Reduced fire blight susceptibility in apple cultivars using a high‐efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system
Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars...
Saved in:
Published in | Plant biotechnology journal Vol. 18; no. 3; pp. 845 - 858 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.03.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA. |
---|---|
AbstractList | The bacterium
Erwinia amylovora
, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein Md
DIPM
4. In this work,
Md
DIPM
4
knockout has been produced in two
Malus
×
domestica
susceptible cultivars using the
CRISPR
/Cas9 system delivered
via Agrobacterium tumefaciens
. Fifty‐seven transgenic lines were screened to identify
CRISPR
/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible
FLP
/
FRT
recombination system designed specifically to remove the T‐
DNA
harbouring the expression cassettes for
CRISPR
/Cas9, the marker gene and the
FLP
itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time
PCR
to quantify the exogenous
DNA
elimination. The T‐
DNA
removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a
CRISPR
/Cas9‐
FLP
/
FRT
gene editing system for the production of edited apple plants carrying a minimal trace of exogenous
DNA
. Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA. The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA. The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA. The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA. |
Audience | Academic |
Author | Dalla Costa, Lorenza Pindo, Massimo Piazza, Stefano Pompili, Valerio Malnoy, Mickael |
AuthorAffiliation | 1 Department of Genomics and Biology of Fruit Crops Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy 2 Department of Agricultural, Food, Environmental and Animal Sciences Università degli Studi di Udine Udine Italy |
AuthorAffiliation_xml | – name: 2 Department of Agricultural, Food, Environmental and Animal Sciences Università degli Studi di Udine Udine Italy – name: 1 Department of Genomics and Biology of Fruit Crops Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy |
Author_xml | – sequence: 1 givenname: Valerio orcidid: 0000-0003-1393-1245 surname: Pompili fullname: Pompili, Valerio email: valerio.pompili@guests.fmach.it organization: Università degli Studi di Udine – sequence: 2 givenname: Lorenza surname: Dalla Costa fullname: Dalla Costa, Lorenza organization: Fondazione Edmund Mach – sequence: 3 givenname: Stefano surname: Piazza fullname: Piazza, Stefano organization: Fondazione Edmund Mach – sequence: 4 givenname: Massimo surname: Pindo fullname: Pindo, Massimo organization: Fondazione Edmund Mach – sequence: 5 givenname: Mickael surname: Malnoy fullname: Malnoy, Mickael email: mickael.malnoy@fmach.it organization: Fondazione Edmund Mach |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31495052$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEQxy1URNvAgRdAlrjAIYk_d-sLUokIRIpEFMrZ8treZKqNd1nvFuUGb8Az8iR4SYloxYfn4JHnN2P7r_85Ogl18Ag9pWRC05o2BUwoZ5I_QGdUZPk4zyQ7OeZCnKLzGK8JYTST2SN0yqlQkkh2hr6uveutd7iE1uOigs22w7GP1jcdFFBBt8cQsGmaymPbVx3cmDbiPkLYYIO3if_-5ZsvS7Dgg93j2XrxYbWezkxUqTBfrqbz9VXKChPTLRsfPPYOuqE97mPnd4_Rw9JU0T-53Ufo4_zN1ezdePn-7WJ2uRzbjCg-doQKS6jkQuWOSGcYK9IvS6G4y0t54YxQRBEvVa5cIRixXMlMcGNdKVPwEXp1mNv0xc4760PXmko3LexMu9e1AX23EmCrN_WNzgkRKl08Qi9uB7T1p97HTu8g6VRVJvi6j5pJJhhlOWH_R9lFLpkUfECf30Ov674NSQnNuKS5zHlaR2pjKq8hlHV6oh2G6ssBoFIkkUZo8gcqhfM7sMkzJaTzOw3PftfkKMYvfyTg5QGwbR1j68sjQokevKeT9_RP7yV2eo-10JkO6kFOqP7V8Tm9a__30Xr1enHo-AGQQOrm |
CitedBy_id | crossref_primary_10_1093_plphys_kiad273 crossref_primary_10_1007_s42161_020_00581_8 crossref_primary_10_3390_plants9101360 crossref_primary_10_2903_sp_efsa_2020_EN_1972 crossref_primary_10_1080_07352689_2021_1883826 crossref_primary_10_17660_ActaHortic_2021_1327_2 crossref_primary_10_3390_ijms252111792 crossref_primary_10_1270_jsbbr_23J01 crossref_primary_10_3389_fpls_2022_975917 crossref_primary_10_3389_fpls_2022_928292 crossref_primary_10_3389_fpls_2022_1055529 crossref_primary_10_3390_ijms222212611 crossref_primary_10_3389_fpls_2022_1078931 crossref_primary_10_3390_horticulturae9010058 crossref_primary_10_1093_plphys_kiab574 crossref_primary_10_1007_s10142_025_01533_0 crossref_primary_10_1016_j_foodcont_2020_107790 crossref_primary_10_1016_j_tim_2024_08_007 crossref_primary_10_1007_s00217_021_03881_0 crossref_primary_10_1007_s11627_021_10208_x crossref_primary_10_1186_s13007_021_00769_8 crossref_primary_10_1007_s11248_021_00240_3 crossref_primary_10_1016_j_hpj_2022_05_001 crossref_primary_10_1146_annurev_phyto_021622_120124 crossref_primary_10_3390_ijms252211902 crossref_primary_10_5114_bta_2022_113919 crossref_primary_10_1038_s41598_020_77110_1 crossref_primary_10_1093_hr_uhae002 crossref_primary_10_14719_pst_2021_8_3_1127 crossref_primary_10_1016_j_copbio_2022_102795 crossref_primary_10_1093_hr_uhac022 crossref_primary_10_1093_aobpla_plae074 crossref_primary_10_1007_s11627_021_10197_x crossref_primary_10_3390_agronomy11091849 crossref_primary_10_1002_biot_202300298 crossref_primary_10_1007_s43538_022_00100_6 crossref_primary_10_3390_ijms23147755 crossref_primary_10_17660_ActaHortic_2023_1362_27 crossref_primary_10_3389_fpls_2023_1321555 crossref_primary_10_3390_horticulturae7070193 crossref_primary_10_3390_plants12213693 crossref_primary_10_17660_ActaHortic_2023_1362_6 crossref_primary_10_1007_s00122_022_04093_0 crossref_primary_10_1038_s41438_021_00601_3 crossref_primary_10_3389_fpls_2024_1518123 crossref_primary_10_17660_ActaHortic_2023_1362_4 crossref_primary_10_3389_fgene_2024_1382445 crossref_primary_10_1093_plphys_kiad374 crossref_primary_10_1002_fes3_258 crossref_primary_10_1016_j_jafr_2022_100484 crossref_primary_10_1016_j_stress_2024_100650 crossref_primary_10_1007_s11033_021_06650_0 crossref_primary_10_1016_j_hpj_2020_11_004 crossref_primary_10_1111_nph_20415 crossref_primary_10_35118_apjmbb_2022_030_3_05 crossref_primary_10_1111_pbi_13605 crossref_primary_10_3390_horticulturae9010038 crossref_primary_10_3389_fpls_2020_01234 crossref_primary_10_1007_s11240_024_02944_w crossref_primary_10_3389_fpls_2023_1260102 crossref_primary_10_1093_hr_uhad144 crossref_primary_10_1016_j_hpj_2022_04_007 crossref_primary_10_1007_s44279_024_00124_0 crossref_primary_10_1016_j_plgene_2024_100471 crossref_primary_10_1016_j_ygeno_2021_09_001 crossref_primary_10_3389_fpls_2022_979742 crossref_primary_10_3390_plants12071478 crossref_primary_10_3390_ijms22094709 crossref_primary_10_3390_ijms24020977 crossref_primary_10_1134_S0026893323030135 crossref_primary_10_3390_cells11233928 crossref_primary_10_1007_s42161_020_00635_x crossref_primary_10_1146_annurev_phyto_021621_121806 crossref_primary_10_1038_s41438_021_00639_3 crossref_primary_10_1186_s43897_023_00049_0 crossref_primary_10_1111_nph_17234 crossref_primary_10_1111_tpj_16036 crossref_primary_10_3390_ijms251810011 crossref_primary_10_1007_s10482_023_01809_0 crossref_primary_10_1038_s41598_020_73284_w crossref_primary_10_3390_biom11020181 crossref_primary_10_31857_S0026898423030151 crossref_primary_10_3390_cimb46100659 crossref_primary_10_1007_s42161_024_01678_0 crossref_primary_10_1007_s43538_024_00251_8 crossref_primary_10_1016_j_gene_2024_149076 crossref_primary_10_17660_ActaHortic_2024_1412_63 crossref_primary_10_3389_fpls_2021_667133 crossref_primary_10_1007_s00299_022_02869_8 crossref_primary_10_1093_hr_uhad011 crossref_primary_10_3390_plants10071347 crossref_primary_10_1007_s42161_020_00623_1 crossref_primary_10_17660_ActaHortic_2024_1412_62 crossref_primary_10_3390_horticulturae10030222 crossref_primary_10_3389_fbioe_2024_1412927 crossref_primary_10_3390_ijms22010319 |
Cites_doi | 10.1186/s13059-018-1458-5 10.3389/fpls.2019.00040 10.1038/ng.3886 10.3389/fpls.2018.01957 10.1094/MPMI-05-18-0120-R 10.1038/srep31481 10.1079/9780851992945.0253 10.1007/s00217-018-3187-0 10.1016/j.tibtech.2018.04.005 10.1111/tpj.12367 10.1111/tpj.12693 10.1074/jbc.M114.562769 10.1094/PDIS.2003.87.7.756 10.1007/s00299-016-1937-7 10.1094/MPMI-19-0016 10.1371/journal.pone.0143980 10.1111/nph.15627 10.1046/j.1365-2958.1997.6442015.x 10.1111/pbi.12832 10.1016/j.molp.2016.04.009 10.1093/bioinformatics/bts091 10.1186/s13059-016-1012-2 10.1186/1471-2164-13-341 10.1111/pbi.12177 10.1128/jb.5.3.191-229.1920 10.3389/fpls.2016.01904 10.1371/journal.pone.0093806 10.1007/s11032-009-9323-6 10.1016/j.meegid.2014.01.011 10.1128/MCB.9.8.3457 10.3389/fpls.2018.00985 10.1007/BF01977351 10.1038/ncomms14261 10.1111/j.1364-3703.2007.00390.x 10.1038/nbt.3389 10.1371/journal.pone.0177966 10.1007/s11032-015-0291-8 10.1007/s11103-018-0709-x 10.1094/MPMI-19-0053 10.1038/srep32289 10.1111/mpp.12022 10.1111/tpj.13446 10.1007/s11240-013-0376-1 10.1111/nph.12094 10.1007/s11105-018-1076-0 10.1038/nbt.3583 10.1016/j.gene.2012.01.074 10.1038/s41598-017-00501-4 10.1007/s11103-011-9749-1 10.1007/s11240-015-0907-z 10.1007/s00299-016-2062-3 10.1007/s11240-014-0443-2 10.17660/ActaHortic.2004.663.81 10.1186/s13059-015-0826-7 10.1038/srep24765 10.1016/j.plantsci.2015.07.010 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ L6V LK8 M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1111/pbi.13253 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Gene editing for fire blight resistance in apple |
EISSN | 1467-7652 |
EndPage | 858 |
ExternalDocumentID | PMC7004915 A733315409 31495052 10_1111_pbi_13253 PBI13253 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fondazione Edmund Mach (Research and Innovation Centre) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACCMX ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADIZJ ADKYN ADNMO ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT NPM PMFND 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6093-d014c0153497d05da22b652f493d7f58da49090e5979db420c395643acdf5f5f3 |
IEDL.DBID | BENPR |
ISSN | 1467-7644 1467-7652 |
IngestDate | Thu Aug 21 18:35:45 EDT 2025 Fri Jul 11 18:30:03 EDT 2025 Tue Aug 05 11:14:11 EDT 2025 Wed Aug 13 08:18:08 EDT 2025 Tue Jun 17 21:30:13 EDT 2025 Tue Jun 10 20:26:16 EDT 2025 Thu Apr 03 06:59:09 EDT 2025 Tue Jul 01 02:34:44 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Wed Jan 22 16:39:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Malus × domestica DIPM fire blight gene editing FLP/FRT recombination |
Language | English |
License | Attribution 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6093-d014c0153497d05da22b652f493d7f58da49090e5979db420c395643acdf5f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1393-1245 |
OpenAccessLink | https://www.proquest.com/docview/2351757333?pq-origsite=%requestingapplication% |
PMID | 31495052 |
PQID | 2351757333 |
PQPubID | 1096352 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004915 proquest_miscellaneous_2524212702 proquest_miscellaneous_2287525432 proquest_journals_2351757333 gale_infotracmisc_A733315409 gale_infotracacademiconefile_A733315409 pubmed_primary_31495052 crossref_primary_10_1111_pbi_13253 crossref_citationtrail_10_1111_pbi_13253 wiley_primary_10_1111_pbi_13253_PBI13253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Southampton – name: Hoboken |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 2017; 7 2017; 8 2019; 10 2017; 49 2015; 33 2017; 89 2014; 27 2019; 245 1997; 1 2012; 13 1993; 2 2016; 35 2016; 34 2018; 9 2014; 5 2013; 14 2010; 25 2012; 498 2017; 36 2000 2015; 81 2013; 115 2007; 8 2012; 28 2013; 197 2014; 9 2018; 32 2014; 12 2003; 87 2018; 36 1999; 538 2014; 289 2019; 9 2014; 117 2015; 16 1920; 5 2004; 663 1997; 26 1989; 9 2015; 10 2016; 124 2011; 75 2016; 242 2006; 19 2016; 17 2019; 222 2018; 19 2016; 6 2016; 7 2017; 12 2018; 96 2018; 16 2016; 9 2014; 77 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Kellerhals M. (e_1_2_9_25_1) 2014; 5 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 Richter K. (e_1_2_9_47_1) 1999; 538 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Aldwinckle H.S. (e_1_2_9_2_1) 1997; 1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 17 start-page: 148 year: 2016 article-title: Evaluation of off‐target and on‐target scoring algorithms and integration into the guide RNA selection tool CRISPOR publication-title: Genome Biol. – volume: 34 start-page: 695 year: 2016 end-page: 697 article-title: Analyzing CRISPR genome‐editing experiments with CRISPResso publication-title: Nat. Biotechnol. – volume: 8 start-page: 255 year: 2007 end-page: 265 article-title: DspA/E, a type III effector of , is required for early rapid growth in and causes NbSGT1‐dependent cell death publication-title: Mol. Plant Pathol. – volume: 9 start-page: 3457 year: 1989 end-page: 3463 article-title: Regulatory domains of the heat shock promoter of soybean publication-title: Mol. Cell. Biol. – volume: 75 start-page: 579 year: 2011 end-page: 591 article-title: Functional analysis and expression profiling of and for development of scab resistant cisgenic and intragenic apples publication-title: Plant Mol. Biol. – volume: 124 start-page: 471 year: 2016 end-page: 481 article-title: Efficient heat‐shock removal of the selectable marker gene in genetically modified grapevine publication-title: Plant Cell Tissue Organ Cult. – volume: 5 start-page: 414 year: 2014 end-page: 421 article-title: Züchtung feuerbrandrobuster Apfelsorten publication-title: Agrarforschung Schweiz – volume: 16 start-page: 258 year: 2015 article-title: Induction of targeted, heritable mutations in barley and using RNA‐guided Cas9 nuclease publication-title: Genome Biol. – volume: 19 start-page: 53 year: 2006 end-page: 61 article-title: Apple proteins that interact with DspA/E, a pathogenicity effector of , the fire blight pathogen publication-title: Mol. Plant Microbe Interact. – volume: 6 start-page: 24765 year: 2016 article-title: CRISPR/Cas9‐mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations publication-title: Sci. Rep. – volume: 89 start-page: 1251 year: 2017 end-page: 1262 article-title: High‐efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9 publication-title: Plant J. – volume: 8 start-page: 14261 year: 2017 article-title: Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes publication-title: Nat. Commun. – volume: 35 start-page: 1535 year: 2016 end-page: 1544 article-title: Site‐directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins publication-title: Plant Cell Rep. – volume: 9 start-page: e93806 year: 2014 article-title: Targeted genome editing of sweet orange using Cas9/sgRNA publication-title: PLoS ONE – volume: 245 start-page: 634 year: 2019 end-page: 652 article-title: Development of a Taqman real‐time PCR method to quantify nptII in apple lines obtained with ‘established’ or ‘new breeding’ techniques of genetic modification publication-title: Eur. Food Res. Technol. – volume: 9 start-page: 985 year: 2018 article-title: CRISPR for crop improvement: an update review publication-title: Front. Plant Sci. – volume: 115 start-page: 457 year: 2013 end-page: 467 article-title: Studies on heat shock induction and transgene expression in order to optimize the Flp/ recombinase system in apple ( Borkh.) publication-title: Plant Cell Tissue Organ Cult. – volume: 289 start-page: 18466 year: 2014 end-page: 18477 article-title: Expression of the bacterial type III effector DspA/E in down‐regulates the sphingolipid biosynthetic pathway leading to growth arrest publication-title: J. Biol. Chem. – volume: 6 start-page: 31481 year: 2016 article-title: Efficient genome editing in apple using a CRISPR/Cas9 system publication-title: Sci. Rep. – volume: 7 start-page: 507 year: 2017 article-title: Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9 publication-title: Sci. Rep. – volume: 10 start-page: 40 year: 2019 article-title: Efficient targeted mutagenesis in apple and first edition of pear using the CRISPR‐Cas9 system publication-title: Front. Plant Sci. – volume: 9 start-page: 961 year: 2016 end-page: 974 article-title: CRISPR/Cas9 platforms for genome editing in plants: developments and applications publication-title: Mol. Plant – volume: 87 start-page: 756 year: 2003 end-page: 765 article-title: Fire blight management in the twenty‐first century—using new technologies that enhance host resistance in apple publication-title: Plant Dis. – volume: 14 start-page: 506 year: 2013 end-page: 517 article-title: The bacterial effector DspA/E is toxic in and is required for multiplication and survival of fire blight pathogen publication-title: Mol. Plant Pathol. – volume: 36 start-page: 247 year: 2018 end-page: 256 article-title: Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples publication-title: Plant Mol. Biol. Rep. – volume: 27 start-page: 446 year: 2014 end-page: 455 article-title: Durable resistance: a key to sustainable management of pathogens and pests publication-title: Infect. Genet Evol. – volume: 35 start-page: 95 year: 2015 article-title: Improving resistance of different apple cultivars using the scab resistance gene in a cisgenic approach based on the Flp/ recombinase system publication-title: Mol. Breed. – volume: 2 start-page: 208 year: 1993 end-page: 218 article-title: New helper plasmids for gene‐transfer to plants publication-title: Transgenic Res. – volume: 49 start-page: 1099 year: 2017 end-page: 1106 article-title: High‐quality de novo assembly of the apple genome and methylome dynamics of early fruit development publication-title: Nat. Gen. – volume: 10 start-page: e0143980 year: 2015 article-title: Development of the first cisgenic apple with increased resistance to fire blight publication-title: PLoS ONE – volume: 96 start-page: 445 year: 2018 end-page: 456 article-title: Potential high‐frequency off‐target mutagenesis induced by CRISPR/Cas9 in and its prevention publication-title: Plant Mol. Biol. – volume: 9 start-page: 1957 year: 2019 article-title: DNA‐free genome editing: past, present and future publication-title: Front. Plant Sci. – volume: 33 start-page: 1162 year: 2015 end-page: 1164 article-title: DNA‐free genome editing in plants with preassembled CRISPR‐Cas9 ribonucleoproteins publication-title: Nat. Biotechnol. – volume: 663 start-page: 469 year: 2004 end-page: 474 article-title: Silencing of apple proteins that interact with , a pathogenicity effector from , as a strategy to increase resistance to fire blight publication-title: Acta Hortic. – volume: 81 start-page: 160 year: 2015 end-page: 168 article-title: Precision genome editing in plants via gene targeting and ‐mediated marker excision publication-title: Plant J. – volume: 222 start-page: 1673 year: 2019 end-page: 1684 article-title: A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward publication-title: New Phytol. – volume: 77 start-page: 454 year: 2014 end-page: 463 article-title: Precise marker excision system using an animal‐derived transposon in plants publication-title: Plant J. – volume: 19 start-page: 16 year: 2006 end-page: 24 article-title: DspA/E, a type III effector essential for pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants publication-title: Mol. Plant Microbe Interact. – start-page: 253 year: 2000 end-page: 273 – volume: 5 start-page: 191 year: 1920 end-page: 229 article-title: The families and genera of the bacteria: final report of the committee of the society of american bacteriologists on characterization and classification of bacterial types publication-title: J. Bacteriol. – volume: 197 start-page: 1262 year: 2013 end-page: 1275 article-title: Gene‐for‐gene relationship in the host‐pathogen system × robusta 5‐ publication-title: New Phytol. – volume: 242 start-page: 3 year: 2016 end-page: 13 article-title: Next generation breeding publication-title: Plant Sci. – volume: 28 start-page: 1166 year: 2012 end-page: 1167 article-title: Unipro UGENE: a unified bioinformatics toolkit publication-title: Bioinform – volume: 25 start-page: 1 year: 2010 end-page: 12 article-title: Loss of susceptibility as a novel breeding strategy for durable and broad‐spectrum resistance publication-title: Mol. Breed. – volume: 538 start-page: 267 year: 1999 end-page: 270 article-title: Stability of fire blight resistance in apple publication-title: Eucarpia Symp. Fruit Breed. Genet. – volume: 7 start-page: 1904 year: 2016 article-title: DNA‐Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins publication-title: Front. Plant Sci. – volume: 26 start-page: 1057 year: 1997 end-page: 1069 article-title: DspA, an essential pathogenicity factor of showing homology with AvrE of , is secreted via the Hrp secretion pathway in a DspB‐dependent way publication-title: Mol. Microbiol. – volume: 13 start-page: 341 year: 2012 article-title: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers publication-title: BMC Genom. – volume: 6 start-page: 32289 year: 2016 article-title: CRISPR/Cas9‐mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.) publication-title: Sci. Rep. – volume: 32 start-page: 167 year: 2018 end-page: 175 article-title: is a susceptibility gene of spp.: reduced expression reduces susceptibility to publication-title: Mol. Plant Microbe Interact. – volume: 498 start-page: 41 year: 2012 end-page: 49 article-title: Heat‐shock‐mediated elimination of the marker gene in transgenic apple (Malus×domestica Borkh.) publication-title: Gene – volume: 36 start-page: 117 year: 2017 end-page: 128 article-title: Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR‐Cas9 expression in protoplasts publication-title: Plant Cell Rep. – volume: 36 start-page: 898 year: 2018 end-page: 906 article-title: Genome editing: targeting susceptibility genes for plant disease resistance publication-title: Trends Biotechnol. – volume: 117 start-page: 335 year: 2014 end-page: 348 article-title: Elimination of the marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase publication-title: Plant Cell Tissue Organ Cult. – volume: 19 start-page: 84 year: 2018 article-title: A large‐scale whole‐genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice publication-title: Genome Biol. – volume: 12 start-page: e0177966 year: 2017 article-title: CRISPR/Cas9‐mediated targeted mutagenesis in grape publication-title: PLoS ONE – volume: 1 start-page: 423 year: 1997 end-page: 474 article-title: Fire blight and its control publication-title: Hortic Rev. – volume: 16 start-page: 844 year: 2018 end-page: 855 article-title: CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation publication-title: Plant Biotechnol. J. – volume: 12 start-page: 728 year: 2014 end-page: 733 article-title: Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC‐NBS‐LRR resistance gene of Malus × robusta 5 publication-title: Plant Biotechnol. J. – ident: e_1_2_9_51_1 doi: 10.1186/s13059-018-1458-5 – ident: e_1_2_9_9_1 doi: 10.3389/fpls.2019.00040 – ident: e_1_2_9_11_1 doi: 10.1038/ng.3886 – ident: e_1_2_9_33_1 doi: 10.3389/fpls.2018.01957 – ident: e_1_2_9_8_1 doi: 10.1094/MPMI-05-18-0120-R – ident: e_1_2_9_36_1 doi: 10.1038/srep31481 – volume: 1 start-page: 423 year: 1997 ident: e_1_2_9_2_1 article-title: Fire blight and its control publication-title: Hortic Rev. – ident: e_1_2_9_28_1 doi: 10.1079/9780851992945.0253 – ident: e_1_2_9_13_1 doi: 10.1007/s00217-018-3187-0 – ident: e_1_2_9_59_1 doi: 10.1016/j.tibtech.2018.04.005 – ident: e_1_2_9_37_1 doi: 10.1111/tpj.12367 – ident: e_1_2_9_38_1 doi: 10.1111/tpj.12693 – ident: e_1_2_9_49_1 doi: 10.1074/jbc.M114.562769 – ident: e_1_2_9_39_1 doi: 10.1094/PDIS.2003.87.7.756 – ident: e_1_2_9_50_1 doi: 10.1007/s00299-016-1937-7 – ident: e_1_2_9_6_1 doi: 10.1094/MPMI-19-0016 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0143980 – ident: e_1_2_9_16_1 doi: 10.1111/nph.15627 – ident: e_1_2_9_17_1 doi: 10.1046/j.1365-2958.1997.6442015.x – ident: e_1_2_9_54_1 doi: 10.1111/pbi.12832 – ident: e_1_2_9_30_1 doi: 10.1016/j.molp.2016.04.009 – ident: e_1_2_9_41_1 doi: 10.1093/bioinformatics/bts091 – ident: e_1_2_9_19_1 doi: 10.1186/s13059-016-1012-2 – ident: e_1_2_9_45_1 doi: 10.1186/1471-2164-13-341 – ident: e_1_2_9_7_1 doi: 10.1111/pbi.12177 – ident: e_1_2_9_55_1 doi: 10.1128/jb.5.3.191-229.1920 – ident: e_1_2_9_31_1 doi: 10.3389/fpls.2016.01904 – ident: e_1_2_9_23_1 doi: 10.1371/journal.pone.0093806 – ident: e_1_2_9_43_1 doi: 10.1007/s11032-009-9323-6 – ident: e_1_2_9_34_1 doi: 10.1016/j.meegid.2014.01.011 – ident: e_1_2_9_10_1 doi: 10.1128/MCB.9.8.3457 – ident: e_1_2_9_22_1 doi: 10.3389/fpls.2018.00985 – ident: e_1_2_9_21_1 doi: 10.1007/BF01977351 – ident: e_1_2_9_29_1 doi: 10.1038/ncomms14261 – ident: e_1_2_9_40_1 doi: 10.1111/j.1364-3703.2007.00390.x – ident: e_1_2_9_56_1 doi: 10.1038/nbt.3389 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0177966 – ident: e_1_2_9_58_1 doi: 10.1007/s11032-015-0291-8 – ident: e_1_2_9_60_1 doi: 10.1007/s11103-018-0709-x – ident: e_1_2_9_32_1 doi: 10.1094/MPMI-19-0053 – ident: e_1_2_9_46_1 doi: 10.1038/srep32289 – ident: e_1_2_9_14_1 doi: 10.1111/mpp.12022 – ident: e_1_2_9_18_1 doi: 10.1111/tpj.13446 – ident: e_1_2_9_57_1 doi: 10.1007/s11240-013-0376-1 – ident: e_1_2_9_53_1 doi: 10.1111/nph.12094 – ident: e_1_2_9_15_1 doi: 10.1007/s11105-018-1076-0 – ident: e_1_2_9_44_1 doi: 10.1038/nbt.3583 – ident: e_1_2_9_20_1 doi: 10.1016/j.gene.2012.01.074 – volume: 5 start-page: 414 year: 2014 ident: e_1_2_9_25_1 article-title: Züchtung feuerbrandrobuster Apfelsorten publication-title: Agrarforschung Schweiz – ident: e_1_2_9_52_1 doi: 10.1038/s41598-017-00501-4 – ident: e_1_2_9_24_1 doi: 10.1007/s11103-011-9749-1 – ident: e_1_2_9_12_1 doi: 10.1007/s11240-015-0907-z – ident: e_1_2_9_3_1 doi: 10.1007/s00299-016-2062-3 – ident: e_1_2_9_48_1 doi: 10.1007/s11240-014-0443-2 – ident: e_1_2_9_5_1 doi: 10.17660/ActaHortic.2004.663.81 – ident: e_1_2_9_27_1 doi: 10.1186/s13059-015-0826-7 – ident: e_1_2_9_42_1 doi: 10.1038/srep24765 – ident: e_1_2_9_4_1 doi: 10.1016/j.plantsci.2015.07.010 – volume: 538 start-page: 267 year: 1999 ident: e_1_2_9_47_1 article-title: Stability of fire blight resistance in apple publication-title: Eucarpia Symp. Fruit Breed. Genet. |
SSID | ssj0021656 |
Score | 2.5899854 |
Snippet | Summary
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts... The bacterium Erwinia amylovora , the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the... The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 845 |
SubjectTerms | Agrobacterium radiobacter Agrobacterium tumefaciens Apple Apples bacteria biotechnology Blight Cassettes Cloning Comparative analysis CRISPR CRISPR-Cas systems Crop diseases Cultivars Deoxyribonucleic acid DIPM DNA DNA sequencing Efficiency Erwinia amylovora fire blight FLP/FRT recombination FRT gene Fruits gene editing Gene expression Genes genetic markers Genetic modification Genetically altered foods genetically modified organisms Genomes Health aspects heat treatment Kinases loss-of-function mutation Malus domestica Malus × domestica Mutation Neomycin Pathogens Proteins quantitative polymerase chain reaction Recombination Signal transduction |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5Kn_TB-2W1LaMI-pJtOpdkB5-2i0srKktsoQ9CmFvaxZKWZlfQJ_0H_Y3-Es-ZXNgsKiL7EpgzYWdyzpzzJd98Q8gLPzK8gLwUcZfGkeCeR8YpFaUW0POeGQkexHTef0gOjsXbE3myQV63e2FqfYjuhRtGRlivMcC1qVaC_NLMhwClJCp9IlcLC6Ksk45iqCpT7yxKoxSSfqMqhCyermcvF62vyCspaZ0uuVrGhjw0vU0-tSOo6Sefh8uFGdpva-KO_znEO-RWU5_Sce1Qd8mGL--Rm-PTq0ajw98nPzKUe_WOFrBcUnOO8J5WyyoQZALX9iudlxQ_jXuKveZfAD1TZNifUk1RIPnn92sftCtw4yedZIcfZ9nuRFcKGqbvZrvT7AiuMMM6Ch7uKaRY5GfTWnj6ATmevjmaHETNSQ6RTWLFIwdAzELhwYVKXSydZswkkhVCgYsUcuS0ULGKPaAb5YxgseWA2wTX1hUSfvwh2SwvSv-YUMGY47FPDConWS21GElXcKgydCLh5gPyqn2muW1kzvG0jfO8hTswq3mY1QF53ple1toevzN6iY6RY7zDfaxuti3Av0HlrHyccnBqqHvVgGz1LCFObb-5da28WSeqnHEJ9RvaDMizrhl7Ivet9BdLsAFQK1GzgP3FRoZP-2kMNo9qb-2GxBEExxJa0p4fdwaoMN5vKednQWkczz5QexLmNLjpn2cpn-0fhosn_276lNxg-PIiEPq2yObiaum3ocJbmJ0Qyr8AhLZN5g priority: 102 providerName: Wiley-Blackwell |
Title | Reduced fire blight susceptibility in apple cultivars using a high‐efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13253 https://www.ncbi.nlm.nih.gov/pubmed/31495052 https://www.proquest.com/docview/2351757333 https://www.proquest.com/docview/2287525432 https://www.proquest.com/docview/2524212702 https://pubmed.ncbi.nlm.nih.gov/PMC7004915 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdY9wIPiP_rGJVBSPAS6vlPEj-hrlrYEExV2KS9RUnsjEpT2i0rEm_wDfiMfBLuHDcsE0yVokh3iRrf2Xc_-_wzIa9tXIgK4lIgTMQCKawICqN1EJWAnneLWApHpvP5KDw4kR9P1amfcGt8WeV6THQDtVmUOEc-5kJBpIuEEO-XFwGeGoWrq_4IjQ2yCUNwHA_I5t7-0SztIBdyy7T7i6IggtDvuYWwlmdZzN8BFFOiF5FujsvXAtPNosnryayLRskDct-nkXTS2v0huWPrR-Te5OzSU2nYx-Rniqys1tAKRjVanCMKp82qcXUsriT2O53XFFewLcWn5t8A5FIshD-jOUUe498_fllHMYH7M-k0PfwyS8fTvNEgSD7Nxkl6DHcYCA0FR7QUIiGWUdOWH_oJOUn2j6cHgT9wIShDpkVgAC-VkB8IqSPDlMk5L0LFK6nBkpWKTS4108wCCNGmkJyVAuCVFHlpKgU_8ZQM6kVttwiVnBvBbFggwVGZq1zGylQCkoE8VPDyIXm7bvSs9GzkeCjGebZGJWCfzNlnSF51qsuWguNfSm_Qchl2S3hPmfvdBfBvkOAqm6DnQLrI9JDs9DShO5V98dr2me_OTfbX-YbkZSfGJ7FErbaLFegA9lRILcBv0VFuBT5ioPOsdafukwRiVaZAEvUcrVNAIvC-pJ5_dYTgeESB3lXQps4l_99K2Wzv0N1s3_6Vz8ldjvMKrtZuhwyuLlf2BSRfV8WIbHA5g2ucfBj53jZyExl4Tfkf6ewy7g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxD8LBQwCwSVs6p8kPiC0LIRduq1Wy1bqLSS2U1aqskvTBfUGb8CT8FA8CTPOD90KeqtyieSJFXvGnvns8WdCntoo4zn4JY-b0PcEt9zLjFJeqAE9b2aR4I5MZ3snGOyKD3tyb438as7CYFplMye6idrMNa6RdxmX4OlCzvnrxRcPb43C3dXmCo3KLLbs8TeAbOWr4VvQ7zPG4nfT_sCrbxXwdADw3TMACjQ4QS5UaHxpUsayQLJcKPjdXEYmFcpXvoVIW5lMMF9zwBCCp9rkEh4O9V4gF6ERCsFeFL9vAR4y2VSnmUIvhECjZjLCzKFFNnsJwE_yFf932guccIOnUzRPhs7O98XXyNU6aKW9ysqukzVb3CBXevuHNXGHvUl-TJAD1hqawxxKswPE_LRcli5rxiXgHtNZQXG_3FL8avYVIDXFtPt9mlJkTf79_ad1hBZ4GpT2J8OP40m3n5YKCuLRuBtPpvCGbtdQMHtLwe9i0jat2Khvkd1zUcRtsl7MC3uXUMGY4b4NMqRT0qlMRSRNziH0SAMJlXfIi6bTE11zn-MVHAdJg4FAP4nTT4c8aUUXFeHHv4Seo-YSnASgHp3WZxngb5BOK-mhnUJw6qsO2ViRhMGrV4sb3Sf15FEmf029Qx63xfglJsQVdr4EGUC6EokM2Bky0u33hz7I3KnMqW0SR2TsSygJVwytFUDa8dWSYvbZ0Y_jhQhqU0KfOpP8fy8l4zdD93Lv7FY-IpcG0-1RMhrubN0nlxmuaLgsvw2yfnS4tA8g7DvKHrqxRsmn8x7cfwAoi2kN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyzUMAgEFzCpnacrA8IbbeNurSsotBKvYXEdspKVXZpuqDe4A14Hh6HJ2HG-aGpoLcql0ieWLFn7JnPHn8m5IUZZjwHv-RwHbiOxw13Mi2lEyhAz-vZ0OOWTOfD1N_e994fiIMV8qs5C4Nplc2caCdqPVe4Rj5gXICnCzjng7xOi4g2w3eLLw7eIIU7rc11GpWJ7JjTbwDfyreTTdD1S8bCrb3xtlPfMOAoH6C8owEgKHCI3JOBdoVOGct8wXJPwq_nYqhTT7rSNRB1S515zFUc8ITHU6VzAQ-Heq-Q1QBRUY-sbmxNo7iFe8hrU51tCpwAwo6a1wjziBbZ7A3AQME73vC8TzjjFM8nbJ4NpK0nDG-SG3UIS0eVzd0iK6a4Ta6PDo9rGg9zh_yIkRHWaJrDjEqzI1wBoOWytDk0Nh33lM4KirvnhuJXs68AsCkm4R_SlCKH8u_vP42lt8CzoXQcTz5G8WCclhIKwt1oEMZ78IZOWFMYBIaCF8YUblpxU98l-5eiinukV8wL84BQjzHNXeNnSK6kUpF6Q6FzDoFI6guovE9eN52eqJoJHS_kOEoaRAT6Sax--uR5K7qo6D_-JfQKNZfglAD1qLQ-2QB_g-RayQitFkJVV_bJWkcShrLqFje6T-qppEz-Gn6fPGuL8UtMjyvMfAkygHsF0hqwC2SE3f0PXJC5X5lT2ySOONkVUBJ0DK0VQBLybkkx-2zJyPF6BLkuoE-tSf6_l5JoY2JfHl7cyqfkKgzsZHcy3XlErjFc3rApf2ukd3K8NI8hBjzJntSDjZJPlz2-_wAQsW6f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+fire+blight+susceptibility+in+apple+cultivars+using+a+high%E2%80%90efficiency+CRISPR%2FCas9%E2%80%90FLP%2FFRT%E2%80%90based+gene+editing+system&rft.jtitle=Plant+biotechnology+journal&rft.au=Pompili%2C+Valerio&rft.au=Dalla+Costa%2C+Lorenza&rft.au=Piazza%2C+Stefano&rft.au=Pindo%2C+Massimo&rft.date=2020-03-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=18&rft.issue=3&rft.spage=845&rft.epage=858&rft_id=info:doi/10.1111%2Fpbi.13253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pbi_13253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |