Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices

An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance an...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 55; no. 42; pp. 12974 - 12988
Main Authors Xiang, Chengxiang, Weber, Adam Z., Ardo, Shane, Berger, Alan, Chen, YiKai, Coridan, Robert, Fountaine, Katherine T., Haussener, Sophia, Hu, Shu, Liu, Rui, Lewis, Nathan S., Modestino, Miguel A., Shaner, Matthew M., Singh, Meenesh R., Stevens, John C., Sun, Ke, Walczak, Karl
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 10.10.2016
Wiley Subscription Services, Inc
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures. Catching the sun: Significant advances have been made in recent years on the modeling‐ and simulation‐guided development of integrated solar‐driven water‐splitting devices. Multidimensional multiphysics models have provided design guidelines for semiconductors, electrocatalysts, as well as liquid and membrane electrolytes. This Review discusses the guiding principles and key findings of these activities.
AbstractList An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures. Catching the sun: Significant advances have been made in recent years on the modeling‐ and simulation‐guided development of integrated solar‐driven water‐splitting devices. Multidimensional multiphysics models have provided design guidelines for semiconductors, electrocatalysts, as well as liquid and membrane electrolytes. This Review discusses the guiding principles and key findings of these activities.
An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.
Abstract An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.
Author Ardo, Shane
Fountaine, Katherine T.
Modestino, Miguel A.
Berger, Alan
Singh, Meenesh R.
Shaner, Matthew M.
Liu, Rui
Lewis, Nathan S.
Sun, Ke
Coridan, Robert
Stevens, John C.
Chen, YiKai
Walczak, Karl
Xiang, Chengxiang
Weber, Adam Z.
Hu, Shu
Haussener, Sophia
Author_xml – sequence: 1
  givenname: Chengxiang
  surname: Xiang
  fullname: Xiang, Chengxiang
  email: cxx@caltech.edu
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA
– sequence: 2
  givenname: Adam Z.
  surname: Weber
  fullname: Weber, Adam Z.
  email: azweber@lbl.gov
  organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
– sequence: 3
  givenname: Shane
  surname: Ardo
  fullname: Ardo, Shane
  organization: Department of Chemistry and Department of Chemical Engineering and Materials Science, University of California Irvine, USA
– sequence: 4
  givenname: Alan
  surname: Berger
  fullname: Berger, Alan
  organization: Air Products and Chemicals, Inc., Allentown, USA
– sequence: 5
  givenname: YiKai
  surname: Chen
  fullname: Chen, YiKai
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA
– sequence: 6
  givenname: Robert
  surname: Coridan
  fullname: Coridan, Robert
  organization: Department of Chemistry and Biochemistry, University of Arkansas, USA
– sequence: 7
  givenname: Katherine T.
  surname: Fountaine
  fullname: Fountaine, Katherine T.
  organization: Northrop Grumman Aerospace Systems, Nanophotonics and Plasmonics Laboratory, Redondo Beach, USA
– sequence: 8
  givenname: Sophia
  surname: Haussener
  fullname: Haussener, Sophia
  organization: Laboratory of Renewable Energy Science and Engineering, EPFL, Lausanne, Schweiz
– sequence: 9
  givenname: Shu
  surname: Hu
  fullname: Hu, Shu
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA
– sequence: 10
  givenname: Rui
  surname: Liu
  fullname: Liu, Rui
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA
– sequence: 11
  givenname: Nathan S.
  surname: Lewis
  fullname: Lewis, Nathan S.
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA
– sequence: 12
  givenname: Miguel A.
  surname: Modestino
  fullname: Modestino, Miguel A.
  organization: School of Engineering, EPFL, Lausanne, Schweiz
– sequence: 13
  givenname: Matthew M.
  surname: Shaner
  fullname: Shaner, Matthew M.
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA
– sequence: 14
  givenname: Meenesh R.
  surname: Singh
  fullname: Singh, Meenesh R.
  organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
– sequence: 15
  givenname: John C.
  surname: Stevens
  fullname: Stevens, John C.
  organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
– sequence: 16
  givenname: Ke
  surname: Sun
  fullname: Sun, Ke
  organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA
– sequence: 17
  givenname: Karl
  surname: Walczak
  fullname: Walczak, Karl
  organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27460923$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1506250$$D View this record in Osti.gov
BookMark eNqFkUtv1DAUhSNURB-wZYki2LBoBj9iO1lWbSkjyvAYUNlZjn0H3Cb2YDt9_Hs8pIwQC1j5yvrOuffo7Bc7zjsoiqcYzTBC5JVyFmYEYYZRzemDYg8zgisqBN3Jc01pJRqGd4v9GC8z3zSIPyp2iag5agndKz688wZ6674dlks7jL1K1rvDUjlTzod1DwO49Ouv9Kty6XsVqpNgr8GVFypBqJbr3qaU9eUJXFsN8XHxcKX6CE_u34Piy-vTz8dvqvP3Z_Pjo_NK5820oqpFBDXAOKLYgMFaMUw6w0wOIFrETMc6JGitu7bFBnNm9Iq3uOsMFXrF6EHxfPL1MVkZtU2gv2vvHOgkMUOcMJShlxO0Dv7HCDHJwUYNfa8c-DFK3BAuKGE1zuiLv9BLPwaXI0jcIl4LInDzTyp71W2-fUPNJkoHH2OAlVwHO6hwJzGSm9rkpja5rS0Lnt3bjt0AZov_7ikD7QTc2B7u_mMnjxbz0z_Nq0lrY4LbrVaFK5nDCyYvFmeSoU8fefP1rVzQnzdzscU
CODEN ACIEAY
CitedBy_id crossref_primary_10_1021_acsenergylett_8b02209
crossref_primary_10_1002_ange_201610512
crossref_primary_10_1021_acs_jpcc_1c03072
crossref_primary_10_1002_aenm_202102893
crossref_primary_10_1021_acsami_3c09016
crossref_primary_10_1016_j_electacta_2021_139810
crossref_primary_10_1016_j_apcatb_2017_03_067
crossref_primary_10_1021_acsenergylett_8b01077
crossref_primary_10_1016_j_susmat_2024_e00972
crossref_primary_10_1002_smll_202103822
crossref_primary_10_1039_D1TA09151D
crossref_primary_10_1021_acssuschemeng_8b04969
crossref_primary_10_1021_acssuschemeng_0c07935
crossref_primary_10_1002_aenm_201903871
crossref_primary_10_1016_j_cej_2022_136561
crossref_primary_10_1039_C8EE00980E
crossref_primary_10_1021_acs_jpcc_8b07732
crossref_primary_10_3389_fenrg_2022_1001684
crossref_primary_10_1039_D1CS01069G
crossref_primary_10_1039_C9SE01068H
crossref_primary_10_1021_acssensors_1c02358
crossref_primary_10_3389_fceng_2021_749058
crossref_primary_10_1021_acs_chemrev_1c00901
crossref_primary_10_1021_acsenergylett_6b00586
crossref_primary_10_1002_anie_202218850
crossref_primary_10_1039_C9TA01291E
crossref_primary_10_1088_1361_6463_ac6f97
crossref_primary_10_1021_acs_chemrev_6b00159
crossref_primary_10_1039_C7EE01360D
crossref_primary_10_1039_D0CC04894A
crossref_primary_10_3390_en12214176
crossref_primary_10_1063_1_5052590
crossref_primary_10_1021_acsami_1c18243
crossref_primary_10_1002_anie_201708516
crossref_primary_10_1039_D0CC04229C
crossref_primary_10_1039_C8EE01192C
crossref_primary_10_3389_fchem_2018_00598
crossref_primary_10_1016_j_chemphys_2018_01_006
crossref_primary_10_1021_acsenergylett_7b00034
crossref_primary_10_1016_j_jelechem_2022_116685
crossref_primary_10_1002_adma_202300383
crossref_primary_10_1146_annurev_conmatphys_031620_100957
crossref_primary_10_1016_j_cej_2019_03_069
crossref_primary_10_1021_acsami_6b13438
crossref_primary_10_1149_1945_7111_ac751e
crossref_primary_10_1039_C7EE03639F
crossref_primary_10_1021_jacs_2c08462
crossref_primary_10_1039_C8EE01828F
crossref_primary_10_1016_j_mtchem_2022_101060
crossref_primary_10_1021_acscatal_8b02689
crossref_primary_10_3390_nano12060928
crossref_primary_10_1016_j_joule_2023_04_008
crossref_primary_10_2139_ssrn_3219291
crossref_primary_10_1002_chem_201703104
crossref_primary_10_1021_acsami_6b07729
crossref_primary_10_1007_s11664_019_07266_8
crossref_primary_10_1016_j_polymer_2017_11_055
crossref_primary_10_1002_adfm_202405414
crossref_primary_10_1039_C8EE03547D
crossref_primary_10_1021_acscatal_7b02662
crossref_primary_10_1007_s11426_022_1428_6
crossref_primary_10_1039_C8CS00699G
crossref_primary_10_1016_j_jpowsour_2018_07_054
crossref_primary_10_1002_ange_201708516
crossref_primary_10_1021_acscatal_2c03065
crossref_primary_10_1016_j_jechem_2020_08_057
crossref_primary_10_1021_acsenergylett_9b02620
crossref_primary_10_1002_ange_202218850
crossref_primary_10_1039_D3CS00145H
crossref_primary_10_1002_aenm_201801403
crossref_primary_10_1002_aenm_201803548
crossref_primary_10_1039_C9SE00869A
crossref_primary_10_1021_acscatal_7b01466
crossref_primary_10_1002_adma_202002556
crossref_primary_10_1002_smll_202400316
crossref_primary_10_1039_C7FD00133A
crossref_primary_10_1016_S1872_2067_19_63375_9
crossref_primary_10_1021_acsenergylett_9b00278
crossref_primary_10_1002_cptc_201700165
crossref_primary_10_1073_pnas_2206321119
crossref_primary_10_1002_cssc_201802178
crossref_primary_10_1016_j_chemosphere_2021_130821
crossref_primary_10_1039_C8MH01641K
crossref_primary_10_1021_acsenergylett_8b00920
crossref_primary_10_1039_D1SE01730F
crossref_primary_10_3390_ma15062221
crossref_primary_10_1039_C9EE02986A
crossref_primary_10_1021_acs_jpcc_9b06401
crossref_primary_10_1002_adma_201802106
crossref_primary_10_1038_s41570_022_00366_w
crossref_primary_10_1016_j_mtener_2018_10_011
crossref_primary_10_1039_C7CS00542C
crossref_primary_10_1021_acsaem_8b01377
crossref_primary_10_1016_j_coelec_2017_02_002
crossref_primary_10_1021_acsenergylett_7b00764
crossref_primary_10_1002_advs_201700684
crossref_primary_10_1002_anie_201610512
crossref_primary_10_1021_acsaem_0c00319
crossref_primary_10_1039_C9SE00292H
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1038_s41467_024_49273_2
crossref_primary_10_1039_C8TA03649G
crossref_primary_10_1016_j_checat_2021_12_013
crossref_primary_10_1016_j_jpowsour_2017_03_089
crossref_primary_10_1016_j_enchem_2019_100014
crossref_primary_10_1002_ppsc_201700321
crossref_primary_10_1007_s11705_023_2334_8
crossref_primary_10_1016_j_est_2024_110484
crossref_primary_10_1016_j_joule_2019_12_006
crossref_primary_10_1149_1945_7111_ab679e
crossref_primary_10_1002_chem_201705203
crossref_primary_10_1002_advs_201801903
crossref_primary_10_1016_j_ensm_2017_12_017
crossref_primary_10_1039_C7EE02212C
crossref_primary_10_1039_D0TA01554G
crossref_primary_10_1021_acsaem_2c00377
Cites_doi 10.1039/c3ee42519c
10.1126/science.1258307
10.1039/c3ee40453f
10.1039/C5EE01687H
10.1039/C4CY00974F
10.1038/ncomms5647
10.1149/2.020304jes
10.1039/C5LC00259A
10.1021/nl500704r
10.1039/C4EE03012E
10.1021/ar00065a004
10.1149/1.1836675
10.1021/acs.macromol.5b00579
10.1073/pnas.1118341109
10.1039/C4EE03271C
10.2172/1218403
10.1039/c3ee41302k
10.1021/ma501744w
10.1039/C5EE01434D
10.1126/science.aaa3145
10.1039/c3ee40831k
10.1021/ja400238r
10.1016/j.ijhydene.2007.04.036
10.1016/j.rser.2005.01.009
10.1021/mz500606h
10.1016/j.ijhydene.2013.01.151
10.1039/C4EE01824A
10.1002/cssc.201301030
10.1063/1.1901835
10.1146/annurev.pc.42.100191.002551
10.1016/j.solmat.2014.04.037
10.1021/ef9701347
10.1126/science.1230969
10.1039/C5EE01721A
10.1039/C3EE43214A
10.1039/C5EE00777A
10.1038/nmat3477
10.1021/nl401615t
10.1038/nmat2629
10.1021/ja302439z
10.1021/cr1002326
10.1016/j.ijhydene.2013.07.010
10.1021/acs.macromol.5b01382
10.1016/S0360-3199(00)00039-2
10.1073/pnas.1414290111
10.1039/C5TA06315A
10.1039/C4EE02314E
10.1073/pnas.1423034112
10.1109/JPROC.2011.2156750
10.1038/nphoton.2012.265
10.1016/j.ijhydene.2009.01.053
10.1039/c2ee03422k
10.1039/C4EE01753F
10.1039/C3EE43807D
10.1016/j.jcat.2007.12.009
10.1038/316495a0
10.1021/ja108801m
10.1021/ma102361f
10.1063/1.3522895
10.1038/nmat2284
10.1021/j100267a010
10.1038/nchem.141
10.1016/j.ijhydene.2010.07.058
10.1039/c2ee23192a
10.1039/c2ee23187e
10.1038/nmat2635
10.1021/ma301289v
10.1021/ja510442p
10.1002/cssc.201402288
10.2516/ogst/2014061
10.1002/adfm.201304311
10.1039/C3EE43048K
10.1021/acs.macromol.5b00926
10.1038/nnano.2013.18
10.1126/science.1200165
10.1021/jp011861c
10.1038/nchem.1048
10.1016/j.ijhydene.2012.12.010
10.1073/pnas.0603395103
10.1021/cr020715f
10.1038/nmat2493
10.1149/2.0751410jes
10.1073/pnas.1118338109
10.1021/cr1001645
10.1002/aenm.201100728
10.1038/nnano.2013.272
10.1016/0040-6090(94)90742-0
10.1021/ja1009025
10.1039/c2ee22866a
10.1039/c1ee01203g
10.1038/nphoton.2013.238
10.1039/C5EE00457H
10.1039/c1ee01028j
10.1149/2.035408jes
10.1016/j.cplett.2008.03.065
10.1016/j.progpolymsci.2010.12.005
10.1002/adma.201305299
10.1021/cm4021518
10.1039/C5EE00311C
10.1021/nl402205f
10.1021/jp204610j
10.1021/jp907128k
10.1021/jz4002604
10.1021/jz1007966
10.1021/cr1002529
10.1021/jp002083b
10.1039/C5EE02214B
10.1021/ma301999a
10.1039/C5EE00083A
10.1016/j.elecom.2011.04.022
10.1021/jp406280x
10.1039/C2EE22618A
10.1126/science.1251428
10.1149/1.2044206
10.1002/aenm.201402276
10.1021/cm400759f
10.1016/j.ijhydene.2011.01.180
10.1002/cssc.201402896
10.1002/aenm.201600379
10.1016/j.ijhydene.2005.12.014
10.1146/annurev-chembioeng-061114-123357
10.1021/ma300212f
10.1039/C5EE01786F
10.1149/2.033408jes
10.1126/science.280.5362.425
10.1021/ma3024624
10.1021/jz5026195
10.1016/j.solener.2004.02.002
10.1016/j.pecs.2009.11.002
10.1038/414625a
10.1039/c0ee00014k
10.1002/polb.20859
10.1039/C5EE02188J
10.1039/c3ee42143k
10.1016/j.jpowsour.2015.05.077
10.1016/j.rser.2014.10.101
10.1115/1.1424298
10.1146/annurev.pc.29.100178.001201
10.2533/chimia.2013.155
10.1149/2.035304jes
10.1149/1.2898130
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID BSCLL
NPM
AAYXX
CITATION
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.201510463
DatabaseName Istex
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1521-3773
Edition International ed. in English
EndPage 12988
ExternalDocumentID 1506250
4206763811
10_1002_anie_201510463
27460923
ANIE201510463
ark_67375_WNG_50RQ68XK_N
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: DE-EE0006963
– fundername: U.S. Department of Energy
  funderid: DE-SC0004993
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AETEA
NPM
AAYXX
CITATION
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c6093-3a90208e56031ded1ca512bd5d1527905db5b0734cb991d165dcf691bbd37cf53
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Wed Nov 29 06:10:45 EST 2023
Fri Oct 25 01:27:56 EDT 2024
Thu Oct 10 16:31:00 EDT 2024
Thu Oct 10 18:54:30 EDT 2024
Thu Sep 26 19:44:33 EDT 2024
Sat Sep 28 08:48:14 EDT 2024
Sat Aug 24 00:55:33 EDT 2024
Wed Oct 30 09:50:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords device architecture
modeling
photoelectrochemistry
hydrogen
solar-driven water splitting
Language English
License 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6093-3a90208e56031ded1ca512bd5d1527905db5b0734cb991d165dcf691bbd37cf53
Notes U.S. Department of Energy - No. DE-SC0004993
U.S. Department of Energy - No. DE-EE0006963
ArticleID:ANIE201510463
ark:/67375/WNG-50RQ68XK-N
istex:845E6603B85D639A2D7D7BD6BAD428B9B528779E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
AC02-05CH11231; SC0004993; EE0006963
USDOE Office of Science (SC)
ORCID 0000-0002-7749-1624
0000000277491624
OpenAccessLink https://www.osti.gov/servlets/purl/1506250
PMID 27460923
PQID 1826492798
PQPubID 946352
PageCount 15
ParticipantIDs osti_scitechconnect_1506250
proquest_miscellaneous_1826732541
proquest_journals_1906472718
proquest_journals_1826492798
crossref_primary_10_1002_anie_201510463
pubmed_primary_27460923
wiley_primary_10_1002_anie_201510463_ANIE201510463
istex_primary_ark_67375_WNG_50RQ68XK_N
PublicationCentury 2000
PublicationDate October 10, 2016
PublicationDateYYYYMMDD 2016-10-10
PublicationDate_xml – month: 10
  year: 2016
  text: October 10, 2016
  day: 10
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References B. Orel, M. Macek, F. Svegl, K. Kalcher, Thin Solid Films 1994, 246, 131-142.
C. Xiang, A. C. Meng, N. S. Lewis, Proc. Natl. Acad. Sci. USA 2012, 109, 15622-15627.
N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735
M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, Nat. Mater. 2010, 9, 239-244.
E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, N. S. Lewis, Energy Environ. Sci. 2012, 5, 9653-9661
A. Heller, Acc. Chem. Res. 1981, 14, 154-162
S. M. H. Hashemi, M. A. Modestino, D. Psaltis, Energy Environ. Sci. 2015, 8, 2003-2009.
S. M. Sze, Physics of Semiconductor Devices, 3rd ed., Wiley, New York, 1981.
D. A. Vermaas, M. Sassenburg, W. A. Smith, J. Mater. Chem. A 2015, 3, 19556-19562.
A. D. Mohanty, C. Y. Ryu, Y. S. Kim, C. Bae, Macromolecules 2015, 48, 7085-7095
M. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy Environ. Sci. 2015, 8, 203-207
K. Sun, R. Liu, Y. Chen, E. Verlage, N. S. Lewis, C. Xiang, Adv. Energy Materials, 2016, 1600379.
A. Kusoglu, D. Kushner, D. K. Paul, K. Karan, M. A. Hickner, A. Z. Weber, Adv. Funct. Mater. 2014, 24, 4763-4774
K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661.
S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, J. Am. Chem. Soc. 2011, 133, 1216-1219
E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K. Vesborg, J. Halme, O. Hansen, P. D. Lund, I. Chorkendorff, Energy Environ. Sci. 2015, 8, 2991-2999.
O. Khaselev, J. A. Turner, Science 1998, 280, 425-427
A. A. Ismail, D. W. Bahnemann, Sol. Energy Mater. Sol. Cells 2014, 128, 85-101
K. M. Meek, S. Sharick, Y. Ye, K. I. Winey, Y. A. Elabd, Macromolecules 2015, 48, 4850-4862.
M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, N. S. Lewis, Energy Environ. Sci. 2014, 7, 779-790.
A. Berger, J. Newman, J. Electrochem. Soc. 2014, 161, E3328-E3340.
J. J. Turner, Nat. Mater. 2008, 7, 770-771.
J. R. Bolton, S. J. Strickler, J. S. Connolly, Nature 1985, 316, 495-500.
Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater. 2009, 8, 648-653.
N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, N. S. Lewis, Adv. Energy Mater. 2012, 2, 1109-1116
M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, C. Zhou, Nano Lett. 2014, 14, 3293-3303
J. Newman, K. E. Thomas-Alyea, Electrochemical Systems, 3rd ed., Wiley, New York, 2004
M. I. Gillespie, F. van der Merwe, R. J. Kriek, J. Power Sources 2015, 293, 228-235.
K. Fujii, S. Nakamura, M. Sugiyama, K. Watanabe, B. Bagheri, Y. Nakano, Int. J. Hydrogen Energy 2013, 38, 14424-14432
S. A. Bonke, M. Wiechen, D. R. MacFarlane, L. Spiccia, Energy Environ. Sci. 2015, 8, 2791-2796.
A. Ursua, L. M. Gandia, P. Sanchis, Proc. IEEE 2012, 100, 410-426.
D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterloh, S. Ardo, Energy Environ. Sci. 2015, 8, 2825-2850.
J. M. Gregoire, C. Xiang, S. Mitrovic, X. Liu, M. Marcin, E. W. Cornell, J. Fan, J. Jin, J. Electrochem. Soc. 2013, 160, F337-F342
K. Maeda, K. Teramura, K. Domen, J. Catal. 2008, 254, 198-204.
C. R. Cox, J. Z. Lee, D. G. Nocera, T. Buonassisi, Proc. Natl. Acad. Sci. USA 2014, 111, 14057-14061
X. C. Wang, K. Maeda, Y. Lee, K. Domen, Chem. Phys. Lett. 2008, 457, 134-136.
C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347-4357.
K.-T. Jeng, Y.-C. Liu, Y.-F. Leu, Y.-Z. Zeng, J.-C. Chung, T.-Y. Wei, Int. J. Hydrogen Energy 2010, 35, 10890-10897
M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger, Macromolecules 2011, 44, 2893-2899
C. Xiang, Y. Chen, N. S. Lewis, Energy Environ. Sci. 2013, 6, 3713-3721
Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, J. Phys. Chem. C 2009, 113, 17536-17542.
Y. Schneider, M. A. Modestino, B. L. McCulloch, M. L. Hoarfrost, R. W. Hess, R. A. Segalman, Macromolecules 2013, 46, 1543-1548
B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 2013, 6, 1983-2002
Y. K. Chen, K. Sun, H. Audesirk, C. X. Xiang, N. S. Lewis, Energy Environ. Sci. 2015, 8, 1736-1747
A. Z. Weber, J. Electrochem. Soc. 2008, 155, B521-B531.
B. P. Tripathi, V. K. Shahi, Prog. Polym. Sci. 2011, 36, 945-979
M. A. Modestino, K. A. Walczak, A. Berger, C. M. Evans, S. Haussener, C. Koval, J. S. Newman, J. W. Ager, R. A. Segalman, Energy Environ. Sci. 2014, 7, 297-301
A. Berger, R. A. Segalman, J. Newman, Energy Environ. Sci. 2014, 7, 1468-1476.
C. Clavero, Nat. Photonics 2014, 8, 95-103.
P. Cotanda, G. Sudre, M. A. Modestino, X. C. Chen, N. P. Balsara, Macromolecules 2014, 47, 7540-7547
M. B. McDonald, S. Ardo, N. S. Lewis, M. S. Freund, ChemSusChem 2014, 7, 3021-3027.
G. Gahleitner, Int. J. Hydrogen Energy 2013, 38, 2039-2061
J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nat. Photonics 2012, 6, 824-828.
S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, J. Phys. Chem. B 2000, 104, 8920-8924
M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, Nat. Chem. 2011, 3, 489-492
S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005-1009
J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, S. Ardo, Energy Environ. Sci. 2015, 8, 2811-2824.
S. Haussener, S. Hu, C. Xiang, A. Z. Weber, N. Lewis, Energy Environ. Sci. 2013, 6, 3605-3618
H. B. Gray, Nat. Chem. 2009, 1, 7
H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205-213.
N. A. Kelly, T. L. Gibson, Int. J. Hydrogen Energy 2006, 31, 1658-1673
K. Sun, Y. Kuang, E. Verlage, B. S. Brunschwig, C. W. Tu, N. S. Lewis, Adv. Energy Mater. 2015, 1402276
L. B. Liao, Q. H. Zhang, Z. H. Su, Z. Z. Zhao, Y. N. Wang, Y. Li, X. X. Lu, D. G. Wei, G. Y. Feng, Q. K. Yu, X. J. Cai, J. M. Zhao, Z. F. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. M. Bao, Nat. Nanotechnol. 2014, 9, 69-73.
Y. Chen, S. Hu, C. Xiang, N. S. Lewis, Energy Environ. Sci. 2015, 8, 876-886
X. Wang, K.-Q. Peng, Y. Hu, F.-Q. Zhang, B. Hu, L. Li, M. Wang, X.-M. Meng, S.-T. Lee, Nano Lett. 2014, 14, 18-23.
S. Hu, C. X. Xiang, S. Haussener, A. D. Berger, N. S. Lewis, Energy Environ. Sci. 2013, 6, 2984-2993
J. Jin, K. Walczak, M. R. Singh, C. Karp, N. S. Lewis, C. Xiang, Energy Environ. Sci. 2014, 7, 3371-3380
O. Khaselev, A. Bansal, J. A. Turner, Int. J. Hydrogen Energy 2001, 26, 127-132
L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Gotz, A. Mishra, P. Bauerle, R. Amal, G. G. Wallace, A. J. Mozer, Energy Environ. Sci. 2012, 5, 9472-9475.
A. Shinde, D. Guevarra, J. A. Haber, J. Jin, J. M. Gregoire, J. Mater. Res. 2014, 1-9.
T. F. Yeh, C. Y. Teng, S. J. Chen, H. S. Teng, Adv. Mater. 2014, 26, 3297-3303.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446-6473
A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2000.
R. E. Rocheleau, E. L. Miller, A. Misra, Energy Fuels 1998, 12, 3-10
J. S. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, Science 2014, 345, 1593-1596.
G. Peharz, F. Dimroth, U. Wittstadt, Int. J. Hydrogen Energy 2007, 32, 3248-3252
L. Trotochaud, T. J. Mills, S. W. Boettcher, J. Phys. Chem. Lett. 2013, 4, 931-935
J. M. Spurgeon, M. G. Walter, J. Zhou, P. A. Kohl, N. S. Lewis, Energy Environ. Sci. 2011, 4, 1772-1780
F. I. Allen, L. R. Comoli, A. Kusoglu, M. A. Modestino, A. M. Minor, A. Z. Weber, ACS Macro Lett. 2015, 4, 1-5.
H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, J. Phys. Chem. C 2011, 115, 20774-20781.
S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, A. Z. Weber, Energy Environ. Sci. 2012, 5, 9922-9935.
Y. Sasaki, H. Kato, A. Kudo, J. Am. Chem. Soc. 2013, 135, 5441-5449.
R. C. Rossi, N. S. Lewis, J. Phys. Chem. B 2001, 105, 12303-12318.
R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2002.
K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. Lett. 2015, 6, 592-598
K. Sun, F. H. Saadi, M. F. Lichterman, W. G. Hale, H.-P. Wang, X. Zhou, N. T. Plymale, S. T. Omelchenko, J.-H. He, K. M. Papadantonakis, B. S. Brunschwig, N. S. Lewis, Proc. Natl. Acad. Sci. USA 2015, 112, 3612-3617
R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805-809.
Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625-627.
M. A. Modestino, S. Haussener, Annu. Rev. Chem. Biomol. Eng. 2015, 6, 13-34
A. C. Tamboli, M. Malhotra, G. M. Kimball, D. B. Turner-Evans, H. A. Atwater, Appl. Phys. Lett. 2010, 97, 221914.
S. A. Eastman, S. Kim, K. A. Page, B. W. Rowe, S. Kang, C. L. Soles, K. G. Yager, Macromolecules 2012, 45, 7920-7930
J. R. McKone, N. S. Lewis, H. B. Gray, Chem. Mater. 2014, 26, 407-414.
C. M. Evans, M. R. Singh, N. A. Lynd, R. A. Segalman, Macromolecules 2015, 48, 3303-3309.
J. T. Li, N. Q. Wu, Catal. Sci. Technol. 2015, 5, 1360-1384
K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307-326
F. Svegl, B. Orel, M. G. Hutchins, K. Kalcher, J. Electrochem. Soc. 1996, 143, 1532-1539
A. Roy, M. A. Hickner, X. Yu, Y. Li, T. E. Glass, J. E. McGrath, J. Polym. Sci. Part B 2006, 44, 2226-2239.
H. Ahmad, S. K. Kamarudin, L. J. Minggu, M. Kassim, Renewable Sustainable Energy Rev. 2015, 43, 599-610
X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao, Chem. Rev. 2010,
2011; 115
1998; 280
2010; 97
2013; 4
2006; 31
2015; 70
2013; 67
2014; 26
2009; 113
2014; 24
1996; 143
2013; 8
2013; 6
2011; 111
2014; 128
2012; 134
2010; 1
2015; 137
2010; 110
2014; 14
1981
2010; 3
1998; 12
2005; 78
2014; 10
2010; 9
2001; 414
2012; 100
2010; 36
2010; 35
2014; 47
2001; 26
2011; 4
2011; 3
1985; 89
2007; 11
2011; 133
2012; 109
2013; 339
2000; 104
2006; 44
2015; 112
1981; 14
2005; 97
1985; 316
1995; 142
2008; 254
2012; 45
2006; 103
2013; 25
2015; 347
2008; 7
2011; 13
2007; 32
2013; 160
2001; 105
2015; 293
2015; 48
2014; 5
2000
2013; 13
2013; 12
1991; 42
2015; 43
1978; 29
2014; 161
2014; 9
2014; 8
2008; 155
2014; 7
2014; 118
2015; 15
2015; 6
2015; 5
2004; 104
2015; 4
2015; 3
2013; 46
2004
2011; 36
2002
2014; 111
2015; 8
2011; 332
2009; 34
2012; 2
1994; 246
2013; 38
2010; 132
2011; 44
2009; 8
2013; 135
1961
2016
2008; 457
2015
2014
2013
2012; 6
2009; 1
2012; 5
2014; 345
2014; 344
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_72_2
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_53_2
e_1_2_6_118_2
e_1_2_6_30_1
e_1_2_6_91_2
e_1_2_6_152_1
e_1_2_6_171_2
e_1_2_6_110_1
e_1_2_6_156_1
e_1_2_6_133_2
e_1_2_6_175_2
e_1_2_6_19_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_38_2
e_1_2_6_57_1
e_1_2_6_99_1
Sze S. M. (e_1_2_6_179_1) 1981
e_1_2_6_15_2
e_1_2_6_102_2
e_1_2_6_148_2
e_1_2_6_125_1
e_1_2_6_64_2
e_1_2_6_106_2
e_1_2_6_129_2
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_121_2
e_1_2_6_144_2
e_1_2_6_167_1
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_136_1
e_1_2_6_159_1
e_1_2_6_92_2
e_1_2_6_117_2
e_1_2_6_31_1
e_1_2_6_174_2
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_113_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_1
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_128_2
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_162_1
e_1_2_6_124_1
e_1_2_6_166_1
e_1_2_6_101_2
e_1_2_6_143_2
Newman J. (e_1_2_6_58_2) 2004
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_65_2
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_139_1
e_1_2_6_158_1
e_1_2_6_74_2
e_1_2_6_116_2
e_1_2_6_70_2
e_1_2_6_173_2
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_177_2
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_180_1
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_1
e_1_2_6_104_1
e_1_2_6_127_2
e_1_2_6_146_2
e_1_2_6_169_2
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_108_2
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_142_2
e_1_2_6_165_2
e_1_2_6_123_1
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
Bard A. J. (e_1_2_6_93_1) 2000
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_1
e_1_2_6_89_1
Shinde A. (e_1_2_6_88_1) 2014
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_138_1
e_1_2_6_94_1
e_1_2_6_71_2
e_1_2_6_119_2
Gerischer H. (e_1_2_6_81_2) 1961
e_1_2_6_90_1
e_1_2_6_153_1
e_1_2_6_172_2
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_134_2
e_1_2_6_176_2
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_2
e_1_2_6_79_2
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_103_2
e_1_2_6_86_2
e_1_2_6_168_2
e_1_2_6_21_1
e_1_2_6_107_2
e_1_2_6_40_2
e_1_2_6_82_1
e_1_2_6_141_2
e_1_2_6_145_1
Chen C. T. (e_1_2_6_147_2) 2013
e_1_2_6_122_2
e_1_2_6_164_2
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – year: 1981
– start-page: 1402276
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2825
  year: 2015
  end-page: 2850
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 19556
  year: 2015
  end-page: 19562
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 203
  year: 2015
  end-page: 207
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2644
  year: 2015
  end-page: 2649
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2989
  year: 2013
  end-page: 2992
  publication-title: Nano Lett.
– volume: 14
  start-page: 154
  year: 1981
  end-page: 162
  publication-title: Acc. Chem. Res.
– volume: 345
  start-page: 1593
  year: 2014
  end-page: 1596
  publication-title: Science
– volume: 160
  start-page: 337
  year: 2013
  end-page: 342
  publication-title: J. Electrochem. Soc.
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  publication-title: Chem. Rev.
– volume: 8
  start-page: 2760
  year: 2015
  end-page: 2767
  publication-title: Energy Environ. Sci.
– volume: 134
  start-page: 9054
  year: 2012
  end-page: 9057
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2014
  end-page: 9
  publication-title: J. Mater. Res.
– year: 1961
– volume: 5
  start-page: 7582
  year: 2012
  end-page: 7589
  publication-title: Energy Environ. Sci.
– start-page: 3397
  year: 2013
  end-page: 3401
  publication-title: IEEE Photvoltaic Spec. Conf.
– volume: 70
  start-page: 877
  year: 2015
  end-page: 889
  publication-title: Oil Gas Sci. Technol.
– volume: 34
  start-page: 2531
  year: 2009
  end-page: 2542
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 544
  year: 2015
  end-page: 551
  publication-title: ChemSusChem
– volume: 135
  start-page: 5441
  year: 2013
  end-page: 5449
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 4901
  year: 2013
  end-page: 4934
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 779
  year: 2014
  end-page: 790
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3
  year: 1998
  end-page: 10
  publication-title: Energy Fuels
– volume: 97
  start-page: 221914
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2951
  year: 2014
  end-page: 295
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 239
  year: 2010
  end-page: 244
  publication-title: Nat. Mater.
– volume: 14
  start-page: 3293
  year: 2014
  end-page: 3303
  publication-title: Nano Lett.
– volume: 42
  start-page: 543
  year: 1991
  end-page: 580
  publication-title: Annu. Rev. Phys. Chem.
– volume: 26
  start-page: 127
  year: 2001
  end-page: 132
  publication-title: Int. J. Hydrogen Energy
– volume: 332
  start-page: 805
  year: 2011
  end-page: 809
  publication-title: Science
– volume: 142
  start-page: 1859
  year: 1995
  end-page: 1868
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1772
  year: 2011
  end-page: 1780
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 3021
  year: 2014
  end-page: 3027
  publication-title: ChemSusChem
– volume: 8
  start-page: 2886
  year: 2015
  end-page: 2901
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 2951
  year: 2014
  end-page: 2956
  publication-title: Energy Environ. Sci.
– volume: 280
  start-page: 425
  year: 1998
  end-page: 427
  publication-title: Science
– volume: 35
  start-page: 10890
  year: 2010
  end-page: 10897
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 7920
  year: 2012
  end-page: 7930
  publication-title: Macromolecules
– volume: 6
  start-page: 3605
  year: 2013
  end-page: 3618
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 95
  year: 2014
  end-page: 103
  publication-title: Nat. Photonics
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  publication-title: Science
– volume: 8
  start-page: 648
  year: 2009
  end-page: 653
  publication-title: Nat. Mater.
– volume: 161
  start-page: 3283
  year: 2014
  end-page: 3296
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 770
  year: 2008
  end-page: 771
  publication-title: Nat. Mater.
– volume: 8
  start-page: 3166
  year: 2015
  end-page: 3172
  publication-title: Energy Environ. Sci.
– volume: 67
  start-page: 155
  year: 2013
  end-page: 161
  publication-title: Chimia
– volume: 8
  start-page: 2003
  year: 2015
  end-page: 2009
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 18
  year: 2014
  end-page: 23
  publication-title: Nano Lett.
– volume: 344
  start-page: 1005
  year: 2014
  end-page: 1009
  publication-title: Science
– volume: 109
  start-page: 15622
  year: 2012
  end-page: 15627
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 133
  start-page: 1216
  year: 2011
  end-page: 1219
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1037
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 2039
  year: 2013
  end-page: 2061
  publication-title: Int. J. Hydrogen Energy
– volume: 48
  start-page: 7085
  year: 2015
  end-page: 7095
  publication-title: Macromolecules
– volume: 48
  start-page: 4850
  year: 2015
  end-page: 4862
  publication-title: Macromolecules
– volume: 4
  start-page: 931
  year: 2013
  end-page: 935
  publication-title: J. Phys. Chem. Lett.
– volume: 78
  start-page: 581
  year: 2005
  end-page: 592
  publication-title: Sol. Energy
– volume: 6
  start-page: 2984
  year: 2013
  end-page: 2993
  publication-title: Energy Environ. Sci.
– year: 2002
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9472
  year: 2012
  end-page: 9475
  publication-title: Energy Environ. Sci.
– volume: 414
  start-page: 625
  year: 2001
  end-page: 627
  publication-title: Nature
– volume: 111
  start-page: 14057
  year: 2014
  end-page: 14061
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 104
  start-page: 4637
  year: 2004
  end-page: 4678
  publication-title: Chem. Rev.
– volume: 111
  start-page: 3713
  year: 2011
  end-page: 3735
  publication-title: Chem. Rev.
– volume: 339
  start-page: 1057
  year: 2013
  end-page: 1060
  publication-title: Science
– volume: 4
  start-page: 2993
  year: 2011
  end-page: 2998
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 347
  year: 2013
  end-page: 370
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 2264
  year: 2013
  end-page: 2273
  publication-title: Chem. Mater.
– volume: 9
  start-page: 69
  year: 2014
  end-page: 73
  publication-title: Nat. Nanotechnol.
– volume: 109
  start-page: 15617
  year: 2012
  end-page: 15621
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: 307
  year: 2010
  end-page: 326
  publication-title: Prog. Energy Combust. Sci.
– volume: 1
  start-page: 7
  year: 2009
  publication-title: Nat. Chem.
– volume: 3
  start-page: 489
  year: 2011
  end-page: 492
  publication-title: Nat. Chem.
– volume: 112
  start-page: 3612
  year: 2015
  end-page: 3617
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 3328
  year: 2014
  end-page: 3340
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2991
  year: 2015
  end-page: 2999
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 3713
  year: 2013
  end-page: 3721
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 774
  year: 2011
  end-page: 777
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 1360
  year: 2015
  end-page: 1384
  publication-title: Catal. Sci. Technol.
– volume: 10
  start-page: 1101
  year: 2014
  end-page: 1110
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 297
  year: 2014
  end-page: 301
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 867
  year: 2013
  end-page: 873
  publication-title: Macromolecules
– volume: 100
  start-page: 410
  year: 2012
  end-page: 426
  publication-title: Proc. IEEE
– volume: 5
  start-page: 4647
  year: 2014
  publication-title: Nat. Commun.
– volume: 104
  start-page: 8920
  year: 2000
  end-page: 8924
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 2655
  year: 2010
  end-page: 2661
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 247
  year: 2013
  end-page: 251
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1736
  year: 2015
  end-page: 1747
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 599
  year: 2015
  end-page: 610
  publication-title: Renewable Sustainable Energy Rev.
– volume: 293
  start-page: 228
  year: 2015
  end-page: 235
  publication-title: J. Power Sources
– volume: 6
  start-page: 592
  year: 2015
  end-page: 598
  publication-title: J. Phys. Chem. Lett.
– year: 2004
– volume: 46
  start-page: 1543
  year: 2013
  end-page: 1548
  publication-title: Macromolecules
– volume: 31
  start-page: 1658
  year: 2006
  end-page: 1673
  publication-title: Int. J. Hydrogen Energy
– volume: 26
  start-page: 3297
  year: 2014
  end-page: 3303
  publication-title: Adv. Mater.
– volume: 113
  start-page: 17536
  year: 2009
  end-page: 17542
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 158
  year: 2013
  end-page: 164
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1983
  year: 2013
  end-page: 2002
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2811
  year: 2015
  end-page: 2824
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 3303
  year: 2015
  end-page: 3309
  publication-title: Macromolecules
– volume: 45
  start-page: 4681
  year: 2012
  end-page: 4688
  publication-title: Macromolecules
– volume: 8
  start-page: 2791
  year: 2015
  end-page: 2796
  publication-title: Energy Environ. Sci.
– volume: 143
  start-page: 1532
  year: 1996
  end-page: 1539
  publication-title: J. Electrochem. Soc.
– volume: 316
  start-page: 495
  year: 1985
  end-page: 500
  publication-title: Nature
– volume: 254
  start-page: 198
  year: 2008
  end-page: 204
  publication-title: J. Catal.
– volume: 4
  start-page: 1
  year: 2015
  end-page: 5
  publication-title: ACS Macro Lett.
– volume: 24
  start-page: 4763
  year: 2014
  end-page: 4774
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 407
  year: 2014
  end-page: 414
  publication-title: Chem. Mater.
– volume: 6
  start-page: 824
  year: 2012
  end-page: 828
  publication-title: Nat. Photonics
– volume: 115
  start-page: 20774
  year: 2011
  end-page: 20781
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 13
  year: 2015
  end-page: 34
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 15
  start-page: 2287
  year: 2015
  end-page: 2296
  publication-title: Lab Chip
– volume: 29
  start-page: 189
  year: 1978
  end-page: 222
  publication-title: Annu. Rev. Phys. Chem.
– year: 2000
– volume: 118
  start-page: 747
  year: 2014
  end-page: 759
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1109
  year: 2012
  end-page: 1116
  publication-title: Adv. Energy Mater.
– volume: 97
  start-page: 114302
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 36
  start-page: 945
  year: 2011
  end-page: 979
  publication-title: Prog. Polym. Sci.
– volume: 32
  start-page: 3248
  year: 2007
  end-page: 3252
  publication-title: Int. J. Hydrogen Energy
– volume: 155
  start-page: 521
  year: 2008
  end-page: 531
  publication-title: J. Electrochem. Soc.
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 9653
  year: 2012
  end-page: 9661
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1468
  year: 2014
  end-page: 1476
  publication-title: Energy Environ. Sci.
– volume: 105
  start-page: 12303
  year: 2001
  end-page: 12318
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 14424
  year: 2013
  end-page: 14432
  publication-title: Int. J. Hydrogen Energy
– volume: 160
  start-page: 309
  year: 2013
  end-page: 311
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 2893
  year: 2011
  end-page: 2899
  publication-title: Macromolecules
– volume: 6
  start-page: 3676
  year: 2013
  end-page: 3683
  publication-title: Energy Environ. Sci.
– start-page: 1600379
  year: 2016
  publication-title: Adv. Energy Materials
– volume: 8
  start-page: 876
  year: 2015
  end-page: 886
  publication-title: Energy Environ. Sci.
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  publication-title: Chem. Rev.
– volume: 5
  start-page: 9922
  year: 2012
  end-page: 9935
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 401
  year: 2007
  end-page: 425
  publication-title: Renewable Sustainable Energy Rev.
– volume: 132
  start-page: 5858
  year: 2010
  end-page: 5868
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 7540
  year: 2014
  end-page: 7547
  publication-title: Macromolecules
– volume: 8
  start-page: 731
  year: 2015
  end-page: 759
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 205
  year: 2010
  end-page: 213
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1372
  year: 2014
  end-page: 1385
  publication-title: ChemSusChem
– volume: 128
  start-page: 85
  year: 2014
  end-page: 101
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 246
  start-page: 131
  year: 1994
  end-page: 142
  publication-title: Thin Solid Films
– volume: 89
  start-page: 4444
  year: 1985
  end-page: 4452
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 2226
  year: 2006
  end-page: 2239
  publication-title: J. Polym. Sci. Part B
– volume: 457
  start-page: 134
  year: 2008
  end-page: 136
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 3371
  year: 2014
  end-page: 3380
  publication-title: Energy Environ. Sci.
– volume: 36
  start-page: 7799
  year: 2011
  end-page: 7806
  publication-title: Int. J. Hydrogen Energy
– ident: e_1_2_6_132_1
– ident: e_1_2_6_36_2
  doi: 10.1039/c3ee42519c
– ident: e_1_2_6_10_2
  doi: 10.1126/science.1258307
– ident: e_1_2_6_23_2
  doi: 10.1039/c3ee40453f
– ident: e_1_2_6_73_2
  doi: 10.1039/C5EE01687H
– ident: e_1_2_6_31_1
– ident: e_1_2_6_53_2
  doi: 10.1039/C4CY00974F
– ident: e_1_2_6_159_1
  doi: 10.1038/ncomms5647
– ident: e_1_2_6_135_1
  doi: 10.1149/2.020304jes
– ident: e_1_2_6_178_1
  doi: 10.1039/C5LC00259A
– ident: e_1_2_6_143_2
  doi: 10.1021/nl500704r
– ident: e_1_2_6_163_1
– ident: e_1_2_6_42_2
  doi: 10.1039/C4EE03012E
– ident: e_1_2_6_79_2
  doi: 10.1021/ar00065a004
– ident: e_1_2_6_115_1
– ident: e_1_2_6_14_1
– ident: e_1_2_6_86_2
  doi: 10.1149/1.1836675
– ident: e_1_2_6_63_1
– ident: e_1_2_6_114_1
  doi: 10.1021/acs.macromol.5b00579
– ident: e_1_2_6_82_1
  doi: 10.1073/pnas.1118341109
– ident: e_1_2_6_50_2
  doi: 10.1039/C4EE03271C
– ident: e_1_2_6_17_2
  doi: 10.2172/1218403
– ident: e_1_2_6_19_2
  doi: 10.1039/c3ee41302k
– ident: e_1_2_6_117_2
  doi: 10.1021/ma501744w
– ident: e_1_2_6_51_2
  doi: 10.1039/C5EE01434D
– ident: e_1_2_6_100_1
– ident: e_1_2_6_155_1
  doi: 10.1126/science.aaa3145
– ident: e_1_2_6_16_2
  doi: 10.1039/c3ee40831k
– start-page: 3397
  year: 2013
  ident: e_1_2_6_147_2
  publication-title: IEEE Photvoltaic Spec. Conf.
  contributor:
    fullname: Chen C. T.
– ident: e_1_2_6_160_1
  doi: 10.1021/ja400238r
– ident: e_1_2_6_40_2
  doi: 10.1016/j.ijhydene.2007.04.036
– ident: e_1_2_6_49_2
  doi: 10.1016/j.rser.2005.01.009
– ident: e_1_2_6_177_2
  doi: 10.1021/mz500606h
– ident: e_1_2_6_106_2
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_6_28_2
  doi: 10.1039/C4EE01824A
– ident: e_1_2_6_77_1
– ident: e_1_2_6_25_2
  doi: 10.1002/cssc.201301030
– ident: e_1_2_6_129_2
  doi: 10.1063/1.1901835
– ident: e_1_2_6_80_2
  doi: 10.1146/annurev.pc.42.100191.002551
– ident: e_1_2_6_48_2
  doi: 10.1016/j.solmat.2014.04.037
– ident: e_1_2_6_133_2
  doi: 10.1021/ef9701347
– ident: e_1_2_6_142_2
  doi: 10.1126/science.1230969
– ident: e_1_2_6_29_2
  doi: 10.1039/C5EE01721A
– ident: e_1_2_6_96_2
  doi: 10.1039/C3EE43214A
– ident: e_1_2_6_34_1
– ident: e_1_2_6_104_1
– ident: e_1_2_6_169_2
  doi: 10.1039/C5EE00777A
– ident: e_1_2_6_128_2
  doi: 10.1038/nmat3477
– ident: e_1_2_6_18_1
– ident: e_1_2_6_150_1
  doi: 10.1039/C5EE01434D
– ident: e_1_2_6_44_2
  doi: 10.1021/nl401615t
– ident: e_1_2_6_62_1
  doi: 10.1038/nmat2629
– ident: e_1_2_6_90_1
– ident: e_1_2_6_102_2
  doi: 10.1021/ja302439z
– ident: e_1_2_6_6_2
  doi: 10.1021/cr1002326
– ident: e_1_2_6_11_1
– ident: e_1_2_6_35_2
  doi: 10.1016/j.ijhydene.2013.07.010
– ident: e_1_2_6_118_2
  doi: 10.1021/acs.macromol.5b01382
– ident: e_1_2_6_37_2
  doi: 10.1016/S0360-3199(00)00039-2
– ident: e_1_2_6_120_1
– ident: e_1_2_6_9_2
  doi: 10.1073/pnas.1414290111
– ident: e_1_2_6_99_1
  doi: 10.1039/C5TA06315A
– ident: e_1_2_6_22_2
  doi: 10.1039/C4EE02314E
– ident: e_1_2_6_72_2
  doi: 10.1073/pnas.1423034112
– volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 1
  year: 1961
  ident: e_1_2_6_81_2
  contributor:
    fullname: Gerischer H.
– ident: e_1_2_6_108_2
  doi: 10.1109/JPROC.2011.2156750
– ident: e_1_2_6_131_1
  doi: 10.1038/nphoton.2012.265
– ident: e_1_2_6_13_2
  doi: 10.1016/j.ijhydene.2009.01.053
– ident: e_1_2_6_98_1
  doi: 10.1039/c2ee03422k
– ident: e_1_2_6_61_1
  doi: 10.1039/C4EE01753F
– volume-title: Electrochemical Methods, Fundamentals and Applications, 2nd ed.
  year: 2000
  ident: e_1_2_6_93_1
  contributor:
    fullname: Bard A. J.
– ident: e_1_2_6_26_2
  doi: 10.1039/C3EE43807D
– ident: e_1_2_6_153_1
  doi: 10.1016/j.jcat.2007.12.009
– ident: e_1_2_6_167_1
– ident: e_1_2_6_5_1
– ident: e_1_2_6_27_1
– ident: e_1_2_6_21_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_56_1
  doi: 10.1038/316495a0
– ident: e_1_2_6_41_2
  doi: 10.1021/ja108801m
– ident: e_1_2_6_174_2
  doi: 10.1021/ma102361f
– ident: e_1_2_6_46_1
– ident: e_1_2_6_126_1
– ident: e_1_2_6_148_2
  doi: 10.1063/1.3522895
– ident: e_1_2_6_145_1
– ident: e_1_2_6_136_1
  doi: 10.1038/nmat2284
– ident: e_1_2_6_89_1
  doi: 10.1021/j100267a010
– ident: e_1_2_6_2_2
  doi: 10.1038/nchem.141
– ident: e_1_2_6_101_2
  doi: 10.1016/j.ijhydene.2010.07.058
– volume-title: Physics of Semiconductor Devices, 3rd ed.
  year: 1981
  ident: e_1_2_6_179_1
  contributor:
    fullname: Sze S. M.
– ident: e_1_2_6_43_2
  doi: 10.1039/c2ee23192a
– ident: e_1_2_6_55_1
  doi: 10.1039/c2ee23187e
– ident: e_1_2_6_137_1
  doi: 10.1038/nmat2635
– ident: e_1_2_6_173_2
  doi: 10.1021/ma301289v
– ident: e_1_2_6_94_1
  doi: 10.1021/ja510442p
– ident: e_1_2_6_124_1
  doi: 10.1002/cssc.201402288
– ident: e_1_2_6_165_2
  doi: 10.2516/ogst/2014061
– ident: e_1_2_6_176_2
  doi: 10.1002/adfm.201304311
– ident: e_1_2_6_139_1
  doi: 10.1039/C3EE43048K
– ident: e_1_2_6_119_2
  doi: 10.1021/acs.macromol.5b00926
– ident: e_1_2_6_68_2
  doi: 10.1038/nnano.2013.18
– ident: e_1_2_6_4_2
  doi: 10.1126/science.1200165
– ident: e_1_2_6_76_1
  doi: 10.1021/jp011861c
– ident: e_1_2_6_67_2
  doi: 10.1038/nchem.1048
– ident: e_1_2_6_107_2
  doi: 10.1016/j.ijhydene.2012.12.010
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.0603395103
– ident: e_1_2_6_112_1
  doi: 10.1021/cr020715f
– ident: e_1_2_6_144_2
  doi: 10.1038/nmat2493
– ident: e_1_2_6_170_1
– ident: e_1_2_6_33_2
  doi: 10.1149/2.0751410jes
– ident: e_1_2_6_138_1
  doi: 10.1073/pnas.1118338109
– ident: e_1_2_6_140_1
– ident: e_1_2_6_54_2
  doi: 10.1021/cr1001645
– ident: e_1_2_6_83_1
– ident: e_1_2_6_146_2
  doi: 10.1002/aenm.201100728
– ident: e_1_2_6_154_1
  doi: 10.1038/nnano.2013.272
– ident: e_1_2_6_87_2
  doi: 10.1016/0040-6090(94)90742-0
– ident: e_1_2_6_24_2
  doi: 10.1039/C4EE01753F
– ident: e_1_2_6_66_1
– ident: e_1_2_6_69_1
– ident: e_1_2_6_158_1
  doi: 10.1021/ja1009025
– ident: e_1_2_6_134_2
  doi: 10.1039/c2ee22866a
– ident: e_1_2_6_166_1
  doi: 10.1039/c1ee01203g
– ident: e_1_2_6_65_2
  doi: 10.1038/nphoton.2013.238
– ident: e_1_2_6_7_2
  doi: 10.1039/C5EE00457H
– ident: e_1_2_6_168_2
  doi: 10.1039/c1ee01028j
– ident: e_1_2_6_110_1
  doi: 10.1149/2.035408jes
– ident: e_1_2_6_152_1
  doi: 10.1016/j.cplett.2008.03.065
– ident: e_1_2_6_121_2
  doi: 10.1016/j.progpolymsci.2010.12.005
– ident: e_1_2_6_157_1
  doi: 10.1002/adma.201305299
– ident: e_1_2_6_20_2
  doi: 10.1021/cm4021518
– ident: e_1_2_6_91_2
  doi: 10.1039/C5EE00311C
– ident: e_1_2_6_149_1
  doi: 10.1021/nl402205f
– start-page: 1
  year: 2014
  ident: e_1_2_6_88_1
  publication-title: J. Mater. Res.
  contributor:
    fullname: Shinde A.
– ident: e_1_2_6_122_2
  doi: 10.1021/jp204610j
– ident: e_1_2_6_156_1
  doi: 10.1021/jp907128k
– ident: e_1_2_6_84_2
  doi: 10.1021/jz4002604
– ident: e_1_2_6_161_1
  doi: 10.1021/jz1007966
– ident: e_1_2_6_64_2
  doi: 10.1021/cr1002529
– volume-title: Electrochemical Systems, 3rd ed.
  year: 2004
  ident: e_1_2_6_58_2
  contributor:
    fullname: Newman J.
– ident: e_1_2_6_39_2
  doi: 10.1021/jp002083b
– ident: e_1_2_6_45_2
  doi: 10.1039/C5EE02214B
– ident: e_1_2_6_1_1
– ident: e_1_2_6_171_2
  doi: 10.1021/ma301999a
– ident: e_1_2_6_97_2
  doi: 10.1039/C5EE00083A
– ident: e_1_2_6_175_2
  doi: 10.1016/j.elecom.2011.04.022
– ident: e_1_2_6_181_1
  doi: 10.1021/jp406280x
– ident: e_1_2_6_52_2
  doi: 10.1039/C2EE22618A
– ident: e_1_2_6_74_2
  doi: 10.1126/science.1251428
– ident: e_1_2_6_113_1
  doi: 10.1149/1.2044206
– ident: e_1_2_6_70_2
  doi: 10.1002/aenm.201402276
– ident: e_1_2_6_162_1
  doi: 10.1021/cm400759f
– ident: e_1_2_6_12_2
  doi: 10.1016/j.ijhydene.2011.01.180
– ident: e_1_2_6_30_1
  doi: 10.1002/cssc.201402896
– ident: e_1_2_6_125_1
  doi: 10.1002/aenm.201600379
– ident: e_1_2_6_60_1
– ident: e_1_2_6_127_2
  doi: 10.1016/j.ijhydene.2005.12.014
– ident: e_1_2_6_164_2
  doi: 10.1146/annurev-chembioeng-061114-123357
– ident: e_1_2_6_15_2
– ident: e_1_2_6_172_2
  doi: 10.1021/ma300212f
– ident: e_1_2_6_75_2
  doi: 10.1039/C5EE01786F
– ident: e_1_2_6_103_2
  doi: 10.1149/2.033408jes
– ident: e_1_2_6_38_2
  doi: 10.1126/science.280.5362.425
– ident: e_1_2_6_116_2
  doi: 10.1021/ma3024624
– ident: e_1_2_6_71_2
  doi: 10.1021/jz5026195
– ident: e_1_2_6_180_1
  doi: 10.1016/j.solener.2004.02.002
– ident: e_1_2_6_105_2
  doi: 10.1016/j.pecs.2009.11.002
– ident: e_1_2_6_151_1
  doi: 10.1038/414625a
– ident: e_1_2_6_141_2
  doi: 10.1039/c0ee00014k
– ident: e_1_2_6_123_1
  doi: 10.1002/polb.20859
– ident: e_1_2_6_92_2
  doi: 10.1039/C5EE02188J
– ident: e_1_2_6_95_1
– ident: e_1_2_6_32_2
  doi: 10.1039/c3ee42143k
– ident: e_1_2_6_109_1
  doi: 10.1016/j.jpowsour.2015.05.077
– ident: e_1_2_6_47_2
  doi: 10.1016/j.rser.2014.10.101
– ident: e_1_2_6_57_1
– ident: e_1_2_6_59_2
  doi: 10.1115/1.1424298
– ident: e_1_2_6_78_2
  doi: 10.1146/annurev.pc.29.100178.001201
– ident: e_1_2_6_130_1
  doi: 10.2533/chimia.2013.155
– ident: e_1_2_6_85_2
  doi: 10.1149/2.035304jes
– ident: e_1_2_6_111_1
  doi: 10.1149/1.2898130
SSID ssj0028806
Score 2.5788398
SecondaryResourceType review_article
Snippet An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes...
An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes...
Abstract An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC)...
SourceID osti
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12974
SubjectTerms Computer architecture
Computer simulation
Conversion
Design
Design engineering
device architecture
Devices
Efficiency
Functional anatomy
Hydrogen
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Integration
modeling
Modelling
photoelectrochemistry
Physics
Prototypes
Reviews
SOLAR ENERGY
solar-driven water splitting
Splitting
Time
Water splitting
Title Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
URI https://api.istex.fr/ark:/67375/WNG-50RQ68XK-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201510463
https://www.ncbi.nlm.nih.gov/pubmed/27460923
https://www.proquest.com/docview/1826492798
https://www.proquest.com/docview/1906472718
https://search.proquest.com/docview/1826732541
https://www.osti.gov/servlets/purl/1506250
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC4kHvTiWzMmSguil0wy0z09s30M2cSouGA2IXtr-jUgIbOy2QXx5E_wN_pLrOp56EpA0NsO82Crq6vqq5mqrwBeBjNSsebJqBoTFOdEaqUyabAFt66qRkVB3cgfJuXxWfFuJme_dfG3_BDDCzeyjOivycCNvdr7RRpKHdhUmiXpKyXRfeaiopqu8cnAH8Vxc7btRUKkNIW-Z23M-N767WtR6SYt8Bf00XO0suuQ5zqQjZHo6C6YXoa2AOVid7W0u-7rH_SO_yPkPbjTwVS23-6r-3AjNA_g1kE_He4hnNIQNWpl32HTT5fdDLAdZhrPIuHwZdfT1LB5zaaUP__49n28IN_KzhHf0uEUAXAsu2bjEB3WIzg7Ojw9OE67CQ2pKzMlUmEUDfkMkmZV--BzZxBAWC89TctVmfRWWnQihbOIQ31eSu_qUuXWelG5WorHsNHMm7AJjNPYrBpDpxeYczqpbJEjlsqV9N5UPk_gda8h_bkl4tAt5TLXtEp6WKUEXkUFDpeZxQWVr1VSn0_eaJmdfCxHs_d6ksAWaVgj1iDCXEeVRW6piXMRgWEC273idWfXV5qysUKhaKPrTyvq3eUY7xN4MZxGzdBXGNOE-ap9RCUwL0eRnrT7afinvCpwXTmKwOOu-Iuken_y9nA4evovN23BbfxdUjTOs23YWC5W4RnCrKV9Hk3pJ_C5HPU
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61cKCXvh8ulLpS1V4w2LteO3tEBBoKWCoJgttqX5YqhFOliVT11J_Q38gvYcYvlAqpUnt0HFuenZ2Zb-yZ-QDeez2Qdc2TliUmKNbyyAipI29SZmyeD9KUupFPimx0ln6-EF01IfXCNPMh-hduZBm1vyYDpxfSO7dTQ6kFm2qzBH2m5PdhFW2eE3vD8LSfIMVwezYNRpxHxEPfzW2M2c7y9UtxaZWW-Ad66Sna2V3YcxnK1rHo4BGYToqmBOVyezE32_bnHwMe_0vMx_CwRarhbrO1nsA9Xz2Ftb2OIO4ZTIhHjbrZt8Lx16uWBmwr1JUL65nDV21bUxVOy3BMKfT1r9_DGbnX8BwhLh2OEQPXldfh0Nc-6zmcHexP9kZRS9IQ2SyWPOJaEs-nF0RX7bxLrEYMYZxwRJgrY-GMMOhHUmsQirokE86WmUyMcTy3peAvYKWaVv4VhIyYs0qMno5j2mmFNGmCcCqRwjmduySAj52K1LdmFodqpi4zRauk-lUK4EOtwf5venZJFWy5UOfFJyXi0y_Z4OJIFQGsk4oVwg2amWupuMjOFY1dRGwYwEanedWa9ndFCVkqUbTB3aclte8yDPkBvOtPo2boQ4yu_HTR3CLnmJqjSC-bDdU_KctTXFeGIrB6W_xFUrVbHO73R6__5aK3sDaanByr48PiaB0e4O8ZBeck3oCV-Wzh3yDqmpvN2q5uAK97IQ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKwGX8iyYFjASgkvd2l6vnT1WTUNLwYKmVXNb7csSqupUaSIhTvwEfiO_hJn1A4IqIcElkuM4yuzszHyTnfkG4JVTA-FrnpSoMEExhkWaCxU5naXaFMUgy6gb-UOZH5xm7yZ88lsXf8MP0f_hRpbh_TUZ-KWtdn6RhlIHNpVmcTqlZDdhFV9jf1B73BNIpbg7m_4ixiIaQ9_RNsbpzvLzS2FplVb4CzrpKZrZddBzGcn6UDS6C6oToqlAOd9ezPW2-foHv-P_SHkP1lqcGu42G-s-3HD1A7i9142HewgnNEWNetm3wvHni3YI2Faoaht6xuGLtqmpDqdVOKYE-se378MZOdfwDAEuXY4RAfu663DovMd6BKej_ZO9g6gd0RCZPBYsYkrQlE_HaVi1dTYxChGEttzSuFwRc6u5Ri-SGY1A1CY5t6bKRaK1ZYWpOFuHlXpauycQpjQ3q8LYaRkmnYYLnSUIphLBrVWFTQJ402lIXjZMHLLhXE4lrZLsVymA116B_cfU7Jzq1wouz8q3ksfHn_LB5EiWAWyQhiWCDWLMNVRaZOaSSBcRGQaw2SletoZ9JSkdywSKNrj-tqDm3RQDfgAv-9uoGTqGUbWbLpqvKBgm5ijS42Y_9b80LTJc1xRFSP2u-Iukcrc83O-vnv7LQy_g1sfhSL4_LI824A6-nVNkTuJNWJnPFu4ZQq65fu6t6icoox-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Simulation%2C+and+Implementation+of+Solar-Driven+Water-Splitting+Devices&rft.jtitle=Angewandte+Chemie+%28International+ed.%29&rft.au=Xiang%2C+Chengxiang&rft.au=Weber%2C+Adam+Z.&rft.au=Ardo%2C+Shane&rft.au=Berger%2C+Alan&rft.date=2016-10-10&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=55&rft.issue=42&rft_id=info:doi/10.1002%2Fanie.201510463&rft.externalDocID=1506250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon