Reduced fire blight susceptibility in apple cultivars using a high‐efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system

Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 18; no. 3; pp. 845 - 858
Main Authors Pompili, Valerio, Dalla Costa, Lorenza, Piazza, Stefano, Pindo, Massimo, Malnoy, Mickael
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
AbstractList The bacterium Erwinia amylovora , the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein Md DIPM 4. In this work, Md DIPM 4 knockout has been produced in two Malus  ×  domestica susceptible cultivars using the CRISPR /Cas9 system delivered via Agrobacterium tumefaciens . Fifty‐seven transgenic lines were screened to identify CRISPR /Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP / FRT recombination system designed specifically to remove the T‐ DNA harbouring the expression cassettes for CRISPR /Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐ DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR /Cas9‐ FLP / FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA .
Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
Audience Academic
Author Dalla Costa, Lorenza
Pindo, Massimo
Piazza, Stefano
Pompili, Valerio
Malnoy, Mickael
AuthorAffiliation 1 Department of Genomics and Biology of Fruit Crops Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
2 Department of Agricultural, Food, Environmental and Animal Sciences Università degli Studi di Udine Udine Italy
AuthorAffiliation_xml – name: 2 Department of Agricultural, Food, Environmental and Animal Sciences Università degli Studi di Udine Udine Italy
– name: 1 Department of Genomics and Biology of Fruit Crops Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
Author_xml – sequence: 1
  givenname: Valerio
  orcidid: 0000-0003-1393-1245
  surname: Pompili
  fullname: Pompili, Valerio
  email: valerio.pompili@guests.fmach.it
  organization: Università degli Studi di Udine
– sequence: 2
  givenname: Lorenza
  surname: Dalla Costa
  fullname: Dalla Costa, Lorenza
  organization: Fondazione Edmund Mach
– sequence: 3
  givenname: Stefano
  surname: Piazza
  fullname: Piazza, Stefano
  organization: Fondazione Edmund Mach
– sequence: 4
  givenname: Massimo
  surname: Pindo
  fullname: Pindo, Massimo
  organization: Fondazione Edmund Mach
– sequence: 5
  givenname: Mickael
  surname: Malnoy
  fullname: Malnoy, Mickael
  email: mickael.malnoy@fmach.it
  organization: Fondazione Edmund Mach
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31495052$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQxy1URNvAgRdAlrjAIYk_d-sLUokIRIpEFMrZ8treZKqNd1nvFuUGb8Az8iR4SYloxYfn4JHnN2P7r_85Ogl18Ag9pWRC05o2BUwoZ5I_QGdUZPk4zyQ7OeZCnKLzGK8JYTST2SN0yqlQkkh2hr6uveutd7iE1uOigs22w7GP1jcdFFBBt8cQsGmaymPbVx3cmDbiPkLYYIO3if_-5ZsvS7Dgg93j2XrxYbWezkxUqTBfrqbz9VXKChPTLRsfPPYOuqE97mPnd4_Rw9JU0T-53Ufo4_zN1ezdePn-7WJ2uRzbjCg-doQKS6jkQuWOSGcYK9IvS6G4y0t54YxQRBEvVa5cIRixXMlMcGNdKVPwEXp1mNv0xc4760PXmko3LexMu9e1AX23EmCrN_WNzgkRKl08Qi9uB7T1p97HTu8g6VRVJvi6j5pJJhhlOWH_R9lFLpkUfECf30Ov674NSQnNuKS5zHlaR2pjKq8hlHV6oh2G6ssBoFIkkUZo8gcqhfM7sMkzJaTzOw3PftfkKMYvfyTg5QGwbR1j68sjQokevKeT9_RP7yV2eo-10JkO6kFOqP7V8Tm9a__30Xr1enHo-AGQQOrm
CitedBy_id crossref_primary_10_1093_plphys_kiad273
crossref_primary_10_1007_s42161_020_00581_8
crossref_primary_10_3390_plants9101360
crossref_primary_10_2903_sp_efsa_2020_EN_1972
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_17660_ActaHortic_2021_1327_2
crossref_primary_10_3390_ijms252111792
crossref_primary_10_1270_jsbbr_23J01
crossref_primary_10_3389_fpls_2022_975917
crossref_primary_10_3389_fpls_2022_928292
crossref_primary_10_3389_fpls_2022_1055529
crossref_primary_10_3390_ijms222212611
crossref_primary_10_3389_fpls_2022_1078931
crossref_primary_10_3390_horticulturae9010058
crossref_primary_10_1093_plphys_kiab574
crossref_primary_10_1007_s10142_025_01533_0
crossref_primary_10_1016_j_foodcont_2020_107790
crossref_primary_10_1016_j_tim_2024_08_007
crossref_primary_10_1007_s00217_021_03881_0
crossref_primary_10_1007_s11627_021_10208_x
crossref_primary_10_1186_s13007_021_00769_8
crossref_primary_10_1007_s11248_021_00240_3
crossref_primary_10_1016_j_hpj_2022_05_001
crossref_primary_10_1146_annurev_phyto_021622_120124
crossref_primary_10_3390_ijms252211902
crossref_primary_10_5114_bta_2022_113919
crossref_primary_10_1038_s41598_020_77110_1
crossref_primary_10_1093_hr_uhae002
crossref_primary_10_14719_pst_2021_8_3_1127
crossref_primary_10_1016_j_copbio_2022_102795
crossref_primary_10_1093_hr_uhac022
crossref_primary_10_1093_aobpla_plae074
crossref_primary_10_1007_s11627_021_10197_x
crossref_primary_10_3390_agronomy11091849
crossref_primary_10_1002_biot_202300298
crossref_primary_10_1007_s43538_022_00100_6
crossref_primary_10_3390_ijms23147755
crossref_primary_10_17660_ActaHortic_2023_1362_27
crossref_primary_10_3389_fpls_2023_1321555
crossref_primary_10_3390_horticulturae7070193
crossref_primary_10_3390_plants12213693
crossref_primary_10_17660_ActaHortic_2023_1362_6
crossref_primary_10_1007_s00122_022_04093_0
crossref_primary_10_1038_s41438_021_00601_3
crossref_primary_10_3389_fpls_2024_1518123
crossref_primary_10_17660_ActaHortic_2023_1362_4
crossref_primary_10_3389_fgene_2024_1382445
crossref_primary_10_1093_plphys_kiad374
crossref_primary_10_1002_fes3_258
crossref_primary_10_1016_j_jafr_2022_100484
crossref_primary_10_1016_j_stress_2024_100650
crossref_primary_10_1007_s11033_021_06650_0
crossref_primary_10_1016_j_hpj_2020_11_004
crossref_primary_10_1111_nph_20415
crossref_primary_10_35118_apjmbb_2022_030_3_05
crossref_primary_10_1111_pbi_13605
crossref_primary_10_3390_horticulturae9010038
crossref_primary_10_3389_fpls_2020_01234
crossref_primary_10_1007_s11240_024_02944_w
crossref_primary_10_3389_fpls_2023_1260102
crossref_primary_10_1093_hr_uhad144
crossref_primary_10_1016_j_hpj_2022_04_007
crossref_primary_10_1007_s44279_024_00124_0
crossref_primary_10_1016_j_plgene_2024_100471
crossref_primary_10_1016_j_ygeno_2021_09_001
crossref_primary_10_3389_fpls_2022_979742
crossref_primary_10_3390_plants12071478
crossref_primary_10_3390_ijms22094709
crossref_primary_10_3390_ijms24020977
crossref_primary_10_1134_S0026893323030135
crossref_primary_10_3390_cells11233928
crossref_primary_10_1007_s42161_020_00635_x
crossref_primary_10_1146_annurev_phyto_021621_121806
crossref_primary_10_1038_s41438_021_00639_3
crossref_primary_10_1186_s43897_023_00049_0
crossref_primary_10_1111_nph_17234
crossref_primary_10_1111_tpj_16036
crossref_primary_10_3390_ijms251810011
crossref_primary_10_1007_s10482_023_01809_0
crossref_primary_10_1038_s41598_020_73284_w
crossref_primary_10_3390_biom11020181
crossref_primary_10_31857_S0026898423030151
crossref_primary_10_3390_cimb46100659
crossref_primary_10_1007_s42161_024_01678_0
crossref_primary_10_1007_s43538_024_00251_8
crossref_primary_10_1016_j_gene_2024_149076
crossref_primary_10_17660_ActaHortic_2024_1412_63
crossref_primary_10_3389_fpls_2021_667133
crossref_primary_10_1007_s00299_022_02869_8
crossref_primary_10_1093_hr_uhad011
crossref_primary_10_3390_plants10071347
crossref_primary_10_1007_s42161_020_00623_1
crossref_primary_10_17660_ActaHortic_2024_1412_62
crossref_primary_10_3390_horticulturae10030222
crossref_primary_10_3389_fbioe_2024_1412927
crossref_primary_10_3390_ijms22010319
Cites_doi 10.1186/s13059-018-1458-5
10.3389/fpls.2019.00040
10.1038/ng.3886
10.3389/fpls.2018.01957
10.1094/MPMI-05-18-0120-R
10.1038/srep31481
10.1079/9780851992945.0253
10.1007/s00217-018-3187-0
10.1016/j.tibtech.2018.04.005
10.1111/tpj.12367
10.1111/tpj.12693
10.1074/jbc.M114.562769
10.1094/PDIS.2003.87.7.756
10.1007/s00299-016-1937-7
10.1094/MPMI-19-0016
10.1371/journal.pone.0143980
10.1111/nph.15627
10.1046/j.1365-2958.1997.6442015.x
10.1111/pbi.12832
10.1016/j.molp.2016.04.009
10.1093/bioinformatics/bts091
10.1186/s13059-016-1012-2
10.1186/1471-2164-13-341
10.1111/pbi.12177
10.1128/jb.5.3.191-229.1920
10.3389/fpls.2016.01904
10.1371/journal.pone.0093806
10.1007/s11032-009-9323-6
10.1016/j.meegid.2014.01.011
10.1128/MCB.9.8.3457
10.3389/fpls.2018.00985
10.1007/BF01977351
10.1038/ncomms14261
10.1111/j.1364-3703.2007.00390.x
10.1038/nbt.3389
10.1371/journal.pone.0177966
10.1007/s11032-015-0291-8
10.1007/s11103-018-0709-x
10.1094/MPMI-19-0053
10.1038/srep32289
10.1111/mpp.12022
10.1111/tpj.13446
10.1007/s11240-013-0376-1
10.1111/nph.12094
10.1007/s11105-018-1076-0
10.1038/nbt.3583
10.1016/j.gene.2012.01.074
10.1038/s41598-017-00501-4
10.1007/s11103-011-9749-1
10.1007/s11240-015-0907-z
10.1007/s00299-016-2062-3
10.1007/s11240-014-0443-2
10.17660/ActaHortic.2004.663.81
10.1186/s13059-015-0826-7
10.1038/srep24765
10.1016/j.plantsci.2015.07.010
ContentType Journal Article
Copyright 2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.13253
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
AGRICOLA

PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Gene editing for fire blight resistance in apple
EISSN 1467-7652
EndPage 858
ExternalDocumentID PMC7004915
A733315409
31495052
10_1111_pbi_13253
PBI13253
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fondazione Edmund Mach (Research and Innovation Centre)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
NPM
PMFND
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6093-d014c0153497d05da22b652f493d7f58da49090e5979db420c395643acdf5f5f3
IEDL.DBID BENPR
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 18:35:45 EDT 2025
Fri Jul 11 18:30:03 EDT 2025
Tue Aug 05 11:14:11 EDT 2025
Wed Aug 13 08:18:08 EDT 2025
Tue Jun 17 21:30:13 EDT 2025
Tue Jun 10 20:26:16 EDT 2025
Thu Apr 03 06:59:09 EDT 2025
Tue Jul 01 02:34:44 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
Wed Jan 22 16:39:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Malus × domestica
DIPM
fire blight
gene editing
FLP/FRT recombination
Language English
License Attribution
2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6093-d014c0153497d05da22b652f493d7f58da49090e5979db420c395643acdf5f5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1393-1245
OpenAccessLink https://www.proquest.com/docview/2351757333?pq-origsite=%requestingapplication%
PMID 31495052
PQID 2351757333
PQPubID 1096352
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004915
proquest_miscellaneous_2524212702
proquest_miscellaneous_2287525432
proquest_journals_2351757333
gale_infotracmisc_A733315409
gale_infotracacademiconefile_A733315409
pubmed_primary_31495052
crossref_primary_10_1111_pbi_13253
crossref_citationtrail_10_1111_pbi_13253
wiley_primary_10_1111_pbi_13253_PBI13253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 35
2017; 7
2017; 8
2019; 10
2017; 49
2015; 33
2017; 89
2014; 27
2019; 245
1997; 1
2012; 13
1993; 2
2016; 35
2016; 34
2018; 9
2014; 5
2013; 14
2010; 25
2012; 498
2017; 36
2000
2015; 81
2013; 115
2007; 8
2012; 28
2013; 197
2014; 9
2018; 32
2014; 12
2003; 87
2018; 36
1999; 538
2014; 289
2019; 9
2014; 117
2015; 16
1920; 5
2004; 663
1997; 26
1989; 9
2015; 10
2016; 124
2011; 75
2016; 242
2006; 19
2016; 17
2019; 222
2018; 19
2016; 6
2016; 7
2017; 12
2018; 96
2018; 16
2016; 9
2014; 77
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Kellerhals M. (e_1_2_9_25_1) 2014; 5
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
Richter K. (e_1_2_9_47_1) 1999; 538
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Aldwinckle H.S. (e_1_2_9_2_1) 1997; 1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 17
  start-page: 148
  year: 2016
  article-title: Evaluation of off‐target and on‐target scoring algorithms and integration into the guide RNA selection tool CRISPOR
  publication-title: Genome Biol.
– volume: 34
  start-page: 695
  year: 2016
  end-page: 697
  article-title: Analyzing CRISPR genome‐editing experiments with CRISPResso
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 255
  year: 2007
  end-page: 265
  article-title: DspA/E, a type III effector of , is required for early rapid growth in and causes NbSGT1‐dependent cell death
  publication-title: Mol. Plant Pathol.
– volume: 9
  start-page: 3457
  year: 1989
  end-page: 3463
  article-title: Regulatory domains of the heat shock promoter of soybean
  publication-title: Mol. Cell. Biol.
– volume: 75
  start-page: 579
  year: 2011
  end-page: 591
  article-title: Functional analysis and expression profiling of and for development of scab resistant cisgenic and intragenic apples
  publication-title: Plant Mol. Biol.
– volume: 124
  start-page: 471
  year: 2016
  end-page: 481
  article-title: Efficient heat‐shock removal of the selectable marker gene in genetically modified grapevine
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 5
  start-page: 414
  year: 2014
  end-page: 421
  article-title: Züchtung feuerbrandrobuster Apfelsorten
  publication-title: Agrarforschung Schweiz
– volume: 16
  start-page: 258
  year: 2015
  article-title: Induction of targeted, heritable mutations in barley and using RNA‐guided Cas9 nuclease
  publication-title: Genome Biol.
– volume: 19
  start-page: 53
  year: 2006
  end-page: 61
  article-title: Apple proteins that interact with DspA/E, a pathogenicity effector of , the fire blight pathogen
  publication-title: Mol. Plant Microbe Interact.
– volume: 6
  start-page: 24765
  year: 2016
  article-title: CRISPR/Cas9‐mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations
  publication-title: Sci. Rep.
– volume: 89
  start-page: 1251
  year: 2017
  end-page: 1262
  article-title: High‐efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9
  publication-title: Plant J.
– volume: 8
  start-page: 14261
  year: 2017
  article-title: Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
  publication-title: Nat. Commun.
– volume: 35
  start-page: 1535
  year: 2016
  end-page: 1544
  article-title: Site‐directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins
  publication-title: Plant Cell Rep.
– volume: 9
  start-page: e93806
  year: 2014
  article-title: Targeted genome editing of sweet orange using Cas9/sgRNA
  publication-title: PLoS ONE
– volume: 245
  start-page: 634
  year: 2019
  end-page: 652
  article-title: Development of a Taqman real‐time PCR method to quantify nptII in apple lines obtained with ‘established’ or ‘new breeding’ techniques of genetic modification
  publication-title: Eur. Food Res. Technol.
– volume: 9
  start-page: 985
  year: 2018
  article-title: CRISPR for crop improvement: an update review
  publication-title: Front. Plant Sci.
– volume: 115
  start-page: 457
  year: 2013
  end-page: 467
  article-title: Studies on heat shock induction and transgene expression in order to optimize the Flp/ recombinase system in apple ( Borkh.)
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 289
  start-page: 18466
  year: 2014
  end-page: 18477
  article-title: Expression of the bacterial type III effector DspA/E in down‐regulates the sphingolipid biosynthetic pathway leading to growth arrest
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 31481
  year: 2016
  article-title: Efficient genome editing in apple using a CRISPR/Cas9 system
  publication-title: Sci. Rep.
– volume: 7
  start-page: 507
  year: 2017
  article-title: Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9
  publication-title: Sci. Rep.
– volume: 10
  start-page: 40
  year: 2019
  article-title: Efficient targeted mutagenesis in apple and first edition of pear using the CRISPR‐Cas9 system
  publication-title: Front. Plant Sci.
– volume: 9
  start-page: 961
  year: 2016
  end-page: 974
  article-title: CRISPR/Cas9 platforms for genome editing in plants: developments and applications
  publication-title: Mol. Plant
– volume: 87
  start-page: 756
  year: 2003
  end-page: 765
  article-title: Fire blight management in the twenty‐first century—using new technologies that enhance host resistance in apple
  publication-title: Plant Dis.
– volume: 14
  start-page: 506
  year: 2013
  end-page: 517
  article-title: The bacterial effector DspA/E is toxic in and is required for multiplication and survival of fire blight pathogen
  publication-title: Mol. Plant Pathol.
– volume: 36
  start-page: 247
  year: 2018
  end-page: 256
  article-title: Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples
  publication-title: Plant Mol. Biol. Rep.
– volume: 27
  start-page: 446
  year: 2014
  end-page: 455
  article-title: Durable resistance: a key to sustainable management of pathogens and pests
  publication-title: Infect. Genet Evol.
– volume: 35
  start-page: 95
  year: 2015
  article-title: Improving resistance of different apple cultivars using the scab resistance gene in a cisgenic approach based on the Flp/ recombinase system
  publication-title: Mol. Breed.
– volume: 2
  start-page: 208
  year: 1993
  end-page: 218
  article-title: New helper plasmids for gene‐transfer to plants
  publication-title: Transgenic Res.
– volume: 49
  start-page: 1099
  year: 2017
  end-page: 1106
  article-title: High‐quality de novo assembly of the apple genome and methylome dynamics of early fruit development
  publication-title: Nat. Gen.
– volume: 10
  start-page: e0143980
  year: 2015
  article-title: Development of the first cisgenic apple with increased resistance to fire blight
  publication-title: PLoS ONE
– volume: 96
  start-page: 445
  year: 2018
  end-page: 456
  article-title: Potential high‐frequency off‐target mutagenesis induced by CRISPR/Cas9 in and its prevention
  publication-title: Plant Mol. Biol.
– volume: 9
  start-page: 1957
  year: 2019
  article-title: DNA‐free genome editing: past, present and future
  publication-title: Front. Plant Sci.
– volume: 33
  start-page: 1162
  year: 2015
  end-page: 1164
  article-title: DNA‐free genome editing in plants with preassembled CRISPR‐Cas9 ribonucleoproteins
  publication-title: Nat. Biotechnol.
– volume: 663
  start-page: 469
  year: 2004
  end-page: 474
  article-title: Silencing of apple proteins that interact with , a pathogenicity effector from , as a strategy to increase resistance to fire blight
  publication-title: Acta Hortic.
– volume: 81
  start-page: 160
  year: 2015
  end-page: 168
  article-title: Precision genome editing in plants via gene targeting and ‐mediated marker excision
  publication-title: Plant J.
– volume: 222
  start-page: 1673
  year: 2019
  end-page: 1684
  article-title: A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward
  publication-title: New Phytol.
– volume: 77
  start-page: 454
  year: 2014
  end-page: 463
  article-title: Precise marker excision system using an animal‐derived transposon in plants
  publication-title: Plant J.
– volume: 19
  start-page: 16
  year: 2006
  end-page: 24
  article-title: DspA/E, a type III effector essential for pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants
  publication-title: Mol. Plant Microbe Interact.
– start-page: 253
  year: 2000
  end-page: 273
– volume: 5
  start-page: 191
  year: 1920
  end-page: 229
  article-title: The families and genera of the bacteria: final report of the committee of the society of american bacteriologists on characterization and classification of bacterial types
  publication-title: J. Bacteriol.
– volume: 197
  start-page: 1262
  year: 2013
  end-page: 1275
  article-title: Gene‐for‐gene relationship in the host‐pathogen system × robusta 5‐
  publication-title: New Phytol.
– volume: 242
  start-page: 3
  year: 2016
  end-page: 13
  article-title: Next generation breeding
  publication-title: Plant Sci.
– volume: 28
  start-page: 1166
  year: 2012
  end-page: 1167
  article-title: Unipro UGENE: a unified bioinformatics toolkit
  publication-title: Bioinform
– volume: 25
  start-page: 1
  year: 2010
  end-page: 12
  article-title: Loss of susceptibility as a novel breeding strategy for durable and broad‐spectrum resistance
  publication-title: Mol. Breed.
– volume: 538
  start-page: 267
  year: 1999
  end-page: 270
  article-title: Stability of fire blight resistance in apple
  publication-title: Eucarpia Symp. Fruit Breed. Genet.
– volume: 7
  start-page: 1904
  year: 2016
  article-title: DNA‐Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins
  publication-title: Front. Plant Sci.
– volume: 26
  start-page: 1057
  year: 1997
  end-page: 1069
  article-title: DspA, an essential pathogenicity factor of showing homology with AvrE of , is secreted via the Hrp secretion pathway in a DspB‐dependent way
  publication-title: Mol. Microbiol.
– volume: 13
  start-page: 341
  year: 2012
  article-title: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers
  publication-title: BMC Genom.
– volume: 6
  start-page: 32289
  year: 2016
  article-title: CRISPR/Cas9‐mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)
  publication-title: Sci. Rep.
– volume: 32
  start-page: 167
  year: 2018
  end-page: 175
  article-title: is a susceptibility gene of spp.: reduced expression reduces susceptibility to
  publication-title: Mol. Plant Microbe Interact.
– volume: 498
  start-page: 41
  year: 2012
  end-page: 49
  article-title: Heat‐shock‐mediated elimination of the marker gene in transgenic apple (Malus×domestica Borkh.)
  publication-title: Gene
– volume: 36
  start-page: 117
  year: 2017
  end-page: 128
  article-title: Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR‐Cas9 expression in protoplasts
  publication-title: Plant Cell Rep.
– volume: 36
  start-page: 898
  year: 2018
  end-page: 906
  article-title: Genome editing: targeting susceptibility genes for plant disease resistance
  publication-title: Trends Biotechnol.
– volume: 117
  start-page: 335
  year: 2014
  end-page: 348
  article-title: Elimination of the marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 19
  start-page: 84
  year: 2018
  article-title: A large‐scale whole‐genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice
  publication-title: Genome Biol.
– volume: 12
  start-page: e0177966
  year: 2017
  article-title: CRISPR/Cas9‐mediated targeted mutagenesis in grape
  publication-title: PLoS ONE
– volume: 1
  start-page: 423
  year: 1997
  end-page: 474
  article-title: Fire blight and its control
  publication-title: Hortic Rev.
– volume: 16
  start-page: 844
  year: 2018
  end-page: 855
  article-title: CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation
  publication-title: Plant Biotechnol. J.
– volume: 12
  start-page: 728
  year: 2014
  end-page: 733
  article-title: Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC‐NBS‐LRR resistance gene of Malus × robusta 5
  publication-title: Plant Biotechnol. J.
– ident: e_1_2_9_51_1
  doi: 10.1186/s13059-018-1458-5
– ident: e_1_2_9_9_1
  doi: 10.3389/fpls.2019.00040
– ident: e_1_2_9_11_1
  doi: 10.1038/ng.3886
– ident: e_1_2_9_33_1
  doi: 10.3389/fpls.2018.01957
– ident: e_1_2_9_8_1
  doi: 10.1094/MPMI-05-18-0120-R
– ident: e_1_2_9_36_1
  doi: 10.1038/srep31481
– volume: 1
  start-page: 423
  year: 1997
  ident: e_1_2_9_2_1
  article-title: Fire blight and its control
  publication-title: Hortic Rev.
– ident: e_1_2_9_28_1
  doi: 10.1079/9780851992945.0253
– ident: e_1_2_9_13_1
  doi: 10.1007/s00217-018-3187-0
– ident: e_1_2_9_59_1
  doi: 10.1016/j.tibtech.2018.04.005
– ident: e_1_2_9_37_1
  doi: 10.1111/tpj.12367
– ident: e_1_2_9_38_1
  doi: 10.1111/tpj.12693
– ident: e_1_2_9_49_1
  doi: 10.1074/jbc.M114.562769
– ident: e_1_2_9_39_1
  doi: 10.1094/PDIS.2003.87.7.756
– ident: e_1_2_9_50_1
  doi: 10.1007/s00299-016-1937-7
– ident: e_1_2_9_6_1
  doi: 10.1094/MPMI-19-0016
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0143980
– ident: e_1_2_9_16_1
  doi: 10.1111/nph.15627
– ident: e_1_2_9_17_1
  doi: 10.1046/j.1365-2958.1997.6442015.x
– ident: e_1_2_9_54_1
  doi: 10.1111/pbi.12832
– ident: e_1_2_9_30_1
  doi: 10.1016/j.molp.2016.04.009
– ident: e_1_2_9_41_1
  doi: 10.1093/bioinformatics/bts091
– ident: e_1_2_9_19_1
  doi: 10.1186/s13059-016-1012-2
– ident: e_1_2_9_45_1
  doi: 10.1186/1471-2164-13-341
– ident: e_1_2_9_7_1
  doi: 10.1111/pbi.12177
– ident: e_1_2_9_55_1
  doi: 10.1128/jb.5.3.191-229.1920
– ident: e_1_2_9_31_1
  doi: 10.3389/fpls.2016.01904
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pone.0093806
– ident: e_1_2_9_43_1
  doi: 10.1007/s11032-009-9323-6
– ident: e_1_2_9_34_1
  doi: 10.1016/j.meegid.2014.01.011
– ident: e_1_2_9_10_1
  doi: 10.1128/MCB.9.8.3457
– ident: e_1_2_9_22_1
  doi: 10.3389/fpls.2018.00985
– ident: e_1_2_9_21_1
  doi: 10.1007/BF01977351
– ident: e_1_2_9_29_1
  doi: 10.1038/ncomms14261
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1364-3703.2007.00390.x
– ident: e_1_2_9_56_1
  doi: 10.1038/nbt.3389
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0177966
– ident: e_1_2_9_58_1
  doi: 10.1007/s11032-015-0291-8
– ident: e_1_2_9_60_1
  doi: 10.1007/s11103-018-0709-x
– ident: e_1_2_9_32_1
  doi: 10.1094/MPMI-19-0053
– ident: e_1_2_9_46_1
  doi: 10.1038/srep32289
– ident: e_1_2_9_14_1
  doi: 10.1111/mpp.12022
– ident: e_1_2_9_18_1
  doi: 10.1111/tpj.13446
– ident: e_1_2_9_57_1
  doi: 10.1007/s11240-013-0376-1
– ident: e_1_2_9_53_1
  doi: 10.1111/nph.12094
– ident: e_1_2_9_15_1
  doi: 10.1007/s11105-018-1076-0
– ident: e_1_2_9_44_1
  doi: 10.1038/nbt.3583
– ident: e_1_2_9_20_1
  doi: 10.1016/j.gene.2012.01.074
– volume: 5
  start-page: 414
  year: 2014
  ident: e_1_2_9_25_1
  article-title: Züchtung feuerbrandrobuster Apfelsorten
  publication-title: Agrarforschung Schweiz
– ident: e_1_2_9_52_1
  doi: 10.1038/s41598-017-00501-4
– ident: e_1_2_9_24_1
  doi: 10.1007/s11103-011-9749-1
– ident: e_1_2_9_12_1
  doi: 10.1007/s11240-015-0907-z
– ident: e_1_2_9_3_1
  doi: 10.1007/s00299-016-2062-3
– ident: e_1_2_9_48_1
  doi: 10.1007/s11240-014-0443-2
– ident: e_1_2_9_5_1
  doi: 10.17660/ActaHortic.2004.663.81
– ident: e_1_2_9_27_1
  doi: 10.1186/s13059-015-0826-7
– ident: e_1_2_9_42_1
  doi: 10.1038/srep24765
– ident: e_1_2_9_4_1
  doi: 10.1016/j.plantsci.2015.07.010
– volume: 538
  start-page: 267
  year: 1999
  ident: e_1_2_9_47_1
  article-title: Stability of fire blight resistance in apple
  publication-title: Eucarpia Symp. Fruit Breed. Genet.
SSID ssj0021656
Score 2.5899854
Snippet Summary The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts...
The bacterium Erwinia amylovora , the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the...
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 845
SubjectTerms Agrobacterium radiobacter
Agrobacterium tumefaciens
Apple
Apples
bacteria
biotechnology
Blight
Cassettes
Cloning
Comparative analysis
CRISPR
CRISPR-Cas systems
Crop diseases
Cultivars
Deoxyribonucleic acid
DIPM
DNA
DNA sequencing
Efficiency
Erwinia amylovora
fire blight
FLP/FRT recombination
FRT gene
Fruits
gene editing
Gene expression
Genes
genetic markers
Genetic modification
Genetically altered foods
genetically modified organisms
Genomes
Health aspects
heat treatment
Kinases
loss-of-function mutation
Malus domestica
Malus × domestica
Mutation
Neomycin
Pathogens
Proteins
quantitative polymerase chain reaction
Recombination
Signal transduction
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5Kn_TB-2W1LaMI-pJtOpdkB5-2i0srKktsoQ9CmFvaxZKWZlfQJ_0H_Y3-Es-ZXNgsKiL7EpgzYWdyzpzzJd98Q8gLPzK8gLwUcZfGkeCeR8YpFaUW0POeGQkexHTef0gOjsXbE3myQV63e2FqfYjuhRtGRlivMcC1qVaC_NLMhwClJCp9IlcLC6Ksk45iqCpT7yxKoxSSfqMqhCyermcvF62vyCspaZ0uuVrGhjw0vU0-tSOo6Sefh8uFGdpva-KO_znEO-RWU5_Sce1Qd8mGL--Rm-PTq0ajw98nPzKUe_WOFrBcUnOO8J5WyyoQZALX9iudlxQ_jXuKveZfAD1TZNifUk1RIPnn92sftCtw4yedZIcfZ9nuRFcKGqbvZrvT7AiuMMM6Ch7uKaRY5GfTWnj6ATmevjmaHETNSQ6RTWLFIwdAzELhwYVKXSydZswkkhVCgYsUcuS0ULGKPaAb5YxgseWA2wTX1hUSfvwh2SwvSv-YUMGY47FPDConWS21GElXcKgydCLh5gPyqn2muW1kzvG0jfO8hTswq3mY1QF53ple1toevzN6iY6RY7zDfaxuti3Av0HlrHyccnBqqHvVgGz1LCFObb-5da28WSeqnHEJ9RvaDMizrhl7Ivet9BdLsAFQK1GzgP3FRoZP-2kMNo9qb-2GxBEExxJa0p4fdwaoMN5vKednQWkczz5QexLmNLjpn2cpn-0fhosn_276lNxg-PIiEPq2yObiaum3ocJbmJ0Qyr8AhLZN5g
  priority: 102
  providerName: Wiley-Blackwell
Title Reduced fire blight susceptibility in apple cultivars using a high‐efficiency CRISPR/Cas9‐FLP/FRT‐based gene editing system
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.13253
https://www.ncbi.nlm.nih.gov/pubmed/31495052
https://www.proquest.com/docview/2351757333
https://www.proquest.com/docview/2287525432
https://www.proquest.com/docview/2524212702
https://pubmed.ncbi.nlm.nih.gov/PMC7004915
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdY9wIPiP_rGJVBSPAS6vlPEj-hrlrYEExV2KS9RUnsjEpT2i0rEm_wDfiMfBLuHDcsE0yVokh3iRrf2Xc_-_wzIa9tXIgK4lIgTMQCKawICqN1EJWAnneLWApHpvP5KDw4kR9P1amfcGt8WeV6THQDtVmUOEc-5kJBpIuEEO-XFwGeGoWrq_4IjQ2yCUNwHA_I5t7-0SztIBdyy7T7i6IggtDvuYWwlmdZzN8BFFOiF5FujsvXAtPNosnryayLRskDct-nkXTS2v0huWPrR-Te5OzSU2nYx-Rniqys1tAKRjVanCMKp82qcXUsriT2O53XFFewLcWn5t8A5FIshD-jOUUe498_fllHMYH7M-k0PfwyS8fTvNEgSD7Nxkl6DHcYCA0FR7QUIiGWUdOWH_oJOUn2j6cHgT9wIShDpkVgAC-VkB8IqSPDlMk5L0LFK6nBkpWKTS4108wCCNGmkJyVAuCVFHlpKgU_8ZQM6kVttwiVnBvBbFggwVGZq1zGylQCkoE8VPDyIXm7bvSs9GzkeCjGebZGJWCfzNlnSF51qsuWguNfSm_Qchl2S3hPmfvdBfBvkOAqm6DnQLrI9JDs9DShO5V98dr2me_OTfbX-YbkZSfGJ7FErbaLFegA9lRILcBv0VFuBT5ioPOsdafukwRiVaZAEvUcrVNAIvC-pJ5_dYTgeESB3lXQps4l_99K2Wzv0N1s3_6Vz8ldjvMKrtZuhwyuLlf2BSRfV8WIbHA5g2ucfBj53jZyExl4Tfkf6ewy7g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxD8LBQwCwSVs6p8kPiC0LIRduq1Wy1bqLSS2U1aqskvTBfUGb8CT8FA8CTPOD90KeqtyieSJFXvGnvns8WdCntoo4zn4JY-b0PcEt9zLjFJeqAE9b2aR4I5MZ3snGOyKD3tyb438as7CYFplMye6idrMNa6RdxmX4OlCzvnrxRcPb43C3dXmCo3KLLbs8TeAbOWr4VvQ7zPG4nfT_sCrbxXwdADw3TMACjQ4QS5UaHxpUsayQLJcKPjdXEYmFcpXvoVIW5lMMF9zwBCCp9rkEh4O9V4gF6ERCsFeFL9vAR4y2VSnmUIvhECjZjLCzKFFNnsJwE_yFf932guccIOnUzRPhs7O98XXyNU6aKW9ysqukzVb3CBXevuHNXGHvUl-TJAD1hqawxxKswPE_LRcli5rxiXgHtNZQXG_3FL8avYVIDXFtPt9mlJkTf79_ad1hBZ4GpT2J8OP40m3n5YKCuLRuBtPpvCGbtdQMHtLwe9i0jat2Khvkd1zUcRtsl7MC3uXUMGY4b4NMqRT0qlMRSRNziH0SAMJlXfIi6bTE11zn-MVHAdJg4FAP4nTT4c8aUUXFeHHv4Seo-YSnASgHp3WZxngb5BOK-mhnUJw6qsO2ViRhMGrV4sb3Sf15FEmf029Qx63xfglJsQVdr4EGUC6EokM2Bky0u33hz7I3KnMqW0SR2TsSygJVwytFUDa8dWSYvbZ0Y_jhQhqU0KfOpP8fy8l4zdD93Lv7FY-IpcG0-1RMhrubN0nlxmuaLgsvw2yfnS4tA8g7DvKHrqxRsmn8x7cfwAoi2kN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyzUMAgEFzCpnacrA8IbbeNurSsotBKvYXEdspKVXZpuqDe4A14Hh6HJ2HG-aGpoLcql0ieWLFn7JnPHn8m5IUZZjwHv-RwHbiOxw13Mi2lEyhAz-vZ0OOWTOfD1N_e994fiIMV8qs5C4Nplc2caCdqPVe4Rj5gXICnCzjng7xOi4g2w3eLLw7eIIU7rc11GpWJ7JjTbwDfyreTTdD1S8bCrb3xtlPfMOAoH6C8owEgKHCI3JOBdoVOGct8wXJPwq_nYqhTT7rSNRB1S515zFUc8ITHU6VzAQ-Heq-Q1QBRUY-sbmxNo7iFe8hrU51tCpwAwo6a1wjziBbZ7A3AQME73vC8TzjjFM8nbJ4NpK0nDG-SG3UIS0eVzd0iK6a4Ta6PDo9rGg9zh_yIkRHWaJrDjEqzI1wBoOWytDk0Nh33lM4KirvnhuJXs68AsCkm4R_SlCKH8u_vP42lt8CzoXQcTz5G8WCclhIKwt1oEMZ78IZOWFMYBIaCF8YUblpxU98l-5eiinukV8wL84BQjzHNXeNnSK6kUpF6Q6FzDoFI6guovE9eN52eqJoJHS_kOEoaRAT6Sax--uR5K7qo6D_-JfQKNZfglAD1qLQ-2QB_g-RayQitFkJVV_bJWkcShrLqFje6T-qppEz-Gn6fPGuL8UtMjyvMfAkygHsF0hqwC2SE3f0PXJC5X5lT2ySOONkVUBJ0DK0VQBLybkkx-2zJyPF6BLkuoE-tSf6_l5JoY2JfHl7cyqfkKgzsZHcy3XlErjFc3rApf2ukd3K8NI8hBjzJntSDjZJPlz2-_wAQsW6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+fire+blight+susceptibility+in+apple+cultivars+using+a+high%E2%80%90efficiency+CRISPR%2FCas9%E2%80%90FLP%2FFRT%E2%80%90based+gene+editing+system&rft.jtitle=Plant+biotechnology+journal&rft.au=Pompili%2C+Valerio&rft.au=Dalla+Costa%2C+Lorenza&rft.au=Piazza%2C+Stefano&rft.au=Pindo%2C+Massimo&rft.date=2020-03-01&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=18&rft.issue=3&rft.spage=845&rft.epage=858&rft_id=info:doi/10.1111%2Fpbi.13253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pbi_13253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon