Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance an...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 55; no. 42; pp. 12974 - 12988 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
10.10.2016
Wiley Subscription Services, Inc Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.
Catching the sun: Significant advances have been made in recent years on the modeling‐ and simulation‐guided development of integrated solar‐driven water‐splitting devices. Multidimensional multiphysics models have provided design guidelines for semiconductors, electrocatalysts, as well as liquid and membrane electrolytes. This Review discusses the guiding principles and key findings of these activities. |
---|---|
AbstractList | An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.
Catching the sun: Significant advances have been made in recent years on the modeling‐ and simulation‐guided development of integrated solar‐driven water‐splitting devices. Multidimensional multiphysics models have provided design guidelines for semiconductors, electrocatalysts, as well as liquid and membrane electrolytes. This Review discusses the guiding principles and key findings of these activities. An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures. Abstract An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures. |
Author | Ardo, Shane Fountaine, Katherine T. Modestino, Miguel A. Berger, Alan Singh, Meenesh R. Shaner, Matthew M. Liu, Rui Lewis, Nathan S. Sun, Ke Coridan, Robert Stevens, John C. Chen, YiKai Walczak, Karl Xiang, Chengxiang Weber, Adam Z. Hu, Shu Haussener, Sophia |
Author_xml | – sequence: 1 givenname: Chengxiang surname: Xiang fullname: Xiang, Chengxiang email: cxx@caltech.edu organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA – sequence: 2 givenname: Adam Z. surname: Weber fullname: Weber, Adam Z. email: azweber@lbl.gov organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA – sequence: 3 givenname: Shane surname: Ardo fullname: Ardo, Shane organization: Department of Chemistry and Department of Chemical Engineering and Materials Science, University of California Irvine, USA – sequence: 4 givenname: Alan surname: Berger fullname: Berger, Alan organization: Air Products and Chemicals, Inc., Allentown, USA – sequence: 5 givenname: YiKai surname: Chen fullname: Chen, YiKai organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA – sequence: 6 givenname: Robert surname: Coridan fullname: Coridan, Robert organization: Department of Chemistry and Biochemistry, University of Arkansas, USA – sequence: 7 givenname: Katherine T. surname: Fountaine fullname: Fountaine, Katherine T. organization: Northrop Grumman Aerospace Systems, Nanophotonics and Plasmonics Laboratory, Redondo Beach, USA – sequence: 8 givenname: Sophia surname: Haussener fullname: Haussener, Sophia organization: Laboratory of Renewable Energy Science and Engineering, EPFL, Lausanne, Schweiz – sequence: 9 givenname: Shu surname: Hu fullname: Hu, Shu organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA – sequence: 10 givenname: Rui surname: Liu fullname: Liu, Rui organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, CA, 91125, Pasadena, USA – sequence: 11 givenname: Nathan S. surname: Lewis fullname: Lewis, Nathan S. organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA – sequence: 12 givenname: Miguel A. surname: Modestino fullname: Modestino, Miguel A. organization: School of Engineering, EPFL, Lausanne, Schweiz – sequence: 13 givenname: Matthew M. surname: Shaner fullname: Shaner, Matthew M. organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA – sequence: 14 givenname: Meenesh R. surname: Singh fullname: Singh, Meenesh R. organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA – sequence: 15 givenname: John C. surname: Stevens fullname: Stevens, John C. organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA – sequence: 16 givenname: Ke surname: Sun fullname: Sun, Ke organization: Joint Center for Artificial Photosynthesis, California Institute of Technology, 91125, Pasadena, CA, USA – sequence: 17 givenname: Karl surname: Walczak fullname: Walczak, Karl organization: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27460923$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1506250$$D View this record in Osti.gov |
BookMark | eNqFkUtv1DAUhSNURB-wZYki2LBoBj9iO1lWbSkjyvAYUNlZjn0H3Cb2YDt9_Hs8pIwQC1j5yvrOuffo7Bc7zjsoiqcYzTBC5JVyFmYEYYZRzemDYg8zgisqBN3Jc01pJRqGd4v9GC8z3zSIPyp2iag5agndKz688wZ6674dlks7jL1K1rvDUjlTzod1DwO49Ouv9Kty6XsVqpNgr8GVFypBqJbr3qaU9eUJXFsN8XHxcKX6CE_u34Piy-vTz8dvqvP3Z_Pjo_NK5820oqpFBDXAOKLYgMFaMUw6w0wOIFrETMc6JGitu7bFBnNm9Iq3uOsMFXrF6EHxfPL1MVkZtU2gv2vvHOgkMUOcMJShlxO0Dv7HCDHJwUYNfa8c-DFK3BAuKGE1zuiLv9BLPwaXI0jcIl4LInDzTyp71W2-fUPNJkoHH2OAlVwHO6hwJzGSm9rkpja5rS0Lnt3bjt0AZov_7ikD7QTc2B7u_mMnjxbz0z_Nq0lrY4LbrVaFK5nDCyYvFmeSoU8fefP1rVzQnzdzscU |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1021_acsenergylett_8b02209 crossref_primary_10_1002_ange_201610512 crossref_primary_10_1021_acs_jpcc_1c03072 crossref_primary_10_1002_aenm_202102893 crossref_primary_10_1021_acsami_3c09016 crossref_primary_10_1016_j_electacta_2021_139810 crossref_primary_10_1016_j_apcatb_2017_03_067 crossref_primary_10_1021_acsenergylett_8b01077 crossref_primary_10_1016_j_susmat_2024_e00972 crossref_primary_10_1002_smll_202103822 crossref_primary_10_1039_D1TA09151D crossref_primary_10_1021_acssuschemeng_8b04969 crossref_primary_10_1021_acssuschemeng_0c07935 crossref_primary_10_1002_aenm_201903871 crossref_primary_10_1016_j_cej_2022_136561 crossref_primary_10_1039_C8EE00980E crossref_primary_10_1021_acs_jpcc_8b07732 crossref_primary_10_3389_fenrg_2022_1001684 crossref_primary_10_1039_D1CS01069G crossref_primary_10_1039_C9SE01068H crossref_primary_10_1021_acssensors_1c02358 crossref_primary_10_3389_fceng_2021_749058 crossref_primary_10_1021_acs_chemrev_1c00901 crossref_primary_10_1021_acsenergylett_6b00586 crossref_primary_10_1002_anie_202218850 crossref_primary_10_1039_C9TA01291E crossref_primary_10_1088_1361_6463_ac6f97 crossref_primary_10_1021_acs_chemrev_6b00159 crossref_primary_10_1039_C7EE01360D crossref_primary_10_1039_D0CC04894A crossref_primary_10_3390_en12214176 crossref_primary_10_1063_1_5052590 crossref_primary_10_1021_acsami_1c18243 crossref_primary_10_1002_anie_201708516 crossref_primary_10_1039_D0CC04229C crossref_primary_10_1039_C8EE01192C crossref_primary_10_3389_fchem_2018_00598 crossref_primary_10_1016_j_chemphys_2018_01_006 crossref_primary_10_1021_acsenergylett_7b00034 crossref_primary_10_1016_j_jelechem_2022_116685 crossref_primary_10_1002_adma_202300383 crossref_primary_10_1146_annurev_conmatphys_031620_100957 crossref_primary_10_1016_j_cej_2019_03_069 crossref_primary_10_1021_acsami_6b13438 crossref_primary_10_1149_1945_7111_ac751e crossref_primary_10_1039_C7EE03639F crossref_primary_10_1021_jacs_2c08462 crossref_primary_10_1039_C8EE01828F crossref_primary_10_1016_j_mtchem_2022_101060 crossref_primary_10_1021_acscatal_8b02689 crossref_primary_10_3390_nano12060928 crossref_primary_10_1016_j_joule_2023_04_008 crossref_primary_10_2139_ssrn_3219291 crossref_primary_10_1002_chem_201703104 crossref_primary_10_1021_acsami_6b07729 crossref_primary_10_1007_s11664_019_07266_8 crossref_primary_10_1016_j_polymer_2017_11_055 crossref_primary_10_1002_adfm_202405414 crossref_primary_10_1039_C8EE03547D crossref_primary_10_1021_acscatal_7b02662 crossref_primary_10_1007_s11426_022_1428_6 crossref_primary_10_1039_C8CS00699G crossref_primary_10_1016_j_jpowsour_2018_07_054 crossref_primary_10_1002_ange_201708516 crossref_primary_10_1021_acscatal_2c03065 crossref_primary_10_1016_j_jechem_2020_08_057 crossref_primary_10_1021_acsenergylett_9b02620 crossref_primary_10_1002_ange_202218850 crossref_primary_10_1039_D3CS00145H crossref_primary_10_1002_aenm_201801403 crossref_primary_10_1002_aenm_201803548 crossref_primary_10_1039_C9SE00869A crossref_primary_10_1021_acscatal_7b01466 crossref_primary_10_1002_adma_202002556 crossref_primary_10_1002_smll_202400316 crossref_primary_10_1039_C7FD00133A crossref_primary_10_1016_S1872_2067_19_63375_9 crossref_primary_10_1021_acsenergylett_9b00278 crossref_primary_10_1002_cptc_201700165 crossref_primary_10_1073_pnas_2206321119 crossref_primary_10_1002_cssc_201802178 crossref_primary_10_1016_j_chemosphere_2021_130821 crossref_primary_10_1039_C8MH01641K crossref_primary_10_1021_acsenergylett_8b00920 crossref_primary_10_1039_D1SE01730F crossref_primary_10_3390_ma15062221 crossref_primary_10_1039_C9EE02986A crossref_primary_10_1021_acs_jpcc_9b06401 crossref_primary_10_1002_adma_201802106 crossref_primary_10_1038_s41570_022_00366_w crossref_primary_10_1016_j_mtener_2018_10_011 crossref_primary_10_1039_C7CS00542C crossref_primary_10_1021_acsaem_8b01377 crossref_primary_10_1016_j_coelec_2017_02_002 crossref_primary_10_1021_acsenergylett_7b00764 crossref_primary_10_1002_advs_201700684 crossref_primary_10_1002_anie_201610512 crossref_primary_10_1021_acsaem_0c00319 crossref_primary_10_1039_C9SE00292H crossref_primary_10_1039_D1EE02512K crossref_primary_10_1038_s41467_024_49273_2 crossref_primary_10_1039_C8TA03649G crossref_primary_10_1016_j_checat_2021_12_013 crossref_primary_10_1016_j_jpowsour_2017_03_089 crossref_primary_10_1016_j_enchem_2019_100014 crossref_primary_10_1002_ppsc_201700321 crossref_primary_10_1007_s11705_023_2334_8 crossref_primary_10_1016_j_est_2024_110484 crossref_primary_10_1016_j_joule_2019_12_006 crossref_primary_10_1149_1945_7111_ab679e crossref_primary_10_1002_chem_201705203 crossref_primary_10_1002_advs_201801903 crossref_primary_10_1016_j_ensm_2017_12_017 crossref_primary_10_1039_C7EE02212C crossref_primary_10_1039_D0TA01554G crossref_primary_10_1021_acsaem_2c00377 |
Cites_doi | 10.1039/c3ee42519c 10.1126/science.1258307 10.1039/c3ee40453f 10.1039/C5EE01687H 10.1039/C4CY00974F 10.1038/ncomms5647 10.1149/2.020304jes 10.1039/C5LC00259A 10.1021/nl500704r 10.1039/C4EE03012E 10.1021/ar00065a004 10.1149/1.1836675 10.1021/acs.macromol.5b00579 10.1073/pnas.1118341109 10.1039/C4EE03271C 10.2172/1218403 10.1039/c3ee41302k 10.1021/ma501744w 10.1039/C5EE01434D 10.1126/science.aaa3145 10.1039/c3ee40831k 10.1021/ja400238r 10.1016/j.ijhydene.2007.04.036 10.1016/j.rser.2005.01.009 10.1021/mz500606h 10.1016/j.ijhydene.2013.01.151 10.1039/C4EE01824A 10.1002/cssc.201301030 10.1063/1.1901835 10.1146/annurev.pc.42.100191.002551 10.1016/j.solmat.2014.04.037 10.1021/ef9701347 10.1126/science.1230969 10.1039/C5EE01721A 10.1039/C3EE43214A 10.1039/C5EE00777A 10.1038/nmat3477 10.1021/nl401615t 10.1038/nmat2629 10.1021/ja302439z 10.1021/cr1002326 10.1016/j.ijhydene.2013.07.010 10.1021/acs.macromol.5b01382 10.1016/S0360-3199(00)00039-2 10.1073/pnas.1414290111 10.1039/C5TA06315A 10.1039/C4EE02314E 10.1073/pnas.1423034112 10.1109/JPROC.2011.2156750 10.1038/nphoton.2012.265 10.1016/j.ijhydene.2009.01.053 10.1039/c2ee03422k 10.1039/C4EE01753F 10.1039/C3EE43807D 10.1016/j.jcat.2007.12.009 10.1038/316495a0 10.1021/ja108801m 10.1021/ma102361f 10.1063/1.3522895 10.1038/nmat2284 10.1021/j100267a010 10.1038/nchem.141 10.1016/j.ijhydene.2010.07.058 10.1039/c2ee23192a 10.1039/c2ee23187e 10.1038/nmat2635 10.1021/ma301289v 10.1021/ja510442p 10.1002/cssc.201402288 10.2516/ogst/2014061 10.1002/adfm.201304311 10.1039/C3EE43048K 10.1021/acs.macromol.5b00926 10.1038/nnano.2013.18 10.1126/science.1200165 10.1021/jp011861c 10.1038/nchem.1048 10.1016/j.ijhydene.2012.12.010 10.1073/pnas.0603395103 10.1021/cr020715f 10.1038/nmat2493 10.1149/2.0751410jes 10.1073/pnas.1118338109 10.1021/cr1001645 10.1002/aenm.201100728 10.1038/nnano.2013.272 10.1016/0040-6090(94)90742-0 10.1021/ja1009025 10.1039/c2ee22866a 10.1039/c1ee01203g 10.1038/nphoton.2013.238 10.1039/C5EE00457H 10.1039/c1ee01028j 10.1149/2.035408jes 10.1016/j.cplett.2008.03.065 10.1016/j.progpolymsci.2010.12.005 10.1002/adma.201305299 10.1021/cm4021518 10.1039/C5EE00311C 10.1021/nl402205f 10.1021/jp204610j 10.1021/jp907128k 10.1021/jz4002604 10.1021/jz1007966 10.1021/cr1002529 10.1021/jp002083b 10.1039/C5EE02214B 10.1021/ma301999a 10.1039/C5EE00083A 10.1016/j.elecom.2011.04.022 10.1021/jp406280x 10.1039/C2EE22618A 10.1126/science.1251428 10.1149/1.2044206 10.1002/aenm.201402276 10.1021/cm400759f 10.1016/j.ijhydene.2011.01.180 10.1002/cssc.201402896 10.1002/aenm.201600379 10.1016/j.ijhydene.2005.12.014 10.1146/annurev-chembioeng-061114-123357 10.1021/ma300212f 10.1039/C5EE01786F 10.1149/2.033408jes 10.1126/science.280.5362.425 10.1021/ma3024624 10.1021/jz5026195 10.1016/j.solener.2004.02.002 10.1016/j.pecs.2009.11.002 10.1038/414625a 10.1039/c0ee00014k 10.1002/polb.20859 10.1039/C5EE02188J 10.1039/c3ee42143k 10.1016/j.jpowsour.2015.05.077 10.1016/j.rser.2014.10.101 10.1115/1.1424298 10.1146/annurev.pc.29.100178.001201 10.2533/chimia.2013.155 10.1149/2.035304jes 10.1149/1.2898130 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | BSCLL NPM AAYXX CITATION 7TM K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/anie.201510463 |
DatabaseName | Istex PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12988 |
ExternalDocumentID | 1506250 4206763811 10_1002_anie_201510463 27460923 ANIE201510463 ark_67375_WNG_50RQ68XK_N |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GrantInformation_xml | – fundername: U.S. Department of Energy funderid: DE-EE0006963 – fundername: U.S. Department of Energy funderid: DE-SC0004993 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AETEA NPM AAYXX CITATION 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c6093-3a90208e56031ded1ca512bd5d1527905db5b0734cb991d165dcf691bbd37cf53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Wed Nov 29 06:10:45 EST 2023 Fri Oct 25 01:27:56 EDT 2024 Thu Oct 10 16:31:00 EDT 2024 Thu Oct 10 18:54:30 EDT 2024 Thu Sep 26 19:44:33 EDT 2024 Sat Sep 28 08:48:14 EDT 2024 Sat Aug 24 00:55:33 EDT 2024 Wed Oct 30 09:50:35 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | device architecture modeling photoelectrochemistry hydrogen solar-driven water splitting |
Language | English |
License | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6093-3a90208e56031ded1ca512bd5d1527905db5b0734cb991d165dcf691bbd37cf53 |
Notes | U.S. Department of Energy - No. DE-SC0004993 U.S. Department of Energy - No. DE-EE0006963 ArticleID:ANIE201510463 ark:/67375/WNG-50RQ68XK-N istex:845E6603B85D639A2D7D7BD6BAD428B9B528779E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 AC02-05CH11231; SC0004993; EE0006963 USDOE Office of Science (SC) |
ORCID | 0000-0002-7749-1624 0000000277491624 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1506250 |
PMID | 27460923 |
PQID | 1826492798 |
PQPubID | 946352 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1506250 proquest_miscellaneous_1826732541 proquest_journals_1906472718 proquest_journals_1826492798 crossref_primary_10_1002_anie_201510463 pubmed_primary_27460923 wiley_primary_10_1002_anie_201510463_ANIE201510463 istex_primary_ark_67375_WNG_50RQ68XK_N |
PublicationCentury | 2000 |
PublicationDate | October 10, 2016 |
PublicationDateYYYYMMDD | 2016-10-10 |
PublicationDate_xml | – month: 10 year: 2016 text: October 10, 2016 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | B. Orel, M. Macek, F. Svegl, K. Kalcher, Thin Solid Films 1994, 246, 131-142. C. Xiang, A. C. Meng, N. S. Lewis, Proc. Natl. Acad. Sci. USA 2012, 109, 15622-15627. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735 M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, Nat. Mater. 2010, 9, 239-244. E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, N. S. Lewis, Energy Environ. Sci. 2012, 5, 9653-9661 A. Heller, Acc. Chem. Res. 1981, 14, 154-162 S. M. H. Hashemi, M. A. Modestino, D. Psaltis, Energy Environ. Sci. 2015, 8, 2003-2009. S. M. Sze, Physics of Semiconductor Devices, 3rd ed., Wiley, New York, 1981. D. A. Vermaas, M. Sassenburg, W. A. Smith, J. Mater. Chem. A 2015, 3, 19556-19562. A. D. Mohanty, C. Y. Ryu, Y. S. Kim, C. Bae, Macromolecules 2015, 48, 7085-7095 M. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy Environ. Sci. 2015, 8, 203-207 K. Sun, R. Liu, Y. Chen, E. Verlage, N. S. Lewis, C. Xiang, Adv. Energy Materials, 2016, 1600379. A. Kusoglu, D. Kushner, D. K. Paul, K. Karan, M. A. Hickner, A. Z. Weber, Adv. Funct. Mater. 2014, 24, 4763-4774 K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, J. Am. Chem. Soc. 2011, 133, 1216-1219 E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K. Vesborg, J. Halme, O. Hansen, P. D. Lund, I. Chorkendorff, Energy Environ. Sci. 2015, 8, 2991-2999. O. Khaselev, J. A. Turner, Science 1998, 280, 425-427 A. A. Ismail, D. W. Bahnemann, Sol. Energy Mater. Sol. Cells 2014, 128, 85-101 K. M. Meek, S. Sharick, Y. Ye, K. I. Winey, Y. A. Elabd, Macromolecules 2015, 48, 4850-4862. M. R. Shaner, K. T. Fountaine, S. Ardo, R. H. Coridan, H. A. Atwater, N. S. Lewis, Energy Environ. Sci. 2014, 7, 779-790. A. Berger, J. Newman, J. Electrochem. Soc. 2014, 161, E3328-E3340. J. J. Turner, Nat. Mater. 2008, 7, 770-771. J. R. Bolton, S. J. Strickler, J. S. Connolly, Nature 1985, 316, 495-500. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater. 2009, 8, 648-653. N. C. Strandwitz, D. B. Turner-Evans, A. C. Tamboli, C. T. Chen, H. A. Atwater, N. S. Lewis, Adv. Energy Mater. 2012, 2, 1109-1116 M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, C. Zhou, Nano Lett. 2014, 14, 3293-3303 J. Newman, K. E. Thomas-Alyea, Electrochemical Systems, 3rd ed., Wiley, New York, 2004 M. I. Gillespie, F. van der Merwe, R. J. Kriek, J. Power Sources 2015, 293, 228-235. K. Fujii, S. Nakamura, M. Sugiyama, K. Watanabe, B. Bagheri, Y. Nakano, Int. J. Hydrogen Energy 2013, 38, 14424-14432 S. A. Bonke, M. Wiechen, D. R. MacFarlane, L. Spiccia, Energy Environ. Sci. 2015, 8, 2791-2796. A. Ursua, L. M. Gandia, P. Sanchis, Proc. IEEE 2012, 100, 410-426. D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterloh, S. Ardo, Energy Environ. Sci. 2015, 8, 2825-2850. J. M. Gregoire, C. Xiang, S. Mitrovic, X. Liu, M. Marcin, E. W. Cornell, J. Fan, J. Jin, J. Electrochem. Soc. 2013, 160, F337-F342 K. Maeda, K. Teramura, K. Domen, J. Catal. 2008, 254, 198-204. C. R. Cox, J. Z. Lee, D. G. Nocera, T. Buonassisi, Proc. Natl. Acad. Sci. USA 2014, 111, 14057-14061 X. C. Wang, K. Maeda, Y. Lee, K. Domen, Chem. Phys. Lett. 2008, 457, 134-136. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2015, 137, 4347-4357. K.-T. Jeng, Y.-C. Liu, Y.-F. Leu, Y.-Z. Zeng, J.-C. Chung, T.-Y. Wei, Int. J. Hydrogen Energy 2010, 35, 10890-10897 M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger, Macromolecules 2011, 44, 2893-2899 C. Xiang, Y. Chen, N. S. Lewis, Energy Environ. Sci. 2013, 6, 3713-3721 Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, J. Phys. Chem. C 2009, 113, 17536-17542. Y. Schneider, M. A. Modestino, B. L. McCulloch, M. L. Hoarfrost, R. W. Hess, R. A. Segalman, Macromolecules 2013, 46, 1543-1548 B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 2013, 6, 1983-2002 Y. K. Chen, K. Sun, H. Audesirk, C. X. Xiang, N. S. Lewis, Energy Environ. Sci. 2015, 8, 1736-1747 A. Z. Weber, J. Electrochem. Soc. 2008, 155, B521-B531. B. P. Tripathi, V. K. Shahi, Prog. Polym. Sci. 2011, 36, 945-979 M. A. Modestino, K. A. Walczak, A. Berger, C. M. Evans, S. Haussener, C. Koval, J. S. Newman, J. W. Ager, R. A. Segalman, Energy Environ. Sci. 2014, 7, 297-301 A. Berger, R. A. Segalman, J. Newman, Energy Environ. Sci. 2014, 7, 1468-1476. C. Clavero, Nat. Photonics 2014, 8, 95-103. P. Cotanda, G. Sudre, M. A. Modestino, X. C. Chen, N. P. Balsara, Macromolecules 2014, 47, 7540-7547 M. B. McDonald, S. Ardo, N. S. Lewis, M. S. Freund, ChemSusChem 2014, 7, 3021-3027. G. Gahleitner, Int. J. Hydrogen Energy 2013, 38, 2039-2061 J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nat. Photonics 2012, 6, 824-828. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, J. Phys. Chem. B 2000, 104, 8920-8924 M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, Nat. Chem. 2011, 3, 489-492 S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005-1009 J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, S. Ardo, Energy Environ. Sci. 2015, 8, 2811-2824. S. Haussener, S. Hu, C. Xiang, A. Z. Weber, N. Lewis, Energy Environ. Sci. 2013, 6, 3605-3618 H. B. Gray, Nat. Chem. 2009, 1, 7 H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205-213. N. A. Kelly, T. L. Gibson, Int. J. Hydrogen Energy 2006, 31, 1658-1673 K. Sun, Y. Kuang, E. Verlage, B. S. Brunschwig, C. W. Tu, N. S. Lewis, Adv. Energy Mater. 2015, 1402276 L. B. Liao, Q. H. Zhang, Z. H. Su, Z. Z. Zhao, Y. N. Wang, Y. Li, X. X. Lu, D. G. Wei, G. Y. Feng, Q. K. Yu, X. J. Cai, J. M. Zhao, Z. F. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. M. Bao, Nat. Nanotechnol. 2014, 9, 69-73. Y. Chen, S. Hu, C. Xiang, N. S. Lewis, Energy Environ. Sci. 2015, 8, 876-886 X. Wang, K.-Q. Peng, Y. Hu, F.-Q. Zhang, B. Hu, L. Li, M. Wang, X.-M. Meng, S.-T. Lee, Nano Lett. 2014, 14, 18-23. S. Hu, C. X. Xiang, S. Haussener, A. D. Berger, N. S. Lewis, Energy Environ. Sci. 2013, 6, 2984-2993 J. Jin, K. Walczak, M. R. Singh, C. Karp, N. S. Lewis, C. Xiang, Energy Environ. Sci. 2014, 7, 3371-3380 O. Khaselev, A. Bansal, J. A. Turner, Int. J. Hydrogen Energy 2001, 26, 127-132 L. Tong, A. Iwase, A. Nattestad, U. Bach, M. Weidelener, G. Gotz, A. Mishra, P. Bauerle, R. Amal, G. G. Wallace, A. J. Mozer, Energy Environ. Sci. 2012, 5, 9472-9475. A. Shinde, D. Guevarra, J. A. Haber, J. Jin, J. M. Gregoire, J. Mater. Res. 2014, 1-9. T. F. Yeh, C. Y. Teng, S. J. Chen, H. S. Teng, Adv. Mater. 2014, 26, 3297-3303. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446-6473 A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2000. R. E. Rocheleau, E. L. Miller, A. Misra, Energy Fuels 1998, 12, 3-10 J. S. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, Science 2014, 345, 1593-1596. G. Peharz, F. Dimroth, U. Wittstadt, Int. J. Hydrogen Energy 2007, 32, 3248-3252 L. Trotochaud, T. J. Mills, S. W. Boettcher, J. Phys. Chem. Lett. 2013, 4, 931-935 J. M. Spurgeon, M. G. Walter, J. Zhou, P. A. Kohl, N. S. Lewis, Energy Environ. Sci. 2011, 4, 1772-1780 F. I. Allen, L. R. Comoli, A. Kusoglu, M. A. Modestino, A. M. Minor, A. Z. Weber, ACS Macro Lett. 2015, 4, 1-5. H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, J. Phys. Chem. C 2011, 115, 20774-20781. S. Haussener, C. Xiang, J. M. Spurgeon, S. Ardo, N. S. Lewis, A. Z. Weber, Energy Environ. Sci. 2012, 5, 9922-9935. Y. Sasaki, H. Kato, A. Kudo, J. Am. Chem. Soc. 2013, 135, 5441-5449. R. C. Rossi, N. S. Lewis, J. Phys. Chem. B 2001, 105, 12303-12318. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2002. K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. Lett. 2015, 6, 592-598 K. Sun, F. H. Saadi, M. F. Lichterman, W. G. Hale, H.-P. Wang, X. Zhou, N. T. Plymale, S. T. Omelchenko, J.-H. He, K. M. Papadantonakis, B. S. Brunschwig, N. S. Lewis, Proc. Natl. Acad. Sci. USA 2015, 112, 3612-3617 R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805-809. Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625-627. M. A. Modestino, S. Haussener, Annu. Rev. Chem. Biomol. Eng. 2015, 6, 13-34 A. C. Tamboli, M. Malhotra, G. M. Kimball, D. B. Turner-Evans, H. A. Atwater, Appl. Phys. Lett. 2010, 97, 221914. S. A. Eastman, S. Kim, K. A. Page, B. W. Rowe, S. Kang, C. L. Soles, K. G. Yager, Macromolecules 2012, 45, 7920-7930 J. R. McKone, N. S. Lewis, H. B. Gray, Chem. Mater. 2014, 26, 407-414. C. M. Evans, M. R. Singh, N. A. Lynd, R. A. Segalman, Macromolecules 2015, 48, 3303-3309. J. T. Li, N. Q. Wu, Catal. Sci. Technol. 2015, 5, 1360-1384 K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307-326 F. Svegl, B. Orel, M. G. Hutchins, K. Kalcher, J. Electrochem. Soc. 1996, 143, 1532-1539 A. Roy, M. A. Hickner, X. Yu, Y. Li, T. E. Glass, J. E. McGrath, J. Polym. Sci. Part B 2006, 44, 2226-2239. H. Ahmad, S. K. Kamarudin, L. J. Minggu, M. Kassim, Renewable Sustainable Energy Rev. 2015, 43, 599-610 X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao, Chem. Rev. 2010, 2011; 115 1998; 280 2010; 97 2013; 4 2006; 31 2015; 70 2013; 67 2014; 26 2009; 113 2014; 24 1996; 143 2013; 8 2013; 6 2011; 111 2014; 128 2012; 134 2010; 1 2015; 137 2010; 110 2014; 14 1981 2010; 3 1998; 12 2005; 78 2014; 10 2010; 9 2001; 414 2012; 100 2010; 36 2010; 35 2014; 47 2001; 26 2011; 4 2011; 3 1985; 89 2007; 11 2011; 133 2012; 109 2013; 339 2000; 104 2006; 44 2015; 112 1981; 14 2005; 97 1985; 316 1995; 142 2008; 254 2012; 45 2006; 103 2013; 25 2015; 347 2008; 7 2011; 13 2007; 32 2013; 160 2001; 105 2015; 293 2015; 48 2014; 5 2000 2013; 13 2013; 12 1991; 42 2015; 43 1978; 29 2014; 161 2014; 9 2014; 8 2008; 155 2014; 7 2014; 118 2015; 15 2015; 6 2015; 5 2004; 104 2015; 4 2015; 3 2013; 46 2004 2011; 36 2002 2014; 111 2015; 8 2011; 332 2009; 34 2012; 2 1994; 246 2013; 38 2010; 132 2011; 44 2009; 8 2013; 135 1961 2016 2008; 457 2015 2014 2013 2012; 6 2009; 1 2012; 5 2014; 345 2014; 344 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_72_2 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_53_2 e_1_2_6_118_2 e_1_2_6_30_1 e_1_2_6_91_2 e_1_2_6_152_1 e_1_2_6_171_2 e_1_2_6_110_1 e_1_2_6_156_1 e_1_2_6_133_2 e_1_2_6_175_2 e_1_2_6_19_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_38_2 e_1_2_6_57_1 e_1_2_6_99_1 Sze S. M. (e_1_2_6_179_1) 1981 e_1_2_6_15_2 e_1_2_6_102_2 e_1_2_6_148_2 e_1_2_6_125_1 e_1_2_6_64_2 e_1_2_6_106_2 e_1_2_6_129_2 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_121_2 e_1_2_6_144_2 e_1_2_6_167_1 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_2 e_1_2_6_136_1 e_1_2_6_159_1 e_1_2_6_92_2 e_1_2_6_117_2 e_1_2_6_31_1 e_1_2_6_174_2 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_1 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_105_2 e_1_2_6_80_2 e_1_2_6_128_2 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_162_1 e_1_2_6_124_1 e_1_2_6_166_1 e_1_2_6_101_2 e_1_2_6_143_2 Newman J. (e_1_2_6_58_2) 2004 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_74_2 e_1_2_6_116_2 e_1_2_6_70_2 e_1_2_6_173_2 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_177_2 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_180_1 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_1 e_1_2_6_104_1 e_1_2_6_127_2 e_1_2_6_146_2 e_1_2_6_169_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_108_2 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_142_2 e_1_2_6_165_2 e_1_2_6_123_1 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 Bard A. J. (e_1_2_6_93_1) 2000 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_1 e_1_2_6_89_1 Shinde A. (e_1_2_6_88_1) 2014 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_138_1 e_1_2_6_94_1 e_1_2_6_71_2 e_1_2_6_119_2 Gerischer H. (e_1_2_6_81_2) 1961 e_1_2_6_90_1 e_1_2_6_153_1 e_1_2_6_172_2 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_134_2 e_1_2_6_176_2 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_103_2 e_1_2_6_86_2 e_1_2_6_168_2 e_1_2_6_21_1 e_1_2_6_107_2 e_1_2_6_40_2 e_1_2_6_82_1 e_1_2_6_141_2 e_1_2_6_145_1 Chen C. T. (e_1_2_6_147_2) 2013 e_1_2_6_122_2 e_1_2_6_164_2 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 |
References_xml | – year: 1981 – start-page: 1402276 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2825 year: 2015 end-page: 2850 publication-title: Energy Environ. Sci. – volume: 3 start-page: 19556 year: 2015 end-page: 19562 publication-title: J. Mater. Chem. A – volume: 8 start-page: 203 year: 2015 end-page: 207 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2644 year: 2015 end-page: 2649 publication-title: Energy Environ. Sci. – volume: 13 start-page: 2989 year: 2013 end-page: 2992 publication-title: Nano Lett. – volume: 14 start-page: 154 year: 1981 end-page: 162 publication-title: Acc. Chem. Res. – volume: 345 start-page: 1593 year: 2014 end-page: 1596 publication-title: Science – volume: 160 start-page: 337 year: 2013 end-page: 342 publication-title: J. Electrochem. Soc. – volume: 110 start-page: 6446 year: 2010 end-page: 6473 publication-title: Chem. Rev. – volume: 8 start-page: 2760 year: 2015 end-page: 2767 publication-title: Energy Environ. Sci. – volume: 134 start-page: 9054 year: 2012 end-page: 9057 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2014 end-page: 9 publication-title: J. Mater. Res. – year: 1961 – volume: 5 start-page: 7582 year: 2012 end-page: 7589 publication-title: Energy Environ. Sci. – start-page: 3397 year: 2013 end-page: 3401 publication-title: IEEE Photvoltaic Spec. Conf. – volume: 70 start-page: 877 year: 2015 end-page: 889 publication-title: Oil Gas Sci. Technol. – volume: 34 start-page: 2531 year: 2009 end-page: 2542 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 544 year: 2015 end-page: 551 publication-title: ChemSusChem – volume: 135 start-page: 5441 year: 2013 end-page: 5449 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 4901 year: 2013 end-page: 4934 publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 779 year: 2014 end-page: 790 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3 year: 1998 end-page: 10 publication-title: Energy Fuels – volume: 97 start-page: 221914 year: 2010 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2951 year: 2014 end-page: 295 publication-title: Energy Environ. Sci. – volume: 9 start-page: 239 year: 2010 end-page: 244 publication-title: Nat. Mater. – volume: 14 start-page: 3293 year: 2014 end-page: 3303 publication-title: Nano Lett. – volume: 42 start-page: 543 year: 1991 end-page: 580 publication-title: Annu. Rev. Phys. Chem. – volume: 26 start-page: 127 year: 2001 end-page: 132 publication-title: Int. J. Hydrogen Energy – volume: 332 start-page: 805 year: 2011 end-page: 809 publication-title: Science – volume: 142 start-page: 1859 year: 1995 end-page: 1868 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1772 year: 2011 end-page: 1780 publication-title: Energy Environ. Sci. – volume: 7 start-page: 3021 year: 2014 end-page: 3027 publication-title: ChemSusChem – volume: 8 start-page: 2886 year: 2015 end-page: 2901 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2951 year: 2014 end-page: 2956 publication-title: Energy Environ. Sci. – volume: 280 start-page: 425 year: 1998 end-page: 427 publication-title: Science – volume: 35 start-page: 10890 year: 2010 end-page: 10897 publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 7920 year: 2012 end-page: 7930 publication-title: Macromolecules – volume: 6 start-page: 3605 year: 2013 end-page: 3618 publication-title: Energy Environ. Sci. – volume: 8 start-page: 95 year: 2014 end-page: 103 publication-title: Nat. Photonics – volume: 347 start-page: 970 year: 2015 end-page: 974 publication-title: Science – volume: 8 start-page: 648 year: 2009 end-page: 653 publication-title: Nat. Mater. – volume: 161 start-page: 3283 year: 2014 end-page: 3296 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 770 year: 2008 end-page: 771 publication-title: Nat. Mater. – volume: 8 start-page: 3166 year: 2015 end-page: 3172 publication-title: Energy Environ. Sci. – volume: 67 start-page: 155 year: 2013 end-page: 161 publication-title: Chimia – volume: 8 start-page: 2003 year: 2015 end-page: 2009 publication-title: Energy Environ. Sci. – volume: 14 start-page: 18 year: 2014 end-page: 23 publication-title: Nano Lett. – volume: 344 start-page: 1005 year: 2014 end-page: 1009 publication-title: Science – volume: 109 start-page: 15622 year: 2012 end-page: 15627 publication-title: Proc. Natl. Acad. Sci. USA – volume: 133 start-page: 1216 year: 2011 end-page: 1219 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1037 year: 2010 publication-title: Energy Environ. Sci. – volume: 38 start-page: 2039 year: 2013 end-page: 2061 publication-title: Int. J. Hydrogen Energy – volume: 48 start-page: 7085 year: 2015 end-page: 7095 publication-title: Macromolecules – volume: 48 start-page: 4850 year: 2015 end-page: 4862 publication-title: Macromolecules – volume: 4 start-page: 931 year: 2013 end-page: 935 publication-title: J. Phys. Chem. Lett. – volume: 78 start-page: 581 year: 2005 end-page: 592 publication-title: Sol. Energy – volume: 6 start-page: 2984 year: 2013 end-page: 2993 publication-title: Energy Environ. Sci. – year: 2002 – volume: 137 start-page: 4347 year: 2015 end-page: 4357 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9472 year: 2012 end-page: 9475 publication-title: Energy Environ. Sci. – volume: 414 start-page: 625 year: 2001 end-page: 627 publication-title: Nature – volume: 111 start-page: 14057 year: 2014 end-page: 14061 publication-title: Proc. Natl. Acad. Sci. USA – volume: 104 start-page: 4637 year: 2004 end-page: 4678 publication-title: Chem. Rev. – volume: 111 start-page: 3713 year: 2011 end-page: 3735 publication-title: Chem. Rev. – volume: 339 start-page: 1057 year: 2013 end-page: 1060 publication-title: Science – volume: 4 start-page: 2993 year: 2011 end-page: 2998 publication-title: Energy Environ. Sci. – volume: 6 start-page: 347 year: 2013 end-page: 370 publication-title: Energy Environ. Sci. – volume: 25 start-page: 2264 year: 2013 end-page: 2273 publication-title: Chem. Mater. – volume: 9 start-page: 69 year: 2014 end-page: 73 publication-title: Nat. Nanotechnol. – volume: 109 start-page: 15617 year: 2012 end-page: 15621 publication-title: Proc. Natl. Acad. Sci. USA – volume: 36 start-page: 307 year: 2010 end-page: 326 publication-title: Prog. Energy Combust. Sci. – volume: 1 start-page: 7 year: 2009 publication-title: Nat. Chem. – volume: 3 start-page: 489 year: 2011 end-page: 492 publication-title: Nat. Chem. – volume: 112 start-page: 3612 year: 2015 end-page: 3617 publication-title: Proc. Natl. Acad. Sci. USA – volume: 161 start-page: 3328 year: 2014 end-page: 3340 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 2991 year: 2015 end-page: 2999 publication-title: Energy Environ. Sci. – volume: 6 start-page: 3713 year: 2013 end-page: 3721 publication-title: Energy Environ. Sci. – volume: 13 start-page: 774 year: 2011 end-page: 777 publication-title: Electrochem. Commun. – volume: 5 start-page: 1360 year: 2015 end-page: 1384 publication-title: Catal. Sci. Technol. – volume: 10 start-page: 1101 year: 2014 end-page: 1110 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 297 year: 2014 end-page: 301 publication-title: Energy Environ. Sci. – volume: 46 start-page: 867 year: 2013 end-page: 873 publication-title: Macromolecules – volume: 100 start-page: 410 year: 2012 end-page: 426 publication-title: Proc. IEEE – volume: 5 start-page: 4647 year: 2014 publication-title: Nat. Commun. – volume: 104 start-page: 8920 year: 2000 end-page: 8924 publication-title: J. Phys. Chem. B – volume: 1 start-page: 2655 year: 2010 end-page: 2661 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 247 year: 2013 end-page: 251 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1736 year: 2015 end-page: 1747 publication-title: Energy Environ. Sci. – volume: 43 start-page: 599 year: 2015 end-page: 610 publication-title: Renewable Sustainable Energy Rev. – volume: 293 start-page: 228 year: 2015 end-page: 235 publication-title: J. Power Sources – volume: 6 start-page: 592 year: 2015 end-page: 598 publication-title: J. Phys. Chem. Lett. – year: 2004 – volume: 46 start-page: 1543 year: 2013 end-page: 1548 publication-title: Macromolecules – volume: 31 start-page: 1658 year: 2006 end-page: 1673 publication-title: Int. J. Hydrogen Energy – volume: 26 start-page: 3297 year: 2014 end-page: 3303 publication-title: Adv. Mater. – volume: 113 start-page: 17536 year: 2009 end-page: 17542 publication-title: J. Phys. Chem. C – volume: 12 start-page: 158 year: 2013 end-page: 164 publication-title: Nat. Mater. – volume: 6 start-page: 1983 year: 2013 end-page: 2002 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2811 year: 2015 end-page: 2824 publication-title: Energy Environ. Sci. – volume: 48 start-page: 3303 year: 2015 end-page: 3309 publication-title: Macromolecules – volume: 45 start-page: 4681 year: 2012 end-page: 4688 publication-title: Macromolecules – volume: 8 start-page: 2791 year: 2015 end-page: 2796 publication-title: Energy Environ. Sci. – volume: 143 start-page: 1532 year: 1996 end-page: 1539 publication-title: J. Electrochem. Soc. – volume: 316 start-page: 495 year: 1985 end-page: 500 publication-title: Nature – volume: 254 start-page: 198 year: 2008 end-page: 204 publication-title: J. Catal. – volume: 4 start-page: 1 year: 2015 end-page: 5 publication-title: ACS Macro Lett. – volume: 24 start-page: 4763 year: 2014 end-page: 4774 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 407 year: 2014 end-page: 414 publication-title: Chem. Mater. – volume: 6 start-page: 824 year: 2012 end-page: 828 publication-title: Nat. Photonics – volume: 115 start-page: 20774 year: 2011 end-page: 20781 publication-title: J. Phys. Chem. C – volume: 6 start-page: 13 year: 2015 end-page: 34 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 15 start-page: 2287 year: 2015 end-page: 2296 publication-title: Lab Chip – volume: 29 start-page: 189 year: 1978 end-page: 222 publication-title: Annu. Rev. Phys. Chem. – year: 2000 – volume: 118 start-page: 747 year: 2014 end-page: 759 publication-title: J. Phys. Chem. C – volume: 2 start-page: 1109 year: 2012 end-page: 1116 publication-title: Adv. Energy Mater. – volume: 97 start-page: 114302 year: 2005 publication-title: J. Appl. Phys. – volume: 36 start-page: 945 year: 2011 end-page: 979 publication-title: Prog. Polym. Sci. – volume: 32 start-page: 3248 year: 2007 end-page: 3252 publication-title: Int. J. Hydrogen Energy – volume: 155 start-page: 521 year: 2008 end-page: 531 publication-title: J. Electrochem. Soc. – volume: 103 start-page: 15729 year: 2006 end-page: 15735 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 9653 year: 2012 end-page: 9661 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1468 year: 2014 end-page: 1476 publication-title: Energy Environ. Sci. – volume: 105 start-page: 12303 year: 2001 end-page: 12318 publication-title: J. Phys. Chem. B – volume: 38 start-page: 14424 year: 2013 end-page: 14432 publication-title: Int. J. Hydrogen Energy – volume: 160 start-page: 309 year: 2013 end-page: 311 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 2893 year: 2011 end-page: 2899 publication-title: Macromolecules – volume: 6 start-page: 3676 year: 2013 end-page: 3683 publication-title: Energy Environ. Sci. – start-page: 1600379 year: 2016 publication-title: Adv. Energy Materials – volume: 8 start-page: 876 year: 2015 end-page: 886 publication-title: Energy Environ. Sci. – volume: 110 start-page: 6503 year: 2010 end-page: 6570 publication-title: Chem. Rev. – volume: 5 start-page: 9922 year: 2012 end-page: 9935 publication-title: Energy Environ. Sci. – volume: 11 start-page: 401 year: 2007 end-page: 425 publication-title: Renewable Sustainable Energy Rev. – volume: 132 start-page: 5858 year: 2010 end-page: 5868 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 7540 year: 2014 end-page: 7547 publication-title: Macromolecules – volume: 8 start-page: 731 year: 2015 end-page: 759 publication-title: Energy Environ. Sci. – volume: 9 start-page: 205 year: 2010 end-page: 213 publication-title: Nat. Mater. – volume: 7 start-page: 1372 year: 2014 end-page: 1385 publication-title: ChemSusChem – volume: 128 start-page: 85 year: 2014 end-page: 101 publication-title: Sol. Energy Mater. Sol. Cells – volume: 246 start-page: 131 year: 1994 end-page: 142 publication-title: Thin Solid Films – volume: 89 start-page: 4444 year: 1985 end-page: 4452 publication-title: J. Phys. Chem. – volume: 44 start-page: 2226 year: 2006 end-page: 2239 publication-title: J. Polym. Sci. Part B – volume: 457 start-page: 134 year: 2008 end-page: 136 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 3371 year: 2014 end-page: 3380 publication-title: Energy Environ. Sci. – volume: 36 start-page: 7799 year: 2011 end-page: 7806 publication-title: Int. J. Hydrogen Energy – ident: e_1_2_6_132_1 – ident: e_1_2_6_36_2 doi: 10.1039/c3ee42519c – ident: e_1_2_6_10_2 doi: 10.1126/science.1258307 – ident: e_1_2_6_23_2 doi: 10.1039/c3ee40453f – ident: e_1_2_6_73_2 doi: 10.1039/C5EE01687H – ident: e_1_2_6_31_1 – ident: e_1_2_6_53_2 doi: 10.1039/C4CY00974F – ident: e_1_2_6_159_1 doi: 10.1038/ncomms5647 – ident: e_1_2_6_135_1 doi: 10.1149/2.020304jes – ident: e_1_2_6_178_1 doi: 10.1039/C5LC00259A – ident: e_1_2_6_143_2 doi: 10.1021/nl500704r – ident: e_1_2_6_163_1 – ident: e_1_2_6_42_2 doi: 10.1039/C4EE03012E – ident: e_1_2_6_79_2 doi: 10.1021/ar00065a004 – ident: e_1_2_6_115_1 – ident: e_1_2_6_14_1 – ident: e_1_2_6_86_2 doi: 10.1149/1.1836675 – ident: e_1_2_6_63_1 – ident: e_1_2_6_114_1 doi: 10.1021/acs.macromol.5b00579 – ident: e_1_2_6_82_1 doi: 10.1073/pnas.1118341109 – ident: e_1_2_6_50_2 doi: 10.1039/C4EE03271C – ident: e_1_2_6_17_2 doi: 10.2172/1218403 – ident: e_1_2_6_19_2 doi: 10.1039/c3ee41302k – ident: e_1_2_6_117_2 doi: 10.1021/ma501744w – ident: e_1_2_6_51_2 doi: 10.1039/C5EE01434D – ident: e_1_2_6_100_1 – ident: e_1_2_6_155_1 doi: 10.1126/science.aaa3145 – ident: e_1_2_6_16_2 doi: 10.1039/c3ee40831k – start-page: 3397 year: 2013 ident: e_1_2_6_147_2 publication-title: IEEE Photvoltaic Spec. Conf. contributor: fullname: Chen C. T. – ident: e_1_2_6_160_1 doi: 10.1021/ja400238r – ident: e_1_2_6_40_2 doi: 10.1016/j.ijhydene.2007.04.036 – ident: e_1_2_6_49_2 doi: 10.1016/j.rser.2005.01.009 – ident: e_1_2_6_177_2 doi: 10.1021/mz500606h – ident: e_1_2_6_106_2 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_6_28_2 doi: 10.1039/C4EE01824A – ident: e_1_2_6_77_1 – ident: e_1_2_6_25_2 doi: 10.1002/cssc.201301030 – ident: e_1_2_6_129_2 doi: 10.1063/1.1901835 – ident: e_1_2_6_80_2 doi: 10.1146/annurev.pc.42.100191.002551 – ident: e_1_2_6_48_2 doi: 10.1016/j.solmat.2014.04.037 – ident: e_1_2_6_133_2 doi: 10.1021/ef9701347 – ident: e_1_2_6_142_2 doi: 10.1126/science.1230969 – ident: e_1_2_6_29_2 doi: 10.1039/C5EE01721A – ident: e_1_2_6_96_2 doi: 10.1039/C3EE43214A – ident: e_1_2_6_34_1 – ident: e_1_2_6_104_1 – ident: e_1_2_6_169_2 doi: 10.1039/C5EE00777A – ident: e_1_2_6_128_2 doi: 10.1038/nmat3477 – ident: e_1_2_6_18_1 – ident: e_1_2_6_150_1 doi: 10.1039/C5EE01434D – ident: e_1_2_6_44_2 doi: 10.1021/nl401615t – ident: e_1_2_6_62_1 doi: 10.1038/nmat2629 – ident: e_1_2_6_90_1 – ident: e_1_2_6_102_2 doi: 10.1021/ja302439z – ident: e_1_2_6_6_2 doi: 10.1021/cr1002326 – ident: e_1_2_6_11_1 – ident: e_1_2_6_35_2 doi: 10.1016/j.ijhydene.2013.07.010 – ident: e_1_2_6_118_2 doi: 10.1021/acs.macromol.5b01382 – ident: e_1_2_6_37_2 doi: 10.1016/S0360-3199(00)00039-2 – ident: e_1_2_6_120_1 – ident: e_1_2_6_9_2 doi: 10.1073/pnas.1414290111 – ident: e_1_2_6_99_1 doi: 10.1039/C5TA06315A – ident: e_1_2_6_22_2 doi: 10.1039/C4EE02314E – ident: e_1_2_6_72_2 doi: 10.1073/pnas.1423034112 – volume-title: Advances in Electrochemistry and Electrochemical Engineering, Vol. 1 year: 1961 ident: e_1_2_6_81_2 contributor: fullname: Gerischer H. – ident: e_1_2_6_108_2 doi: 10.1109/JPROC.2011.2156750 – ident: e_1_2_6_131_1 doi: 10.1038/nphoton.2012.265 – ident: e_1_2_6_13_2 doi: 10.1016/j.ijhydene.2009.01.053 – ident: e_1_2_6_98_1 doi: 10.1039/c2ee03422k – ident: e_1_2_6_61_1 doi: 10.1039/C4EE01753F – volume-title: Electrochemical Methods, Fundamentals and Applications, 2nd ed. year: 2000 ident: e_1_2_6_93_1 contributor: fullname: Bard A. J. – ident: e_1_2_6_26_2 doi: 10.1039/C3EE43807D – ident: e_1_2_6_153_1 doi: 10.1016/j.jcat.2007.12.009 – ident: e_1_2_6_167_1 – ident: e_1_2_6_5_1 – ident: e_1_2_6_27_1 – ident: e_1_2_6_21_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_56_1 doi: 10.1038/316495a0 – ident: e_1_2_6_41_2 doi: 10.1021/ja108801m – ident: e_1_2_6_174_2 doi: 10.1021/ma102361f – ident: e_1_2_6_46_1 – ident: e_1_2_6_126_1 – ident: e_1_2_6_148_2 doi: 10.1063/1.3522895 – ident: e_1_2_6_145_1 – ident: e_1_2_6_136_1 doi: 10.1038/nmat2284 – ident: e_1_2_6_89_1 doi: 10.1021/j100267a010 – ident: e_1_2_6_2_2 doi: 10.1038/nchem.141 – ident: e_1_2_6_101_2 doi: 10.1016/j.ijhydene.2010.07.058 – volume-title: Physics of Semiconductor Devices, 3rd ed. year: 1981 ident: e_1_2_6_179_1 contributor: fullname: Sze S. M. – ident: e_1_2_6_43_2 doi: 10.1039/c2ee23192a – ident: e_1_2_6_55_1 doi: 10.1039/c2ee23187e – ident: e_1_2_6_137_1 doi: 10.1038/nmat2635 – ident: e_1_2_6_173_2 doi: 10.1021/ma301289v – ident: e_1_2_6_94_1 doi: 10.1021/ja510442p – ident: e_1_2_6_124_1 doi: 10.1002/cssc.201402288 – ident: e_1_2_6_165_2 doi: 10.2516/ogst/2014061 – ident: e_1_2_6_176_2 doi: 10.1002/adfm.201304311 – ident: e_1_2_6_139_1 doi: 10.1039/C3EE43048K – ident: e_1_2_6_119_2 doi: 10.1021/acs.macromol.5b00926 – ident: e_1_2_6_68_2 doi: 10.1038/nnano.2013.18 – ident: e_1_2_6_4_2 doi: 10.1126/science.1200165 – ident: e_1_2_6_76_1 doi: 10.1021/jp011861c – ident: e_1_2_6_67_2 doi: 10.1038/nchem.1048 – ident: e_1_2_6_107_2 doi: 10.1016/j.ijhydene.2012.12.010 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.0603395103 – ident: e_1_2_6_112_1 doi: 10.1021/cr020715f – ident: e_1_2_6_144_2 doi: 10.1038/nmat2493 – ident: e_1_2_6_170_1 – ident: e_1_2_6_33_2 doi: 10.1149/2.0751410jes – ident: e_1_2_6_138_1 doi: 10.1073/pnas.1118338109 – ident: e_1_2_6_140_1 – ident: e_1_2_6_54_2 doi: 10.1021/cr1001645 – ident: e_1_2_6_83_1 – ident: e_1_2_6_146_2 doi: 10.1002/aenm.201100728 – ident: e_1_2_6_154_1 doi: 10.1038/nnano.2013.272 – ident: e_1_2_6_87_2 doi: 10.1016/0040-6090(94)90742-0 – ident: e_1_2_6_24_2 doi: 10.1039/C4EE01753F – ident: e_1_2_6_66_1 – ident: e_1_2_6_69_1 – ident: e_1_2_6_158_1 doi: 10.1021/ja1009025 – ident: e_1_2_6_134_2 doi: 10.1039/c2ee22866a – ident: e_1_2_6_166_1 doi: 10.1039/c1ee01203g – ident: e_1_2_6_65_2 doi: 10.1038/nphoton.2013.238 – ident: e_1_2_6_7_2 doi: 10.1039/C5EE00457H – ident: e_1_2_6_168_2 doi: 10.1039/c1ee01028j – ident: e_1_2_6_110_1 doi: 10.1149/2.035408jes – ident: e_1_2_6_152_1 doi: 10.1016/j.cplett.2008.03.065 – ident: e_1_2_6_121_2 doi: 10.1016/j.progpolymsci.2010.12.005 – ident: e_1_2_6_157_1 doi: 10.1002/adma.201305299 – ident: e_1_2_6_20_2 doi: 10.1021/cm4021518 – ident: e_1_2_6_91_2 doi: 10.1039/C5EE00311C – ident: e_1_2_6_149_1 doi: 10.1021/nl402205f – start-page: 1 year: 2014 ident: e_1_2_6_88_1 publication-title: J. Mater. Res. contributor: fullname: Shinde A. – ident: e_1_2_6_122_2 doi: 10.1021/jp204610j – ident: e_1_2_6_156_1 doi: 10.1021/jp907128k – ident: e_1_2_6_84_2 doi: 10.1021/jz4002604 – ident: e_1_2_6_161_1 doi: 10.1021/jz1007966 – ident: e_1_2_6_64_2 doi: 10.1021/cr1002529 – volume-title: Electrochemical Systems, 3rd ed. year: 2004 ident: e_1_2_6_58_2 contributor: fullname: Newman J. – ident: e_1_2_6_39_2 doi: 10.1021/jp002083b – ident: e_1_2_6_45_2 doi: 10.1039/C5EE02214B – ident: e_1_2_6_1_1 – ident: e_1_2_6_171_2 doi: 10.1021/ma301999a – ident: e_1_2_6_97_2 doi: 10.1039/C5EE00083A – ident: e_1_2_6_175_2 doi: 10.1016/j.elecom.2011.04.022 – ident: e_1_2_6_181_1 doi: 10.1021/jp406280x – ident: e_1_2_6_52_2 doi: 10.1039/C2EE22618A – ident: e_1_2_6_74_2 doi: 10.1126/science.1251428 – ident: e_1_2_6_113_1 doi: 10.1149/1.2044206 – ident: e_1_2_6_70_2 doi: 10.1002/aenm.201402276 – ident: e_1_2_6_162_1 doi: 10.1021/cm400759f – ident: e_1_2_6_12_2 doi: 10.1016/j.ijhydene.2011.01.180 – ident: e_1_2_6_30_1 doi: 10.1002/cssc.201402896 – ident: e_1_2_6_125_1 doi: 10.1002/aenm.201600379 – ident: e_1_2_6_60_1 – ident: e_1_2_6_127_2 doi: 10.1016/j.ijhydene.2005.12.014 – ident: e_1_2_6_164_2 doi: 10.1146/annurev-chembioeng-061114-123357 – ident: e_1_2_6_15_2 – ident: e_1_2_6_172_2 doi: 10.1021/ma300212f – ident: e_1_2_6_75_2 doi: 10.1039/C5EE01786F – ident: e_1_2_6_103_2 doi: 10.1149/2.033408jes – ident: e_1_2_6_38_2 doi: 10.1126/science.280.5362.425 – ident: e_1_2_6_116_2 doi: 10.1021/ma3024624 – ident: e_1_2_6_71_2 doi: 10.1021/jz5026195 – ident: e_1_2_6_180_1 doi: 10.1016/j.solener.2004.02.002 – ident: e_1_2_6_105_2 doi: 10.1016/j.pecs.2009.11.002 – ident: e_1_2_6_151_1 doi: 10.1038/414625a – ident: e_1_2_6_141_2 doi: 10.1039/c0ee00014k – ident: e_1_2_6_123_1 doi: 10.1002/polb.20859 – ident: e_1_2_6_92_2 doi: 10.1039/C5EE02188J – ident: e_1_2_6_95_1 – ident: e_1_2_6_32_2 doi: 10.1039/c3ee42143k – ident: e_1_2_6_109_1 doi: 10.1016/j.jpowsour.2015.05.077 – ident: e_1_2_6_47_2 doi: 10.1016/j.rser.2014.10.101 – ident: e_1_2_6_57_1 – ident: e_1_2_6_59_2 doi: 10.1115/1.1424298 – ident: e_1_2_6_78_2 doi: 10.1146/annurev.pc.29.100178.001201 – ident: e_1_2_6_130_1 doi: 10.2533/chimia.2013.155 – ident: e_1_2_6_85_2 doi: 10.1149/2.035304jes – ident: e_1_2_6_111_1 doi: 10.1149/1.2898130 |
SSID | ssj0028806 |
Score | 2.5788398 |
SecondaryResourceType | review_article |
Snippet | An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes... An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes... Abstract An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC)... |
SourceID | osti proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 12974 |
SubjectTerms | Computer architecture Computer simulation Conversion Design Design engineering device architecture Devices Efficiency Functional anatomy Hydrogen INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Integration modeling Modelling photoelectrochemistry Physics Prototypes Reviews SOLAR ENERGY solar-driven water splitting Splitting Time Water splitting |
Title | Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices |
URI | https://api.istex.fr/ark:/67375/WNG-50RQ68XK-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201510463 https://www.ncbi.nlm.nih.gov/pubmed/27460923 https://www.proquest.com/docview/1826492798 https://www.proquest.com/docview/1906472718 https://search.proquest.com/docview/1826732541 https://www.osti.gov/servlets/purl/1506250 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC4kHvTiWzMmSguil0wy0z09s30M2cSouGA2IXtr-jUgIbOy2QXx5E_wN_pLrOp56EpA0NsO82Crq6vqq5mqrwBeBjNSsebJqBoTFOdEaqUyabAFt66qRkVB3cgfJuXxWfFuJme_dfG3_BDDCzeyjOivycCNvdr7RRpKHdhUmiXpKyXRfeaiopqu8cnAH8Vxc7btRUKkNIW-Z23M-N767WtR6SYt8Bf00XO0suuQ5zqQjZHo6C6YXoa2AOVid7W0u-7rH_SO_yPkPbjTwVS23-6r-3AjNA_g1kE_He4hnNIQNWpl32HTT5fdDLAdZhrPIuHwZdfT1LB5zaaUP__49n28IN_KzhHf0uEUAXAsu2bjEB3WIzg7Ojw9OE67CQ2pKzMlUmEUDfkMkmZV--BzZxBAWC89TctVmfRWWnQihbOIQ31eSu_qUuXWelG5WorHsNHMm7AJjNPYrBpDpxeYczqpbJEjlsqV9N5UPk_gda8h_bkl4tAt5TLXtEp6WKUEXkUFDpeZxQWVr1VSn0_eaJmdfCxHs_d6ksAWaVgj1iDCXEeVRW6piXMRgWEC273idWfXV5qysUKhaKPrTyvq3eUY7xN4MZxGzdBXGNOE-ap9RCUwL0eRnrT7afinvCpwXTmKwOOu-Iuken_y9nA4evovN23BbfxdUjTOs23YWC5W4RnCrKV9Hk3pJ_C5HPU |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61cKCXvh8ulLpS1V4w2LteO3tEBBoKWCoJgttqX5YqhFOliVT11J_Q38gvYcYvlAqpUnt0HFuenZ2Zb-yZ-QDeez2Qdc2TliUmKNbyyAipI29SZmyeD9KUupFPimx0ln6-EF01IfXCNPMh-hduZBm1vyYDpxfSO7dTQ6kFm2qzBH2m5PdhFW2eE3vD8LSfIMVwezYNRpxHxEPfzW2M2c7y9UtxaZWW-Ad66Sna2V3YcxnK1rHo4BGYToqmBOVyezE32_bnHwMe_0vMx_CwRarhbrO1nsA9Xz2Ftb2OIO4ZTIhHjbrZt8Lx16uWBmwr1JUL65nDV21bUxVOy3BMKfT1r9_DGbnX8BwhLh2OEQPXldfh0Nc-6zmcHexP9kZRS9IQ2SyWPOJaEs-nF0RX7bxLrEYMYZxwRJgrY-GMMOhHUmsQirokE86WmUyMcTy3peAvYKWaVv4VhIyYs0qMno5j2mmFNGmCcCqRwjmduySAj52K1LdmFodqpi4zRauk-lUK4EOtwf5venZJFWy5UOfFJyXi0y_Z4OJIFQGsk4oVwg2amWupuMjOFY1dRGwYwEanedWa9ndFCVkqUbTB3aclte8yDPkBvOtPo2boQ4yu_HTR3CLnmJqjSC-bDdU_KctTXFeGIrB6W_xFUrVbHO73R6__5aK3sDaanByr48PiaB0e4O8ZBeck3oCV-Wzh3yDqmpvN2q5uAK97IQ0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKwGX8iyYFjASgkvd2l6vnT1WTUNLwYKmVXNb7csSqupUaSIhTvwEfiO_hJn1A4IqIcElkuM4yuzszHyTnfkG4JVTA-FrnpSoMEExhkWaCxU5naXaFMUgy6gb-UOZH5xm7yZ88lsXf8MP0f_hRpbh_TUZ-KWtdn6RhlIHNpVmcTqlZDdhFV9jf1B73BNIpbg7m_4ixiIaQ9_RNsbpzvLzS2FplVb4CzrpKZrZddBzGcn6UDS6C6oToqlAOd9ezPW2-foHv-P_SHkP1lqcGu42G-s-3HD1A7i9142HewgnNEWNetm3wvHni3YI2Faoaht6xuGLtqmpDqdVOKYE-se378MZOdfwDAEuXY4RAfu663DovMd6BKej_ZO9g6gd0RCZPBYsYkrQlE_HaVi1dTYxChGEttzSuFwRc6u5Ri-SGY1A1CY5t6bKRaK1ZYWpOFuHlXpauycQpjQ3q8LYaRkmnYYLnSUIphLBrVWFTQJ402lIXjZMHLLhXE4lrZLsVymA116B_cfU7Jzq1wouz8q3ksfHn_LB5EiWAWyQhiWCDWLMNVRaZOaSSBcRGQaw2SletoZ9JSkdywSKNrj-tqDm3RQDfgAv-9uoGTqGUbWbLpqvKBgm5ijS42Y_9b80LTJc1xRFSP2u-Iukcrc83O-vnv7LQy_g1sfhSL4_LI824A6-nVNkTuJNWJnPFu4ZQq65fu6t6icoox-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+Simulation%2C+and+Implementation+of+Solar-Driven+Water-Splitting+Devices&rft.jtitle=Angewandte+Chemie+%28International+ed.%29&rft.au=Xiang%2C+Chengxiang&rft.au=Weber%2C+Adam+Z.&rft.au=Ardo%2C+Shane&rft.au=Berger%2C+Alan&rft.date=2016-10-10&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=55&rft.issue=42&rft_id=info:doi/10.1002%2Fanie.201510463&rft.externalDocID=1506250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |