geodesic active contours
  publication-title: Int J Comput Vis
– start-page: 294
  year: 2006
  end-page: 301
– volume: 23
  start-page: 655
  year: 2004
  end-page: 657
  article-title: The generalized spherical homeomorphism theorem for digital images
  publication-title: IEEE Trans Med Imaging
– volume: 161
  start-page: 2091
  year: 2004
  end-page: 2099
  article-title: Localizing gray matter deficits in late‐onset depression using computational cortical pattern matching methods
  publication-title: Am J Psychiatry
– volume: 23
  start-page: 190
  year: 2004
  end-page: 208
  article-title: Removing excess topology from isosurfaces
  publication-title: ACM Trans Graph
– volume: 61
  start-page: 154
  year: 1995
  end-page: 170
  article-title: Parametrization of closed surfaces for 3‐D shape description
  publication-title: Comput Vis Image Understand
– year: 2004
– start-page: 36
  year: 2006
  end-page: 43
– volume: 39
  start-page: 1585
  year: 2008
  end-page: 1599
  article-title: Accurate prediction of V1 location from cortical folds in a surface coordinate system
  publication-title: Neuroimage
– volume: 26
  start-page: 518
  year: 2007
  end-page: 529
  article-title: Geometrically accurate topology‐correction of cortical surfaces using nonseparating loops
  publication-title: IEEE Trans Med Imaging
– volume: 15
  start-page: 995
  year: 2005
  end-page: 1001
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb Cortex
– volume: 20
  start-page: 1167
  year: 2001
  end-page: 1177
  article-title: Automated graph‐based analysis and correction of cortical volume topology
  publication-title: IEEE Trans Med Imaging
– volume: 28
  start-page: 519
  year: 2007a
  end-page: 532
  article-title: Cortical mapping of genotype‐phenotype relationships in schizophrenia
  publication-title: Hum Brain Mapp
– start-page: 695
  year: 2003
  end-page: 702
– volume: 19
  start-page: 1107
  year: 2009
  end-page: 1123
  article-title: Time‐lapse mapping of cortical changes in schizophrenia with different treatments
  publication-title: Cereb Cortex
– start-page: 666
  year: 2005
  end-page: 674
– year: 2000
  article-title: Algorithms to improve the re‐parameterization of spherical mappings of brain surface meshes
  publication-title: J Neuroimag
– start-page: 19
  year: 2001
  end-page: 26
– volume: 14
  start-page: 329
  year: 2001
  end-page: 346
  article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes
  publication-title: Neuroimage
– volume: 39
  start-page: 609
  year: 1994
  end-page: 618
  article-title: 3D brain mapping using a deformable neuroanatomy
  publication-title: Phys Med Biol
– start-page: 160
  year: 1994
  end-page: 169
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 32
  start-page: 111
  year: 1999
  end-page: 146
  article-title: General object reconstruction based on simplex meshes
  publication-title: Int J Comput Vis
– volume: 18
  start-page: 467
  year: 1999
  end-page: 480
  article-title: Reconstruction of the human cerebral cortex from magnetic resonance images
  publication-title: IEEE Trans Med Imaging
– volume: 21
  start-page: 1564
  year: 2002
  end-page: 1566
  article-title: A proof of the spherical homeomorphism conjecture for surfaces
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 1023
  year: 2001
  end-page: 1040
  article-title: A review of deformable surfaces: Topology, geometry and deformation
  publication-title: Image Vis Comput
– volume: 15
  start-page: 708
  year: 2005
  end-page: 719
  article-title: Mapping cortical thickness and gray matter concentration in first episode schizophrenia
  publication-title: Cereb Cortex
– volume: 1
  start-page: 91
  year: 1996
  end-page: 108
  article-title: Deformable models in medical image analysis: A survey
  publication-title: Med Image Anal
– volume: 17
  start-page: 7079
  year: 1997
  end-page: 7102
  article-title: Structural and functional analyses of human cerebral cortex using a surface‐based atlas
  publication-title: J Neurosci
– volume: 83
  start-page: 140
  year: 2001
  end-page: 171
  article-title: Shape and topology constraints on parametric active contours
  publication-title: Comput Vis Image Understand
– year: 1996
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  article-title: Snakes: Active contour models
  publication-title: Int J Comput Vis
– volume: 17
  start-page: 2007
  year: 2007
  end-page: 2018
  article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis
  publication-title: Cereb Cortex
– volume: 57
  start-page: 847
  year: 2007
  end-page: 858
  article-title: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research
  publication-title: Appl Numer Math
– volume: 22
  start-page: 273
  year: 2003
  end-page: 280
  article-title: Sub‐voxel topology control for level‐set surfaces
  publication-title: Comput Graph Forum
– volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  article-title: A population‐average, landmark‐ and surface‐based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
– volume: 49
  start-page: 2141
  year: 2010
  end-page: 2157
  article-title: Multivariate tensor‐based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS
  publication-title: Neuroimage
– volume: 25
  start-page: 755
  year: 2003
  end-page: 768
  article-title: A topology preserving level set method for geometric deformable models
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 246
  year: 2002
  end-page: 255
– start-page: 50
  year: 2004
  end-page: 54
– start-page: 308
  year: 2006
  end-page: 315
– volume: 88
  start-page: 182
  year: 2007a
  end-page: 190
  article-title: Topology correction of segmented medical images using a fast marching algorithm
  publication-title: Comput Methods Programs Biomed
– start-page: 316
  year: 2006
  end-page: 323
– volume: 23
  start-page: S2
  year: 2004
  end-page: S18
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
– volume: 4
  start-page: 73
  year: 2000
  end-page: 91
  article-title: T‐snakes: Topology adaptive snakes
  publication-title: Med Image Anal
– volume: 37
  start-page: 821
  year: 2007
  end-page: 833
  article-title: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia
  publication-title: Neuroimage
– volume: 18
  start-page: 828
  year: 1999
  end-page: 839
  article-title: Elastic model‐based segmentation of 3‐D neuroradiological data sets
  publication-title: IEEE Trans Med Imaging
– year: 2006
– volume: 12
  start-page: 340
  year: 2000
  end-page: 356
  article-title: Automated 3‐D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
– start-page: 484
  year: 2005a
  end-page: 491
– volume: 21
  start-page: 109
  year: 2002
  end-page: 121
  article-title: Topology correction in brain cortex segmentation using a multiscale, graph‐based algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 23
  start-page: 997
  year: 2004
  end-page: 1012
  article-title: 3RUISE: Cortical reconstruction using implicit surface evolution
  publication-title: Neuroimage
– start-page: 171
  year: 2001
  end-page: 178
– volume: 17
  start-page: 1889
  year: 2007b
  end-page: 1898
  article-title: Mapping cortical thickness in children with 22q11.2 deletions
  publication-title: Cereb Cortex
– volume: 15
  start-page: 402
  year: 1996
  end-page: 417
  article-title: A surface‐based technique for warping three‐dimensional images of the brain
  publication-title: IEEE Trans Med Imaging
– volume: 26
  start-page: 487
  year: 2007b
  end-page: 496
  article-title: Topology‐preserving tissue classification of magnetic resonance brain images
  publication-title: IEEE Trans Med Imaging
– volume: 26
  start-page: 566
  year: 2007
  end-page: 581
  article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter
  publication-title: IEEE Trans Med Imaging
– volume: 162
  start-page: 514
  year: 2000
  end-page: 535
  article-title: Computational harmonic analysis for tensor fields on the two‐sphere
  publication-title: J Comput Phys
– volume: 13
  start-page: 675
  year: 2007
  end-page: 685
  article-title: Topology repair of solid models using skeletons
  publication-title: IEEE Trans Visual Comput Graph
– start-page: 393
  year: 2005
  end-page: 405
– volume: 83
  start-page: 140
  year: 2001
  ident: 10.1002/hbm.21095-BIB22|cit22
  article-title: Shape and topology constraints on parametric active contours
  publication-title: Comput Vis Image Understand
  doi: 10.1006/cviu.2001.0920
– volume: 12
  start-page: 340
  year: 2000
  ident: 10.1002/hbm.21095-BIB51|cit51
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0534
– start-page: 246
  volume-title: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications
  year: 2002
  ident: 10.1002/hbm.21095-BIB11|cit11
  doi: 10.1109/PCCGA.2002.1167868
– volume-title: MICCAI
  year: 2005
  ident: 10.1002/hbm.21095-BIB37|cit37
– volume: 18
  start-page: 467
  year: 1999
  ident: 10.1002/hbm.21095-BIB79|cit79
  article-title: Reconstruction of the human cerebral cortex from magnetic resonance images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.781013
– ident: 10.1002/hbm.21095-BIB34|cit34
– start-page: 160
  volume-title: Visualization in Biomedical Computing 1994
  year: 1994
  ident: 10.1002/hbm.21095-BIB50|cit50
  doi: 10.1117/12.185176
– volume: 191
  start-page: 255
  year: 1980
  ident: 10.1002/hbm.21095-BIB72|cit72
  article-title: Two-dimensional maps of the cerebral cortex
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901910208
– volume: 8
  start-page: 272
  year: 1999b
  ident: 10.1002/hbm.21095-BIB25|cit25
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 20
  start-page: 1167
  year: 2001
  ident: 10.1002/hbm.21095-BIB61|cit61
  article-title: Automated graph-based analysis and correction of cortical volume topology
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.963819
– volume: 28
  start-page: 519
  year: 2007a
  ident: 10.1002/hbm.21095-BIB9|cit9
  article-title: Cortical mapping of genotype-phenotype relationships in schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20404
– start-page: 308
  volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006
  year: 2006
  ident: 10.1002/hbm.21095-BIB48|cit48
  doi: 10.1007/11866763_38
– start-page: 393
  volume-title: Proceedings of Information Processing in Medical Imaging
  year: 2005
  ident: 10.1002/hbm.21095-BIB59|cit59
  doi: 10.1007/11505730_33
– volume: 57
  start-page: 847
  year: 2007
  ident: 10.1002/hbm.21095-BIB49|cit49
  article-title: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2006.07.031
– volume: 5
  start-page: 297
  year: 1995
  ident: 10.1002/hbm.21095-BIB52|cit52
  article-title: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations
  publication-title: J Math Imaging Vis
  doi: 10.1007/BF01250286
– volume: 13
  start-page: 675
  year: 2007
  ident: 10.1002/hbm.21095-BIB81|cit81
  article-title: Topology repair of solid models using skeletons
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2007.1015
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1002/hbm.21095-BIB20|cit20
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 21
  start-page: 1564
  year: 2002
  ident: 10.1002/hbm.21095-BIB1|cit1
  article-title: A proof of the spherical homeomorphism conjecture for surfaces
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.806590
– volume: 22
  start-page: 273
  year: 2003
  ident: 10.1002/hbm.21095-BIB12|cit12
  article-title: Sub-voxel topology control for level-set surfaces
  publication-title: Comput Graph Forum
  doi: 10.1111/1467-8659.00674
– volume: 33
  start-page: 46
  year: 2006
  ident: 10.1002/hbm.21095-BIB28|cit28
  article-title: Increased local gyrification mapped in Williams syndrome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.06.018
– volume: 45
  start-page: S86
  year: 2009
  ident: 10.1002/hbm.21095-BIB36|cit36
  article-title: Discrete conformal methods for cortical brain flattening
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.045
– volume: 23
  start-page: 190
  year: 2004
  ident: 10.1002/hbm.21095-BIB77|cit77
  article-title: Removing excess topology from isosurfaces
  publication-title: ACM Trans Graph
  doi: 10.1145/990002.990007
– volume: 49
  start-page: 2141
  year: 2010
  ident: 10.1002/hbm.21095-BIB76|cit76
  article-title: Multivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.086
– volume: 25
  start-page: 755
  year: 2003
  ident: 10.1002/hbm.21095-BIB78|cit78
  article-title: A topology preserving level set method for geometric deformable models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1201824
– volume: 9
  start-page: 195
  year: 1999a
  ident: 10.1002/hbm.21095-BIB24|cit24
  article-title: Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– start-page: 484
  volume-title: MICCAI
  year: 2005a
  ident: 10.1002/hbm.21095-BIB5|cit5
– volume: 1
  start-page: 321
  year: 1988
  ident: 10.1002/hbm.21095-BIB39|cit39
  article-title: Snakes: Active contour models
  publication-title: Int J Comput Vis
  doi: 10.1007/BF00133570
– start-page: 294
  volume-title: 3DPVT
  year: 2006
  ident: 10.1002/hbm.21095-BIB62|cit62
– volume: 39
  start-page: 609
  year: 1994
  ident: 10.1002/hbm.21095-BIB17|cit17
  article-title: 3D brain mapping using a deformable neuroanatomy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/39/3/022
– volume: 161
  start-page: 2091
  year: 2004
  ident: 10.1002/hbm.21095-BIB4|cit4
  article-title: Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.161.11.2091
– volume: 23
  start-page: 997
  year: 2004
  ident: 10.1002/hbm.21095-BIB33|cit33
  article-title: 3RUISE: Cortical reconstruction using implicit surface evolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.06.043
– start-page: 19
  volume-title: Proceedings of Graphics Interface
  year: 2001
  ident: 10.1002/hbm.21095-BIB30|cit30
– start-page: 163
  volume-title: SIGGRAPH: 14th Annual Conference on Computer Graphics and Interactive Techniques
  year: 1987
  ident: 10.1002/hbm.21095-BIB47|cit47
  doi: 10.1145/37401.37422
– volume: 115
  start-page: 15
  year: 2002
  ident: 10.1002/hbm.21095-BIB63|cit63
  article-title: Amygdala-hippocampal shape differences in schizophrenia: The application of 3D shape models to volumetric MR data
  publication-title: Psychiatry Res
  doi: 10.1016/S0925-4927(02)00025-2
– volume: 15
  start-page: 402
  year: 1996
  ident: 10.1002/hbm.21095-BIB64|cit64
  article-title: A surface-based technique for warping three-dimensional images of the brain
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.511745
– volume: 19
  start-page: 1107
  year: 2009
  ident: 10.1002/hbm.21095-BIB67|cit67
  article-title: Time-lapse mapping of cortical changes in schizophrenia with different treatments
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn152
– start-page: 234
  volume-title: Information Processing in Medical Imaging
  year: 2005b
  ident: 10.1002/hbm.21095-BIB6|cit6
  doi: 10.1007/11505730_20
– volume: 23
  start-page: 655
  year: 2004
  ident: 10.1002/hbm.21095-BIB2|cit2
  article-title: The generalized spherical homeomorphism theorem for digital images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.826049
– volume: 1
  start-page: 91
  year: 1996
  ident: 10.1002/hbm.21095-BIB53|cit53
  article-title: Deformable models in medical image analysis: A survey
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(96)80007-7
– start-page: 426
  volume-title: Information Processing in Medical Imaging
  year: 2003
  ident: 10.1002/hbm.21095-BIB38|cit38
  doi: 10.1007/978-3-540-45087-0_36
– volume: 19
  start-page: 1023
  year: 2001
  ident: 10.1002/hbm.21095-BIB55|cit55
  article-title: A review of deformable surfaces: Topology, geometry and deformation
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(01)00064-6
– volume: 18
  start-page: 828
  year: 1999
  ident: 10.1002/hbm.21095-BIB40|cit40
  article-title: Elastic model-based segmentation of 3-D neuroradiological data sets
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.811260
– start-page: 131
  volume-title: Medical Image Computing and Computer Assisted Intervention (MICCAI2009)
  year: 2009
  ident: 10.1002/hbm.21095-BIB75|cit75
– volume: 61
  start-page: 154
  year: 1995
  ident: 10.1002/hbm.21095-BIB14|cit14
  article-title: Parametrization of closed surfaces for 3-D shape description
  publication-title: Comput Vis Image Understand
  doi: 10.1006/cviu.1995.1013
– volume: 23
  start-page: S2
  year: 2004
  ident: 10.1002/hbm.21095-BIB65|cit65
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.071
– volume: 88
  start-page: 182
  year: 2007a
  ident: 10.1002/hbm.21095-BIB7|cit7
  article-title: Topology correction of segmented medical images using a fast marching algorithm
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2007.08.006
– volume: 39
  start-page: 1585
  year: 2008
  ident: 10.1002/hbm.21095-BIB35|cit35
  article-title: Accurate prediction of V1 location from cortical folds in a surface coordinate system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.033
– volume: 162
  start-page: 514
  year: 2000
  ident: 10.1002/hbm.21095-BIB42|cit42
  article-title: Computational harmonic analysis for tensor fields on the two-sphere
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6551
– volume: 26
  start-page: 566
  year: 2007
  ident: 10.1002/hbm.21095-BIB19|cit19
  article-title: Weighted Fourier series representation and its application to quantifying the amount of gray matter
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2007.892519
– volume: 3
  start-page: 187
  year: 1999
  ident: 10.1002/hbm.21095-BIB44|cit44
  article-title: Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(99)80006-1
– volume-title: IEEE International Symposium on Biomedical Imaging (ISBI2006)
  year: 2006
  ident: 10.1002/hbm.21095-BIB68|cit68
– volume: 22
  start-page: 1493
  year: 2004
  ident: 10.1002/hbm.21095-BIB27|cit27
  article-title: Cortex-based independent component analysis of fMRI time series
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2004.10.020
– volume: 37
  start-page: 821
  year: 2007
  ident: 10.1002/hbm.21095-BIB57|cit57
  article-title: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.007
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1002/hbm.21095-BIB3|cit3
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 26
  start-page: 1019
  year: 2005
  ident: 10.1002/hbm.21095-BIB23|cit23
  article-title: Volumetric vs. surface-based alignment for localization of auditory cortex activation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.03.024
– volume: 17
  start-page: 1889
  year: 2007b
  ident: 10.1002/hbm.21095-BIB10|cit10
  article-title: Mapping cortical thickness in children with 22q11.2 deletions
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl097
– volume: 20
  start-page: 70
  year: 2001
  ident: 10.1002/hbm.21095-BIB26|cit26
  article-title: Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906426
– volume: 15
  start-page: 708
  year: 2005
  ident: 10.1002/hbm.21095-BIB56|cit56
  article-title: Mapping cortical thickness and gray matter concentration in first episode schizophrenia
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh172
– start-page: 695
  volume-title: MICCAI
  year: 2003
  ident: 10.1002/hbm.21095-BIB58|cit58
– start-page: 36
  volume-title: Medical Imaging and Augmented Reality
  year: 2006
  ident: 10.1002/hbm.21095-BIB18|cit18
  doi: 10.1007/11812715_5
– start-page: 666
  volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2005
  year: 2005
  ident: 10.1002/hbm.21095-BIB73|cit73
  doi: 10.1007/11566489_82
– volume: 28
  start-page: 635
  year: 2005
  ident: 10.1002/hbm.21095-BIB70|cit70
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 17
  start-page: 2007
  year: 2007
  ident: 10.1002/hbm.21095-BIB46|cit46
  article-title: Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl109
– volume: 22
  start-page: 61
  year: 1997
  ident: 10.1002/hbm.21095-BIB15|cit15
  article-title: Geodesic active contours
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007979827043
– volume: 14
  start-page: 329
  year: 2001
  ident: 10.1002/hbm.21095-BIB43|cit43
  article-title: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0831
– start-page: 171
  volume-title: Mathematical Methods in Biomedical Image Analysis (MMBIA)
  year: 2001
  ident: 10.1002/hbm.21095-BIB29|cit29
– year: 2000
  ident: 10.1002/hbm.21095-BIB80|cit80
  article-title: Algorithms to improve the re-parameterization of spherical mappings of brain surface meshes
  publication-title: J Neuroimag
– volume-title: S2kit: A Lite Version of SpharmonicKit
  year: 2004
  ident: 10.1002/hbm.21095-BIB41|cit41
– volume: 32
  start-page: 111
  year: 1999
  ident: 10.1002/hbm.21095-BIB21|cit21
  article-title: General object reconstruction based on simplex meshes
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1008157432188
– start-page: 964
  volume-title: International Conference on Pattern Recognition (ICPR)
  year: 2006
  ident: 10.1002/hbm.21095-BIB31|cit31
  doi: 10.1109/ICPR.2006.627
– volume: 25
  start-page: 4146
  year: 2005
  ident: 10.1002/hbm.21095-BIB66|cit66
  article-title: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0165-05.2005
– volume: 26
  start-page: 518
  year: 2007
  ident: 10.1002/hbm.21095-BIB60|cit60
  article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.887364
– volume: 26
  start-page: 487
  year: 2007b
  ident: 10.1002/hbm.21095-BIB8|cit8
  article-title: Topology-preserving tissue classification of magnetic resonance brain images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2007.893283
– volume: 21
  start-page: 109
  year: 2002
  ident: 10.1002/hbm.21095-BIB32|cit32
  article-title: Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.993130
– volume: 23
  start-page: S97
  year: 2004
  ident: 10.1002/hbm.21095-BIB69|cit69
  article-title: Surface-based approaches to spatial localization and registration in primate cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.024
– start-page: 585
  volume-title: International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI 2008
  year: 2008
  ident: 10.1002/hbm.21095-BIB74|cit74
  doi: 10.1007/978-3-540-85988-8_70
– volume: 15
  start-page: 995
  year: 2005
  ident: 10.1002/hbm.21095-BIB45|cit45
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh200
– start-page: 316
  volume-title: MICCAI
  year: 2006
  ident: 10.1002/hbm.21095-BIB16|cit16
– start-page: 50
  volume-title: Proceedings of BVM
  year: 2004
  ident: 10.1002/hbm.21095-BIB13|cit13
– volume: 4
  start-page: 73
  year: 2000
  ident: 10.1002/hbm.21095-BIB54|cit54
  article-title: T-snakes: Topology adaptive snakes
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(00)00008-6
– volume: 17
  start-page: 7079
  year: 1997
  ident: 10.1002/hbm.21095-BIB71|cit71
  article-title: Structural and functional analyses of human cerebral cortex using a surface-based atlas
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-18-07079.1997
SSID ssj0011501
Score 2.435333
Snippet Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone....
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1109
SubjectTerms Algorithms
Biological and medical sciences
Brain - anatomy & histology
Brain mapping
Brain Mapping - methods
Cortex
Data processing
Electrocardiography. Vectocardiography
Electrodiagnosis. Electric activity recording
Humans
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Medical sciences
MRI
Nervous system
noise
Patched protein
Radiodiagnosis. Nmr imagery. Nmr spectrometry
self-intersections
spherical harmonics
Structure-function relationships
surface reconstruction
topological defects
topology correction
Title Topological correction of brain surface meshes using spherical harmonics
URI https://api.istex.fr/ark:/67375/WNG-PXK92HZ3-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21095
https://www.ncbi.nlm.nih.gov/pubmed/20665722
https://www.proquest.com/docview/1517354491
https://www.proquest.com/docview/1017963084
https://www.proquest.com/docview/871964822
https://pubmed.ncbi.nlm.nih.gov/PMC6869946
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ0K88LHxkTEmg9DES7qkTtxYPI2PUYE2IVRENSFZ9tmhaGuKmlYC_np8TppR2CTEWySflfhyZ9_ZP_8O4ClaWbhEe0dy0sR-9rOxSS1hGqzE0vBSNCjfEzH8mL0d5-MNeL66C9PwQ3QbbuQZYb4mB9emPrggDZ2Yac_nK5IumKdcEG_-qw8ddRQFOiHZ8ktsLP03rFiFkv5B13NtLbpGav1O2Ehde_WUTV2LywLPv_GTv8e1YWE6ugWfV0Nq8ChnveXC9PDnH2yP_znm23CzDVjZYWNhd2DDVVuwfVj5ZH36g-2zACENe_NbcP24PanfhuGoqb5ANsCQSoCECxRsVjJDVSlYvZyXGh2bunriakb4-y-sJpKD0IUYtYm1t74Lo6PXo5fDuK3aECOR18U2TQWitaVLLDHhIBaFsBydFTYxBddpVmbaoRgIV2BqNWJueF6mhcQBOn4PNqtZ5R4AKyw3HCXmmS593mllH63Qae4SIwppkgierX6fwpbRnAprnKuGi7mvvL5U0FcETzrRbw2Nx2VC-8EGOgk9PyPc2yBXn07eqPfjd7I_POXqNIK9NSPpOoR4xydgEeyurEa1c0KtfGw14HmWyTSCx12z92Y6otGVmy1rFSZIwZMii4BdIeNTXCkyH9hFcL-xw4v3h4M0ahmsWWgnQGTi6y3V10kgFReFkDITXqfBAK_Wkhq-OA4PO_8u-hBuNHvxBHPehc3FfOke-WBuYfaC1_4CmSxH7w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTQJe-LEBC4xhEJp4SZc0iRtLvIwfI7C1QqiIahKy4rNDp9EUNa0E_PX4nCajsEmIt0o-q831zv7O_vIdwFPUIjVBbhPJCOXb1U_7KtTEadACCxUVvGb5Dnj2MX43SkZr8Lx5F6bWh2gP3Cgz3HpNCU4H0vvnqqFjNenYgkUkV2AjtkCDSq9XH1rxKII6rtyym6wv7K9odIWC7n47dWU32iDHfid2ZF5ZBxV1Z4uLoOffDMrfka3bmg5vwufmoWpGyllnMVcd_PmH3uP_PvUtuLHErOygDrLbsGbKTdg6KG29PvnB9phjkbrj-U242l9e1m9BNqwbMFAYMKQuIO4dCjYtmKLGFKxazIocDZuYamwqRhT8L6winQM3hUS1Sbi3ugPDw9fDl5m_bNzgI-nX-ToMOaLWhQk0ieEgpinXERrNdaDSKA_jIs4N8h43KYY6R0xUlBRhKrCHJroL6-W0NNvAUh2pCAUmcV7Y0lOLLmqeh4kJFE-FCjx41vx_Epei5tRb46us5Zi70vpLOn958KQ1_VYreVxktOeCoLXIZ2dEfesl8tPgjXw_OhLd7CSSJx7srkRJO8FBHluDebDThI1cLguVtPCqFyVxLEIPHrfDNqHpliYvzXRRSbdG8ihIYw_YJTa2yhU8ttjOg3t1IJ5_v7tLo5HeSoi2BqQnvjpSno6drjhPuRAxtz51EXi5l2T2ou8-3P9300dwLRv2j-Xx28HRA7heH80T63kH1uezhXlosd1c7boU_gXu9EwO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTZr4wsvGS2AMg9DEl3RJk7ix-DReSmCsmlAR1TTJis8ORaPp1LQS8OvxOWlGYZMQ3yr5rDbXO_s5-8lzAM9Qi9QEuU0kI5RvVz_tq1ATp0ELLFRU8JrlO-DZp_j9KBmtwYvluzC1PkR74EaZ4dZrSvBzXexfiIaO1aRj6xWRXIONmFskQYjoY6sdRUjHVVt2j_WF_RFLWaGgu99OXdmMNsiv34kcmVfWP0Xd2OIy5Pk3gfJ3YOt2pv5NOF0-U01IOess5qqDP_-Qe_zPh74FNxrEyg7qELsNa6bcgu2D0lbrkx9sjzkOqTuc34LNo-aqfhuyYd1-gYKAIfUAcW9QsGnBFLWlYNViVuRo2MRUY1MxIuB_YRWpHLgpJKlNsr3VHRj23wxfZX7TtsFHUq_zdRhyRK0LE2iSwkFMU64jNJrrQKVRHsZFnBvkPW5SDHWOmKgoKcJUYA9NdBfWy2lp7gNLdaQiFJjEeWELTy26qHkeJiZQPBUq8OD58u-T2EiaU2eNb7IWY-5K6y_p_OXB09b0vNbxuMxoz8VAa5HPzoj41kvk58FbeTw6FN3sJJInHuyuBEk7wQEeW4F5sLOMGtksCpW04KoXJXEsQg-etMM2nemOJi_NdFFJt0LyKEhjD9gVNrbGFTy2yM6De3UcXny_u0mjkd5KhLYGpCa-OlJ-HTtVcZ5yIWJufeoC8Govyezlkfvw4N9NH8Pm8eu-_PBucPgQrtfn8kR53oH1-WxhHllgN1e7LoF_AdsGSr0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+correction+of+brain+surface+meshes+using+spherical+harmonics&rft.jtitle=Human+brain+mapping&rft.au=Yotter%2C+Rachel+Aine&rft.au=Dahnke%2C+Robert&rft.au=Thompson%2C+Paul+M.&rft.au=Gaser%2C+Christian&rft.date=2011-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=32&rft.issue=7&rft.spage=1109&rft.epage=1124&rft_id=info:doi/10.1002%2Fhbm.21095&rft.externalDBID=10.1002%252Fhbm.21095&rft.externalDocID=HBM21095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon