Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest
Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of q...
Saved in:
Published in | Functional ecology Vol. 29; no. 10; pp. 1268 - 1277 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.10.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements.
Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species.
Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season.
Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species.
Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness).
The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species.
Lay Summary |
---|---|
AbstractList | Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements.Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species.Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season.Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species.Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness).The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πₜₗₚ) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πₒ) is tightly correlated with πₜₗₚ. Estimating πₜₗₚ from osmometer measurements of πₒ is much faster than the standard pressure–volume curve approach of πₜₗₚ determination. We used this technique to estimate πₜₗₚ for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πₜₗₚ ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πₜₗₚ (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, πₜₗₚ correlated positively but weakly with leaf toughness (R² = 0·22, P = 0·04) and leaf thickness (R² = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πₜₗₚ among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πₜₗₚ and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure–volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from −1·4 to −3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Lay Summary 1. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. 2. Leaf water potential at wilting or turgor loss point (pi(tlp)) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (pi(o)) is tightly correlated with pi(tlp). Estimating pi(tlp) from osmometer measurements of pi(o) is much faster than the standard pressure-volume curve approach of pi(tlp) determination. We used this technique to estimate pi(tlp) for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. 3. Tropical trees showed a wider range of drought tolerance than previously found in the literature, pi(tlp) ranging from -1.4 to -3.2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. 4. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative pi(tlp) (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. 5. Across individuals, pi(tlp) correlated positively but weakly with leaf toughness (R-2 = 0.22, P = 0.04) and leaf thickness (R-2 = 0.03, P = 0.03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). 6. The variability in pi(tlp) among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between pi(tlp) and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (π tlp ) is a determinant of the tolerance of leaves to drought stress and contributes to plant‐level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (π o ) is tightly correlated with π tlp . Estimating π tlp from osmometer measurements of π o is much faster than the standard pressure–volume curve approach of π tlp determination. We used this technique to estimate π tlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, π tlp ranging from −1·4 to −3·2 MP a. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf‐level drought tolerance varied across species, in agreement with the available published observations of species variation in drought‐induced mortality. On average, species with a more negative π tlp (i.e. with greater leaf‐level drought tolerance) occurred less frequently across the region than drought‐sensitive species. Across individuals, π tlp correlated positively but weakly with leaf toughness ( R 2 = 0·22, P = 0·04) and leaf thickness ( R 2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in π tlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between π tlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (πtlp) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (πo) is tightly correlated with πtlp. Estimating πtlp from osmometer measurements of πo is much faster than the standard pressure-volume curve approach of πtlp determination. We used this technique to estimate πtlp for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, πtlp ranging from -1·4 to -3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative πtlp (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. Across individuals, πtlp correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in πtlp among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between πtlp and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. |
Author | Baraloto, Christopher Bartlett, Megan K. Marechaux, Isabelle Sack, Lawren Joetzjer, Emilie Chave, Jérôme Engel, Julien |
Author_xml | – sequence: 1 givenname: Isabelle surname: Marechaux fullname: Marechaux, Isabelle – sequence: 2 givenname: Megan K. surname: Bartlett fullname: Bartlett, Megan K. – sequence: 3 givenname: Lawren surname: Sack fullname: Sack, Lawren – sequence: 4 givenname: Christopher surname: Baraloto fullname: Baraloto, Christopher – sequence: 5 givenname: Julien surname: Engel fullname: Engel, Julien – sequence: 6 givenname: Emilie surname: Joetzjer fullname: Joetzjer, Emilie – sequence: 7 givenname: Jérôme surname: Chave fullname: Chave, Jérôme |
BackLink | https://hal.inrae.fr/hal-02638162$$DView record in HAL |
BookMark | eNqFkb1vGyEYh09VKtVJO3eqhNSlHS7h4-DuRsv5qmSpSzujN8DZWBiugGO5e__vcnHqIUPDAnp5Hnjhd16d-eBNVX0k-JKUcUWY4DVtGL8ktOH0TTU7Vc6qGaair7tGsHfVeUobjHHPKZ1Vf65j2K3WGeXgTASvDIKExmi0Vdlo9HBAzsCA9pBNRGPIxmcLDkExdnEVInIhFSFYn9EjRGsSSjkGv3IHBCpOm2k0aqrvbV5bj8Cj-RZ-B2_LagjRpPy-ejuAS-bD83xR_by9-bG4r5ff774t5staCdzTWnNBBsMarCg3AwOtNVfKKKopJmbQutegoO073gl4GFgHGBMMrChtazrNLqqvx3PX4OQY7RbiQQaw8n6-lFOtfBPriKCPpLBfjuwYw69daVJubVLGOfAm7JIkbSMaIkTLC_r5BboJu-jLSyRlbYNJzzv2P4q0pKOt6Ckt1NWRevq7aIZTnwTLKWg5xSqnWOVT0MXgLwxlM2QbfI5g3eve3jpzeO0aeXuz-Od9OnqblEM8eU3HW9Fiwf4CB6HHYQ |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2019_04_031 crossref_primary_10_1111_1365_2435_13522 crossref_primary_10_1007_s00468_020_01998_5 crossref_primary_10_1007_s00468_019_01842_5 crossref_primary_10_3389_fpls_2022_892096 crossref_primary_10_3390_plants9020234 crossref_primary_10_1007_s11295_023_01633_7 crossref_primary_10_3390_f13020244 crossref_primary_10_1098_rstb_2018_0209 crossref_primary_10_1016_j_foreco_2020_117931 crossref_primary_10_5194_bg_17_2621_2020 crossref_primary_10_1111_pce_14704 crossref_primary_10_1093_treephys_tpad088 crossref_primary_10_1007_s10681_024_03359_6 crossref_primary_10_1002_ecm_1271 crossref_primary_10_1016_j_agrformet_2016_08_019 crossref_primary_10_1093_treephys_tpy052 crossref_primary_10_3390_f14040697 crossref_primary_10_1111_plb_13355 crossref_primary_10_1007_s11104_019_04133_7 crossref_primary_10_3390_f7050105 crossref_primary_10_1002_ecy_2591 crossref_primary_10_1007_s00442_019_04336_w crossref_primary_10_3390_rs11020138 crossref_primary_10_1111_1365_2435_13135 crossref_primary_10_1111_ppl_13161 crossref_primary_10_3390_w12061626 crossref_primary_10_1016_j_agrformet_2016_08_014 crossref_primary_10_3390_f16030396 crossref_primary_10_1002_ece3_5452 crossref_primary_10_1111_ele_12670 crossref_primary_10_1016_j_foreco_2020_118454 crossref_primary_10_1111_1365_2745_13454 crossref_primary_10_1111_pce_13512 crossref_primary_10_1002_eco_1858 crossref_primary_10_1007_s00468_020_01979_8 crossref_primary_10_3390_f14091759 crossref_primary_10_1098_rstb_2016_0142 crossref_primary_10_1007_s40725_020_00115_6 crossref_primary_10_1086_685894 crossref_primary_10_1016_j_ufug_2015_08_004 crossref_primary_10_1111_gcb_13731 crossref_primary_10_1002_glr2_12021 crossref_primary_10_3389_ffgc_2020_598759 crossref_primary_10_1002_ecy_3700 crossref_primary_10_1111_ppl_13974 crossref_primary_10_3390_plants10112407 crossref_primary_10_1111_ppl_12922 crossref_primary_10_1093_jpe_rtae103 crossref_primary_10_1111_nph_16996 crossref_primary_10_3389_fpls_2019_01522 crossref_primary_10_1093_aobpla_ply053 crossref_primary_10_1016_j_scitotenv_2021_151466 crossref_primary_10_1111_1365_2435_13312 crossref_primary_10_1111_gcb_15621 crossref_primary_10_1016_j_plaphy_2018_09_027 crossref_primary_10_1186_s40663_019_0189_8 crossref_primary_10_1111_geb_13765 crossref_primary_10_1590_01047760202228013090 crossref_primary_10_1093_treephys_tpab092 crossref_primary_10_3390_land10020212 crossref_primary_10_1093_treephys_tpy047 crossref_primary_10_1016_j_plaphy_2018_06_004 crossref_primary_10_1093_treephys_tpz130 crossref_primary_10_1111_1365_2435_13792 crossref_primary_10_1111_1365_2435_12900 crossref_primary_10_1111_pce_14380 crossref_primary_10_1016_j_scitotenv_2019_02_349 crossref_primary_10_1007_s00468_019_01864_z crossref_primary_10_1093_jxb_erae159 crossref_primary_10_1111_nph_19169 crossref_primary_10_1111_ele_14128 crossref_primary_10_1111_nph_17266 crossref_primary_10_1038_s41467_020_20811_y crossref_primary_10_3389_frsc_2024_1451930 crossref_primary_10_1016_j_scitotenv_2021_148103 crossref_primary_10_1038_s41598_018_36971_3 crossref_primary_10_1038_s41598_022_21035_4 crossref_primary_10_1088_1748_9326_aa5968 crossref_primary_10_1093_treephys_tpae010 crossref_primary_10_1093_treephys_tpy013 crossref_primary_10_3389_fpls_2016_00073 crossref_primary_10_1002_ajb2_1164 crossref_primary_10_1093_treephys_tpae095 crossref_primary_10_1111_pce_12970 crossref_primary_10_3389_fpls_2022_902509 crossref_primary_10_1093_jpe_rtab054 crossref_primary_10_3390_biology13030194 crossref_primary_10_1002_ppp3_10162 crossref_primary_10_5194_gmd_15_7809_2022 crossref_primary_10_1094_PBIOMES_04_22_0023_R crossref_primary_10_1016_j_envexpbot_2024_105747 crossref_primary_10_1111_gcb_13863 crossref_primary_10_1186_s13007_024_01304_1 crossref_primary_10_1007_s00442_018_4325_x crossref_primary_10_1093_treephys_tpad058 crossref_primary_10_1111_pce_12732 crossref_primary_10_1111_plb_13448 crossref_primary_10_3389_fpls_2017_01542 crossref_primary_10_1111_plb_13687 crossref_primary_10_1093_treephys_tpx053 crossref_primary_10_1016_j_envexpbot_2025_106106 crossref_primary_10_1093_jpe_rtx011 crossref_primary_10_1007_s00468_023_02483_5 crossref_primary_10_1111_nph_15185 crossref_primary_10_3389_fpls_2016_00726 crossref_primary_10_1111_1365_2435_12894 crossref_primary_10_1186_s40663_017_0112_0 crossref_primary_10_1111_nph_18177 crossref_primary_10_1111_1365_2435_13188 crossref_primary_10_3390_plants12030531 crossref_primary_10_1111_pce_12948 crossref_primary_10_1071_FP16381 crossref_primary_10_3389_fpls_2022_949531 crossref_primary_10_1016_j_gecco_2024_e03291 crossref_primary_10_1016_j_tplants_2016_02_003 crossref_primary_10_1111_1365_2745_13321 crossref_primary_10_1071_FP16263 crossref_primary_10_3389_ffgc_2020_596256 crossref_primary_10_1071_FP17079 crossref_primary_10_1016_j_plaphy_2019_03_043 crossref_primary_10_1111_nph_19669 crossref_primary_10_1007_s00271_021_00748_w crossref_primary_10_3390_f9030114 crossref_primary_10_32615_ps_2023_017 crossref_primary_10_1002_ajb2_1607 crossref_primary_10_1111_1365_2435_12661 crossref_primary_10_1111_nph_15058 crossref_primary_10_1016_j_foreco_2020_118160 crossref_primary_10_1186_s13007_019_0410_3 crossref_primary_10_1088_1748_9326_ab2eae crossref_primary_10_1111_ele_70014 crossref_primary_10_1111_pce_14857 crossref_primary_10_3389_fpls_2023_1131778 crossref_primary_10_1111_pce_13129 crossref_primary_10_1016_j_envexpbot_2019_04_012 crossref_primary_10_1029_2021JG006579 crossref_primary_10_1371_journal_pone_0180932 crossref_primary_10_1016_j_agrformet_2024_110052 crossref_primary_10_1007_s13595_019_0905_0 crossref_primary_10_1111_btp_12901 crossref_primary_10_1007_s11676_025_01846_7 crossref_primary_10_1111_ele_12739 crossref_primary_10_3389_fevo_2018_00217 crossref_primary_10_3390_rs14071733 |
Cites_doi | 10.1111/nph.12465 10.1007/s00442-004-1624-1 10.1111/j.1365-2486.2008.01626.x 10.1029/2001JD000360 10.1111/pce.12141 10.1111/j.1469-8137.2012.04170.x 10.1111/1365-2745.12211 10.1002/ece3.441 10.1016/j.ppees.2011.11.001 10.1111/j.1461-0248.2012.01834.x 10.1098/rstb.2007.0028 10.1111/nph.12390 10.1146/annurev.pp.40.060189.000315 10.1175/JCLI-D-13-00074.1 10.1111/j.1365-2745.2009.01604.x 10.1111/j.1744-7429.2006.00172.x 10.1175/JCLI-D-11-00366.1 10.1111/j.1365-2699.2005.01219.x 10.1111/j.1365-3040.2005.01407.x 10.3417/2009143 10.1073/pnas.1404870111 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 10.1890/10-0724.1 10.1111/j.1399-3054.2006.00680.x 10.1111/j.1365-2486.2011.02451.x 10.1111/j.1365-2486.2007.01417.x 10.1890/06-1046.1 10.1111/j.1469-8137.2010.03439.x 10.1046/j.1365-3040.2003.00975.x 10.1073/pnas.1019576108 10.1007/s11258-009-9592-5 10.1111/j.1469-8137.2010.03359.x 10.1111/j.1469-8137.2009.02830.x 10.1111/j.1365-3040.2010.02231.x 10.1111/nph.12632 10.1007/s00442-011-2064-3 10.1007/978-94-015-9821-7_2 10.1093/aob/mcm234 10.1371/journal.pbio.1001569 10.1111/j.1365-2435.2009.01600.x 10.1073/pnas.1218042110 10.1007/978-94-009-2221-1_9 10.1098/rstb.2007.0019 10.1007/s004420100628 10.1046/j.1365-2435.2002.00631.x 10.1111/j.1461-0248.2012.01751.x 10.1016/j.yqres.2009.11.007 10.1093/jxb/ert316 10.1139/b75-162 10.1093/aobpla/plt046 10.1126/science.1200807 10.1104/pp.110.170704 10.1017/S0266467405002324 10.3732/ajb.0900178 10.1038/35041539 10.1007/BF00317149 10.1046/j.0016-8025.2003.01058.x 10.1111/j.1365-2435.2007.01374.x 10.5194/bg-7-3027-2010 10.1111/j.2041-210X.2012.00230.x 10.1111/j.1466-822x.2005.00172.x 10.1016/j.foreco.2009.09.001 10.1111/ele.12211 10.1111/j.1365-2435.2008.01483.x 10.1155/2014/389409 10.1007/978-94-015-9821-7 10.1073/pnas.0804619106 10.1111/j.1469-8137.2011.03708.x 10.1111/j.1365-3040.2011.02458.x 10.1111/j.1469-8137.2005.01349.x 10.1126/science.1164033 10.1111/nph.12450 10.1098/rstb.2007.0031 10.1111/j.1469-8137.2007.02137.x 10.1007/s00382-012-1644-1 10.1073/pnas.1204651110 10.5194/bgd-6-3993-2009 10.1038/nature05747 10.1126/science.1146961 10.1104/pp.94.4.1781 10.1111/j.1461-0248.2010.01517.x 10.1017/CBO9781107323506.009 10.1104/pp.113.221424 10.1038/ngeo1741 10.1086/660829 10.1023/A:1009775025850 10.1093/treephys/6.3.305 10.1093/treephys/tpt030 10.1111/j.1469-8137.2010.03309.x 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 10.1111/j.1461-0248.2010.01582.x 10.1111/ele.12374 10.1071/BT02124 10.1093/jxb/45.2.171 10.1111/j.1461-0248.2009.01285.x 10.1017/S0266467400001292 10.1046/j.1469-8137.2003.00855.x 10.1093/treephys/25.9.1127 10.1104/pp.111.173856 |
ContentType | Journal Article |
Copyright | 2015 The Authors. Functional Ecology © 2015 British Ecological Society Functional Ecology © 2015 British Ecological Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society – notice: Functional Ecology © 2015 British Ecological Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
DOI | 10.1111/1365-2435.12452 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1277 |
ExternalDocumentID | oai_HAL_hal_02638162v1 3824326351 10_1111_1365_2435_12452 FEC12452 48576706 |
Genre | article |
GeographicLocations | French Guiana |
GeographicLocations_xml | – name: French Guiana |
GrantInformation_xml | – fundername: Investissement d'Avenir – fundername: French Agence Nationale de la Recherche – fundername: TULIP funderid: ANR‐10‐LABX‐0041 – fundername: CNRS – fundername: ANAEE‐France funderid: ANR‐11‐INBS‐0001 – fundername: ANR grant (BRIDGE project) – fundername: CEBA funderid: ANR‐10‐LABX‐25‐01 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c6092-d561fe340c25ef3addd5ccec2d201efdd9daca798586abf38a0010a3e3477e8d3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jun 20 06:31:22 EDT 2025 Fri Jul 11 18:26:33 EDT 2025 Sun Jul 13 03:40:43 EDT 2025 Sun Jul 13 04:38:21 EDT 2025 Tue Jul 01 01:15:43 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Wed Jan 22 16:34:38 EST 2025 Thu Jul 03 22:31:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Climate change Tropical trees Functional traits French Guiana Plant-water relations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6092-d561fe340c25ef3addd5ccec2d201efdd9daca798586abf38a0010a3e3477e8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7009-7202 0000-0001-6781-1535 0000-0002-5401-0197 0000-0002-7766-1347 0000-0001-7322-8581 0000-0002-8078-9309 |
OpenAccessLink | https://hal.inrae.fr/hal-02638162 |
PQID | 1718276922 |
PQPubID | 1066355 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_02638162v1 proquest_miscellaneous_1746416675 proquest_journals_2374019583 proquest_journals_1718276922 crossref_primary_10_1111_1365_2435_12452 crossref_citationtrail_10_1111_1365_2435_12452 wiley_primary_10_1111_1365_2435_12452_FEC12452 jstor_primary_48576706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2015 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2002; 16 1989; 40 2010; 98 2010; 97 2013; 3 2013; 26 2012; 168 2013; 27 2006; 38 2007; 100 2013; 64 2010; 187 2013; 200 2010; 188 2005; 21 1975; 53 2012; 15 2011; 14 2013; 164 2012; 14 2011; 17 2003; 51 2013; 5 2013; 6 2011; 156 2011; 155 2005; 25 2009; 12 2000; 408 2000; 16 2001 2013; 11 2007; 175 2008; 319 1987 2002; 107 2006; 29 2003; 160 2008; 22 2013; 110 2014; 17 2006; 127 1992; 89 2010; 7 2014; 202 2009; 323 2010; 73 1989 2014; 54 2009; 204 1990; 94 2006; 443 2009; 23 2007; 447 2009; 182 1997; 131 2004; 140 2013; 41 1994; 45 2008; 14 2000; 70 2004 2014; 2014 2004; 428 2012; 35 2014; 111 2008; 363 2010b; 13 2012a; 3 2007; 13 2001; 126 2011; 178 2011; 331 2012; 195 2001; 82 2011; 108 2013; 33 2010a; 24 2010; 259 2011; 92 2011a; 191 2011b; 34 2014; 37 2003; 26 2009; 6 2012b; 15 2014 2013 2007; 88 1990; 6 2009; 106 2014; 102 2005; 14 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Sokal R.R. (e_1_2_8_91_1) 1987 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 Smith N.G. (e_1_2_8_90_1) 2014; 54 e_1_2_8_8_1 Gourlet‐Fleury S. (e_1_2_8_40_1) 2004 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 R Core Team (e_1_2_8_77_1) 2013 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 2014 start-page: e389409 year: 2014 article-title: Are commonly measured functional traits involved in tropical tree responses to climate? publication-title: International Journal of Ecology – volume: 3 start-page: 880 year: 2012a end-page: 888 article-title: Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point publication-title: Methods in Ecology and Evolution – volume: 107 start-page: LBA 53–1 year: 2002 end-page: LBA 53–18 article-title: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest publication-title: Journal of Geophysical Research: Atmospheres – volume: 38 start-page: 555 year: 2006 end-page: 557 article-title: The use of French spikes to collect botanical vouchers in permanent plots: evaluation of potential impacts publication-title: Biotropica – volume: 200 start-page: 298 year: 2013 end-page: 300 article-title: Our limited ability to predict vegetation dynamics under water stress publication-title: New Phytologist – volume: 17 start-page: 1580 year: 2014 end-page: 1590 article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait publication-title: Ecology Letters – volume: 97 start-page: 527 year: 2010 end-page: 540 article-title: Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity publication-title: Annals of the Missouri Botanical Garden – volume: 15 start-page: 1120 year: 2012 end-page: 1129 article-title: Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana publication-title: Ecology Letters – volume: 29 start-page: 151 year: 2006 end-page: 165 article-title: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential publication-title: Plant, Cell and Environment – volume: 73 start-page: 220 year: 2010 end-page: 225 article-title: The impact of climate changes during the Holocene on vegetation in northern French Guiana publication-title: Quaternary Research – volume: 156 start-page: 832 year: 2011 end-page: 843 article-title: Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture publication-title: Plant Physiology – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 13 start-page: 1338 year: 2010b end-page: 1347 article-title: Decoupled leaf and stem economics in rain forest trees publication-title: Ecology Letters – volume: 54 start-page: 2014RG000458 year: 2014 article-title: Toward a better integration of biological data from precipitation manipulation experiments into Earth system models publication-title: Reviews of Geophysics – volume: 98 start-page: 106 year: 2010 end-page: 116 article-title: Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest publication-title: Journal of Ecology – volume: 259 start-page: 660 year: 2010 end-page: 684 article-title: A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests publication-title: Forest Ecology and Management – volume: 187 start-page: 579 year: 2010 end-page: 591 article-title: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest publication-title: New Phytologist – volume: 27 start-page: 574 year: 2013 end-page: 591 article-title: Impact of evapotranspiration on dry season climate in the Amazon forest publication-title: Journal of Climate – volume: 26 start-page: 443 year: 2003 end-page: 450 article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees publication-title: Plant, Cell and Environment – volume: 127 start-page: 423 year: 2006 end-page: 433 article-title: Interrelations among pressure–volume curve traits across species and water availability gradients publication-title: Physiologia Plantarum – volume: 110 start-page: 565 year: 2013 end-page: 570 article-title: Persistent effects of a severe drought on Amazonian forest canopy publication-title: Proceedings of the National Academy of Sciences – start-page: 131 year: 2014 end-page: 159 – volume: 14 start-page: 2015 year: 2008 end-page: 2039 article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) publication-title: Global Change Biology – volume: 97 start-page: 207 year: 2010 end-page: 215 article-title: Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity publication-title: American Journal of Botany – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 363 start-page: 1829 year: 2008 end-page: 1838 article-title: Impact of a drier Early–Mid‐Holocene climate upon Amazonian forests publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 14 start-page: 97 year: 2012 end-page: 110 article-title: Deriving plant functional types for Amazonian forests for use in vegetation dynamics models publication-title: Perspectives in Plant Ecology Evolution and Systematics – volume: 21 start-page: 297 year: 2005 end-page: 305 article-title: A comparison of methods for determining soil water availability in two sites in Panama with similar rainfall but distinct tree communities publication-title: Journal of Tropical Ecology – volume: 323 start-page: 1344 year: 2009 end-page: 1347 article-title: Drought sensitivity of the Amazon rainforest publication-title: Science – volume: 108 start-page: 9899 year: 2011 end-page: 9904 article-title: Benchmark map of forest carbon stocks in tropical regions across three continents publication-title: Proceedings of the National Academy of Sciences – volume: 5 start-page: plt046 year: 2013 article-title: Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms publication-title: Aob Plants – volume: 82 start-page: 453 year: 2001 end-page: 469 article-title: Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs publication-title: Ecology – volume: 131 start-page: 81 year: 1997 end-page: 108 article-title: The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest publication-title: Plant Ecology – volume: 140 start-page: 543 year: 2004 end-page: 550 article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees publication-title: Oecologia – volume: 168 start-page: 1 year: 2012 end-page: 10 article-title: Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms publication-title: Oecologia – volume: 100 start-page: 1507 year: 2007 end-page: 1515 article-title: Contrasting physiological responses of six species to water deficit publication-title: Annals of Botany – year: 1987 – start-page: 161 year: 1989 end-page: 183 – volume: 182 start-page: 565 year: 2009 end-page: 588 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytologist – volume: 155 start-page: 1051 year: 2011 end-page: 1059 article-title: Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality publication-title: Plant Physiology – volume: 45 start-page: 171 year: 1994 end-page: 177 article-title: Synchronous changes in tissue water parameters of mature foliage from well‐watered and periodically droughted tree seedlings publication-title: Journal of Experimental Botany – volume: 164 start-page: 1772 year: 2013 end-page: 1788 article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance publication-title: Plant Physiology – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 12 start-page: 351 year: 2009 end-page: 366 article-title: Towards a worldwide wood economics spectrum publication-title: Ecology Letters – volume: 195 start-page: 396 year: 2012 end-page: 407 article-title: Diverse functional responses to drought in a Mediterranean‐type shrubland in South Africa publication-title: New Phytologist – volume: 22 start-page: 221 year: 2008 end-page: 231 article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai Peninsula publication-title: Functional Ecology – volume: 6 start-page: 268 year: 2013 end-page: 273 article-title: Simulated resilience of tropical rainforests to CO2‐induced climate change publication-title: Nature Geoscience – volume: 363 start-page: 1839 year: 2008 end-page: 1848 article-title: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 7 start-page: 3027 year: 2010 end-page: 3039 article-title: Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model publication-title: Biogeosciences – volume: 14 start-page: 301 year: 2011 end-page: 312 article-title: Global patterns of leaf mechanical properties publication-title: Ecology Letters – volume: 204 start-page: 295 year: 2009 end-page: 304 article-title: Hydraulic properties and photosynthetic rates in co‐occurring lianas and trees in a seasonal tropical rainforest in southwestern China publication-title: Plant Ecology – year: 2013 – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – volume: 16 start-page: 101 year: 2000 end-page: 116 article-title: Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture publication-title: Journal of Tropical Ecology – volume: 64 start-page: 4053 year: 2013 end-page: 4080 article-title: How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis publication-title: Journal of Experimental Botany – volume: 88 start-page: 2259 year: 2007 end-page: 2269 article-title: Mortality of large trees and lianas following experimental drought in an amazon forest publication-title: Ecology – volume: 187 start-page: 631 year: 2010 end-page: 646 article-title: Drought‐mortality relationships for tropical forests publication-title: New Phytologist – volume: 26 start-page: 1343 year: 2003 end-page: 1356 article-title: The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species publication-title: Plant, Cell and Environment – year: 2001 – volume: 200 start-page: 350 year: 2013 end-page: 365 article-title: Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought publication-title: New Phytologist – volume: 202 start-page: 79 year: 2014 end-page: 94 article-title: Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients publication-title: New Phytologist – volume: 408 start-page: 184 year: 2000 end-page: 187 article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model publication-title: Nature – volume: 53 start-page: 1342 year: 1975 end-page: 1346 article-title: Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations publication-title: Canadian Journal of Botany – volume: 188 start-page: 1113 year: 2010 end-page: 1123 article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms publication-title: New Phytologist – volume: 23 start-page: 93 year: 2009 end-page: 102 article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution publication-title: Functional Ecology – volume: 363 start-page: 1857 year: 2008 end-page: 1864 article-title: Towards quantifying uncertainty in predictions of Amazon ‘dieback’ publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 17 start-page: 82 year: 2014 end-page: 91 article-title: Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology publication-title: Ecology Letters – volume: 111 start-page: 16041 year: 2014 end-page: 16046 article-title: Vegetation dynamics and rainfall sensitivity of the Amazon publication-title: Proceedings of the National Academy of Sciences – volume: 178 start-page: E37 year: 2011 end-page: E47 article-title: Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference publication-title: American Naturalist – year: 2004 – volume: 6 start-page: 3993 year: 2009 end-page: 4057 article-title: Regional and large‐scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties publication-title: Biogeosciences Discussions – volume: 13 start-page: 2361 year: 2007 end-page: 2378 article-title: The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment publication-title: Global Change Biology – volume: 24 start-page: 208 year: 2010a end-page: 216 article-title: Functional trait variation and sampling strategies in species‐rich plant communities publication-title: Functional Ecology – volume: 14 start-page: 411 year: 2005 end-page: 421 article-title: Modulation of leaf economic traits and trait relationships by climate publication-title: Global Ecology and Biogeography – volume: 51 start-page: 335 year: 2003 end-page: 380 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Australian Journal of Botany – volume: 37 start-page: 153 year: 2014 end-page: 161 article-title: How do trees die? A test of the hydraulic failure and carbon starvation hypotheses publication-title: Plant, Cell & Environment – volume: 16 start-page: 403 year: 2002 end-page: 412 article-title: High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations publication-title: Functional Ecology – volume: 6 start-page: 305 year: 1990 end-page: 315 article-title: Drought adaptations and responses in 5 genotypes of fraxinus‐pennsylvanica marsh ‐ photosynthesis, water relations and leaf morphology publication-title: Tree Physiology – volume: 41 start-page: 2921 year: 2013 end-page: 2936 article-title: Present‐day and future Amazonian precipitation in global climate models: CMIP5 vs. CMIP3 publication-title: Climate Dynamics – volume: 26 start-page: 495 year: 2013 end-page: 511 article-title: Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2‐ES and HadCM3LC publication-title: Journal of Climate – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Global Change Biology – volume: 40 start-page: 19 year: 1989 end-page: 36 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 35 start-page: 857 year: 2012 end-page: 871 article-title: Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control publication-title: Plant Cell and Environment – volume: 447 start-page: 80 year: 2007 end-page: 82 article-title: Drought sensitivity shapes species distribution patterns in tropical forests publication-title: Nature – volume: 200 start-page: 304 year: 2013 end-page: 321 article-title: Evaluating theories of drought‐induced vegetation mortality using a multimodel‐experiment framework publication-title: New Phytologist – volume: 89 start-page: 457 year: 1992 end-page: 463 article-title: Drought acclimation among tropical forest shrubs (Psychotria, Rubiaceae) publication-title: Oecologia – volume: 160 start-page: 81 year: 2003 end-page: 99 article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types publication-title: New Phytologist – volume: 110 start-page: 5064 year: 2013 end-page: 5068 article-title: Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees publication-title: Proceedings of the National Academy of Sciences – volume: 443 start-page: 444 year: 2006 end-page: 447 article-title: Continental‐scale patterns of canopy tree composition and function across Amazonia publication-title: Nature – volume: 15 start-page: 393 year: 2012b end-page: 405 article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis publication-title: Ecology Letters – volume: 175 start-page: 686 year: 2007 end-page: 698 article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation publication-title: New Phytologist – volume: 331 start-page: 554 year: 2011 article-title: The 2010 Amazon drought publication-title: Science – volume: 94 start-page: 1781 year: 1990 end-page: 1787 article-title: Leaf water relations and maintenance of gas exchange in coffee cultivars grown in drying soil publication-title: Plant Physiology – volume: 3 start-page: 162 year: 2013 end-page: 169 article-title: Neogene origins and implied warmth tolerance of Amazon tree species publication-title: Ecology and Evolution – volume: 92 start-page: 871 year: 2011 end-page: 882 article-title: Directional changes in the species composition of a tropical forest publication-title: Ecology – volume: 319 start-page: 169 year: 2008 end-page: 172 article-title: Climate change, deforestation, and the fate of the Amazon publication-title: Science – volume: 34 start-page: 137 year: 2011b end-page: 148 article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits publication-title: Plant Cell and Environment – volume: 191 start-page: 480 year: 2011a end-page: 495 article-title: Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance publication-title: New Phytologist – volume: 11 start-page: e1001569 year: 2013 article-title: Rare species support vulnerable functions in high‐diversity ecosystems publication-title: PLoS Biology – start-page: 9 year: 2001 end-page: 18 – volume: 25 start-page: 1127 year: 2005 end-page: 1137 article-title: Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance publication-title: Tree Physiology – volume: 106 start-page: 20610 year: 2009 end-page: 20615 article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest publication-title: Proceedings of the National Academy of Sciences – volume: 70 start-page: 517 year: 2000 end-page: 537 article-title: Intra‐ and interspecific variation for summer precipitation use in pinyon–juniper woodlands publication-title: Ecological Monographs – ident: e_1_2_8_63_1 doi: 10.1111/nph.12465 – ident: e_1_2_8_85_1 doi: 10.1007/s00442-004-1624-1 – ident: e_1_2_8_89_1 doi: 10.1111/j.1365-2486.2008.01626.x – ident: e_1_2_8_67_1 doi: 10.1029/2001JD000360 – ident: e_1_2_8_88_1 doi: 10.1111/pce.12141 – ident: e_1_2_8_96_1 doi: 10.1111/j.1469-8137.2012.04170.x – ident: e_1_2_8_79_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_8_29_1 doi: 10.1002/ece3.441 – ident: e_1_2_8_38_1 doi: 10.1016/j.ppees.2011.11.001 – ident: e_1_2_8_31_1 doi: 10.1111/j.1461-0248.2012.01834.x – ident: e_1_2_8_46_1 doi: 10.1098/rstb.2007.0028 – ident: e_1_2_8_74_1 doi: 10.1111/nph.12390 – ident: e_1_2_8_93_1 doi: 10.1146/annurev.pp.40.060189.000315 – ident: e_1_2_8_44_1 doi: 10.1175/JCLI-D-13-00074.1 – ident: e_1_2_8_33_1 doi: 10.1111/j.1365-2745.2009.01604.x – ident: e_1_2_8_27_1 doi: 10.1111/j.1744-7429.2006.00172.x – ident: e_1_2_8_39_1 doi: 10.1175/JCLI-D-11-00366.1 – ident: e_1_2_8_92_1 doi: 10.1111/j.1365-2699.2005.01219.x – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_8_77_1 – ident: e_1_2_8_34_1 doi: 10.1111/j.1365-3040.2005.01407.x – ident: e_1_2_8_14_1 doi: 10.3417/2009143 – ident: e_1_2_8_45_1 doi: 10.1073/pnas.1404870111 – ident: e_1_2_8_97_1 doi: 10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2 – ident: e_1_2_8_32_1 doi: 10.1890/10-0724.1 – ident: e_1_2_8_55_1 doi: 10.1111/j.1399-3054.2006.00680.x – ident: e_1_2_8_50_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_8_35_1 doi: 10.1111/j.1365-2486.2007.01417.x – ident: e_1_2_8_68_1 doi: 10.1890/06-1046.1 – ident: e_1_2_8_11_1 doi: 10.1111/j.1469-8137.2010.03439.x – ident: e_1_2_8_16_1 doi: 10.1046/j.1365-3040.2003.00975.x – ident: e_1_2_8_80_1 doi: 10.1073/pnas.1019576108 – ident: e_1_2_8_103_1 doi: 10.1007/s11258-009-9592-5 – ident: e_1_2_8_72_1 doi: 10.1111/j.1469-8137.2010.03359.x – ident: e_1_2_8_73_1 doi: 10.1111/j.1469-8137.2009.02830.x – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-3040.2010.02231.x – ident: e_1_2_8_36_1 doi: 10.1111/nph.12632 – ident: e_1_2_8_12_1 doi: 10.1007/s00442-011-2064-3 – ident: e_1_2_8_41_1 doi: 10.1007/978-94-015-9821-7_2 – ident: e_1_2_8_65_1 doi: 10.1093/aob/mcm234 – ident: e_1_2_8_66_1 doi: 10.1371/journal.pbio.1001569 – ident: e_1_2_8_6_1 doi: 10.1111/j.1365-2435.2009.01600.x – ident: e_1_2_8_22_1 doi: 10.1073/pnas.1218042110 – ident: e_1_2_8_51_1 doi: 10.1007/978-94-009-2221-1_9 – ident: e_1_2_8_61_1 doi: 10.1098/rstb.2007.0019 – ident: e_1_2_8_43_1 doi: 10.1007/s004420100628 – ident: e_1_2_8_54_1 doi: 10.1046/j.1365-2435.2002.00631.x – ident: e_1_2_8_8_1 doi: 10.1111/j.1461-0248.2012.01751.x – ident: e_1_2_8_37_1 doi: 10.1016/j.yqres.2009.11.007 – ident: e_1_2_8_84_1 doi: 10.1093/jxb/ert316 – ident: e_1_2_8_20_1 doi: 10.1139/b75-162 – ident: e_1_2_8_104_1 doi: 10.1093/aobpla/plt046 – ident: e_1_2_8_56_1 doi: 10.1126/science.1200807 – ident: e_1_2_8_62_1 doi: 10.1104/pp.110.170704 – ident: e_1_2_8_52_1 doi: 10.1017/S0266467405002324 – ident: e_1_2_8_102_1 doi: 10.3732/ajb.0900178 – ident: e_1_2_8_25_1 doi: 10.1038/35041539 – ident: e_1_2_8_98_1 doi: 10.1007/BF00317149 – ident: e_1_2_8_83_1 doi: 10.1046/j.0016-8025.2003.01058.x – ident: e_1_2_8_5_1 doi: 10.1111/j.1365-2435.2007.01374.x – ident: e_1_2_8_28_1 doi: 10.5194/bg-7-3027-2010 – ident: e_1_2_8_9_1 doi: 10.1111/j.2041-210X.2012.00230.x – ident: e_1_2_8_100_1 doi: 10.1111/j.1466-822x.2005.00172.x – ident: e_1_2_8_4_1 doi: 10.1016/j.foreco.2009.09.001 – ident: e_1_2_8_75_1 doi: 10.1111/ele.12211 – ident: e_1_2_8_53_1 doi: 10.1111/j.1365-2435.2008.01483.x – ident: e_1_2_8_95_1 doi: 10.1155/2014/389409 – ident: e_1_2_8_13_1 doi: 10.1007/978-94-015-9821-7 – ident: e_1_2_8_58_1 doi: 10.1073/pnas.0804619106 – ident: e_1_2_8_59_1 doi: 10.1111/j.1469-8137.2011.03708.x – ident: e_1_2_8_42_1 doi: 10.1111/j.1365-3040.2011.02458.x – ident: e_1_2_8_99_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_8_71_1 doi: 10.1126/science.1164033 – volume-title: Ecology and Management of a Neotropical Rainforest: Lessons Drawn from Paracou, a Long‐Term Experimental Research Site in French Guiana year: 2004 ident: e_1_2_8_40_1 – ident: e_1_2_8_101_1 doi: 10.1111/nph.12450 – ident: e_1_2_8_15_1 doi: 10.1098/rstb.2007.0031 – ident: e_1_2_8_21_1 doi: 10.1111/j.1469-8137.2007.02137.x – volume: 54 start-page: 2014RG000458 year: 2014 ident: e_1_2_8_90_1 article-title: Toward a better integration of biological data from precipitation manipulation experiments into Earth system models publication-title: Reviews of Geophysics – ident: e_1_2_8_49_1 doi: 10.1007/s00382-012-1644-1 – ident: e_1_2_8_81_1 doi: 10.1073/pnas.1204651110 – ident: e_1_2_8_76_1 doi: 10.5194/bgd-6-3993-2009 – ident: e_1_2_8_30_1 doi: 10.1038/nature05747 – ident: e_1_2_8_57_1 doi: 10.1126/science.1146961 – ident: e_1_2_8_64_1 doi: 10.1104/pp.94.4.1781 – ident: e_1_2_8_7_1 doi: 10.1111/j.1461-0248.2010.01517.x – ident: e_1_2_8_18_1 doi: 10.1017/CBO9781107323506.009 – ident: e_1_2_8_87_1 doi: 10.1104/pp.113.221424 – ident: e_1_2_8_47_1 doi: 10.1038/ngeo1741 – ident: e_1_2_8_48_1 doi: 10.1086/660829 – ident: e_1_2_8_82_1 doi: 10.1023/A:1009775025850 – ident: e_1_2_8_3_1 doi: 10.1093/treephys/6.3.305 – volume-title: Introduction to Biostatistics year: 1987 ident: e_1_2_8_91_1 – ident: e_1_2_8_94_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_8_26_1 doi: 10.1111/j.1469-8137.2010.03309.x – ident: e_1_2_8_69_1 doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 – ident: e_1_2_8_70_1 doi: 10.1111/j.1461-0248.2010.01582.x – ident: e_1_2_8_10_1 doi: 10.1111/ele.12374 – ident: e_1_2_8_23_1 doi: 10.1071/BT02124 – ident: e_1_2_8_2_1 doi: 10.1093/jxb/45.2.171 – ident: e_1_2_8_19_1 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_2_8_17_1 doi: 10.1017/S0266467400001292 – ident: e_1_2_8_78_1 doi: 10.1046/j.1469-8137.2003.00855.x – ident: e_1_2_8_24_1 doi: 10.1093/treephys/25.9.1127 – ident: e_1_2_8_86_1 doi: 10.1104/pp.111.173856 |
SSID | ssj0009522 |
Score | 2.5332942 |
Snippet | Summary
Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly... Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented.... Summary Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly... 1. Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented.... |
SourceID | hal proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1268 |
SubjectTerms | Acclimation Acclimatization Bark carbon Carbon isotopes climate change correlation Correlation analysis data collection Drought Drought resistance drought tolerance Dry season Extreme drought Forest communities Forests French Guiana functional traits Herbivores interspecific variation Isotope ratios isotopes Leaf area leaf water potential Leaves Life Sciences mortality nitrogen Physiology Plant physiological ecology Plant species Plants plant–water relations quantitative analysis sapwood Species Species diversity Thickness Trees tropical trees Turgor Water potential water stress Wilting |
Title | Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest |
URI | https://www.jstor.org/stable/48576706 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12452 https://www.proquest.com/docview/1718276922 https://www.proquest.com/docview/2374019583 https://www.proquest.com/docview/1746416675 https://hal.inrae.fr/hal-02638162 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96IPiinrpYPSWKD750adMmbR6Xc5flOH0QD3wraZKeh7Vd2u7J3rv_tzPph3uHh4hvIcmEZjqT_CaZzBDyNjQyiJNc-7EU1o-ZAZXiifFVImzMbQIqhYbih49ifRaffOGjNyG-henjQ0wHbqgZbr1GBVd5u6fkvX8W7PbzEG8PYRXGGoRFn9he2N3-HoEJ6cNOGw3BfdCX5wb9tX3p7lf0iuwdFK9Bz30A63ag1UOSj9_eO558m2-7fK6vboR1_K_JPSIPBnxKF71AHZI7tnpM7vUZK3dQWuqhNFv-fiIHBMMa0T4hP9-7zD8d7erSYtoOS1VLNw3eCAG8pfmOllYV9Aeg3IZu6g79lWAEBRTb5rxuaAkMgoaLqqOXzpSnLR7Yn5c7qhz3KL4PxXo8Rb6oqKro4ru6guUJSoDCgYlPydlq-fl47Q_JHnwtAsl8A0CusFEcaMZtEYGMGK611cwARLGFMdIorRKZ8lSovIhSheasioAkSWxqohk5qOrKPiMUTH5eMBuD3QDjFUEqA8UNl1pEYcFC5ZH5-KszPURCx4QcZTZaRMj-DNmfOfZ75N1EsOmDgNze9Q3IztQLg3evF6cZ1oEQ4i0tuww9MnOiNXWLUzD7kkB45GiUtWxYS9osBPjAEiEZ-2MzizCpouRp5JHXUzMsEnjzoypbb3GIWADyBuMQ5u7k7m_zyFbLY1d4_q8EL8h9-GO8d3g8Igdds7UvAbh1-Sunm78AuRo1nA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEGIvfFcLDDCIB15SJU7sxI_VaFWg2wPapL1Fru1sEyGp0nSoe-f_5s5JQzeBEOLNij8Un-_s3_nOd4S8C40M4mSu_VgK68fMgEjxxPgqETbmNgGRQkXx6FhMT-NPZ_xs6y1MGx-iv3BDyXD7NQo4XkhvSXnroAXH_TBE8-EOuYt5vZ1a9YVtBd5tLQlMSB_O2qgL74PePLcGuHEy7VygX2TrongDfG5DWHcGTR4Svfn71vXk63DVzIf6-lZgx_-b3iPyoIOodNTy1GNyx5ZPyL02aeUaSmPdlQbjX6_koEO3TSyfkh8fXPKfhjZVYTFzh6VqSRc1GoUA4dL5mhZW5fQ7AN2aLqoGXZZgBAU9VvV5VdMCKAQVl2VDr5w2T5d4Z39erKly5KP4RBS_40XyZUlVSUff1DXsUFACIA5UfEZOJ-OTw6nf5XvwtQgk8w1gudxGcaAZt3kEbGK41lYzAyjF5sZIo7RKZMpToeZ5lCrUaFUEXZLEpiYakN2yKu0-oaD185zZGFQHGC8PUhkobrjUIgpzFiqPDDdrnekuGDrm5CiyjVKE5M-Q_Jkjv0fe9x0WbRyQPzd9C8zTt8L43dPRLMNvwIVoqGVXoUcGjrf6ZnEKml8SCI8cbJgt67aTZRYCgmCJkIz9tppFmFdR8jTyyJu-GvYJNP6o0lYrHCIWAL5BP4S5O8b72zyyyfjQFZ7_a4fX5P705GiWzT4ef35B9mD1eOv_eEB2m3plXwKOa-avnKD-BAowObc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEIgXvisCAwzigZdUiWM7yWO1tiowJoSYxFvk2M6YCEmVpkPdO_83d04augmEEG9W_KH4fGf_zne-I-RVaNKAx7n2eSqtz5kBkRKx8VUsLRc2BpFCRfH9sVyc8LefxdabEN_CdPEhhgs3lAy3X6OAL02xI-Sdfxac9uMQrYd75DqXQYKMPf3IduLudoYEJlMfjtqoj-6DzjxXBrh0MO19QbfIzkPxEvbcRbDuCJrfIfn25zvPk6_jdZuP9cWVuI7_Nbu75HYPUOmk46h75Jqt7pMbXcrKDZRmui-NZr_eyEGHfpNYPSA_pi71T0vburSYt8NStaLLBk1CgG9pvqGlVQX9DjC3ocu6RYclGEFBj3VzWje0BAJBxVnV0nOny9MV3tiflhuqHPUoPhDF73iNfFZRVdHJN3UB-xOUAIYDER-Sk_ns0-HC77M9-FoGKfMNILnCRjzQTNgiAiYxQmurmQGMYgtjUqO0itNEJFLlRZQo1GdVBF3i2CYmGpH9qq7sI0JB5xcFsxwUBxivAK4IlDAi1TIKCxYqj4y3S53pPhQ6ZuQos61KhOTPkPyZI79HXg8dll0UkD83fQm8M7TC6N2LyVGG34AJ0UzLzkOPjBxrDc14AnpfHEiPHGx5Les3k1UWAn5gsUwZ-201izCrYiqSyCMvhmrYJdD0oypbr3EILgF6g3YIc3d897d5ZPPZoSs8_tcOz8nND9N5dvTm-N0TcgsWT3TOjwdkv23W9imAuDZ_5sT0Jz30OG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+tolerance+as+predicted+by+leaf+water+potential+at+turgor+loss+point+varies+strongly+across+species+within+an+Amazonian+forest&rft.jtitle=Functional+ecology&rft.au=Mar%C3%A9chaux%2C+Isabelle&rft.au=Bartlett%2C+Megan+K&rft.au=Sack%2C+Lawren&rft.au=Baraloto%2C+Christopher&rft.date=2015-10-01&rft.issn=0269-8463&rft.volume=29&rft.issue=10+p.1268-1277&rft.spage=1268&rft.epage=1277&rft_id=info:doi/10.1111%2F1365-2435.12452&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |