Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest

Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of q...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 29; no. 10; pp. 1268 - 1277
Main Authors Marechaux, Isabelle, Bartlett, Megan K., Sack, Lawren, Baraloto, Christopher, Engel, Julien, Joetzjer, Emilie, Chave, Jérôme
Format Journal Article
LanguageEnglish
Published London Wiley 01.10.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Lay Summary
AbstractList Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements.Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species.Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season.Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species.Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness).The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πₜₗₚ) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πₒ) is tightly correlated with πₜₗₚ. Estimating πₜₗₚ from osmometer measurements of πₒ is much faster than the standard pressure–volume curve approach of πₜₗₚ determination. We used this technique to estimate πₜₗₚ for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πₜₗₚ ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πₜₗₚ (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, πₜₗₚ correlated positively but weakly with leaf toughness (R² = 0·22, P = 0·04) and leaf thickness (R² = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πₜₗₚ among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πₜₗₚ and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Lay Summary
1. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. 2. Leaf water potential at wilting or turgor loss point (pi(tlp)) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (pi(o)) is tightly correlated with pi(tlp). Estimating pi(tlp) from osmometer measurements of pi(o) is much faster than the standard pressure-volume curve approach of pi(tlp) determination. We used this technique to estimate pi(tlp) for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. 3. Tropical trees showed a wider range of drought tolerance than previously found in the literature, pi(tlp) ranging from -1.4 to -3.2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. 4. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative pi(tlp) (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. 5. Across individuals, pi(tlp) correlated positively but weakly with leaf toughness (R-2 = 0.22, P = 0.04) and leaf thickness (R-2 = 0.03, P = 0.03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). 6. The variability in pi(tlp) among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between pi(tlp) and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (π tlp ) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (π o ) is tightly correlated with π tlp . Estimating π tlp from osmometer measurements of π o is much faster than the standard pressure–volume curve approach of π tlp determination. We used this technique to estimate π tlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, π tlp ranging from −1·4 to −3·2 MP a. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative π tlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, π tlp correlated positively but weakly with leaf toughness ( R 2   =   0·22, P  =   0·04) and leaf thickness ( R 2   =   0·03, P  =   0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in π tlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between π tlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure-volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from -1·4 to -3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Author Baraloto, Christopher
Bartlett, Megan K.
Marechaux, Isabelle
Sack, Lawren
Joetzjer, Emilie
Chave, Jérôme
Engel, Julien
Author_xml – sequence: 1
  givenname: Isabelle
  surname: Marechaux
  fullname: Marechaux, Isabelle
– sequence: 2
  givenname: Megan K.
  surname: Bartlett
  fullname: Bartlett, Megan K.
– sequence: 3
  givenname: Lawren
  surname: Sack
  fullname: Sack, Lawren
– sequence: 4
  givenname: Christopher
  surname: Baraloto
  fullname: Baraloto, Christopher
– sequence: 5
  givenname: Julien
  surname: Engel
  fullname: Engel, Julien
– sequence: 6
  givenname: Emilie
  surname: Joetzjer
  fullname: Joetzjer, Emilie
– sequence: 7
  givenname: Jérôme
  surname: Chave
  fullname: Chave, Jérôme
BackLink https://hal.inrae.fr/hal-02638162$$DView record in HAL
BookMark eNqFkb1vGyEYh09VKtVJO3eqhNSlHS7h4-DuRsv5qmSpSzujN8DZWBiugGO5e__vcnHqIUPDAnp5Hnjhd16d-eBNVX0k-JKUcUWY4DVtGL8ktOH0TTU7Vc6qGaair7tGsHfVeUobjHHPKZ1Vf65j2K3WGeXgTASvDIKExmi0Vdlo9HBAzsCA9pBNRGPIxmcLDkExdnEVInIhFSFYn9EjRGsSSjkGv3IHBCpOm2k0aqrvbV5bj8Cj-RZ-B2_LagjRpPy-ejuAS-bD83xR_by9-bG4r5ff774t5staCdzTWnNBBsMarCg3AwOtNVfKKKopJmbQutegoO073gl4GFgHGBMMrChtazrNLqqvx3PX4OQY7RbiQQaw8n6-lFOtfBPriKCPpLBfjuwYw69daVJubVLGOfAm7JIkbSMaIkTLC_r5BboJu-jLSyRlbYNJzzv2P4q0pKOt6Ckt1NWRevq7aIZTnwTLKWg5xSqnWOVT0MXgLwxlM2QbfI5g3eve3jpzeO0aeXuz-Od9OnqblEM8eU3HW9Fiwf4CB6HHYQ
CODEN FECOE5
CitedBy_id crossref_primary_10_1016_j_plaphy_2019_04_031
crossref_primary_10_1111_1365_2435_13522
crossref_primary_10_1007_s00468_020_01998_5
crossref_primary_10_1007_s00468_019_01842_5
crossref_primary_10_3389_fpls_2022_892096
crossref_primary_10_3390_plants9020234
crossref_primary_10_1007_s11295_023_01633_7
crossref_primary_10_3390_f13020244
crossref_primary_10_1098_rstb_2018_0209
crossref_primary_10_1016_j_foreco_2020_117931
crossref_primary_10_5194_bg_17_2621_2020
crossref_primary_10_1111_pce_14704
crossref_primary_10_1093_treephys_tpad088
crossref_primary_10_1007_s10681_024_03359_6
crossref_primary_10_1002_ecm_1271
crossref_primary_10_1016_j_agrformet_2016_08_019
crossref_primary_10_1093_treephys_tpy052
crossref_primary_10_3390_f14040697
crossref_primary_10_1111_plb_13355
crossref_primary_10_1007_s11104_019_04133_7
crossref_primary_10_3390_f7050105
crossref_primary_10_1002_ecy_2591
crossref_primary_10_1007_s00442_019_04336_w
crossref_primary_10_3390_rs11020138
crossref_primary_10_1111_1365_2435_13135
crossref_primary_10_1111_ppl_13161
crossref_primary_10_3390_w12061626
crossref_primary_10_1016_j_agrformet_2016_08_014
crossref_primary_10_3390_f16030396
crossref_primary_10_1002_ece3_5452
crossref_primary_10_1111_ele_12670
crossref_primary_10_1016_j_foreco_2020_118454
crossref_primary_10_1111_1365_2745_13454
crossref_primary_10_1111_pce_13512
crossref_primary_10_1002_eco_1858
crossref_primary_10_1007_s00468_020_01979_8
crossref_primary_10_3390_f14091759
crossref_primary_10_1098_rstb_2016_0142
crossref_primary_10_1007_s40725_020_00115_6
crossref_primary_10_1086_685894
crossref_primary_10_1016_j_ufug_2015_08_004
crossref_primary_10_1111_gcb_13731
crossref_primary_10_1002_glr2_12021
crossref_primary_10_3389_ffgc_2020_598759
crossref_primary_10_1002_ecy_3700
crossref_primary_10_1111_ppl_13974
crossref_primary_10_3390_plants10112407
crossref_primary_10_1111_ppl_12922
crossref_primary_10_1093_jpe_rtae103
crossref_primary_10_1111_nph_16996
crossref_primary_10_3389_fpls_2019_01522
crossref_primary_10_1093_aobpla_ply053
crossref_primary_10_1016_j_scitotenv_2021_151466
crossref_primary_10_1111_1365_2435_13312
crossref_primary_10_1111_gcb_15621
crossref_primary_10_1016_j_plaphy_2018_09_027
crossref_primary_10_1186_s40663_019_0189_8
crossref_primary_10_1111_geb_13765
crossref_primary_10_1590_01047760202228013090
crossref_primary_10_1093_treephys_tpab092
crossref_primary_10_3390_land10020212
crossref_primary_10_1093_treephys_tpy047
crossref_primary_10_1016_j_plaphy_2018_06_004
crossref_primary_10_1093_treephys_tpz130
crossref_primary_10_1111_1365_2435_13792
crossref_primary_10_1111_1365_2435_12900
crossref_primary_10_1111_pce_14380
crossref_primary_10_1016_j_scitotenv_2019_02_349
crossref_primary_10_1007_s00468_019_01864_z
crossref_primary_10_1093_jxb_erae159
crossref_primary_10_1111_nph_19169
crossref_primary_10_1111_ele_14128
crossref_primary_10_1111_nph_17266
crossref_primary_10_1038_s41467_020_20811_y
crossref_primary_10_3389_frsc_2024_1451930
crossref_primary_10_1016_j_scitotenv_2021_148103
crossref_primary_10_1038_s41598_018_36971_3
crossref_primary_10_1038_s41598_022_21035_4
crossref_primary_10_1088_1748_9326_aa5968
crossref_primary_10_1093_treephys_tpae010
crossref_primary_10_1093_treephys_tpy013
crossref_primary_10_3389_fpls_2016_00073
crossref_primary_10_1002_ajb2_1164
crossref_primary_10_1093_treephys_tpae095
crossref_primary_10_1111_pce_12970
crossref_primary_10_3389_fpls_2022_902509
crossref_primary_10_1093_jpe_rtab054
crossref_primary_10_3390_biology13030194
crossref_primary_10_1002_ppp3_10162
crossref_primary_10_5194_gmd_15_7809_2022
crossref_primary_10_1094_PBIOMES_04_22_0023_R
crossref_primary_10_1016_j_envexpbot_2024_105747
crossref_primary_10_1111_gcb_13863
crossref_primary_10_1186_s13007_024_01304_1
crossref_primary_10_1007_s00442_018_4325_x
crossref_primary_10_1093_treephys_tpad058
crossref_primary_10_1111_pce_12732
crossref_primary_10_1111_plb_13448
crossref_primary_10_3389_fpls_2017_01542
crossref_primary_10_1111_plb_13687
crossref_primary_10_1093_treephys_tpx053
crossref_primary_10_1016_j_envexpbot_2025_106106
crossref_primary_10_1093_jpe_rtx011
crossref_primary_10_1007_s00468_023_02483_5
crossref_primary_10_1111_nph_15185
crossref_primary_10_3389_fpls_2016_00726
crossref_primary_10_1111_1365_2435_12894
crossref_primary_10_1186_s40663_017_0112_0
crossref_primary_10_1111_nph_18177
crossref_primary_10_1111_1365_2435_13188
crossref_primary_10_3390_plants12030531
crossref_primary_10_1111_pce_12948
crossref_primary_10_1071_FP16381
crossref_primary_10_3389_fpls_2022_949531
crossref_primary_10_1016_j_gecco_2024_e03291
crossref_primary_10_1016_j_tplants_2016_02_003
crossref_primary_10_1111_1365_2745_13321
crossref_primary_10_1071_FP16263
crossref_primary_10_3389_ffgc_2020_596256
crossref_primary_10_1071_FP17079
crossref_primary_10_1016_j_plaphy_2019_03_043
crossref_primary_10_1111_nph_19669
crossref_primary_10_1007_s00271_021_00748_w
crossref_primary_10_3390_f9030114
crossref_primary_10_32615_ps_2023_017
crossref_primary_10_1002_ajb2_1607
crossref_primary_10_1111_1365_2435_12661
crossref_primary_10_1111_nph_15058
crossref_primary_10_1016_j_foreco_2020_118160
crossref_primary_10_1186_s13007_019_0410_3
crossref_primary_10_1088_1748_9326_ab2eae
crossref_primary_10_1111_ele_70014
crossref_primary_10_1111_pce_14857
crossref_primary_10_3389_fpls_2023_1131778
crossref_primary_10_1111_pce_13129
crossref_primary_10_1016_j_envexpbot_2019_04_012
crossref_primary_10_1029_2021JG006579
crossref_primary_10_1371_journal_pone_0180932
crossref_primary_10_1016_j_agrformet_2024_110052
crossref_primary_10_1007_s13595_019_0905_0
crossref_primary_10_1111_btp_12901
crossref_primary_10_1007_s11676_025_01846_7
crossref_primary_10_1111_ele_12739
crossref_primary_10_3389_fevo_2018_00217
crossref_primary_10_3390_rs14071733
Cites_doi 10.1111/nph.12465
10.1007/s00442-004-1624-1
10.1111/j.1365-2486.2008.01626.x
10.1029/2001JD000360
10.1111/pce.12141
10.1111/j.1469-8137.2012.04170.x
10.1111/1365-2745.12211
10.1002/ece3.441
10.1016/j.ppees.2011.11.001
10.1111/j.1461-0248.2012.01834.x
10.1098/rstb.2007.0028
10.1111/nph.12390
10.1146/annurev.pp.40.060189.000315
10.1175/JCLI-D-13-00074.1
10.1111/j.1365-2745.2009.01604.x
10.1111/j.1744-7429.2006.00172.x
10.1175/JCLI-D-11-00366.1
10.1111/j.1365-2699.2005.01219.x
10.1111/j.1365-3040.2005.01407.x
10.3417/2009143
10.1073/pnas.1404870111
10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
10.1890/10-0724.1
10.1111/j.1399-3054.2006.00680.x
10.1111/j.1365-2486.2011.02451.x
10.1111/j.1365-2486.2007.01417.x
10.1890/06-1046.1
10.1111/j.1469-8137.2010.03439.x
10.1046/j.1365-3040.2003.00975.x
10.1073/pnas.1019576108
10.1007/s11258-009-9592-5
10.1111/j.1469-8137.2010.03359.x
10.1111/j.1469-8137.2009.02830.x
10.1111/j.1365-3040.2010.02231.x
10.1111/nph.12632
10.1007/s00442-011-2064-3
10.1007/978-94-015-9821-7_2
10.1093/aob/mcm234
10.1371/journal.pbio.1001569
10.1111/j.1365-2435.2009.01600.x
10.1073/pnas.1218042110
10.1007/978-94-009-2221-1_9
10.1098/rstb.2007.0019
10.1007/s004420100628
10.1046/j.1365-2435.2002.00631.x
10.1111/j.1461-0248.2012.01751.x
10.1016/j.yqres.2009.11.007
10.1093/jxb/ert316
10.1139/b75-162
10.1093/aobpla/plt046
10.1126/science.1200807
10.1104/pp.110.170704
10.1017/S0266467405002324
10.3732/ajb.0900178
10.1038/35041539
10.1007/BF00317149
10.1046/j.0016-8025.2003.01058.x
10.1111/j.1365-2435.2007.01374.x
10.5194/bg-7-3027-2010
10.1111/j.2041-210X.2012.00230.x
10.1111/j.1466-822x.2005.00172.x
10.1016/j.foreco.2009.09.001
10.1111/ele.12211
10.1111/j.1365-2435.2008.01483.x
10.1155/2014/389409
10.1007/978-94-015-9821-7
10.1073/pnas.0804619106
10.1111/j.1469-8137.2011.03708.x
10.1111/j.1365-3040.2011.02458.x
10.1111/j.1469-8137.2005.01349.x
10.1126/science.1164033
10.1111/nph.12450
10.1098/rstb.2007.0031
10.1111/j.1469-8137.2007.02137.x
10.1007/s00382-012-1644-1
10.1073/pnas.1204651110
10.5194/bgd-6-3993-2009
10.1038/nature05747
10.1126/science.1146961
10.1104/pp.94.4.1781
10.1111/j.1461-0248.2010.01517.x
10.1017/CBO9781107323506.009
10.1104/pp.113.221424
10.1038/ngeo1741
10.1086/660829
10.1023/A:1009775025850
10.1093/treephys/6.3.305
10.1093/treephys/tpt030
10.1111/j.1469-8137.2010.03309.x
10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
10.1111/j.1461-0248.2010.01582.x
10.1111/ele.12374
10.1071/BT02124
10.1093/jxb/45.2.171
10.1111/j.1461-0248.2009.01285.x
10.1017/S0266467400001292
10.1046/j.1469-8137.2003.00855.x
10.1093/treephys/25.9.1127
10.1104/pp.111.173856
ContentType Journal Article
Copyright 2015 The Authors. Functional Ecology © 2015 British Ecological Society
Functional Ecology © 2015 British Ecological Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society
– notice: Functional Ecology © 2015 British Ecological Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
DOI 10.1111/1365-2435.12452
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA


CrossRef
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1277
ExternalDocumentID oai_HAL_hal_02638162v1
3824326351
10_1111_1365_2435_12452
FEC12452
48576706
Genre article
GeographicLocations French Guiana
GeographicLocations_xml – name: French Guiana
GrantInformation_xml – fundername: Investissement d'Avenir
– fundername: French Agence Nationale de la Recherche
– fundername: TULIP
  funderid: ANR‐10‐LABX‐0041
– fundername: CNRS
– fundername: ANAEE‐France
  funderid: ANR‐11‐INBS‐0001
– fundername: ANR grant (BRIDGE project)
– fundername: CEBA
  funderid: ANR‐10‐LABX‐25‐01
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
AGHNM
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c6092-d561fe340c25ef3addd5ccec2d201efdd9daca798586abf38a0010a3e3477e8d3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jun 20 06:31:22 EDT 2025
Fri Jul 11 18:26:33 EDT 2025
Sun Jul 13 03:40:43 EDT 2025
Sun Jul 13 04:38:21 EDT 2025
Tue Jul 01 01:15:43 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Wed Jan 22 16:34:38 EST 2025
Thu Jul 03 22:31:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Climate change
Tropical trees
Functional traits
French Guiana
Plant-water relations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6092-d561fe340c25ef3addd5ccec2d201efdd9daca798586abf38a0010a3e3477e8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7009-7202
0000-0001-6781-1535
0000-0002-5401-0197
0000-0002-7766-1347
0000-0001-7322-8581
0000-0002-8078-9309
OpenAccessLink https://hal.inrae.fr/hal-02638162
PQID 1718276922
PQPubID 1066355
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02638162v1
proquest_miscellaneous_1746416675
proquest_journals_2374019583
proquest_journals_1718276922
crossref_primary_10_1111_1365_2435_12452
crossref_citationtrail_10_1111_1365_2435_12452
wiley_primary_10_1111_1365_2435_12452_FEC12452
jstor_primary_48576706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2015
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2002; 16
1989; 40
2010; 98
2010; 97
2013; 3
2013; 26
2012; 168
2013; 27
2006; 38
2007; 100
2013; 64
2010; 187
2013; 200
2010; 188
2005; 21
1975; 53
2012; 15
2011; 14
2013; 164
2012; 14
2011; 17
2003; 51
2013; 5
2013; 6
2011; 156
2011; 155
2005; 25
2009; 12
2000; 408
2000; 16
2001
2013; 11
2007; 175
2008; 319
1987
2002; 107
2006; 29
2003; 160
2008; 22
2013; 110
2014; 17
2006; 127
1992; 89
2010; 7
2014; 202
2009; 323
2010; 73
1989
2014; 54
2009; 204
1990; 94
2006; 443
2009; 23
2007; 447
2009; 182
1997; 131
2004; 140
2013; 41
1994; 45
2008; 14
2000; 70
2004
2014; 2014
2004; 428
2012; 35
2014; 111
2008; 363
2010b; 13
2012a; 3
2007; 13
2001; 126
2011; 178
2011; 331
2012; 195
2001; 82
2011; 108
2013; 33
2010a; 24
2010; 259
2011; 92
2011a; 191
2011b; 34
2014; 37
2003; 26
2009; 6
2012b; 15
2014
2013
2007; 88
1990; 6
2009; 106
2014; 102
2005; 14
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Sokal R.R. (e_1_2_8_91_1) 1987
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
Smith N.G. (e_1_2_8_90_1) 2014; 54
e_1_2_8_8_1
Gourlet‐Fleury S. (e_1_2_8_40_1) 2004
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
R Core Team (e_1_2_8_77_1) 2013
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 2014
  start-page: e389409
  year: 2014
  article-title: Are commonly measured functional traits involved in tropical tree responses to climate?
  publication-title: International Journal of Ecology
– volume: 3
  start-page: 880
  year: 2012a
  end-page: 888
  article-title: Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point
  publication-title: Methods in Ecology and Evolution
– volume: 107
  start-page: LBA 53–1
  year: 2002
  end-page: LBA 53–18
  article-title: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 38
  start-page: 555
  year: 2006
  end-page: 557
  article-title: The use of French spikes to collect botanical vouchers in permanent plots: evaluation of potential impacts
  publication-title: Biotropica
– volume: 200
  start-page: 298
  year: 2013
  end-page: 300
  article-title: Our limited ability to predict vegetation dynamics under water stress
  publication-title: New Phytologist
– volume: 17
  start-page: 1580
  year: 2014
  end-page: 1590
  article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait
  publication-title: Ecology Letters
– volume: 97
  start-page: 527
  year: 2010
  end-page: 540
  article-title: Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity
  publication-title: Annals of the Missouri Botanical Garden
– volume: 15
  start-page: 1120
  year: 2012
  end-page: 1129
  article-title: Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana
  publication-title: Ecology Letters
– volume: 29
  start-page: 151
  year: 2006
  end-page: 165
  article-title: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential
  publication-title: Plant, Cell and Environment
– volume: 73
  start-page: 220
  year: 2010
  end-page: 225
  article-title: The impact of climate changes during the Holocene on vegetation in northern French Guiana
  publication-title: Quaternary Research
– volume: 156
  start-page: 832
  year: 2011
  end-page: 843
  article-title: Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture
  publication-title: Plant Physiology
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 13
  start-page: 1338
  year: 2010b
  end-page: 1347
  article-title: Decoupled leaf and stem economics in rain forest trees
  publication-title: Ecology Letters
– volume: 54
  start-page: 2014RG000458
  year: 2014
  article-title: Toward a better integration of biological data from precipitation manipulation experiments into Earth system models
  publication-title: Reviews of Geophysics
– volume: 98
  start-page: 106
  year: 2010
  end-page: 116
  article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest
  publication-title: Journal of Ecology
– volume: 259
  start-page: 660
  year: 2010
  end-page: 684
  article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests
  publication-title: Forest Ecology and Management
– volume: 187
  start-page: 579
  year: 2010
  end-page: 591
  article-title: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest
  publication-title: New Phytologist
– volume: 27
  start-page: 574
  year: 2013
  end-page: 591
  article-title: Impact of evapotranspiration on dry season climate in the Amazon forest
  publication-title: Journal of Climate
– volume: 26
  start-page: 443
  year: 2003
  end-page: 450
  article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees
  publication-title: Plant, Cell and Environment
– volume: 127
  start-page: 423
  year: 2006
  end-page: 433
  article-title: Interrelations among pressure–volume curve traits across species and water availability gradients
  publication-title: Physiologia Plantarum
– volume: 110
  start-page: 565
  year: 2013
  end-page: 570
  article-title: Persistent effects of a severe drought on Amazonian forest canopy
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 131
  year: 2014
  end-page: 159
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– volume: 97
  start-page: 207
  year: 2010
  end-page: 215
  article-title: Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity
  publication-title: American Journal of Botany
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 363
  start-page: 1829
  year: 2008
  end-page: 1838
  article-title: Impact of a drier Early–Mid‐Holocene climate upon Amazonian forests
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 14
  start-page: 97
  year: 2012
  end-page: 110
  article-title: Deriving plant functional types for Amazonian forests for use in vegetation dynamics models
  publication-title: Perspectives in Plant Ecology Evolution and Systematics
– volume: 21
  start-page: 297
  year: 2005
  end-page: 305
  article-title: A comparison of methods for determining soil water availability in two sites in Panama with similar rainfall but distinct tree communities
  publication-title: Journal of Tropical Ecology
– volume: 323
  start-page: 1344
  year: 2009
  end-page: 1347
  article-title: Drought sensitivity of the Amazon rainforest
  publication-title: Science
– volume: 108
  start-page: 9899
  year: 2011
  end-page: 9904
  article-title: Benchmark map of forest carbon stocks in tropical regions across three continents
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  start-page: plt046
  year: 2013
  article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms
  publication-title: Aob Plants
– volume: 82
  start-page: 453
  year: 2001
  end-page: 469
  article-title: Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs
  publication-title: Ecology
– volume: 131
  start-page: 81
  year: 1997
  end-page: 108
  article-title: The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest
  publication-title: Plant Ecology
– volume: 140
  start-page: 543
  year: 2004
  end-page: 550
  article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees
  publication-title: Oecologia
– volume: 168
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms
  publication-title: Oecologia
– volume: 100
  start-page: 1507
  year: 2007
  end-page: 1515
  article-title: Contrasting physiological responses of six species to water deficit
  publication-title: Annals of Botany
– year: 1987
– start-page: 161
  year: 1989
  end-page: 183
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytologist
– volume: 155
  start-page: 1051
  year: 2011
  end-page: 1059
  article-title: Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality
  publication-title: Plant Physiology
– volume: 45
  start-page: 171
  year: 1994
  end-page: 177
  article-title: Synchronous changes in tissue water parameters of mature foliage from well‐watered and periodically droughted tree seedlings
  publication-title: Journal of Experimental Botany
– volume: 164
  start-page: 1772
  year: 2013
  end-page: 1788
  article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance
  publication-title: Plant Physiology
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 12
  start-page: 351
  year: 2009
  end-page: 366
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecology Letters
– volume: 195
  start-page: 396
  year: 2012
  end-page: 407
  article-title: Diverse functional responses to drought in a Mediterranean‐type shrubland in South Africa
  publication-title: New Phytologist
– volume: 22
  start-page: 221
  year: 2008
  end-page: 231
  article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai Peninsula
  publication-title: Functional Ecology
– volume: 6
  start-page: 268
  year: 2013
  end-page: 273
  article-title: Simulated resilience of tropical rainforests to CO2‐induced climate change
  publication-title: Nature Geoscience
– volume: 363
  start-page: 1839
  year: 2008
  end-page: 1848
  article-title: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 7
  start-page: 3027
  year: 2010
  end-page: 3039
  article-title: Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model
  publication-title: Biogeosciences
– volume: 14
  start-page: 301
  year: 2011
  end-page: 312
  article-title: Global patterns of leaf mechanical properties
  publication-title: Ecology Letters
– volume: 204
  start-page: 295
  year: 2009
  end-page: 304
  article-title: Hydraulic properties and photosynthetic rates in co‐occurring lianas and trees in a seasonal tropical rainforest in southwestern China
  publication-title: Plant Ecology
– year: 2013
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 16
  start-page: 101
  year: 2000
  end-page: 116
  article-title: Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture
  publication-title: Journal of Tropical Ecology
– volume: 64
  start-page: 4053
  year: 2013
  end-page: 4080
  article-title: How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis
  publication-title: Journal of Experimental Botany
– volume: 88
  start-page: 2259
  year: 2007
  end-page: 2269
  article-title: Mortality of large trees and lianas following experimental drought in an amazon forest
  publication-title: Ecology
– volume: 187
  start-page: 631
  year: 2010
  end-page: 646
  article-title: Drought‐mortality relationships for tropical forests
  publication-title: New Phytologist
– volume: 26
  start-page: 1343
  year: 2003
  end-page: 1356
  article-title: The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species
  publication-title: Plant, Cell and Environment
– year: 2001
– volume: 200
  start-page: 350
  year: 2013
  end-page: 365
  article-title: Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought
  publication-title: New Phytologist
– volume: 202
  start-page: 79
  year: 2014
  end-page: 94
  article-title: Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients
  publication-title: New Phytologist
– volume: 408
  start-page: 184
  year: 2000
  end-page: 187
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 53
  start-page: 1342
  year: 1975
  end-page: 1346
  article-title: Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations
  publication-title: Canadian Journal of Botany
– volume: 188
  start-page: 1113
  year: 2010
  end-page: 1123
  article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms
  publication-title: New Phytologist
– volume: 23
  start-page: 93
  year: 2009
  end-page: 102
  article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution
  publication-title: Functional Ecology
– volume: 363
  start-page: 1857
  year: 2008
  end-page: 1864
  article-title: Towards quantifying uncertainty in predictions of Amazon ‘dieback’
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 17
  start-page: 82
  year: 2014
  end-page: 91
  article-title: Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology
  publication-title: Ecology Letters
– volume: 111
  start-page: 16041
  year: 2014
  end-page: 16046
  article-title: Vegetation dynamics and rainfall sensitivity of the Amazon
  publication-title: Proceedings of the National Academy of Sciences
– volume: 178
  start-page: E37
  year: 2011
  end-page: E47
  article-title: Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference
  publication-title: American Naturalist
– year: 2004
– volume: 6
  start-page: 3993
  year: 2009
  end-page: 4057
  article-title: Regional and large‐scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties
  publication-title: Biogeosciences Discussions
– volume: 13
  start-page: 2361
  year: 2007
  end-page: 2378
  article-title: The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment
  publication-title: Global Change Biology
– volume: 24
  start-page: 208
  year: 2010a
  end-page: 216
  article-title: Functional trait variation and sampling strategies in species‐rich plant communities
  publication-title: Functional Ecology
– volume: 14
  start-page: 411
  year: 2005
  end-page: 421
  article-title: Modulation of leaf economic traits and trait relationships by climate
  publication-title: Global Ecology and Biogeography
– volume: 51
  start-page: 335
  year: 2003
  end-page: 380
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 37
  start-page: 153
  year: 2014
  end-page: 161
  article-title: How do trees die? A test of the hydraulic failure and carbon starvation hypotheses
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 403
  year: 2002
  end-page: 412
  article-title: High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations
  publication-title: Functional Ecology
– volume: 6
  start-page: 305
  year: 1990
  end-page: 315
  article-title: Drought adaptations and responses in 5 genotypes of fraxinus‐pennsylvanica marsh ‐ photosynthesis, water relations and leaf morphology
  publication-title: Tree Physiology
– volume: 41
  start-page: 2921
  year: 2013
  end-page: 2936
  article-title: Present‐day and future Amazonian precipitation in global climate models: CMIP5 vs. CMIP3
  publication-title: Climate Dynamics
– volume: 26
  start-page: 495
  year: 2013
  end-page: 511
  article-title: Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2‐ES and HadCM3LC
  publication-title: Journal of Climate
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Global Change Biology
– volume: 40
  start-page: 19
  year: 1989
  end-page: 36
  article-title: Vulnerability of xylem to cavitation and embolism
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 35
  start-page: 857
  year: 2012
  end-page: 871
  article-title: Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control
  publication-title: Plant Cell and Environment
– volume: 447
  start-page: 80
  year: 2007
  end-page: 82
  article-title: Drought sensitivity shapes species distribution patterns in tropical forests
  publication-title: Nature
– volume: 200
  start-page: 304
  year: 2013
  end-page: 321
  article-title: Evaluating theories of drought‐induced vegetation mortality using a multimodel‐experiment framework
  publication-title: New Phytologist
– volume: 89
  start-page: 457
  year: 1992
  end-page: 463
  article-title: Drought acclimation among tropical forest shrubs (Psychotria, Rubiaceae)
  publication-title: Oecologia
– volume: 160
  start-page: 81
  year: 2003
  end-page: 99
  article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types
  publication-title: New Phytologist
– volume: 110
  start-page: 5064
  year: 2013
  end-page: 5068
  article-title: Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees
  publication-title: Proceedings of the National Academy of Sciences
– volume: 443
  start-page: 444
  year: 2006
  end-page: 447
  article-title: Continental‐scale patterns of canopy tree composition and function across Amazonia
  publication-title: Nature
– volume: 15
  start-page: 393
  year: 2012b
  end-page: 405
  article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis
  publication-title: Ecology Letters
– volume: 175
  start-page: 686
  year: 2007
  end-page: 698
  article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation
  publication-title: New Phytologist
– volume: 331
  start-page: 554
  year: 2011
  article-title: The 2010 Amazon drought
  publication-title: Science
– volume: 94
  start-page: 1781
  year: 1990
  end-page: 1787
  article-title: Leaf water relations and maintenance of gas exchange in coffee cultivars grown in drying soil
  publication-title: Plant Physiology
– volume: 3
  start-page: 162
  year: 2013
  end-page: 169
  article-title: Neogene origins and implied warmth tolerance of Amazon tree species
  publication-title: Ecology and Evolution
– volume: 92
  start-page: 871
  year: 2011
  end-page: 882
  article-title: Directional changes in the species composition of a tropical forest
  publication-title: Ecology
– volume: 319
  start-page: 169
  year: 2008
  end-page: 172
  article-title: Climate change, deforestation, and the fate of the Amazon
  publication-title: Science
– volume: 34
  start-page: 137
  year: 2011b
  end-page: 148
  article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits
  publication-title: Plant Cell and Environment
– volume: 191
  start-page: 480
  year: 2011a
  end-page: 495
  article-title: Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance
  publication-title: New Phytologist
– volume: 11
  start-page: e1001569
  year: 2013
  article-title: Rare species support vulnerable functions in high‐diversity ecosystems
  publication-title: PLoS Biology
– start-page: 9
  year: 2001
  end-page: 18
– volume: 25
  start-page: 1127
  year: 2005
  end-page: 1137
  article-title: Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance
  publication-title: Tree Physiology
– volume: 106
  start-page: 20610
  year: 2009
  end-page: 20615
  article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest
  publication-title: Proceedings of the National Academy of Sciences
– volume: 70
  start-page: 517
  year: 2000
  end-page: 537
  article-title: Intra‐ and interspecific variation for summer precipitation use in pinyon–juniper woodlands
  publication-title: Ecological Monographs
– ident: e_1_2_8_63_1
  doi: 10.1111/nph.12465
– ident: e_1_2_8_85_1
  doi: 10.1007/s00442-004-1624-1
– ident: e_1_2_8_89_1
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_2_8_67_1
  doi: 10.1029/2001JD000360
– ident: e_1_2_8_88_1
  doi: 10.1111/pce.12141
– ident: e_1_2_8_96_1
  doi: 10.1111/j.1469-8137.2012.04170.x
– ident: e_1_2_8_79_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_8_29_1
  doi: 10.1002/ece3.441
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ppees.2011.11.001
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1461-0248.2012.01834.x
– ident: e_1_2_8_46_1
  doi: 10.1098/rstb.2007.0028
– ident: e_1_2_8_74_1
  doi: 10.1111/nph.12390
– ident: e_1_2_8_93_1
  doi: 10.1146/annurev.pp.40.060189.000315
– ident: e_1_2_8_44_1
  doi: 10.1175/JCLI-D-13-00074.1
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1365-2745.2009.01604.x
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1744-7429.2006.00172.x
– ident: e_1_2_8_39_1
  doi: 10.1175/JCLI-D-11-00366.1
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1365-2699.2005.01219.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_8_77_1
– ident: e_1_2_8_34_1
  doi: 10.1111/j.1365-3040.2005.01407.x
– ident: e_1_2_8_14_1
  doi: 10.3417/2009143
– ident: e_1_2_8_45_1
  doi: 10.1073/pnas.1404870111
– ident: e_1_2_8_97_1
  doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
– ident: e_1_2_8_32_1
  doi: 10.1890/10-0724.1
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1399-3054.2006.00680.x
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1365-2486.2007.01417.x
– ident: e_1_2_8_68_1
  doi: 10.1890/06-1046.1
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1469-8137.2010.03439.x
– ident: e_1_2_8_16_1
  doi: 10.1046/j.1365-3040.2003.00975.x
– ident: e_1_2_8_80_1
  doi: 10.1073/pnas.1019576108
– ident: e_1_2_8_103_1
  doi: 10.1007/s11258-009-9592-5
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1469-8137.2010.03359.x
– ident: e_1_2_8_73_1
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-3040.2010.02231.x
– ident: e_1_2_8_36_1
  doi: 10.1111/nph.12632
– ident: e_1_2_8_12_1
  doi: 10.1007/s00442-011-2064-3
– ident: e_1_2_8_41_1
  doi: 10.1007/978-94-015-9821-7_2
– ident: e_1_2_8_65_1
  doi: 10.1093/aob/mcm234
– ident: e_1_2_8_66_1
  doi: 10.1371/journal.pbio.1001569
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1365-2435.2009.01600.x
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.1218042110
– ident: e_1_2_8_51_1
  doi: 10.1007/978-94-009-2221-1_9
– ident: e_1_2_8_61_1
  doi: 10.1098/rstb.2007.0019
– ident: e_1_2_8_43_1
  doi: 10.1007/s004420100628
– ident: e_1_2_8_54_1
  doi: 10.1046/j.1365-2435.2002.00631.x
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1461-0248.2012.01751.x
– ident: e_1_2_8_37_1
  doi: 10.1016/j.yqres.2009.11.007
– ident: e_1_2_8_84_1
  doi: 10.1093/jxb/ert316
– ident: e_1_2_8_20_1
  doi: 10.1139/b75-162
– ident: e_1_2_8_104_1
  doi: 10.1093/aobpla/plt046
– ident: e_1_2_8_56_1
  doi: 10.1126/science.1200807
– ident: e_1_2_8_62_1
  doi: 10.1104/pp.110.170704
– ident: e_1_2_8_52_1
  doi: 10.1017/S0266467405002324
– ident: e_1_2_8_102_1
  doi: 10.3732/ajb.0900178
– ident: e_1_2_8_25_1
  doi: 10.1038/35041539
– ident: e_1_2_8_98_1
  doi: 10.1007/BF00317149
– ident: e_1_2_8_83_1
  doi: 10.1046/j.0016-8025.2003.01058.x
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-2435.2007.01374.x
– ident: e_1_2_8_28_1
  doi: 10.5194/bg-7-3027-2010
– ident: e_1_2_8_9_1
  doi: 10.1111/j.2041-210X.2012.00230.x
– ident: e_1_2_8_100_1
  doi: 10.1111/j.1466-822x.2005.00172.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.foreco.2009.09.001
– ident: e_1_2_8_75_1
  doi: 10.1111/ele.12211
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1365-2435.2008.01483.x
– ident: e_1_2_8_95_1
  doi: 10.1155/2014/389409
– ident: e_1_2_8_13_1
  doi: 10.1007/978-94-015-9821-7
– ident: e_1_2_8_58_1
  doi: 10.1073/pnas.0804619106
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1469-8137.2011.03708.x
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1365-3040.2011.02458.x
– ident: e_1_2_8_99_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_8_71_1
  doi: 10.1126/science.1164033
– volume-title: Ecology and Management of a Neotropical Rainforest: Lessons Drawn from Paracou, a Long‐Term Experimental Research Site in French Guiana
  year: 2004
  ident: e_1_2_8_40_1
– ident: e_1_2_8_101_1
  doi: 10.1111/nph.12450
– ident: e_1_2_8_15_1
  doi: 10.1098/rstb.2007.0031
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1469-8137.2007.02137.x
– volume: 54
  start-page: 2014RG000458
  year: 2014
  ident: e_1_2_8_90_1
  article-title: Toward a better integration of biological data from precipitation manipulation experiments into Earth system models
  publication-title: Reviews of Geophysics
– ident: e_1_2_8_49_1
  doi: 10.1007/s00382-012-1644-1
– ident: e_1_2_8_81_1
  doi: 10.1073/pnas.1204651110
– ident: e_1_2_8_76_1
  doi: 10.5194/bgd-6-3993-2009
– ident: e_1_2_8_30_1
  doi: 10.1038/nature05747
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1146961
– ident: e_1_2_8_64_1
  doi: 10.1104/pp.94.4.1781
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1461-0248.2010.01517.x
– ident: e_1_2_8_18_1
  doi: 10.1017/CBO9781107323506.009
– ident: e_1_2_8_87_1
  doi: 10.1104/pp.113.221424
– ident: e_1_2_8_47_1
  doi: 10.1038/ngeo1741
– ident: e_1_2_8_48_1
  doi: 10.1086/660829
– ident: e_1_2_8_82_1
  doi: 10.1023/A:1009775025850
– ident: e_1_2_8_3_1
  doi: 10.1093/treephys/6.3.305
– volume-title: Introduction to Biostatistics
  year: 1987
  ident: e_1_2_8_91_1
– ident: e_1_2_8_94_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1469-8137.2010.03309.x
– ident: e_1_2_8_69_1
  doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
– ident: e_1_2_8_70_1
  doi: 10.1111/j.1461-0248.2010.01582.x
– ident: e_1_2_8_10_1
  doi: 10.1111/ele.12374
– ident: e_1_2_8_23_1
  doi: 10.1071/BT02124
– ident: e_1_2_8_2_1
  doi: 10.1093/jxb/45.2.171
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_2_8_17_1
  doi: 10.1017/S0266467400001292
– ident: e_1_2_8_78_1
  doi: 10.1046/j.1469-8137.2003.00855.x
– ident: e_1_2_8_24_1
  doi: 10.1093/treephys/25.9.1127
– ident: e_1_2_8_86_1
  doi: 10.1104/pp.111.173856
SSID ssj0009522
Score 2.5332942
Snippet Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly...
Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented....
Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly...
1. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented....
SourceID hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1268
SubjectTerms Acclimation
Acclimatization
Bark
carbon
Carbon isotopes
climate change
correlation
Correlation analysis
data collection
Drought
Drought resistance
drought tolerance
Dry season
Extreme drought
Forest communities
Forests
French Guiana
functional traits
Herbivores
interspecific variation
Isotope ratios
isotopes
Leaf area
leaf water potential
Leaves
Life Sciences
mortality
nitrogen
Physiology
Plant physiological ecology
Plant species
Plants
plant–water relations
quantitative analysis
sapwood
Species
Species diversity
Thickness
Trees
tropical trees
Turgor
Water potential
water stress
Wilting
Title Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest
URI https://www.jstor.org/stable/48576706
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12452
https://www.proquest.com/docview/1718276922
https://www.proquest.com/docview/2374019583
https://www.proquest.com/docview/1746416675
https://hal.inrae.fr/hal-02638162
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96IPiinrpYPSWKD750adMmbR6Xc5flOH0QD3wraZKeh7Vd2u7J3rv_tzPph3uHh4hvIcmEZjqT_CaZzBDyNjQyiJNc-7EU1o-ZAZXiifFVImzMbQIqhYbih49ifRaffOGjNyG-henjQ0wHbqgZbr1GBVd5u6fkvX8W7PbzEG8PYRXGGoRFn9he2N3-HoEJ6cNOGw3BfdCX5wb9tX3p7lf0iuwdFK9Bz30A63ag1UOSj9_eO558m2-7fK6vboR1_K_JPSIPBnxKF71AHZI7tnpM7vUZK3dQWuqhNFv-fiIHBMMa0T4hP9-7zD8d7erSYtoOS1VLNw3eCAG8pfmOllYV9Aeg3IZu6g79lWAEBRTb5rxuaAkMgoaLqqOXzpSnLR7Yn5c7qhz3KL4PxXo8Rb6oqKro4ru6guUJSoDCgYlPydlq-fl47Q_JHnwtAsl8A0CusFEcaMZtEYGMGK611cwARLGFMdIorRKZ8lSovIhSheasioAkSWxqohk5qOrKPiMUTH5eMBuD3QDjFUEqA8UNl1pEYcFC5ZH5-KszPURCx4QcZTZaRMj-DNmfOfZ75N1EsOmDgNze9Q3IztQLg3evF6cZ1oEQ4i0tuww9MnOiNXWLUzD7kkB45GiUtWxYS9osBPjAEiEZ-2MzizCpouRp5JHXUzMsEnjzoypbb3GIWADyBuMQ5u7k7m_zyFbLY1d4_q8EL8h9-GO8d3g8Igdds7UvAbh1-Sunm78AuRo1nA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEGIvfFcLDDCIB15SJU7sxI_VaFWg2wPapL1Fru1sEyGp0nSoe-f_5s5JQzeBEOLNij8Un-_s3_nOd4S8C40M4mSu_VgK68fMgEjxxPgqETbmNgGRQkXx6FhMT-NPZ_xs6y1MGx-iv3BDyXD7NQo4XkhvSXnroAXH_TBE8-EOuYt5vZ1a9YVtBd5tLQlMSB_O2qgL74PePLcGuHEy7VygX2TrongDfG5DWHcGTR4Svfn71vXk63DVzIf6-lZgx_-b3iPyoIOodNTy1GNyx5ZPyL02aeUaSmPdlQbjX6_koEO3TSyfkh8fXPKfhjZVYTFzh6VqSRc1GoUA4dL5mhZW5fQ7AN2aLqoGXZZgBAU9VvV5VdMCKAQVl2VDr5w2T5d4Z39erKly5KP4RBS_40XyZUlVSUff1DXsUFACIA5UfEZOJ-OTw6nf5XvwtQgk8w1gudxGcaAZt3kEbGK41lYzAyjF5sZIo7RKZMpToeZ5lCrUaFUEXZLEpiYakN2yKu0-oaD185zZGFQHGC8PUhkobrjUIgpzFiqPDDdrnekuGDrm5CiyjVKE5M-Q_Jkjv0fe9x0WbRyQPzd9C8zTt8L43dPRLMNvwIVoqGVXoUcGjrf6ZnEKml8SCI8cbJgt67aTZRYCgmCJkIz9tppFmFdR8jTyyJu-GvYJNP6o0lYrHCIWAL5BP4S5O8b72zyyyfjQFZ7_a4fX5P705GiWzT4ef35B9mD1eOv_eEB2m3plXwKOa-avnKD-BAowObc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEIgXvisCAwzigZdUiWM7yWO1tiowJoSYxFvk2M6YCEmVpkPdO_83d04augmEEG9W_KH4fGf_zne-I-RVaNKAx7n2eSqtz5kBkRKx8VUsLRc2BpFCRfH9sVyc8LefxdabEN_CdPEhhgs3lAy3X6OAL02xI-Sdfxac9uMQrYd75DqXQYKMPf3IduLudoYEJlMfjtqoj-6DzjxXBrh0MO19QbfIzkPxEvbcRbDuCJrfIfn25zvPk6_jdZuP9cWVuI7_Nbu75HYPUOmk46h75Jqt7pMbXcrKDZRmui-NZr_eyEGHfpNYPSA_pi71T0vburSYt8NStaLLBk1CgG9pvqGlVQX9DjC3ocu6RYclGEFBj3VzWje0BAJBxVnV0nOny9MV3tiflhuqHPUoPhDF73iNfFZRVdHJN3UB-xOUAIYDER-Sk_ns0-HC77M9-FoGKfMNILnCRjzQTNgiAiYxQmurmQGMYgtjUqO0itNEJFLlRZQo1GdVBF3i2CYmGpH9qq7sI0JB5xcFsxwUBxivAK4IlDAi1TIKCxYqj4y3S53pPhQ6ZuQos61KhOTPkPyZI79HXg8dll0UkD83fQm8M7TC6N2LyVGG34AJ0UzLzkOPjBxrDc14AnpfHEiPHGx5Les3k1UWAn5gsUwZ-201izCrYiqSyCMvhmrYJdD0oypbr3EILgF6g3YIc3d897d5ZPPZoSs8_tcOz8nND9N5dvTm-N0TcgsWT3TOjwdkv23W9imAuDZ_5sT0Jz30OG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+tolerance+as+predicted+by+leaf+water+potential+at+turgor+loss+point+varies+strongly+across+species+within+an+Amazonian+forest&rft.jtitle=Functional+ecology&rft.au=Mar%C3%A9chaux%2C+Isabelle&rft.au=Bartlett%2C+Megan+K&rft.au=Sack%2C+Lawren&rft.au=Baraloto%2C+Christopher&rft.date=2015-10-01&rft.issn=0269-8463&rft.volume=29&rft.issue=10+p.1268-1277&rft.spage=1268&rft.epage=1277&rft_id=info:doi/10.1111%2F1365-2435.12452&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon