Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres

Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modu...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 34; no. 18; pp. 4510 - 4519
Main Authors You, Jian, Wang, Zuhua, Du, Yongzhong, Yuan, Hong, Zhang, Peizun, Zhou, Jialin, Liu, Fei, Li, Chun, Hu, Fuqiang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.
AbstractList It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.
Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.
It is difficult for most of drug delivery system to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific-delivery of HPTCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.
It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation.
Author Li, Chun
Hu, Fuqiang
Yuan, Hong
Liu, Fei
Zhang, Peizun
Zhou, Jialin
Du, Yongzhong
Wang, Zuhua
You, Jian
AuthorAffiliation 1 College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, People’s Republic of China
2 Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
AuthorAffiliation_xml – name: 2 Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
– name: 1 College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, People’s Republic of China
Author_xml – sequence: 1
  fullname: You, Jian
– sequence: 2
  fullname: Wang, Zuhua
– sequence: 3
  fullname: Du, Yongzhong
– sequence: 4
  fullname: Yuan, Hong
– sequence: 5
  fullname: Zhang, Peizun
– sequence: 6
  fullname: Zhou, Jialin
– sequence: 7
  fullname: Liu, Fei
– sequence: 8
  fullname: Li, Chun
– sequence: 9
  fullname: Hu, Fuqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23510855$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFv4As7gljJ3ESDpVQgYJUiUPhbDnOZNdbx47s7Kr59zhdqAonTiNr3nsz-jwX5Mx5h4S8Y5AzYOL9Pu-MH9WMwSgbcw6syIHnINoXZMOausmqFqozsgFW8qwVjJ-Tixj3kN5Q8lfknBcVg6aqNmR3N6E2g9F0Pow-0B6tOWJYqB_opLQ1s3pASw_RuC3d2kV7aybTZ9bcI528XUYMdDQarcVItXezMu5R621PnXI-TjsMGF-Tl0PaFt_8rpfk55fPP66_Zrffb75df7zNtIBmzvpO9cCwGtoCaqzTugKhbBToQQ-dGIamLzl0XSXUIFjLUAHomjdt03NR1Lq4JFen3OnQjdhrdHNQVk7BjCos0isj_-44s5Nbf5Qlg1rUTQr4cArQwccYcHjyMpArf7mXz_nLlb8ELhP_ZH77fPqT9Q_wJPh0EmBicDQYZNQGncbeBNSz7L35vzlX_8Skr3JGK3uPC8a9PwS3epiMySDv1ktYD4EVAFzUovgFMsm5Ow
CitedBy_id crossref_primary_10_1016_j_jconrel_2018_02_001
crossref_primary_10_1039_C4MD00085D
crossref_primary_10_1016_j_biomaterials_2015_04_009
crossref_primary_10_1080_10717544_2017_1375574
crossref_primary_10_1016_j_biomaterials_2015_07_058
crossref_primary_10_1146_annurev_pharmtox_011112_140226
crossref_primary_10_3390_molecules29010031
crossref_primary_10_1186_s12951_021_01011_2
crossref_primary_10_3390_ph15020137
crossref_primary_10_1021_acsnano_8b00204
crossref_primary_10_1371_journal_pone_0166673
crossref_primary_10_1021_acsami_6b13351
crossref_primary_10_1021_mp500710x
crossref_primary_10_3390_pharmaceutics15122717
crossref_primary_10_1016_j_biomaterials_2018_01_043
crossref_primary_10_1038_pj_2015_117
crossref_primary_10_1021_acsami_5b10352
crossref_primary_10_1080_03639045_2017_1287718
crossref_primary_10_1002_smll_201603270
crossref_primary_10_1002_wnan_1694
crossref_primary_10_1038_srep35910
crossref_primary_10_1039_C4PY00352G
crossref_primary_10_1016_j_ijpharm_2017_02_068
crossref_primary_10_1016_j_addr_2021_113964
crossref_primary_10_1002_btm2_10325
crossref_primary_10_1016_j_jconrel_2018_04_002
crossref_primary_10_1016_S1773_2247_14_50022_6
crossref_primary_10_1021_acs_langmuir_7b01656
crossref_primary_10_1021_acsami_7b02606
crossref_primary_10_1007_s40005_017_0321_0
crossref_primary_10_1016_j_jconrel_2017_05_015
Cites_doi 10.1016/j.biomaterials.2011.09.077
10.2144/000112517
10.1007/BF02531795
10.1038/sj.onc.1203856
10.1002/tcr.20127
10.1016/j.jconrel.2007.03.023
10.1016/j.jconrel.2008.05.003
10.1158/0008-5472.CAN-08-3232
10.1021/bm049955q
10.1021/bm070365c
10.1021/ac060220g
10.1158/0008-5472.CAN-12-1003
10.1002/mabi.200800366
10.1038/nrm1662
10.1088/0957-4484/18/49/495101
10.1158/1078-0432.CCR-08-1480
10.1016/j.jconrel.2007.05.003
10.1016/j.biomaterials.2009.09.008
10.1073/pnas.0401381101
10.1016/j.biomaterials.2009.12.007
10.2967/jnumed.110.081943
10.1016/j.jconrel.2008.08.012
10.1016/j.ijpharm.2006.02.026
10.1002/smll.201000028
10.1016/S0168-3659(99)00029-2
10.1088/0957-4484/19/25/255103
10.1088/0957-4484/19/04/045102
10.1016/S0168-3659(99)00242-4
10.1016/j.jconrel.2011.10.028
10.1021/nn901181c
10.1016/j.ejpb.2007.09.018
10.3181/0808-MR-250
10.1038/sj.onc.1209108
10.2353/ajpath.2006.050889
ContentType Journal Article
Copyright Elsevier Ltd
2013 Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
2013 Elsevier Ltd. All rights reserved. 2013
Copyright_xml – notice: Elsevier Ltd
– notice: 2013 Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
– notice: 2013 Elsevier Ltd. All rights reserved. 2013
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1016/j.biomaterials.2013.02.069
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 4519
ExternalDocumentID 10_1016_j_biomaterials_2013_02_069
23510855
S0142961213002676
1_s2_0_S0142961213002676
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA151668
– fundername: NIGMS NIH HHS
  grantid: RC2 GM092599
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c608t-dbad01e5f9307e70426e048a0cfcfb6ff8d420bb56af6191ea00c72898d2637c3
IEDL.DBID AIKHN
ISSN 0142-9612
IngestDate Tue Sep 17 21:21:30 EDT 2024
Thu Sep 26 18:41:11 EDT 2024
Sat Sep 28 07:51:51 EDT 2024
Fri Feb 23 02:23:09 EST 2024
Tue Oct 15 22:54:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Photothermal effect
Polymer micelles
Triggered release
Hollow gold nanospheres
Tumor-homing peptide
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-dbad01e5f9307e70426e048a0cfcfb6ff8d420bb56af6191ea00c72898d2637c3
OpenAccessLink https://europepmc.org/articles/pmc4107678?pdf=render
PMID 23510855
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107678
crossref_primary_10_1016_j_biomaterials_2013_02_069
pubmed_primary_23510855
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_02_069
elsevier_clinicalkeyesjournals_1_s2_0_S0142961213002676
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chung, Yokoyama, Yamato, Aoyagi, Sakurai, Okano (bib27) 1999; 62
You, Hu, Du, Yuan (bib5) 2007; 8
Noren, Lu, Freeman, Koolpe, Pasquale (bib18) 2004; 101
Chung, Yokoyama, Okano (bib26) 2000; 65
Dodelet, Pasquale (bib17) 2000; 19
Noble, Hatch, Mazrimas, Lindgren, Jensen, Adamson (bib22) 1969; 4
Zhao (bib31) 2007; 7
Hu, Zhao, Yuan, You, Du, Zeng (bib4) 2006; 315
Soga, van Nostrum, Hennink (bib29) 2004; 5
Pasquale (bib16) 2005; 6
Kumar, Scehnet, Ley, Singh, Krasnoperov, Liu (bib21) 2009; 69
You, Zhang, Zhang, Zhong, Liu, Van Pelt (bib13) 2012; 158
Lu, Huang, Ku, Wen, Zhou, Guzatov (bib9) 2010; 31
Collins (bib23) 2007; 43
Schwartzberg, Oshiro, Zhang, Huser, Talley (bib8) 2006; 78
Rijcken, Soga, Hennink, van Nostrum (bib24) 2007; 120
Prabaharan, Grailer, Steeber, Gong (bib28) 2009; 9
You, Hu, Du, Yuan, Ye (bib6) 2007; 18
You, Zhang, Xiong, Zhong, Melancon, Gupta (bib15) 2012; 72
Xia, Kumar, Stein, Singh, Krasnoperov, Zhu (bib19) 2006; 25
You, Zhang, Li (bib11) 2010; 4
Xiong, Huang, Zhang, Song, Lu, Flores (bib14) 2011; 52
Hu, Liu, Du, Yuan (bib34) 2009; 30
Lee, Gao, Bae (bib25) 2008; 132
Lu, Xiong, Zhang, Huang, Zhang, Zhang (bib10) 2009; 15
Ojea-Jimenez, Comenge, Garcia-Fernandez, Megson, Casals, Puntes (bib3) 2012
Hu, Wu, Du, You, Yuan (bib32) 2008; 69
Park (bib2) 2007; 120
Blanco, Kessinger, Sumer, Gao (bib30) 2009; 234
Kumar, Singh, Xia, Krasnoperov, Hassanieh, Ley (bib20) 2006; 169
Zhao, Sun, Fu, Du, Chen, Yuan (bib33) 2012; 33
You, Hu, Du, Yuan (bib7) 2008; 19
You, Li, de Cui, Du, Yuan, Hu (bib35) 2008; 19
Hoffman (bib1) 2008; 132
You, Shao, Wei, Gupta, Li (bib12) 2010; 6
20121065 - ACS Nano. 2010 Feb 23;4(2):1033-41
15928710 - Nat Rev Mol Cell Biol. 2005 Jun;6(6):462-75
19064945 - Exp Biol Med (Maywood). 2009 Feb;234(2):123-31
20394071 - Small. 2010 May 7;6(9):1022-31
11114742 - Oncogene. 2000 Nov 20;19(49):5614-9
18571265 - J Control Release. 2008 Dec 18;132(3):164-70
19370751 - Macromol Biosci. 2009 Aug 11;9(8):744-53
16816380 - Am J Pathol. 2006 Jul;169(1):279-93
19366806 - Cancer Res. 2009 May 1;69(9):3736-45
17661518 - Biomacromolecules. 2007 Aug;8(8):2450-6
20442465 - Nanotechnology. 2007 Dec 12;18(49):495101
19188158 - Clin Cancer Res. 2009 Feb 1;15(3):876-86
16205642 - Oncogene. 2006 Feb 2;25(5):769-80
17997293 - Eur J Pharm Biopharm. 2008 May;69(1):117-25
16808490 - Anal Chem. 2006 Jul 1;78(13):4732-6
17936939 - Biotechniques. 2007 Jul;43(1 Suppl):25-30
19782395 - Biomaterials. 2009 Dec;30(36):6955-63
15067119 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5583-8
16632285 - Int J Pharm. 2006 Jun 6;315(1-2):158-66
21817496 - Nanotechnology. 2008 Jan 30;19(4):045102
17532520 - J Control Release. 2007 Jul 16;120(1-2):1-3
10518643 - J Control Release. 1999 Nov 1;62(1-2):115-27
21828645 - Nanotechnology. 2008 Jun 25;19(25):255103
10699274 - J Control Release. 2000 Mar 1;65(1-2):93-103
5766850 - Lipids. 1969 Jan;4(1):55-9
17582642 - J Control Release. 2007 Jul 31;120(3):131-48
21996531 - Biomaterials. 2012 Jan;33(2):634-43
17924441 - Chem Rec. 2007;7(5):286-94
15132666 - Biomacromolecules. 2004 May-Jun;5(3):818-21
18817820 - J Control Release. 2008 Dec 18;132(3):153-63
20036000 - Biomaterials. 2010 Mar;31(9):2617-26
21233177 - J Nucl Med. 2011 Feb;52(2):241-8
22063003 - J Control Release. 2012 Mar 10;158(2):319-28
22865457 - Cancer Res. 2012 Sep 15;72(18):4777-86
Rijcken (10.1016/j.biomaterials.2013.02.069_bib24) 2007; 120
You (10.1016/j.biomaterials.2013.02.069_bib5) 2007; 8
Ojea-Jimenez (10.1016/j.biomaterials.2013.02.069_bib3) 2012
Hu (10.1016/j.biomaterials.2013.02.069_bib4) 2006; 315
You (10.1016/j.biomaterials.2013.02.069_bib12) 2010; 6
Lu (10.1016/j.biomaterials.2013.02.069_bib9) 2010; 31
Collins (10.1016/j.biomaterials.2013.02.069_bib23) 2007; 43
Hu (10.1016/j.biomaterials.2013.02.069_bib34) 2009; 30
Noble (10.1016/j.biomaterials.2013.02.069_bib22) 1969; 4
Lu (10.1016/j.biomaterials.2013.02.069_bib10) 2009; 15
Lee (10.1016/j.biomaterials.2013.02.069_bib25) 2008; 132
You (10.1016/j.biomaterials.2013.02.069_bib11) 2010; 4
Xiong (10.1016/j.biomaterials.2013.02.069_bib14) 2011; 52
Dodelet (10.1016/j.biomaterials.2013.02.069_bib17) 2000; 19
You (10.1016/j.biomaterials.2013.02.069_bib35) 2008; 19
You (10.1016/j.biomaterials.2013.02.069_bib6) 2007; 18
Noren (10.1016/j.biomaterials.2013.02.069_bib18) 2004; 101
Kumar (10.1016/j.biomaterials.2013.02.069_bib21) 2009; 69
Zhao (10.1016/j.biomaterials.2013.02.069_bib31) 2007; 7
Chung (10.1016/j.biomaterials.2013.02.069_bib26) 2000; 65
You (10.1016/j.biomaterials.2013.02.069_bib13) 2012; 158
Kumar (10.1016/j.biomaterials.2013.02.069_bib20) 2006; 169
Chung (10.1016/j.biomaterials.2013.02.069_bib27) 1999; 62
You (10.1016/j.biomaterials.2013.02.069_bib15) 2012; 72
Park (10.1016/j.biomaterials.2013.02.069_bib2) 2007; 120
Hoffman (10.1016/j.biomaterials.2013.02.069_bib1) 2008; 132
Prabaharan (10.1016/j.biomaterials.2013.02.069_bib28) 2009; 9
Zhao (10.1016/j.biomaterials.2013.02.069_bib33) 2012; 33
You (10.1016/j.biomaterials.2013.02.069_bib7) 2008; 19
Schwartzberg (10.1016/j.biomaterials.2013.02.069_bib8) 2006; 78
Xia (10.1016/j.biomaterials.2013.02.069_bib19) 2006; 25
Blanco (10.1016/j.biomaterials.2013.02.069_bib30) 2009; 234
Soga (10.1016/j.biomaterials.2013.02.069_bib29) 2004; 5
Hu (10.1016/j.biomaterials.2013.02.069_bib32) 2008; 69
Pasquale (10.1016/j.biomaterials.2013.02.069_bib16) 2005; 6
References_xml – volume: 234
  start-page: 123
  year: 2009
  end-page: 131
  ident: bib30
  article-title: Multifunctional micellar nanomedicine for cancer therapy
  publication-title: Exp Biol Med (Maywood)
  contributor:
    fullname: Gao
– volume: 7
  start-page: 286
  year: 2007
  end-page: 294
  ident: bib31
  article-title: Rational design of light-controllable polymer micelles
  publication-title: Chem Rec
  contributor:
    fullname: Zhao
– volume: 18
  start-page: 495101
  year: 2007
  ident: bib6
  article-title: High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug
  publication-title: Nanotechnology
  contributor:
    fullname: Ye
– volume: 120
  start-page: 131
  year: 2007
  end-page: 148
  ident: bib24
  article-title: Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery
  publication-title: J Control Release
  contributor:
    fullname: van Nostrum
– volume: 33
  start-page: 634
  year: 2012
  end-page: 643
  ident: bib33
  article-title: Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure
  publication-title: Biomaterials
  contributor:
    fullname: Yuan
– volume: 315
  start-page: 158
  year: 2006
  end-page: 166
  ident: bib4
  article-title: A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and
  publication-title: Int J Pharm
  contributor:
    fullname: Zeng
– volume: 6
  start-page: 462
  year: 2005
  end-page: 475
  ident: bib16
  article-title: Eph receptor signalling casts a wide net on cell behaviour
  publication-title: Nat Rev Mol Cell Biol
  contributor:
    fullname: Pasquale
– volume: 9
  start-page: 744
  year: 2009
  end-page: 753
  ident: bib28
  article-title: Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery
  publication-title: Macromol Biosci
  contributor:
    fullname: Gong
– volume: 30
  start-page: 6955
  year: 2009
  end-page: 6963
  ident: bib34
  article-title: Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles
  publication-title: Biomaterials
  contributor:
    fullname: Yuan
– volume: 5
  start-page: 818
  year: 2004
  end-page: 821
  ident: bib29
  article-title: Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity
  publication-title: Biomacromolecules
  contributor:
    fullname: Hennink
– volume: 65
  start-page: 93
  year: 2000
  end-page: 103
  ident: bib26
  article-title: Inner core segment design for drug delivery control of thermo-responsive polymeric micelles
  publication-title: J Control Release
  contributor:
    fullname: Okano
– volume: 8
  start-page: 2450
  year: 2007
  end-page: 2456
  ident: bib5
  article-title: Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel
  publication-title: Biomacromolecules
  contributor:
    fullname: Yuan
– volume: 52
  start-page: 241
  year: 2011
  end-page: 248
  ident: bib14
  article-title: small-animal PET/CT of EphB4 receptors using 64Cu-labeled peptide
  publication-title: J Nucl Med
  contributor:
    fullname: Flores
– volume: 15
  start-page: 876
  year: 2009
  end-page: 886
  ident: bib10
  article-title: Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres
  publication-title: Clin Cancer Res
  contributor:
    fullname: Zhang
– volume: 78
  start-page: 4732
  year: 2006
  end-page: 4736
  ident: bib8
  article-title: Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles
  publication-title: Anal Chem
  contributor:
    fullname: Talley
– volume: 31
  start-page: 2617
  year: 2010
  end-page: 2626
  ident: bib9
  article-title: Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres
  publication-title: Biomaterials
  contributor:
    fullname: Guzatov
– volume: 62
  start-page: 115
  year: 1999
  end-page: 127
  ident: bib27
  article-title: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)
  publication-title: J Control Release
  contributor:
    fullname: Okano
– volume: 43
  start-page: 25
  year: 2007
  end-page: 30
  ident: bib23
  article-title: ImageJ for microscopy
  publication-title: Biotechniques
  contributor:
    fullname: Collins
– volume: 132
  start-page: 153
  year: 2008
  end-page: 163
  ident: bib1
  article-title: The origins and evolution of "controlled" drug delivery systems
  publication-title: J Control Release
  contributor:
    fullname: Hoffman
– volume: 6
  start-page: 1022
  year: 2010
  end-page: 1031
  ident: bib12
  article-title: Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity
  publication-title: Small
  contributor:
    fullname: Li
– volume: 120
  start-page: 1
  year: 2007
  end-page: 3
  ident: bib2
  article-title: Nanotechnology: what it can do for drug delivery
  publication-title: J Control Release
  contributor:
    fullname: Park
– volume: 19
  start-page: 045102
  year: 2008
  ident: bib35
  article-title: Folate-conjugated polymer micelles for active targeting to cancer cells: preparation,
  publication-title: Nanotechnology
  contributor:
    fullname: Hu
– volume: 69
  start-page: 117
  year: 2008
  end-page: 125
  ident: bib32
  article-title: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin
  publication-title: Eur J Pharm Biopharm
  contributor:
    fullname: Yuan
– volume: 72
  start-page: 4777
  year: 2012
  end-page: 4786
  ident: bib15
  article-title: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors
  publication-title: Cancer Res
  contributor:
    fullname: Gupta
– volume: 69
  start-page: 3736
  year: 2009
  end-page: 3745
  ident: bib21
  article-title: Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression
  publication-title: Cancer Res
  contributor:
    fullname: Liu
– volume: 132
  start-page: 164
  year: 2008
  end-page: 170
  ident: bib25
  article-title: Recent progress in tumor pH targeting nanotechnology
  publication-title: J Control Release
  contributor:
    fullname: Bae
– volume: 158
  start-page: 319
  year: 2012
  end-page: 328
  ident: bib13
  article-title: Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release
  publication-title: J Control Release
  contributor:
    fullname: Van Pelt
– volume: 19
  start-page: 5614
  year: 2000
  end-page: 5619
  ident: bib17
  article-title: Eph receptors and ephrin ligands: embryogenesis to tumorigenesis
  publication-title: Oncogene
  contributor:
    fullname: Pasquale
– volume: 25
  start-page: 769
  year: 2006
  end-page: 780
  ident: bib19
  article-title: EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival
  publication-title: Oncogene
  contributor:
    fullname: Zhu
– volume: 19
  start-page: 255103
  year: 2008
  ident: bib7
  article-title: Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles
  publication-title: Nanotechnology
  contributor:
    fullname: Yuan
– volume: 4
  start-page: 55
  year: 1969
  end-page: 59
  ident: bib22
  article-title: Comparison of lipoprotein analysis by agarose gel and paper electrophoresis with analytical ultracentrifugation
  publication-title: Lipids
  contributor:
    fullname: Adamson
– volume: 169
  start-page: 279
  year: 2006
  end-page: 293
  ident: bib20
  article-title: Receptor tyrosine kinase EphB4 is a survival factor in breast cancer
  publication-title: Am J Pathol
  contributor:
    fullname: Ley
– volume: 101
  start-page: 5583
  year: 2004
  end-page: 5588
  ident: bib18
  article-title: Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Pasquale
– volume: 4
  start-page: 1033
  year: 2010
  end-page: 1041
  ident: bib11
  article-title: Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release
  publication-title: ACS Nano
  contributor:
    fullname: Li
– year: 2012
  ident: bib3
  article-title: Engineered inorganic nanoparticles for drug delivery applications
  publication-title: Curr Drug Metab
  contributor:
    fullname: Puntes
– volume: 33
  start-page: 634
  year: 2012
  ident: 10.1016/j.biomaterials.2013.02.069_bib33
  article-title: Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.077
  contributor:
    fullname: Zhao
– volume: 43
  start-page: 25
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib23
  article-title: ImageJ for microscopy
  publication-title: Biotechniques
  doi: 10.2144/000112517
  contributor:
    fullname: Collins
– year: 2012
  ident: 10.1016/j.biomaterials.2013.02.069_bib3
  article-title: Engineered inorganic nanoparticles for drug delivery applications
  publication-title: Curr Drug Metab
  contributor:
    fullname: Ojea-Jimenez
– volume: 4
  start-page: 55
  year: 1969
  ident: 10.1016/j.biomaterials.2013.02.069_bib22
  article-title: Comparison of lipoprotein analysis by agarose gel and paper electrophoresis with analytical ultracentrifugation
  publication-title: Lipids
  doi: 10.1007/BF02531795
  contributor:
    fullname: Noble
– volume: 19
  start-page: 5614
  year: 2000
  ident: 10.1016/j.biomaterials.2013.02.069_bib17
  article-title: Eph receptors and ephrin ligands: embryogenesis to tumorigenesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203856
  contributor:
    fullname: Dodelet
– volume: 7
  start-page: 286
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib31
  article-title: Rational design of light-controllable polymer micelles
  publication-title: Chem Rec
  doi: 10.1002/tcr.20127
  contributor:
    fullname: Zhao
– volume: 120
  start-page: 131
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib24
  article-title: Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2007.03.023
  contributor:
    fullname: Rijcken
– volume: 132
  start-page: 164
  year: 2008
  ident: 10.1016/j.biomaterials.2013.02.069_bib25
  article-title: Recent progress in tumor pH targeting nanotechnology
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.05.003
  contributor:
    fullname: Lee
– volume: 69
  start-page: 3736
  year: 2009
  ident: 10.1016/j.biomaterials.2013.02.069_bib21
  article-title: Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3232
  contributor:
    fullname: Kumar
– volume: 5
  start-page: 818
  year: 2004
  ident: 10.1016/j.biomaterials.2013.02.069_bib29
  article-title: Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity
  publication-title: Biomacromolecules
  doi: 10.1021/bm049955q
  contributor:
    fullname: Soga
– volume: 8
  start-page: 2450
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib5
  article-title: Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel
  publication-title: Biomacromolecules
  doi: 10.1021/bm070365c
  contributor:
    fullname: You
– volume: 78
  start-page: 4732
  year: 2006
  ident: 10.1016/j.biomaterials.2013.02.069_bib8
  article-title: Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles
  publication-title: Anal Chem
  doi: 10.1021/ac060220g
  contributor:
    fullname: Schwartzberg
– volume: 72
  start-page: 4777
  year: 2012
  ident: 10.1016/j.biomaterials.2013.02.069_bib15
  article-title: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-1003
  contributor:
    fullname: You
– volume: 9
  start-page: 744
  year: 2009
  ident: 10.1016/j.biomaterials.2013.02.069_bib28
  article-title: Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200800366
  contributor:
    fullname: Prabaharan
– volume: 6
  start-page: 462
  year: 2005
  ident: 10.1016/j.biomaterials.2013.02.069_bib16
  article-title: Eph receptor signalling casts a wide net on cell behaviour
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1662
  contributor:
    fullname: Pasquale
– volume: 18
  start-page: 495101
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib6
  article-title: High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/49/495101
  contributor:
    fullname: You
– volume: 15
  start-page: 876
  year: 2009
  ident: 10.1016/j.biomaterials.2013.02.069_bib10
  article-title: Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-1480
  contributor:
    fullname: Lu
– volume: 120
  start-page: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2013.02.069_bib2
  article-title: Nanotechnology: what it can do for drug delivery
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2007.05.003
  contributor:
    fullname: Park
– volume: 30
  start-page: 6955
  year: 2009
  ident: 10.1016/j.biomaterials.2013.02.069_bib34
  article-title: Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.008
  contributor:
    fullname: Hu
– volume: 101
  start-page: 5583
  year: 2004
  ident: 10.1016/j.biomaterials.2013.02.069_bib18
  article-title: Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0401381101
  contributor:
    fullname: Noren
– volume: 31
  start-page: 2617
  year: 2010
  ident: 10.1016/j.biomaterials.2013.02.069_bib9
  article-title: Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.007
  contributor:
    fullname: Lu
– volume: 52
  start-page: 241
  year: 2011
  ident: 10.1016/j.biomaterials.2013.02.069_bib14
  article-title: In vivo small-animal PET/CT of EphB4 receptors using 64Cu-labeled peptide
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.081943
  contributor:
    fullname: Xiong
– volume: 132
  start-page: 153
  year: 2008
  ident: 10.1016/j.biomaterials.2013.02.069_bib1
  article-title: The origins and evolution of "controlled" drug delivery systems
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2008.08.012
  contributor:
    fullname: Hoffman
– volume: 315
  start-page: 158
  year: 2006
  ident: 10.1016/j.biomaterials.2013.02.069_bib4
  article-title: A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and in vitro transfection studies
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2006.02.026
  contributor:
    fullname: Hu
– volume: 6
  start-page: 1022
  year: 2010
  ident: 10.1016/j.biomaterials.2013.02.069_bib12
  article-title: Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity
  publication-title: Small
  doi: 10.1002/smll.201000028
  contributor:
    fullname: You
– volume: 62
  start-page: 115
  year: 1999
  ident: 10.1016/j.biomaterials.2013.02.069_bib27
  article-title: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(99)00029-2
  contributor:
    fullname: Chung
– volume: 19
  start-page: 255103
  year: 2008
  ident: 10.1016/j.biomaterials.2013.02.069_bib7
  article-title: Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/25/255103
  contributor:
    fullname: You
– volume: 19
  start-page: 045102
  year: 2008
  ident: 10.1016/j.biomaterials.2013.02.069_bib35
  article-title: Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/04/045102
  contributor:
    fullname: You
– volume: 65
  start-page: 93
  year: 2000
  ident: 10.1016/j.biomaterials.2013.02.069_bib26
  article-title: Inner core segment design for drug delivery control of thermo-responsive polymeric micelles
  publication-title: J Control Release
  doi: 10.1016/S0168-3659(99)00242-4
  contributor:
    fullname: Chung
– volume: 158
  start-page: 319
  year: 2012
  ident: 10.1016/j.biomaterials.2013.02.069_bib13
  article-title: Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2011.10.028
  contributor:
    fullname: You
– volume: 4
  start-page: 1033
  year: 2010
  ident: 10.1016/j.biomaterials.2013.02.069_bib11
  article-title: Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release
  publication-title: ACS Nano
  doi: 10.1021/nn901181c
  contributor:
    fullname: You
– volume: 69
  start-page: 117
  year: 2008
  ident: 10.1016/j.biomaterials.2013.02.069_bib32
  article-title: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2007.09.018
  contributor:
    fullname: Hu
– volume: 234
  start-page: 123
  year: 2009
  ident: 10.1016/j.biomaterials.2013.02.069_bib30
  article-title: Multifunctional micellar nanomedicine for cancer therapy
  publication-title: Exp Biol Med (Maywood)
  doi: 10.3181/0808-MR-250
  contributor:
    fullname: Blanco
– volume: 25
  start-page: 769
  year: 2006
  ident: 10.1016/j.biomaterials.2013.02.069_bib19
  article-title: EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209108
  contributor:
    fullname: Xia
– volume: 169
  start-page: 279
  year: 2006
  ident: 10.1016/j.biomaterials.2013.02.069_bib20
  article-title: Receptor tyrosine kinase EphB4 is a survival factor in breast cancer
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2006.050889
  contributor:
    fullname: Kumar
SSID ssj0014042
Score 2.3250864
Snippet Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv...
It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated....
It is difficult for most of drug delivery system to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We...
SourceID pubmedcentral
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4510
SubjectTerms Ablation Techniques
Advanced Basic Science
Animals
Cell Death - drug effects
Cell Line, Tumor
Chitosan - chemistry
Dentistry
Diagnostic Imaging
Drug Delivery Systems
Endocytosis - drug effects
Glycolipids - chemistry
Gold - chemistry
Hollow gold nanospheres
Humans
Light
Mice
Micelles
Nanospheres - chemistry
Nanospheres - ultrastructure
Neoplasms - drug therapy
Neoplasms - pathology
Oligosaccharides - chemistry
Paclitaxel - administration & dosage
Paclitaxel - pharmacology
Paclitaxel - therapeutic use
Particle Size
Peptides - chemistry
Photothermal effect
Polymer micelles
Polymers - chemistry
Receptor, EphB4
Spectroscopy, Near-Infrared
Static Electricity
Stearic Acids - chemistry
Temperature
Triggered release
Tumor-homing peptide
Title Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213002676
https://dx.doi.org/10.1016/j.biomaterials.2013.02.069
https://www.ncbi.nlm.nih.gov/pubmed/23510855
https://pubmed.ncbi.nlm.nih.gov/PMC4107678
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDZTmUNr0kW3aoEOv6sqSn4ceQkjYtiSnBnIT1mvj1rGXtQPZS357NX4su_TQQq-2hAfPS4O--Qbgk4pN5jTPqBaZwJYcS5WPlDTUKkqdCW3a9VZdXcfzm_DbbXS7B-djLwzCKofY38f0LloPT2bD35wti2KGsCSeIQGWwEIiiffhwKcjnk7g4Ozr9_n15jIhZN0MHVxPccPIPdrBvLDLPW97bSPSS3QUnoh__kue2sVQbiWly5fwYjhNkrNe4FewZ6sjONziGDyCZ1fD7flruOuGzbtCk_bhvl4RY0tEZaxJ7YgvnZGu-9GWBKHwC7Io195GimVhaFn8smRZl-t7uyI4vr4sbUMQ5N6PlyCLujSkypF23JuAbd7AzeXFj_M5HSYtUB2ztKVG5YYFNnKZd3mbYF1lvWvnTDvtVOxcakLOlIri3PmKK7A5YzrxtVpqeCwSLd7CpKorewwkV8hKFSZ5gCPDmUojjAtOcKHT1Cg1BTH-V7nsCTXkiDT7Kbe1IVEbknHptTGFZFSBHFtGfZCzzeBxjQxk41fKP6xiCl82O3cMS_qc8U9fftcreiMtFxG2bEReph0T2CxAxu7dN1Vx1zF3h77Y9qeD9_8p0wk85_1UDsqCDzBpVw_2oz8bteoU9j8_BaeDB_wGEwMS-w
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7SBPo4lDZ9uc899Cq80up56CGEBqeJfUogt0X7cpQqkrEUqP99Z_QwNj200Ku0iwbNY2fYb74B-KpikzkdZJ4WmaCWHOspjJReqFWUOhPatOutmi_i2XX44ya6OYDTsReGYJVD7O9jehethyfT4W9OV0UxJVhSkBEBlqBCIokfwRFmAxl659HJ-cVssb1MCHk3Q4fWe7Rh5B7tYF7U5Z63vbYJ6SU6Ck_CP__lnNrHUO4cSmcv4PmQTbKTXuCXcGCrY3i2wzF4DI_nw-35K7jths27QrP24b5eM2NLQmVsWO0Yls5E1_3Lloyg8Eu2LDdoI8WqMF5Z_LRsVZebe7tmNL6-LG3DCOTej5dgy7o0rMqJdhxNwDav4frs-9XpzBsmLXg65mnrGZUb7tvIZejyNqG6yqJr51w77VTsXGrCgCsVxbnDisu3Oec6wVotNUEsEi3ewGFVV_YdsFwRK1WY5D6NDOcqjSguOBEInaZGqQmI8b_KVU-oIUek2Z3c1YYkbUgeSNTGBJJRBXJsGcUgZ5vB4xrpywZXyj-sYgLftjv3DEvimfFPX37bK3orbSAiatmIUKY9E9guIMbu_TdVcdsxd4dYbGN28P4_ZfoCT2ZX80t5eb64-ABPg35Ch8f9j3DYrh_sJ8yTWvV58IPftoAU7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+tumor+delivery+of+paclitaxel+using+glycolipid-like+polymer+micelles+containing+gold+nanospheres&rft.jtitle=Biomaterials&rft.au=You%2C+Jian&rft.au=Wang%2C+Zuhua&rft.au=Du%2C+Yongzhong&rft.au=Yuan%2C+Hong&rft.date=2013-06-01&rft.eissn=1878-5905&rft.volume=34&rft.issue=18&rft.spage=4510&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.02.069&rft_id=info%3Apmid%2F23510855&rft.externalDocID=23510855
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X00110%2Fcov150h.gif