Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres
Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modu...
Saved in:
Published in | Biomaterials Vol. 34; no. 18; pp. 4510 - 4519 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation. |
---|---|
AbstractList | It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation. Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1–48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1–4 h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation. It is difficult for most of drug delivery system to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific-delivery of HPTCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4h) in vitro . Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation. It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR laser irradiation. |
Author | Li, Chun Hu, Fuqiang Yuan, Hong Liu, Fei Zhang, Peizun Zhou, Jialin Du, Yongzhong Wang, Zuhua You, Jian |
AuthorAffiliation | 1 College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, People’s Republic of China 2 Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA |
AuthorAffiliation_xml | – name: 2 Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA – name: 1 College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, People’s Republic of China |
Author_xml | – sequence: 1 fullname: You, Jian – sequence: 2 fullname: Wang, Zuhua – sequence: 3 fullname: Du, Yongzhong – sequence: 4 fullname: Yuan, Hong – sequence: 5 fullname: Zhang, Peizun – sequence: 6 fullname: Zhou, Jialin – sequence: 7 fullname: Liu, Fei – sequence: 8 fullname: Li, Chun – sequence: 9 fullname: Hu, Fuqiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23510855$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFv4As7gljJ3ESDpVQgYJUiUPhbDnOZNdbx47s7Kr59zhdqAonTiNr3nsz-jwX5Mx5h4S8Y5AzYOL9Pu-MH9WMwSgbcw6syIHnINoXZMOausmqFqozsgFW8qwVjJ-Tixj3kN5Q8lfknBcVg6aqNmR3N6E2g9F0Pow-0B6tOWJYqB_opLQ1s3pASw_RuC3d2kV7aybTZ9bcI528XUYMdDQarcVItXezMu5R621PnXI-TjsMGF-Tl0PaFt_8rpfk55fPP66_Zrffb75df7zNtIBmzvpO9cCwGtoCaqzTugKhbBToQQ-dGIamLzl0XSXUIFjLUAHomjdt03NR1Lq4JFen3OnQjdhrdHNQVk7BjCos0isj_-44s5Nbf5Qlg1rUTQr4cArQwccYcHjyMpArf7mXz_nLlb8ELhP_ZH77fPqT9Q_wJPh0EmBicDQYZNQGncbeBNSz7L35vzlX_8Skr3JGK3uPC8a9PwS3epiMySDv1ktYD4EVAFzUovgFMsm5Ow |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2018_02_001 crossref_primary_10_1039_C4MD00085D crossref_primary_10_1016_j_biomaterials_2015_04_009 crossref_primary_10_1080_10717544_2017_1375574 crossref_primary_10_1016_j_biomaterials_2015_07_058 crossref_primary_10_1146_annurev_pharmtox_011112_140226 crossref_primary_10_3390_molecules29010031 crossref_primary_10_1186_s12951_021_01011_2 crossref_primary_10_3390_ph15020137 crossref_primary_10_1021_acsnano_8b00204 crossref_primary_10_1371_journal_pone_0166673 crossref_primary_10_1021_acsami_6b13351 crossref_primary_10_1021_mp500710x crossref_primary_10_3390_pharmaceutics15122717 crossref_primary_10_1016_j_biomaterials_2018_01_043 crossref_primary_10_1038_pj_2015_117 crossref_primary_10_1021_acsami_5b10352 crossref_primary_10_1080_03639045_2017_1287718 crossref_primary_10_1002_smll_201603270 crossref_primary_10_1002_wnan_1694 crossref_primary_10_1038_srep35910 crossref_primary_10_1039_C4PY00352G crossref_primary_10_1016_j_ijpharm_2017_02_068 crossref_primary_10_1016_j_addr_2021_113964 crossref_primary_10_1002_btm2_10325 crossref_primary_10_1016_j_jconrel_2018_04_002 crossref_primary_10_1016_S1773_2247_14_50022_6 crossref_primary_10_1021_acs_langmuir_7b01656 crossref_primary_10_1021_acsami_7b02606 crossref_primary_10_1007_s40005_017_0321_0 crossref_primary_10_1016_j_jconrel_2017_05_015 |
Cites_doi | 10.1016/j.biomaterials.2011.09.077 10.2144/000112517 10.1007/BF02531795 10.1038/sj.onc.1203856 10.1002/tcr.20127 10.1016/j.jconrel.2007.03.023 10.1016/j.jconrel.2008.05.003 10.1158/0008-5472.CAN-08-3232 10.1021/bm049955q 10.1021/bm070365c 10.1021/ac060220g 10.1158/0008-5472.CAN-12-1003 10.1002/mabi.200800366 10.1038/nrm1662 10.1088/0957-4484/18/49/495101 10.1158/1078-0432.CCR-08-1480 10.1016/j.jconrel.2007.05.003 10.1016/j.biomaterials.2009.09.008 10.1073/pnas.0401381101 10.1016/j.biomaterials.2009.12.007 10.2967/jnumed.110.081943 10.1016/j.jconrel.2008.08.012 10.1016/j.ijpharm.2006.02.026 10.1002/smll.201000028 10.1016/S0168-3659(99)00029-2 10.1088/0957-4484/19/25/255103 10.1088/0957-4484/19/04/045102 10.1016/S0168-3659(99)00242-4 10.1016/j.jconrel.2011.10.028 10.1021/nn901181c 10.1016/j.ejpb.2007.09.018 10.3181/0808-MR-250 10.1038/sj.onc.1209108 10.2353/ajpath.2006.050889 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2013 Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. 2013 Elsevier Ltd. All rights reserved. 2013 |
Copyright_xml | – notice: Elsevier Ltd – notice: 2013 Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. – notice: 2013 Elsevier Ltd. All rights reserved. 2013 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1016/j.biomaterials.2013.02.069 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 4519 |
ExternalDocumentID | 10_1016_j_biomaterials_2013_02_069 23510855 S0142961213002676 1_s2_0_S0142961213002676 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA151668 – fundername: NIGMS NIH HHS grantid: RC2 GM092599 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c608t-dbad01e5f9307e70426e048a0cfcfb6ff8d420bb56af6191ea00c72898d2637c3 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Tue Sep 17 21:21:30 EDT 2024 Thu Sep 26 18:41:11 EDT 2024 Sat Sep 28 07:51:51 EDT 2024 Fri Feb 23 02:23:09 EST 2024 Tue Oct 15 22:54:31 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Photothermal effect Polymer micelles Triggered release Hollow gold nanospheres Tumor-homing peptide |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-dbad01e5f9307e70426e048a0cfcfb6ff8d420bb56af6191ea00c72898d2637c3 |
OpenAccessLink | https://europepmc.org/articles/pmc4107678?pdf=render |
PMID | 23510855 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107678 crossref_primary_10_1016_j_biomaterials_2013_02_069 pubmed_primary_23510855 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2013_02_069 elsevier_clinicalkeyesjournals_1_s2_0_S0142961213002676 |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chung, Yokoyama, Yamato, Aoyagi, Sakurai, Okano (bib27) 1999; 62 You, Hu, Du, Yuan (bib5) 2007; 8 Noren, Lu, Freeman, Koolpe, Pasquale (bib18) 2004; 101 Chung, Yokoyama, Okano (bib26) 2000; 65 Dodelet, Pasquale (bib17) 2000; 19 Noble, Hatch, Mazrimas, Lindgren, Jensen, Adamson (bib22) 1969; 4 Zhao (bib31) 2007; 7 Hu, Zhao, Yuan, You, Du, Zeng (bib4) 2006; 315 Soga, van Nostrum, Hennink (bib29) 2004; 5 Pasquale (bib16) 2005; 6 Kumar, Scehnet, Ley, Singh, Krasnoperov, Liu (bib21) 2009; 69 You, Zhang, Zhang, Zhong, Liu, Van Pelt (bib13) 2012; 158 Lu, Huang, Ku, Wen, Zhou, Guzatov (bib9) 2010; 31 Collins (bib23) 2007; 43 Schwartzberg, Oshiro, Zhang, Huser, Talley (bib8) 2006; 78 Rijcken, Soga, Hennink, van Nostrum (bib24) 2007; 120 Prabaharan, Grailer, Steeber, Gong (bib28) 2009; 9 You, Hu, Du, Yuan, Ye (bib6) 2007; 18 You, Zhang, Xiong, Zhong, Melancon, Gupta (bib15) 2012; 72 Xia, Kumar, Stein, Singh, Krasnoperov, Zhu (bib19) 2006; 25 You, Zhang, Li (bib11) 2010; 4 Xiong, Huang, Zhang, Song, Lu, Flores (bib14) 2011; 52 Hu, Liu, Du, Yuan (bib34) 2009; 30 Lee, Gao, Bae (bib25) 2008; 132 Lu, Xiong, Zhang, Huang, Zhang, Zhang (bib10) 2009; 15 Ojea-Jimenez, Comenge, Garcia-Fernandez, Megson, Casals, Puntes (bib3) 2012 Hu, Wu, Du, You, Yuan (bib32) 2008; 69 Park (bib2) 2007; 120 Blanco, Kessinger, Sumer, Gao (bib30) 2009; 234 Kumar, Singh, Xia, Krasnoperov, Hassanieh, Ley (bib20) 2006; 169 Zhao, Sun, Fu, Du, Chen, Yuan (bib33) 2012; 33 You, Hu, Du, Yuan (bib7) 2008; 19 You, Li, de Cui, Du, Yuan, Hu (bib35) 2008; 19 Hoffman (bib1) 2008; 132 You, Shao, Wei, Gupta, Li (bib12) 2010; 6 20121065 - ACS Nano. 2010 Feb 23;4(2):1033-41 15928710 - Nat Rev Mol Cell Biol. 2005 Jun;6(6):462-75 19064945 - Exp Biol Med (Maywood). 2009 Feb;234(2):123-31 20394071 - Small. 2010 May 7;6(9):1022-31 11114742 - Oncogene. 2000 Nov 20;19(49):5614-9 18571265 - J Control Release. 2008 Dec 18;132(3):164-70 19370751 - Macromol Biosci. 2009 Aug 11;9(8):744-53 16816380 - Am J Pathol. 2006 Jul;169(1):279-93 19366806 - Cancer Res. 2009 May 1;69(9):3736-45 17661518 - Biomacromolecules. 2007 Aug;8(8):2450-6 20442465 - Nanotechnology. 2007 Dec 12;18(49):495101 19188158 - Clin Cancer Res. 2009 Feb 1;15(3):876-86 16205642 - Oncogene. 2006 Feb 2;25(5):769-80 17997293 - Eur J Pharm Biopharm. 2008 May;69(1):117-25 16808490 - Anal Chem. 2006 Jul 1;78(13):4732-6 17936939 - Biotechniques. 2007 Jul;43(1 Suppl):25-30 19782395 - Biomaterials. 2009 Dec;30(36):6955-63 15067119 - Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5583-8 16632285 - Int J Pharm. 2006 Jun 6;315(1-2):158-66 21817496 - Nanotechnology. 2008 Jan 30;19(4):045102 17532520 - J Control Release. 2007 Jul 16;120(1-2):1-3 10518643 - J Control Release. 1999 Nov 1;62(1-2):115-27 21828645 - Nanotechnology. 2008 Jun 25;19(25):255103 10699274 - J Control Release. 2000 Mar 1;65(1-2):93-103 5766850 - Lipids. 1969 Jan;4(1):55-9 17582642 - J Control Release. 2007 Jul 31;120(3):131-48 21996531 - Biomaterials. 2012 Jan;33(2):634-43 17924441 - Chem Rec. 2007;7(5):286-94 15132666 - Biomacromolecules. 2004 May-Jun;5(3):818-21 18817820 - J Control Release. 2008 Dec 18;132(3):153-63 20036000 - Biomaterials. 2010 Mar;31(9):2617-26 21233177 - J Nucl Med. 2011 Feb;52(2):241-8 22063003 - J Control Release. 2012 Mar 10;158(2):319-28 22865457 - Cancer Res. 2012 Sep 15;72(18):4777-86 Rijcken (10.1016/j.biomaterials.2013.02.069_bib24) 2007; 120 You (10.1016/j.biomaterials.2013.02.069_bib5) 2007; 8 Ojea-Jimenez (10.1016/j.biomaterials.2013.02.069_bib3) 2012 Hu (10.1016/j.biomaterials.2013.02.069_bib4) 2006; 315 You (10.1016/j.biomaterials.2013.02.069_bib12) 2010; 6 Lu (10.1016/j.biomaterials.2013.02.069_bib9) 2010; 31 Collins (10.1016/j.biomaterials.2013.02.069_bib23) 2007; 43 Hu (10.1016/j.biomaterials.2013.02.069_bib34) 2009; 30 Noble (10.1016/j.biomaterials.2013.02.069_bib22) 1969; 4 Lu (10.1016/j.biomaterials.2013.02.069_bib10) 2009; 15 Lee (10.1016/j.biomaterials.2013.02.069_bib25) 2008; 132 You (10.1016/j.biomaterials.2013.02.069_bib11) 2010; 4 Xiong (10.1016/j.biomaterials.2013.02.069_bib14) 2011; 52 Dodelet (10.1016/j.biomaterials.2013.02.069_bib17) 2000; 19 You (10.1016/j.biomaterials.2013.02.069_bib35) 2008; 19 You (10.1016/j.biomaterials.2013.02.069_bib6) 2007; 18 Noren (10.1016/j.biomaterials.2013.02.069_bib18) 2004; 101 Kumar (10.1016/j.biomaterials.2013.02.069_bib21) 2009; 69 Zhao (10.1016/j.biomaterials.2013.02.069_bib31) 2007; 7 Chung (10.1016/j.biomaterials.2013.02.069_bib26) 2000; 65 You (10.1016/j.biomaterials.2013.02.069_bib13) 2012; 158 Kumar (10.1016/j.biomaterials.2013.02.069_bib20) 2006; 169 Chung (10.1016/j.biomaterials.2013.02.069_bib27) 1999; 62 You (10.1016/j.biomaterials.2013.02.069_bib15) 2012; 72 Park (10.1016/j.biomaterials.2013.02.069_bib2) 2007; 120 Hoffman (10.1016/j.biomaterials.2013.02.069_bib1) 2008; 132 Prabaharan (10.1016/j.biomaterials.2013.02.069_bib28) 2009; 9 Zhao (10.1016/j.biomaterials.2013.02.069_bib33) 2012; 33 You (10.1016/j.biomaterials.2013.02.069_bib7) 2008; 19 Schwartzberg (10.1016/j.biomaterials.2013.02.069_bib8) 2006; 78 Xia (10.1016/j.biomaterials.2013.02.069_bib19) 2006; 25 Blanco (10.1016/j.biomaterials.2013.02.069_bib30) 2009; 234 Soga (10.1016/j.biomaterials.2013.02.069_bib29) 2004; 5 Hu (10.1016/j.biomaterials.2013.02.069_bib32) 2008; 69 Pasquale (10.1016/j.biomaterials.2013.02.069_bib16) 2005; 6 |
References_xml | – volume: 234 start-page: 123 year: 2009 end-page: 131 ident: bib30 article-title: Multifunctional micellar nanomedicine for cancer therapy publication-title: Exp Biol Med (Maywood) contributor: fullname: Gao – volume: 7 start-page: 286 year: 2007 end-page: 294 ident: bib31 article-title: Rational design of light-controllable polymer micelles publication-title: Chem Rec contributor: fullname: Zhao – volume: 18 start-page: 495101 year: 2007 ident: bib6 article-title: High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug publication-title: Nanotechnology contributor: fullname: Ye – volume: 120 start-page: 131 year: 2007 end-page: 148 ident: bib24 article-title: Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery publication-title: J Control Release contributor: fullname: van Nostrum – volume: 33 start-page: 634 year: 2012 end-page: 643 ident: bib33 article-title: Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure publication-title: Biomaterials contributor: fullname: Yuan – volume: 315 start-page: 158 year: 2006 end-page: 166 ident: bib4 article-title: A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and publication-title: Int J Pharm contributor: fullname: Zeng – volume: 6 start-page: 462 year: 2005 end-page: 475 ident: bib16 article-title: Eph receptor signalling casts a wide net on cell behaviour publication-title: Nat Rev Mol Cell Biol contributor: fullname: Pasquale – volume: 9 start-page: 744 year: 2009 end-page: 753 ident: bib28 article-title: Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery publication-title: Macromol Biosci contributor: fullname: Gong – volume: 30 start-page: 6955 year: 2009 end-page: 6963 ident: bib34 article-title: Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles publication-title: Biomaterials contributor: fullname: Yuan – volume: 5 start-page: 818 year: 2004 end-page: 821 ident: bib29 article-title: Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity publication-title: Biomacromolecules contributor: fullname: Hennink – volume: 65 start-page: 93 year: 2000 end-page: 103 ident: bib26 article-title: Inner core segment design for drug delivery control of thermo-responsive polymeric micelles publication-title: J Control Release contributor: fullname: Okano – volume: 8 start-page: 2450 year: 2007 end-page: 2456 ident: bib5 article-title: Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel publication-title: Biomacromolecules contributor: fullname: Yuan – volume: 52 start-page: 241 year: 2011 end-page: 248 ident: bib14 article-title: small-animal PET/CT of EphB4 receptors using 64Cu-labeled peptide publication-title: J Nucl Med contributor: fullname: Flores – volume: 15 start-page: 876 year: 2009 end-page: 886 ident: bib10 article-title: Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres publication-title: Clin Cancer Res contributor: fullname: Zhang – volume: 78 start-page: 4732 year: 2006 end-page: 4736 ident: bib8 article-title: Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles publication-title: Anal Chem contributor: fullname: Talley – volume: 31 start-page: 2617 year: 2010 end-page: 2626 ident: bib9 article-title: Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres publication-title: Biomaterials contributor: fullname: Guzatov – volume: 62 start-page: 115 year: 1999 end-page: 127 ident: bib27 article-title: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate) publication-title: J Control Release contributor: fullname: Okano – volume: 43 start-page: 25 year: 2007 end-page: 30 ident: bib23 article-title: ImageJ for microscopy publication-title: Biotechniques contributor: fullname: Collins – volume: 132 start-page: 153 year: 2008 end-page: 163 ident: bib1 article-title: The origins and evolution of "controlled" drug delivery systems publication-title: J Control Release contributor: fullname: Hoffman – volume: 6 start-page: 1022 year: 2010 end-page: 1031 ident: bib12 article-title: Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity publication-title: Small contributor: fullname: Li – volume: 120 start-page: 1 year: 2007 end-page: 3 ident: bib2 article-title: Nanotechnology: what it can do for drug delivery publication-title: J Control Release contributor: fullname: Park – volume: 19 start-page: 045102 year: 2008 ident: bib35 article-title: Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, publication-title: Nanotechnology contributor: fullname: Hu – volume: 69 start-page: 117 year: 2008 end-page: 125 ident: bib32 article-title: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin publication-title: Eur J Pharm Biopharm contributor: fullname: Yuan – volume: 72 start-page: 4777 year: 2012 end-page: 4786 ident: bib15 article-title: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors publication-title: Cancer Res contributor: fullname: Gupta – volume: 69 start-page: 3736 year: 2009 end-page: 3745 ident: bib21 article-title: Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression publication-title: Cancer Res contributor: fullname: Liu – volume: 132 start-page: 164 year: 2008 end-page: 170 ident: bib25 article-title: Recent progress in tumor pH targeting nanotechnology publication-title: J Control Release contributor: fullname: Bae – volume: 158 start-page: 319 year: 2012 end-page: 328 ident: bib13 article-title: Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release publication-title: J Control Release contributor: fullname: Van Pelt – volume: 19 start-page: 5614 year: 2000 end-page: 5619 ident: bib17 article-title: Eph receptors and ephrin ligands: embryogenesis to tumorigenesis publication-title: Oncogene contributor: fullname: Pasquale – volume: 25 start-page: 769 year: 2006 end-page: 780 ident: bib19 article-title: EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival publication-title: Oncogene contributor: fullname: Zhu – volume: 19 start-page: 255103 year: 2008 ident: bib7 article-title: Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles publication-title: Nanotechnology contributor: fullname: Yuan – volume: 4 start-page: 55 year: 1969 end-page: 59 ident: bib22 article-title: Comparison of lipoprotein analysis by agarose gel and paper electrophoresis with analytical ultracentrifugation publication-title: Lipids contributor: fullname: Adamson – volume: 169 start-page: 279 year: 2006 end-page: 293 ident: bib20 article-title: Receptor tyrosine kinase EphB4 is a survival factor in breast cancer publication-title: Am J Pathol contributor: fullname: Ley – volume: 101 start-page: 5583 year: 2004 end-page: 5588 ident: bib18 article-title: Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth publication-title: Proc Natl Acad Sci U S A contributor: fullname: Pasquale – volume: 4 start-page: 1033 year: 2010 end-page: 1041 ident: bib11 article-title: Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release publication-title: ACS Nano contributor: fullname: Li – year: 2012 ident: bib3 article-title: Engineered inorganic nanoparticles for drug delivery applications publication-title: Curr Drug Metab contributor: fullname: Puntes – volume: 33 start-page: 634 year: 2012 ident: 10.1016/j.biomaterials.2013.02.069_bib33 article-title: Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.077 contributor: fullname: Zhao – volume: 43 start-page: 25 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib23 article-title: ImageJ for microscopy publication-title: Biotechniques doi: 10.2144/000112517 contributor: fullname: Collins – year: 2012 ident: 10.1016/j.biomaterials.2013.02.069_bib3 article-title: Engineered inorganic nanoparticles for drug delivery applications publication-title: Curr Drug Metab contributor: fullname: Ojea-Jimenez – volume: 4 start-page: 55 year: 1969 ident: 10.1016/j.biomaterials.2013.02.069_bib22 article-title: Comparison of lipoprotein analysis by agarose gel and paper electrophoresis with analytical ultracentrifugation publication-title: Lipids doi: 10.1007/BF02531795 contributor: fullname: Noble – volume: 19 start-page: 5614 year: 2000 ident: 10.1016/j.biomaterials.2013.02.069_bib17 article-title: Eph receptors and ephrin ligands: embryogenesis to tumorigenesis publication-title: Oncogene doi: 10.1038/sj.onc.1203856 contributor: fullname: Dodelet – volume: 7 start-page: 286 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib31 article-title: Rational design of light-controllable polymer micelles publication-title: Chem Rec doi: 10.1002/tcr.20127 contributor: fullname: Zhao – volume: 120 start-page: 131 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib24 article-title: Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2007.03.023 contributor: fullname: Rijcken – volume: 132 start-page: 164 year: 2008 ident: 10.1016/j.biomaterials.2013.02.069_bib25 article-title: Recent progress in tumor pH targeting nanotechnology publication-title: J Control Release doi: 10.1016/j.jconrel.2008.05.003 contributor: fullname: Lee – volume: 69 start-page: 3736 year: 2009 ident: 10.1016/j.biomaterials.2013.02.069_bib21 article-title: Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3232 contributor: fullname: Kumar – volume: 5 start-page: 818 year: 2004 ident: 10.1016/j.biomaterials.2013.02.069_bib29 article-title: Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity publication-title: Biomacromolecules doi: 10.1021/bm049955q contributor: fullname: Soga – volume: 8 start-page: 2450 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib5 article-title: Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel publication-title: Biomacromolecules doi: 10.1021/bm070365c contributor: fullname: You – volume: 78 start-page: 4732 year: 2006 ident: 10.1016/j.biomaterials.2013.02.069_bib8 article-title: Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles publication-title: Anal Chem doi: 10.1021/ac060220g contributor: fullname: Schwartzberg – volume: 72 start-page: 4777 year: 2012 ident: 10.1016/j.biomaterials.2013.02.069_bib15 article-title: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1003 contributor: fullname: You – volume: 9 start-page: 744 year: 2009 ident: 10.1016/j.biomaterials.2013.02.069_bib28 article-title: Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery publication-title: Macromol Biosci doi: 10.1002/mabi.200800366 contributor: fullname: Prabaharan – volume: 6 start-page: 462 year: 2005 ident: 10.1016/j.biomaterials.2013.02.069_bib16 article-title: Eph receptor signalling casts a wide net on cell behaviour publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1662 contributor: fullname: Pasquale – volume: 18 start-page: 495101 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib6 article-title: High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug publication-title: Nanotechnology doi: 10.1088/0957-4484/18/49/495101 contributor: fullname: You – volume: 15 start-page: 876 year: 2009 ident: 10.1016/j.biomaterials.2013.02.069_bib10 article-title: Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1480 contributor: fullname: Lu – volume: 120 start-page: 1 year: 2007 ident: 10.1016/j.biomaterials.2013.02.069_bib2 article-title: Nanotechnology: what it can do for drug delivery publication-title: J Control Release doi: 10.1016/j.jconrel.2007.05.003 contributor: fullname: Park – volume: 30 start-page: 6955 year: 2009 ident: 10.1016/j.biomaterials.2013.02.069_bib34 article-title: Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.008 contributor: fullname: Hu – volume: 101 start-page: 5583 year: 2004 ident: 10.1016/j.biomaterials.2013.02.069_bib18 article-title: Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0401381101 contributor: fullname: Noren – volume: 31 start-page: 2617 year: 2010 ident: 10.1016/j.biomaterials.2013.02.069_bib9 article-title: Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.007 contributor: fullname: Lu – volume: 52 start-page: 241 year: 2011 ident: 10.1016/j.biomaterials.2013.02.069_bib14 article-title: In vivo small-animal PET/CT of EphB4 receptors using 64Cu-labeled peptide publication-title: J Nucl Med doi: 10.2967/jnumed.110.081943 contributor: fullname: Xiong – volume: 132 start-page: 153 year: 2008 ident: 10.1016/j.biomaterials.2013.02.069_bib1 article-title: The origins and evolution of "controlled" drug delivery systems publication-title: J Control Release doi: 10.1016/j.jconrel.2008.08.012 contributor: fullname: Hoffman – volume: 315 start-page: 158 year: 2006 ident: 10.1016/j.biomaterials.2013.02.069_bib4 article-title: A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and in vitro transfection studies publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2006.02.026 contributor: fullname: Hu – volume: 6 start-page: 1022 year: 2010 ident: 10.1016/j.biomaterials.2013.02.069_bib12 article-title: Near-infrared light triggers release of Paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity publication-title: Small doi: 10.1002/smll.201000028 contributor: fullname: You – volume: 62 start-page: 115 year: 1999 ident: 10.1016/j.biomaterials.2013.02.069_bib27 article-title: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate) publication-title: J Control Release doi: 10.1016/S0168-3659(99)00029-2 contributor: fullname: Chung – volume: 19 start-page: 255103 year: 2008 ident: 10.1016/j.biomaterials.2013.02.069_bib7 article-title: Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles publication-title: Nanotechnology doi: 10.1088/0957-4484/19/25/255103 contributor: fullname: You – volume: 19 start-page: 045102 year: 2008 ident: 10.1016/j.biomaterials.2013.02.069_bib35 article-title: Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity publication-title: Nanotechnology doi: 10.1088/0957-4484/19/04/045102 contributor: fullname: You – volume: 65 start-page: 93 year: 2000 ident: 10.1016/j.biomaterials.2013.02.069_bib26 article-title: Inner core segment design for drug delivery control of thermo-responsive polymeric micelles publication-title: J Control Release doi: 10.1016/S0168-3659(99)00242-4 contributor: fullname: Chung – volume: 158 start-page: 319 year: 2012 ident: 10.1016/j.biomaterials.2013.02.069_bib13 article-title: Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release publication-title: J Control Release doi: 10.1016/j.jconrel.2011.10.028 contributor: fullname: You – volume: 4 start-page: 1033 year: 2010 ident: 10.1016/j.biomaterials.2013.02.069_bib11 article-title: Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release publication-title: ACS Nano doi: 10.1021/nn901181c contributor: fullname: You – volume: 69 start-page: 117 year: 2008 ident: 10.1016/j.biomaterials.2013.02.069_bib32 article-title: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2007.09.018 contributor: fullname: Hu – volume: 234 start-page: 123 year: 2009 ident: 10.1016/j.biomaterials.2013.02.069_bib30 article-title: Multifunctional micellar nanomedicine for cancer therapy publication-title: Exp Biol Med (Maywood) doi: 10.3181/0808-MR-250 contributor: fullname: Blanco – volume: 25 start-page: 769 year: 2006 ident: 10.1016/j.biomaterials.2013.02.069_bib19 article-title: EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival publication-title: Oncogene doi: 10.1038/sj.onc.1209108 contributor: fullname: Xia – volume: 169 start-page: 279 year: 2006 ident: 10.1016/j.biomaterials.2013.02.069_bib20 article-title: Receptor tyrosine kinase EphB4 is a survival factor in breast cancer publication-title: Am J Pathol doi: 10.2353/ajpath.2006.050889 contributor: fullname: Kumar |
SSID | ssj0014042 |
Score | 2.3250864 |
Snippet | Abstract It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv... It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated.... It is difficult for most of drug delivery system to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We... |
SourceID | pubmedcentral crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4510 |
SubjectTerms | Ablation Techniques Advanced Basic Science Animals Cell Death - drug effects Cell Line, Tumor Chitosan - chemistry Dentistry Diagnostic Imaging Drug Delivery Systems Endocytosis - drug effects Glycolipids - chemistry Gold - chemistry Hollow gold nanospheres Humans Light Mice Micelles Nanospheres - chemistry Nanospheres - ultrastructure Neoplasms - drug therapy Neoplasms - pathology Oligosaccharides - chemistry Paclitaxel - administration & dosage Paclitaxel - pharmacology Paclitaxel - therapeutic use Particle Size Peptides - chemistry Photothermal effect Polymer micelles Polymers - chemistry Receptor, EphB4 Spectroscopy, Near-Infrared Static Electricity Stearic Acids - chemistry Temperature Triggered release Tumor-homing peptide |
Title | Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961213002676 https://dx.doi.org/10.1016/j.biomaterials.2013.02.069 https://www.ncbi.nlm.nih.gov/pubmed/23510855 https://pubmed.ncbi.nlm.nih.gov/PMC4107678 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDZTmUNr0kW3aoEOv6sqSn4ceQkjYtiSnBnIT1mvj1rGXtQPZS357NX4su_TQQq-2hAfPS4O--Qbgk4pN5jTPqBaZwJYcS5WPlDTUKkqdCW3a9VZdXcfzm_DbbXS7B-djLwzCKofY38f0LloPT2bD35wti2KGsCSeIQGWwEIiiffhwKcjnk7g4Ozr9_n15jIhZN0MHVxPccPIPdrBvLDLPW97bSPSS3QUnoh__kue2sVQbiWly5fwYjhNkrNe4FewZ6sjONziGDyCZ1fD7flruOuGzbtCk_bhvl4RY0tEZaxJ7YgvnZGu-9GWBKHwC7Io195GimVhaFn8smRZl-t7uyI4vr4sbUMQ5N6PlyCLujSkypF23JuAbd7AzeXFj_M5HSYtUB2ztKVG5YYFNnKZd3mbYF1lvWvnTDvtVOxcakLOlIri3PmKK7A5YzrxtVpqeCwSLd7CpKorewwkV8hKFSZ5gCPDmUojjAtOcKHT1Cg1BTH-V7nsCTXkiDT7Kbe1IVEbknHptTGFZFSBHFtGfZCzzeBxjQxk41fKP6xiCl82O3cMS_qc8U9fftcreiMtFxG2bEReph0T2CxAxu7dN1Vx1zF3h77Y9qeD9_8p0wk85_1UDsqCDzBpVw_2oz8bteoU9j8_BaeDB_wGEwMS-w |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7SBPo4lDZ9uc899Cq80up56CGEBqeJfUogt0X7cpQqkrEUqP99Z_QwNj200Ku0iwbNY2fYb74B-KpikzkdZJ4WmaCWHOspjJReqFWUOhPatOutmi_i2XX44ya6OYDTsReGYJVD7O9jehethyfT4W9OV0UxJVhSkBEBlqBCIokfwRFmAxl659HJ-cVssb1MCHk3Q4fWe7Rh5B7tYF7U5Z63vbYJ6SU6Ck_CP__lnNrHUO4cSmcv4PmQTbKTXuCXcGCrY3i2wzF4DI_nw-35K7jths27QrP24b5eM2NLQmVsWO0Yls5E1_3Lloyg8Eu2LDdoI8WqMF5Z_LRsVZebe7tmNL6-LG3DCOTej5dgy7o0rMqJdhxNwDav4frs-9XpzBsmLXg65mnrGZUb7tvIZejyNqG6yqJr51w77VTsXGrCgCsVxbnDisu3Oec6wVotNUEsEi3ewGFVV_YdsFwRK1WY5D6NDOcqjSguOBEInaZGqQmI8b_KVU-oIUek2Z3c1YYkbUgeSNTGBJJRBXJsGcUgZ5vB4xrpywZXyj-sYgLftjv3DEvimfFPX37bK3orbSAiatmIUKY9E9guIMbu_TdVcdsxd4dYbGN28P4_ZfoCT2ZX80t5eb64-ABPg35Ch8f9j3DYrh_sJ8yTWvV58IPftoAU7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+tumor+delivery+of+paclitaxel+using+glycolipid-like+polymer+micelles+containing+gold+nanospheres&rft.jtitle=Biomaterials&rft.au=You%2C+Jian&rft.au=Wang%2C+Zuhua&rft.au=Du%2C+Yongzhong&rft.au=Yuan%2C+Hong&rft.date=2013-06-01&rft.eissn=1878-5905&rft.volume=34&rft.issue=18&rft.spage=4510&rft_id=info:doi/10.1016%2Fj.biomaterials.2013.02.069&rft_id=info%3Apmid%2F23510855&rft.externalDocID=23510855 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961213X00110%2Fcov150h.gif |