Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin

Summary In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long‐term tolerance to immunoge...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 12; no. 8; pp. 2190 - 2203
Main Authors Troll, Joshua V., Bent, Eric H., Pacquette, Nicholas, Wier, Andrew M., Goldman, William E., Silverman, Neal, McFall-Ngai, Margaret J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long‐term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial ‘toxin’ that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT‐degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
AbstractList In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial 'toxin' that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
Summary In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long‐term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri . Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial ‘toxin’ that is constitutively exported by V. fischeri . Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT‐degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
In horizontally-transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan-recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri . Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer (TCT), a bacterial ‘toxin’ that is constitutively exported by V. fischeri . Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
Summary In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long‐term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial ‘toxin’ that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT‐degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
SummaryIn horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial 'toxin' that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
Author Wier, Andrew M.
Goldman, William E.
Silverman, Neal
McFall-Ngai, Margaret J.
Troll, Joshua V.
Pacquette, Nicholas
Bent, Eric H.
AuthorAffiliation 1 Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
2 Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
3 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
AuthorAffiliation_xml – name: 1 Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
– name: 2 Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
– name: 3 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Joshua V.
  surname: Troll
  fullname: Troll, Joshua V.
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 2
  givenname: Eric H.
  surname: Bent
  fullname: Bent, Eric H.
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Nicholas
  surname: Pacquette
  fullname: Pacquette, Nicholas
  organization: Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 4
  givenname: Andrew M.
  surname: Wier
  fullname: Wier, Andrew M.
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 5
  givenname: William E.
  surname: Goldman
  fullname: Goldman, William E.
  organization: Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 6
  givenname: Neal
  surname: Silverman
  fullname: Silverman, Neal
  organization: Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 7
  givenname: Margaret J.
  surname: McFall-Ngai
  fullname: McFall-Ngai, Margaret J.
  email: mjmcfallngai@wisc.edu
  organization: Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21966913$$D View this record in MEDLINE/PubMed
BookMark eNqNUcuO1DAQtNAi9gG_gHLjlOBHXkYCCa2WYaUFRqtBc2w5ns6Oh8Re7Axk-HocZglwwxe33FXV5a5zcmKdRUISRjMWz8tdxvKSp1xymnFKZUY54ywbH5GzuXEy14yfkvMQdpSySlT0CTnlTJalZOKMrFeqN_YuGbaYhEPfGGeHpHU-0Q5HEwa0Gl8lKtm6MCTLxe0ysbgfvOrMDwzxvVF6QG9U94c9uNHYp-Rxq7qAzx7uC_L53dXq8n1682lxffn2JtUllSxtCqVodMk5Q8GE0ErXWOdVwxitWo2iRSk2dUUlRU0x_r1o6o2UJWUMW1mKC_LmqHu_b3rcaLSTObj3plf-AE4Z-LdjzRbu3DfgdS15TqPAiwcB777uMQzQm6Cx65RFtw9QFXktSynziKyPSO1dCB7beQqjMMUCO5g2DtP2YYoFfsUCY6Q-_9vlTPydQwS8PgK-mw4P_y0MVx-upyry0yN_imyc-cp_gTJmXsD64wIEXRXL23UJufgJWUOtVA
CitedBy_id crossref_primary_10_1098_rstb_2023_0060
crossref_primary_10_1016_j_molimm_2013_06_019
crossref_primary_10_1038_ni_2635
crossref_primary_10_1126_science_1209728
crossref_primary_10_1128_mBio_00167_13
crossref_primary_10_1002_mbo3_858
crossref_primary_10_1021_jm100086u
crossref_primary_10_1093_icb_icad087
crossref_primary_10_3389_fmicb_2016_01982
crossref_primary_10_1016_j_dci_2016_12_009
crossref_primary_10_1007_s13199_022_00855_y
crossref_primary_10_1111_ede_12291
crossref_primary_10_3389_fmars_2022_1026742
crossref_primary_10_1098_rspb_2014_0504
crossref_primary_10_1128_mBio_00040_17
crossref_primary_10_1038_s41385_018_0010_y
crossref_primary_10_1186_s12864_016_3293_y
crossref_primary_10_1371_journal_pone_0119949
crossref_primary_10_1128_mSystems_00867_21
crossref_primary_10_1086_BBLv223n1p103
crossref_primary_10_1016_j_fsi_2019_08_022
crossref_primary_10_1091_mbc_E24_01_0044
crossref_primary_10_1016_j_fsi_2022_01_015
crossref_primary_10_1016_j_micinf_2015_08_016
crossref_primary_10_1016_j_chom_2013_07_006
crossref_primary_10_1038_nri3089
crossref_primary_10_3390_ijms231911062
crossref_primary_10_3389_fimmu_2020_01251
crossref_primary_10_1016_j_immuni_2019_08_003
crossref_primary_10_1186_s40168_023_01714_8
crossref_primary_10_1007_s13355_020_00680_z
crossref_primary_10_1128_AEM_00890_15
crossref_primary_10_15741_revbio_11_e1521
crossref_primary_10_3389_fcell_2021_768783
crossref_primary_10_3389_fmicb_2019_00500
crossref_primary_10_1128_JB_00121_18
crossref_primary_10_1038_s41579_021_00567_y
crossref_primary_10_1016_j_fsi_2015_02_036
crossref_primary_10_1038_srep46318
crossref_primary_10_1042_BST0391039
crossref_primary_10_1128_mSystems_00175_19
crossref_primary_10_1371_journal_pone_0025649
crossref_primary_10_1038_pr_2014_165
crossref_primary_10_1038_nrmicro2894
crossref_primary_10_1073_pnas_1821806116
crossref_primary_10_1074_mcp_M113_037259
crossref_primary_10_1111_1462_2920_12496
crossref_primary_10_1038_s41598_024_53477_3
crossref_primary_10_1111_1462_2920_14392
crossref_primary_10_1016_j_immuni_2011_09_018
crossref_primary_10_1098_rspb_2017_0360
crossref_primary_10_3389_fmars_2022_825267
crossref_primary_10_1111_mec_12655
crossref_primary_10_1128_mBio_00093_12
crossref_primary_10_1128_mbio_01671_22
crossref_primary_10_1371_journal_pone_0038267
crossref_primary_10_1073_pnas_2016864117
crossref_primary_10_1016_j_isci_2022_104357
crossref_primary_10_1128_AEM_01800_16
crossref_primary_10_1016_j_smim_2011_11_006
crossref_primary_10_1111_1462_2920_12179
crossref_primary_10_1128_mBio_00853_20
Cites_doi 10.1016/j.bbrc.2006.09.139
10.1016/S1074-7613(04)00104-9
10.2307/1542815
10.1016/S0006-291X(03)01096-9
10.1128/AEM.60.5.1565-1571.1994
10.1016/j.bbrc.2009.01.140
10.1128/AEM.68.10.5113-5122.2002
10.1111/j.1462-5822.2006.00726.x
10.1128/JB.01547-08
10.1126/science.1132913
10.1128/MMBR.68.2.280-300.2004
10.1111/j.1462-5822.2009.01315.x
10.1007/BF00250277
10.1073/pnas.95.4.1818
10.1007/BF00193435
10.1242/dev.120.7.1719
10.1074/jbc.M307758200
10.1002/(SICI)1097-4644(19990315)72:4<445::AID-JCB1>3.0.CO;2-P
10.1128/IAI.66.2.777-785.1998
10.1111/j.0105-2896.2004.0120.x
10.1073/pnas.97.25.13772
10.1128/AEM.72.1.802-810.2006
10.1017/S0029665100000197
10.1016/j.dci.2006.11.006
10.1111/j.1462-5822.2004.00429.x
10.1126/science.1102218
10.1126/science.1962208
10.1182/blood-2005-02-0530
10.1038/nature734
10.1073/pnas.97.18.10231
10.1007/s004270050185
10.1074/jbc.M208900200
10.2307/1542152
10.1128/AEM.71.11.6934-6946.2005
10.1073/pnas.90.6.2365
10.1042/BST0351496
10.1038/414756a
10.1016/j.molimm.2003.10.011
10.1038/nrmicro957
10.1038/nrmicro1486
10.1101/gad.817800
10.1371/journal.ppat.0020014
10.1093/infdis/149.3.378
10.2307/1542448
10.1016/j.micinf.2009.03.004
10.1111/j.1365-2672.2007.03366.x
10.1006/dbio.2000.9868
10.1111/j.1365-2958.1995.tb02434.x
10.1074/jbc.M506385200
10.1016/j.immuni.2006.02.012
10.1128/JB.182.16.4578-4586.2000
ContentType Journal Article
Copyright 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
5PM
DOI 10.1111/j.1462-2920.2009.02121.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2203
ExternalDocumentID 10_1111_j_1462_2920_2009_02121_x
21966913
EMI2121
ark_67375_WNG_30T5PRW6_4
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI060025
– fundername: NIAID NIH HHS
  grantid: R37 AI050661
– fundername: NIAID NIH HHS
  grantid: T32 AI055397
– fundername: NIAID NIH HHS
  grantid: R01-AI50661
– fundername: NIAID NIH HHS
  grantid: AI55397
– fundername: NIAID NIH HHS
  grantid: R01 AI050661
– fundername: NIAID NIH HHS
  grantid: R01 AI050661-08
– fundername: NCRR NIH HHS
  grantid: RR R01-12294
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7TN
8FD
C1K
F1W
FR3
H95
L.G
P64
5PM
ID FETCH-LOGICAL-c6091-b5aa0462221e3133cac8e847b1107fce3fe93d87090ec0e1115b8d996011ef963
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Tue Sep 17 20:51:09 EDT 2024
Fri Aug 16 01:11:30 EDT 2024
Fri Aug 23 01:46:23 EDT 2024
Wed Oct 23 09:41:55 EDT 2024
Sat Aug 24 01:11:26 EDT 2024
Wed Jan 17 05:01:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6091-b5aa0462221e3133cac8e847b1107fce3fe93d87090ec0e1115b8d996011ef963
Notes istex:3F7CA3DD9392B1B2EE923BAD542A23F490DD77D9
ArticleID:EMI2121
ark:/67375/WNG-30T5PRW6-4
Present address: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-2920.2009.02121.x
PMID 21966913
PQID 754896994
PQPubID 23462
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889240
proquest_miscellaneous_754896994
crossref_primary_10_1111_j_1462_2920_2009_02121_x
pubmed_primary_21966913
wiley_primary_10_1111_j_1462_2920_2009_02121_x_EMI2121
istex_primary_ark_67375_WNG_30T5PRW6_4
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Koropatnick, T.A., Engle, J.T., Apicella, M.A., Stabb, E.V., Goldman, W.E., and McFall-Ngai, M.J. (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306: 1186-1188.
Luker, K.E., Collier, J.L., Kolodziej, E.W., Marshall, G.R., and Goldman, W.E. (1993) Bordetella pertussis tracheal cytotoxin and other muramyl peptides: distinct structure-activity relationships for respiratory epithelial cytopathology. Proc Natl Acad Sci USA 90: 2365-2369.
Kelly, D., and Coutts, A.G. (2000) Early nutrition and the development of immune function in the neonate. Proc Nutr Soc 59: 177-185.
Ruby, E.G., and Asato, L.M. (1993) Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159: 160-167.
Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H., and Hultmark, D. (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97: 13772-13777.
Montgomery, M.K., and McFall-Ngai, M. (1994) Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120: 1719-1729.
McFall-Ngai, M.J., and Ruby, E.G. (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254: 1491-1494.
Nyholm, S.V., and McFall-Ngai, M.J. (1998) Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol Bull 195: 89-97.
Lamarcq, L.H., and McFall-Ngai, M.J. (1998) Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri. Infect Immun 66: 777-785.
Adin, D.M., Engle, J.T., Goldman, W.E., McFall-Ngai, M.J., and Stabb, E.V. (2008) Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J Bacteriol 191: 2012-2022.
Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., et al. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416: 640-644.
Aggrawal, K., and Silverman, N. (2007) Peptidoglycan recognition in Drosophila. Biochem Soc Trans 35: 1496-1500.
Mellroth, P., Karlsson, J., and Steiner, H. (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 278: 7059-7064.
Silverman, N., Zhou, R., Stoven, S., Pandey, N., Hultmark, D., and Maniatis, T. (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev 14: 2461-2471.
Dziarski, R., and Gupta, D. (2006) Mammalian PGRPs: novel antibacterial proteins. Cell Microbiol 8: 1059-1069.
Michel, T., Reichhart, J.M., Hoffmann, J.A., and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414: 756-759.
Mellroth, P., and Steiner, H. (2006) PGRP-SB1: an N-acetylmuramoyl l-alanine amidase with antibacterial activity. Biochem Biophys Res Commun 350: 994-999.
Wang, Z.M., Li, X., Cocklin, R.R., Wang, M., Fukase, K., Inamura, S., et al. (2003) Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 278: 49044-49052.
Boettcher, K.J., Ruby, E.G., and McFall-Ngai, M.J. (1996) Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 179: 65-73.
Doino, J.A., and McFall-Ngai, M.J. (1995) A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol Bull 189: 347-355.
Lützner, N., Pätzold, B., Zoll, S., Stehle, T., and Kalbacher, H. (2009) Development of a novel fluorescent substrate for Autolysin E, a bacterial type II amidase. Biochemical Biophysical Res Comms 380: 554-558.
Nyholm, S.V., Deplancke, B., Gaskins, H.R., Apicella, M.A., and McFall-Ngai, M.J. (2002) Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl Environ Microbiol 68: 5113-5122.
Davidson, S.K., Koropatnick, T.A., Kossmehl, R., Sycuro, L., and McFall-Ngai, M.J. (2004) NO means 'yes' in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol 6: 1139-1151.
Cooper, J.E. (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiology 103: 1355-1365.
Steiner, H. (2004) Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev 198: 83-96.
Montgomery, M.K., and McFall-Ngai, M. (1993) Embryonic-development of the light organ of the sepiolid squid Euprymna-scolopes berry. Biological Bull 184: 296-308.
Luker, K.E., Tyler, A.N., Marshall, G.R., and Goldman, W.E. (1995) Tracheal cytotoxin structural requirements for respiratory epithelial damage in pertussis. Mol Microbiol 16: 733-743.
Charroux, B., Rival, T., Narbonne-Reveau, K., and Royet, J. (2009) Bacterial detection by Drosophila peptidoglycan recognition proteins. Microbes Infect 11: 631-636.
Goodson, M.S., Kojadinovic, M., Troll, J.V., Scheetz, T.E., Casavant, T.L., Soares, M.B., and McFall-Ngai, M.J. (2005) Identifying components of the NF-κB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl Environ Microbiol 71: 6934-6946.
Markert, S., Arndt, C., Felbeck, H., Becher, D., Sievert, S.M., Hugler, M., et al. (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315: 247-250.
Troll, J.V., Adin, D.M., Wier, A.M., Paquette, N., Silverman, N., Goldman, W.E., et al. (2009) Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell Microbiol 11: 1114-1127.
Melly, M.A., McGee, Z.A., and Rosenthal, R.S. (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149: 378-386.
Nyholm, S.V., and McFall-Ngai, M.J. (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Microbiol 2: 632-642.
Nyholm, S.V., Stabb, E.V., Ruby, E.G., and McFall-Ngai, M.J. (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97: 10231-10235.
Dixon, M., and Webb, E.C. (1964) Enzymes. New York, NY, USA: Academic Press.
Lee, K.H., and Ruby, E.G. (1994) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 60: 1565-1571.
Bischoff, V., Vignal, C., Duvic, B., Boneca, I.G., Hoffmann, J.A., and Royet, J. (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. Plos Pathog 2: e14.
Cho, J.H., Fraser, I.P., Fukase, K., Kusumoto, S., Fujimoto, Y., Stahl, G.L., and Ezekowitz, R.A. (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106: 2551-2558.
Graf, J., and Ruby, E.G. (1998) Host-derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci USA 95: 1818-1822.
Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M.S., Blanot, D., et al. (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463-473.
Foster, J.S., Apicella, M.A., and McFall-Ngai, M.J. (2000) Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev Biol 226: 242-254.
Dunn, A.K., Millikan, D.S., Adin, D.M., Bose, J.L., and Stabb, E.V. (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol 72: 802-810.
Visick, K.L., Foster, J., Doino, J., McFall-Ngai, M., and Ruby, E.G. (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182: 4578-4586.
Gelius, E., Persson, C., Karlsson, J., and Steiner, H. (2003) A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem Biophys Res Commun 306: 988-994.
Kumar, S., Roychowdhury, A., Ember, B., Wang, Q., Guan, R., Mariuzza, R.A., and Boons, G.J. (2005) Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins Iα and S. J Biol Chem 280: 37005-37012.
Coteur, G., Mellroth, P., De Lefortery, C., Gillan, D., Dubois, P., Communi, D., and Steiner, H. (2007) Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev Comp Immunol 31: 790-804.
Small, A.L., and McFall-Ngai, M.J. (1999) Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J Cell Biochem 72: 445-457.
Kaneko, T., Goldman, W.E., Mellroth, P., Steiner, H., Fukase, K., Kusumoto, S., et al. (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20: 637-649.
Dziarski, R. (2004) Peptidoglycan recognition proteins (PGRPs). Mol Immunol 40: 877-886.
Cloud-Hansen, K.A., Peterson, S.B., Stabb, E.V., Goldman, W.E., McFall-Ngai, M.J., and Handelsman, J. (2006) Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol 4: 710-716.
Foster, J.S., and McFall-Ngai, M.J. (1998) Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues. Dev Genes E 208: 295-303.
Gage, D.J. (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68: 280-300.
2007; 103
2008; 191
2004; 20
2006; 72
2004; 68
2004; 6
1971
2004; 2
2007; 31
2003; 278
1994; 60
2007; 35
1998; 195
2009; 11
2000; 14
2000; 59
2006; 24
2005; 106
2000; 97
1998; 208
2005; 71
1998; 95
1996; 179
2001; 414
2004; 40
1991; 254
1995; 16
2009; 380
1984; 149
2006; 350
2006; 8
1993; 184
2006; 4
1993; 90
2002; 416
2006; 2
2004; 306
1998; 66
2005; 280
2004; 198
2003; 306
2007; 315
2000; 226
1994; 120
2002; 68
2000; 182
1964
1995; 189
1999; 72
1993; 159
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Dixon M. (e_1_2_6_12_1) 1964
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
Kaback H.R. (e_1_2_6_24_1) 1971
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 106
  start-page: 2551
  year: 2005
  end-page: 2558
  article-title: Human peptidoglycan recognition protein S is an effector of neutrophil‐mediated innate immunity
  publication-title: Blood
– volume: 60
  start-page: 1565
  year: 1994
  end-page: 1571
  article-title: Effect of the squid host on the abundance and distribution of symbiotic in nature
  publication-title: Appl Environ Microbiol
– volume: 198
  start-page: 83
  year: 2004
  end-page: 96
  article-title: Peptidoglycan recognition proteins: on and off switches for innate immunity
  publication-title: Immunol Rev
– volume: 179
  start-page: 65
  year: 1996
  end-page: 73
  article-title: Bioluminescence in the symbiotic squid is controlled by a daily biological rhythm
  publication-title: J Comp Physiol A Neuroethol Sens Neural Behav Physiol
– volume: 35
  start-page: 1496
  year: 2007
  end-page: 1500
  article-title: Peptidoglycan recognition in
  publication-title: Biochem Soc Trans
– volume: 66
  start-page: 777
  year: 1998
  end-page: 785
  article-title: Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by
  publication-title: Infect Immun
– volume: 2
  start-page: e14
  year: 2006
  article-title: Downregulation of the immune response by peptidoglycan‐recognition proteins SC1 and SC2
  publication-title: Plos Pathog
– volume: 414
  start-page: 756
  year: 2001
  end-page: 759
  article-title: Toll is activated by Gram‐positive bacteria through a circulating peptidoglycan recognition protein
  publication-title: Nature
– volume: 72
  start-page: 445
  year: 1999
  end-page: 457
  article-title: Halide peroxidase in tissues that interact with bacteria in the host squid
  publication-title: J Cell Biochem
– volume: 278
  start-page: 7059
  year: 2003
  end-page: 7064
  article-title: A scavenger function for a Drosophila peptidoglycan recognition protein
  publication-title: J Biol Chem
– volume: 159
  start-page: 160
  year: 1993
  end-page: 167
  article-title: Growth and flagellation of during initiation of the sepiolid squid light organ symbiosis
  publication-title: Arch Microbiol
– volume: 103
  start-page: 1355
  year: 2007
  end-page: 1365
  article-title: Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue
  publication-title: J Appl Microbiology
– volume: 31
  start-page: 790
  year: 2007
  end-page: 804
  article-title: Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata)
  publication-title: Dev Comp Immunol
– volume: 20
  start-page: 637
  year: 2004
  end-page: 649
  article-title: Monomeric and polymeric gram‐negative peptidoglycan but not purified LPS stimulate the IMD pathway
  publication-title: Immunity
– volume: 184
  start-page: 296
  year: 1993
  end-page: 308
  article-title: Embryonic‐development of the light organ of the sepiolid squid
  publication-title: Biological Bull
– volume: 2
  start-page: 632
  year: 2004
  end-page: 642
  article-title: The winnowing: establishing the squid‐vibrio symbiosis
  publication-title: Nat Rev Microbiol
– volume: 416
  start-page: 640
  year: 2002
  end-page: 644
  article-title: The immune response against Gram‐negative bacteria is mediated by a peptidoglycan recognition protein
  publication-title: Nature
– volume: 6
  start-page: 1139
  year: 2004
  end-page: 1151
  article-title: NO means ‘yes’ in the squid‐vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association
  publication-title: Cell Microbiol
– volume: 254
  start-page: 1491
  year: 1991
  end-page: 1494
  article-title: Symbiont recognition and subsequent morphogenesis as early events in an animal‐bacterial mutualism
  publication-title: Science
– volume: 14
  start-page: 2461
  year: 2000
  end-page: 2471
  article-title: A IkappaB kinase complex required for Relish cleavage and antibacterial immunity
  publication-title: Genes Dev
– volume: 24
  start-page: 463
  year: 2006
  end-page: 473
  article-title: The amidase PGRP‐LB modulates the immune response to bacterial infection
  publication-title: Immunity
– volume: 306
  start-page: 988
  year: 2003
  end-page: 994
  article-title: A mammalian peptidoglycan recognition protein with ‐acetylmuramoyl‐L‐alanine amidase activity
  publication-title: Biochem Biophys Res Commun
– volume: 71
  start-page: 6934
  year: 2005
  end-page: 6946
  article-title: Identifying components of the NF‐κB pathway in the beneficial light organ symbiosis
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 710
  year: 2006
  end-page: 716
  article-title: Breaching the great wall: peptidoglycan and microbial interactions
  publication-title: Nat Rev Microbiol
– volume: 380
  start-page: 554
  year: 2009
  end-page: 558
  article-title: Development of a novel fluorescent substrate for Autolysin E, a bacterial type II amidase
  publication-title: Biochemical Biophysical Res Comms
– volume: 11
  start-page: 1114
  year: 2009
  end-page: 1127
  article-title: Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal‐bacterial symbiosis
  publication-title: Cell Microbiol
– volume: 40
  start-page: 877
  year: 2004
  end-page: 886
  article-title: Peptidoglycan recognition proteins (PGRPs)
  publication-title: Mol Immunol
– volume: 68
  start-page: 5113
  year: 2002
  end-page: 5122
  article-title: Roles of and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the light organ
  publication-title: Appl Environ Microbiol
– volume: 149
  start-page: 378
  year: 1984
  end-page: 386
  article-title: Ability of monomeric peptidoglycan fragments from to damage human fallopian‐tube mucosa
  publication-title: J Infect Dis
– year: 1964
– volume: 97
  start-page: 10231
  year: 2000
  end-page: 10235
  article-title: Establishment of an animal‐bacterial association: recruiting symbiotic vibrios from the environment
  publication-title: Proc Natl Acad Sci USA
– volume: 191
  start-page: 2012
  year: 2008
  end-page: 2022
  article-title: Mutations in and lytic transglycosylase genes affect the net release of peptidoglycan monomers from
  publication-title: J Bacteriol
– volume: 16
  start-page: 733
  year: 1995
  end-page: 743
  article-title: Tracheal cytotoxin structural requirements for respiratory epithelial damage in pertussis
  publication-title: Mol Microbiol
– volume: 306
  start-page: 1186
  year: 2004
  end-page: 1188
  article-title: Microbial factor‐mediated development in a host‐bacterial mutualism
  publication-title: Science
– volume: 8
  start-page: 1059
  year: 2006
  end-page: 1069
  article-title: Mammalian PGRPs: novel antibacterial proteins
  publication-title: Cell Microbiol
– volume: 278
  start-page: 49044
  year: 2003
  end-page: 49052
  article-title: Human peptidoglycan recognition protein‐L is an ‐acetylmuramoyl‐L‐alanine amidase
  publication-title: J Biol Chem
– volume: 97
  start-page: 13772
  year: 2000
  end-page: 13777
  article-title: A family of peptidoglycan recognition proteins in the fruit fly
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 802
  year: 2006
  end-page: 810
  article-title: New rfp‐ and pES213‐derived tools for analyzing symbiotic reveal patterns of infection and expression in situ
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 280
  year: 2004
  end-page: 300
  article-title: Infection and invasion of roots by symbiotic, nitrogen‐fixing rhizobia during nodulation of temperate legumes
  publication-title: Microbiol Mol Biol Rev
– volume: 120
  start-page: 1719
  year: 1994
  end-page: 1729
  article-title: Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid
  publication-title: Development
– volume: 182
  start-page: 4578
  year: 2000
  end-page: 4586
  article-title: lux genes play an important role in colonization and development of the host light organ
  publication-title: J Bacteriol
– volume: 226
  start-page: 242
  year: 2000
  end-page: 254
  article-title: lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the symbiotic light organ
  publication-title: Dev Biol
– volume: 315
  start-page: 247
  year: 2007
  end-page: 250
  article-title: Physiological proteomics of the uncultured endosymbiont of
  publication-title: Science
– volume: 95
  start-page: 1818
  year: 1998
  end-page: 1822
  article-title: Host‐derived amino acids support the proliferation of symbiotic bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 90
  start-page: 2365
  year: 1993
  end-page: 2369
  article-title: tracheal cytotoxin and other muramyl peptides: distinct structure‐activity relationships for respiratory epithelial cytopathology
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 631
  year: 2009
  end-page: 636
  article-title: Bacterial detection by peptidoglycan recognition proteins
  publication-title: Microbes Infect
– volume: 189
  start-page: 347
  year: 1995
  end-page: 355
  article-title: A transient exposure to symbiosis‐competent bacteria induces light organ morphogenesis in the host squid
  publication-title: Biol Bull
– volume: 280
  start-page: 37005
  year: 2005
  end-page: 37012
  article-title: Selective recognition of synthetic lysine and meso‐diaminopimelic acid‐type peptidoglycan fragments by human peptidoglycan recognition proteins Iα and S
  publication-title: J Biol Chem
– start-page: 99
  year: 1971
  end-page: 120
– volume: 195
  start-page: 89
  year: 1998
  end-page: 97
  article-title: Sampling the light‐organ microenvironment of : description of a population of host cells in association with the bacterial symbiont
  publication-title: Biol Bull
– volume: 350
  start-page: 994
  year: 2006
  end-page: 999
  article-title: PGRP‐SB1: an ‐acetylmuramoyl l‐alanine amidase with antibacterial activity
  publication-title: Biochem Biophys Res Commun
– volume: 208
  start-page: 295
  year: 1998
  end-page: 303
  article-title: Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues
  publication-title: Dev Genes E
– volume: 59
  start-page: 177
  year: 2000
  end-page: 185
  article-title: Early nutrition and the development of immune function in the neonate
  publication-title: Proc Nutr Soc
– ident: e_1_2_6_36_1
  doi: 10.1016/j.bbrc.2006.09.139
– ident: e_1_2_6_25_1
  doi: 10.1016/S1074-7613(04)00104-9
– ident: e_1_2_6_42_1
  doi: 10.2307/1542815
– ident: e_1_2_6_20_1
  doi: 10.1016/S0006-291X(03)01096-9
– ident: e_1_2_6_30_1
  doi: 10.1128/AEM.60.5.1565-1571.1994
– ident: e_1_2_6_33_1
  doi: 10.1016/j.bbrc.2009.01.140
– ident: e_1_2_6_45_1
  doi: 10.1128/AEM.68.10.5113-5122.2002
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1462-5822.2006.00726.x
– ident: e_1_2_6_2_1
  doi: 10.1128/JB.01547-08
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1132913
– ident: e_1_2_6_19_1
  doi: 10.1128/MMBR.68.2.280-300.2004
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1462-5822.2009.01315.x
– ident: e_1_2_6_46_1
  doi: 10.1007/BF00250277
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.95.4.1818
– ident: e_1_2_6_5_1
  doi: 10.1007/BF00193435
– ident: e_1_2_6_41_1
  doi: 10.1242/dev.120.7.1719
– ident: e_1_2_6_52_1
  doi: 10.1074/jbc.M307758200
– ident: e_1_2_6_48_1
  doi: 10.1002/(SICI)1097-4644(19990315)72:4<445::AID-JCB1>3.0.CO;2-P
– ident: e_1_2_6_29_1
  doi: 10.1128/IAI.66.2.777-785.1998
– ident: e_1_2_6_49_1
  doi: 10.1111/j.0105-2896.2004.0120.x
– ident: e_1_2_6_53_1
  doi: 10.1073/pnas.97.25.13772
– ident: e_1_2_6_14_1
  doi: 10.1128/AEM.72.1.802-810.2006
– ident: e_1_2_6_26_1
  doi: 10.1017/S0029665100000197
– ident: e_1_2_6_10_1
  doi: 10.1016/j.dci.2006.11.006
– start-page: 99
  volume-title: Methods in Enzymology
  year: 1971
  ident: e_1_2_6_24_1
  contributor:
    fullname: Kaback H.R.
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1462-5822.2004.00429.x
– ident: e_1_2_6_27_1
  doi: 10.1126/science.1102218
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1962208
– ident: e_1_2_6_7_1
  doi: 10.1182/blood-2005-02-0530
– ident: e_1_2_6_22_1
  doi: 10.1038/nature734
– ident: e_1_2_6_44_1
  doi: 10.1073/pnas.97.18.10231
– ident: e_1_2_6_17_1
  doi: 10.1007/s004270050185
– ident: e_1_2_6_37_1
  doi: 10.1074/jbc.M208900200
– ident: e_1_2_6_13_1
  doi: 10.2307/1542152
– ident: e_1_2_6_21_1
  doi: 10.1128/AEM.71.11.6934-6946.2005
– ident: e_1_2_6_31_1
  doi: 10.1073/pnas.90.6.2365
– ident: e_1_2_6_3_1
  doi: 10.1042/BST0351496
– ident: e_1_2_6_39_1
  doi: 10.1038/414756a
– volume-title: Enzymes
  year: 1964
  ident: e_1_2_6_12_1
  contributor:
    fullname: Dixon M.
– ident: e_1_2_6_15_1
  doi: 10.1016/j.molimm.2003.10.011
– ident: e_1_2_6_43_1
  doi: 10.1038/nrmicro957
– ident: e_1_2_6_8_1
  doi: 10.1038/nrmicro1486
– ident: e_1_2_6_47_1
  doi: 10.1101/gad.817800
– ident: e_1_2_6_4_1
  doi: 10.1371/journal.ppat.0020014
– ident: e_1_2_6_38_1
  doi: 10.1093/infdis/149.3.378
– ident: e_1_2_6_40_1
  doi: 10.2307/1542448
– ident: e_1_2_6_6_1
  doi: 10.1016/j.micinf.2009.03.004
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2672.2007.03366.x
– ident: e_1_2_6_18_1
  doi: 10.1006/dbio.2000.9868
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1365-2958.1995.tb02434.x
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M506385200
– ident: e_1_2_6_54_1
  doi: 10.1016/j.immuni.2006.02.012
– ident: e_1_2_6_51_1
  doi: 10.1128/JB.182.16.4578-4586.2000
SSID ssj0017370
Score 2.3312461
Snippet Summary In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by...
In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific...
SummaryIn horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by...
In horizontally-transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2190
SubjectTerms Aliivibrio fischeri - growth & development
Amidohydrolases - metabolism
Animals
Bacterial Toxins - antagonists & inhibitors
Carrier Proteins - metabolism
Cytotoxins - antagonists & inhibitors
Decapodiformes - metabolism
Decapodiformes - microbiology
Epithelium - metabolism
Euprymna scolopes
Morphogenesis
Mucus - chemistry
Symbiosis
Vibrio fischeri
Title Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin
URI https://api.istex.fr/ark:/67375/WNG-30T5PRW6-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2009.02121.x
https://www.ncbi.nlm.nih.gov/pubmed/21966913
https://search.proquest.com/docview/754896994
https://pubmed.ncbi.nlm.nih.gov/PMC2889240
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EEbz4ftQXOYi3Lk3TpzcRHwjKsqyst5C0WZTFrrhdWP31zqTd4q4eRLyVNmnJZCbzTTr5BuCkH-pEBUK7sUk8NwhF5Grf5K6nfBHoXGjPcnfe3Uc3D8HtY_hY5z_RWZiKH6LZcCPLsOs1GbjSo3kj912qtlTTTuIqzFuEJ4lXj_BRp2GS4rGwdePqLnwuqefHF814qiUS-uQnGPo9m_IryrVu6moNBtMBVtkpg9a41K3sY4778X8ksA6rNZpl55X6bcCCKTZhuapv-b4Fva56QdfIEGSy0fuLRh0oGaJklg2JgdPC9TOmGJ00Ye3rTpsVZmy3Xj7MCO_rikoav9D0LoeT52IbHq4uuxc3bl3Jwc0iBCSuDpWiU7C-z43AqDhTWWLQL2qKPvuZEX2TihyXjtQzmWdweKhCORHHcG76uEbswGIxLMwesJzTzmWCGoaRUMZ5mhPEU7nhIgy0Ug7w6azJ14qwQ84EOr4kgVH5zVRagcmJA6d2epsO6m1ACW9xKHv311J43bDd6UUycIBN51-iGdK_FVWY4XgkY4z80ihNsclupQ7Ny9AnRFHKhQPxjKI0DYjhe_ZJ8fxkmb79JMH42HMgsnrw6wFJtGG62v9rxwNYqdIkKNPxEBbLt7E5QvRV6mNrV59rVB_Z
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9NoAleNrbBFmDDD9PeUsVxPveG-CpfVVUVlTfLTlyBGCmiqVT467lz0mgtPCDEW5TYiWzf-X53Of8O4Pcw1IkKhHZjk3huEIrI1b7JXU_5ItC50J7l7jzvRO2L4OQyvKzLAdFZmIofogm4kWbY_ZoUnALSi1ruu1RuqeadxG2YtxBQLqP2h6Sl-72GS4rHwlaOq_vwhbSeF980Z6uWadqnLwHR5_mU_-Nca6gOP8O_2RCr_JSb1qTUrexxgf3xneZgDT7VgJbtVhL4BT6Y4it8rEpcPnyDQV_donVkiDPZ-OFWoxiUDIEyy0ZEwmkR-1-mGB02Yd2jXpcVZmKjL49mjPd1xSaNX2h6l6PpdbEOF4cH_b22WxdzcLMIMYmrQ6XoIKzvcyPQMc5Ulhg0jZoc0GFmxNCkIsfdI_VM5hkcHkpRTtwxnJshbhMbsFSMCvMDWM4peJmgkKEzlHGe5oTyVG64CAOtlAN8tmzyruLskHO-ji9pwqgCZyrthMmpA3_s-jYd1P0N5bzFoRx0jqTw-mG3N4hk4ACbCYBETaTfK6owo8lYxuj8pVGaYpPvlTw0L0OzEEUpFw7Ec5LSNCCS7_knxfWVJfv2kwRdZM-ByArCqwckUY3pavOtHXdgpd0_P5Nnx53TLVitsiYo8XEblsr7ifmJYKzUv6ySPQF6wiP5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4hENNextjPsI35Ae0tVRwnTrK3aazANqqqKipvlp04GqpIEU2lwl-_OyeN1o6HCe0tSuxEPt_5vnPO3wEclbFJdSSMn9g08KNYSN-EtvADHYrIFMIEjrvzfCBPL6Lvl_Flm_9EZ2Eafohuw40sw63XZOA3Rblp5KFP1ZZa2klchXkP8eROJEVIgdjxqKOS4olwhePaPnwjq-fBN625qh2S-vIhHPp3OuWfMNf5qf4eTFcjbNJTpr1FbXr5_Qb54_8RwXN41sJZ9qXRv33YstUL2G0KXN69hMlYX6NvZIgy2fzu2qAS1AxhMstnRMHp8PpnphkdNWHDk9GQVXbh9l7u7Rzvm4ZLGr_Q9a5ny6vqFVz0v42_nvptKQc_l4hIfBNrTcdgw5BbgWFxrvPUomM0FH6WuRWlzUSBa0cW2DywODzUoYKYYzi3JS4Sr2G7mlX2LbCC09ZliiqGoVDOeVYQxtOF5SKOjNYe8NWsqZuGsUOtRTqhIoFR_c1MOYGppQef3PR2HfTtlDLeklhNBidKBON4OJpIFXnAVvOv0A7p54qu7GwxVwmGfpnMMmzyplGH7mXoFKTMuPAgWVOUrgFRfK8_qa5-OarvME0xQA48kE4P_nlACo2Yrg4e2_EjPBke99XPs8GPd_C0SZmgrMf3sF3fLuwHRGK1OXQm9hviWyKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taming+the+symbiont+for+coexistence%3A+a+host+PGRP+neutralizes+a+bacterial+symbiont+toxin&rft.jtitle=Environmental+microbiology&rft.au=Troll%2C+Joshua+V&rft.au=Bent%2C+Eric+H&rft.au=Pacquette%2C+Nicholas&rft.au=Wier%2C+Andrew+M&rft.date=2010-08-01&rft.issn=1462-2912&rft.volume=12&rft.issue=8&rft.spage=2190&rft.epage=2203&rft_id=info:doi/10.1111%2Fj.1462-2920.2009.02121.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon