Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier
Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 13; no. 12; pp. 16494 - 16511 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.12.2013
Molecular Diversity Preservation International (MDPI) |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s131216494 |
Cover
Loading…
Abstract | Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use. |
---|---|
AbstractList | Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use. Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use. |
Author | Chung, Wan-Young Li, Gang |
Author_xml | – sequence: 1 givenname: Gang surname: Li fullname: Li, Gang – sequence: 2 givenname: Wan-Young orcidid: 0000-0002-0121-855X surname: Chung fullname: Chung, Wan-Young |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24316564$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiH7AhR-ALHFBSAF_rde-IFUppZWKkKCUozXrHaeONutgb1Ll39chLbQVp7Fm3nn0emYOq70hDlhVrxn9IIShHzMTjDMljXxWHTDJ5URzTvcevPerw5znlHIhhH5R7XMpmKqVPKhuTnBEN4Y4kOjJSQprTCXEmxwGzJn8LHFGfsEaexzJ8QD9Joe81Z4hpJF8hxHJFaQAbejDuCEwdATIj9VyGUv5qrBjIl_BXRcemfaQc_AB08vquYc-46u7eFRdnn6-nJ5NLr59OZ8eX0yconqcgAehNW8EF5QiNt5z5MAlU60zpmR0LWmnW1HXjdNGgabaCN-pplOt0uKoOt9huwhzu0xhAWljIwT7JxHTzJZfBNej7YQ3wiA3UqMUXoDR3htET4F1hqvC-rRjLVftAjuHw5igfwR9XBnCtZ3FtRXacM2aAnh3B0jx9wrzaBchO-x7GDCusmVSNVTpxrAifftEOo-rVKZfVLUobuoyj6J689DRXyv36y0CuhO4FHNO6K0LI2y3XQyG3jJqtxdk_11QaXn_pOWe-h_xLV22xcw |
CitedBy_id | crossref_primary_10_1016_j_sleh_2020_03_005 crossref_primary_10_1109_ACCESS_2019_2945136 crossref_primary_10_1109_JBHI_2021_3134024 crossref_primary_10_1109_JSEN_2015_2475638 crossref_primary_10_1007_s41105_021_00369_y crossref_primary_10_1038_s41597_024_03254_8 crossref_primary_10_3390_s17030609 crossref_primary_10_3390_app12083805 crossref_primary_10_3390_s150820873 crossref_primary_10_1016_j_trf_2023_06_018 crossref_primary_10_1155_2020_8151720 crossref_primary_10_1007_s13177_019_00199_w crossref_primary_10_1109_ACCESS_2024_3438617 crossref_primary_10_1299_transjsme_16_00516 crossref_primary_10_1016_j_bspc_2017_09_027 crossref_primary_10_1016_j_aap_2022_106830 crossref_primary_10_1109_ACCESS_2019_2951028 crossref_primary_10_1109_TITS_2020_2981941 crossref_primary_10_1016_j_aap_2015_02_021 crossref_primary_10_1007_s12239_024_00187_4 crossref_primary_10_1155_2018_9058674 crossref_primary_10_3390_s22031100 crossref_primary_10_30516_bilgesci_1531426 crossref_primary_10_2139_ssrn_4112893 crossref_primary_10_1109_THMS_2017_2658442 crossref_primary_10_3390_electronics8020192 crossref_primary_10_1016_j_eswa_2017_01_040 crossref_primary_10_3389_fnhum_2019_00131 crossref_primary_10_3390_s16050659 crossref_primary_10_3390_s140917491 crossref_primary_10_1007_s12239_024_00109_4 crossref_primary_10_1177_15485129231158580 crossref_primary_10_1049_iet_its_2016_0183 crossref_primary_10_1109_ACCESS_2020_3020742 crossref_primary_10_1007_s13177_019_0176_z crossref_primary_10_1109_ACCESS_2019_2914373 crossref_primary_10_1007_s11517_024_03116_w crossref_primary_10_3390_en15020480 crossref_primary_10_1007_s13177_023_00343_7 crossref_primary_10_1109_TITS_2021_3134222 crossref_primary_10_1371_journal_pone_0225592 crossref_primary_10_1007_s40903_017_0069_x crossref_primary_10_3788_AOS230755 crossref_primary_10_3390_app11010088 crossref_primary_10_1109_JSEN_2018_2869775 crossref_primary_10_1145_3550307 crossref_primary_10_3390_s150924191 crossref_primary_10_1007_s11042_023_15994_7 crossref_primary_10_1007_s11042_024_19890_6 crossref_primary_10_1016_j_trc_2020_102712 crossref_primary_10_1109_TBME_2018_2879346 crossref_primary_10_3233_JIFS_220024 crossref_primary_10_1109_JSEN_2015_2447012 crossref_primary_10_1109_TITS_2018_2868499 crossref_primary_10_1109_TVT_2016_2631604 crossref_primary_10_1177_0018720819849783 crossref_primary_10_3390_s22176529 crossref_primary_10_3390_ijerph18136705 crossref_primary_10_3390_e23020135 crossref_primary_10_56554_jtom_1245965 crossref_primary_10_3390_s141017915 crossref_primary_10_3390_s20041029 crossref_primary_10_1016_j_trf_2023_12_010 crossref_primary_10_31083_j_rcm2203090 crossref_primary_10_3390_info12010003 crossref_primary_10_3233_JIFS_235075 crossref_primary_10_3390_s22197296 crossref_primary_10_3390_s24123723 crossref_primary_10_3389_fnhum_2016_00219 crossref_primary_10_3390_app9173555 crossref_primary_10_1109_TITS_2021_3127944 crossref_primary_10_1016_j_cmpb_2021_106535 crossref_primary_10_1049_ipr2_12373 crossref_primary_10_1109_ACCESS_2022_3167708 crossref_primary_10_3390_data7050062 crossref_primary_10_1016_j_trip_2024_101148 crossref_primary_10_1109_TITS_2019_2917866 crossref_primary_10_3390_s16111805 crossref_primary_10_1145_3478084 crossref_primary_10_3390_s17030486 crossref_primary_10_1016_j_apergo_2023_104202 crossref_primary_10_37394_23203_2022_17_45 crossref_primary_10_1109_TCE_2018_2872162 crossref_primary_10_3389_fncom_2024_1475530 crossref_primary_10_1088_1361_6579_ab998c crossref_primary_10_3390_su142114159 crossref_primary_10_1080_21577323_2016_1164765 crossref_primary_10_1155_2015_832621 crossref_primary_10_1007_s12239_016_0016_y crossref_primary_10_1073_pnas_2201937119 crossref_primary_10_1016_j_aap_2017_11_004 crossref_primary_10_1016_j_neulet_2016_01_028 crossref_primary_10_1109_TBCAS_2020_2974154 crossref_primary_10_1109_ACCESS_2018_2849358 crossref_primary_10_3390_s140917832 crossref_primary_10_1016_j_trf_2016_11_002 crossref_primary_10_1109_JSEN_2024_3491836 crossref_primary_10_3390_s17030495 crossref_primary_10_1080_1206212X_2023_2293348 crossref_primary_10_3390_s22124495 crossref_primary_10_1016_j_heliyon_2024_e39592 crossref_primary_10_1108_ECAM_02_2021_0106 crossref_primary_10_1109_JSEN_2015_2473679 crossref_primary_10_1016_j_bspc_2024_106357 crossref_primary_10_1109_TITS_2016_2617881 crossref_primary_10_1109_ACCESS_2023_3236814 crossref_primary_10_1109_TCYB_2021_3110813 crossref_primary_10_3390_s16020242 crossref_primary_10_3390_ijerph191710736 crossref_primary_10_1080_00207543_2019_1639842 crossref_primary_10_1109_TII_2016_2573259 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_3156_jsoft_32_2_33 crossref_primary_10_1109_TMC_2023_3323280 crossref_primary_10_1080_1463922X_2021_1965670 crossref_primary_10_3390_s21093003 crossref_primary_10_1007_s11517_015_1448_7 crossref_primary_10_1016_j_compind_2017_05_005 crossref_primary_10_3390_f13101565 crossref_primary_10_1016_j_psyneuen_2017_01_028 crossref_primary_10_1109_THMS_2017_2693230 crossref_primary_10_1145_3407899 crossref_primary_10_1016_j_bspc_2022_103608 crossref_primary_10_1115_1_4035611 crossref_primary_10_1080_10803548_2022_2135281 |
Cites_doi | 10.1109/ICECE.2006.355316 10.3390/s90906913 10.1007/978-1-4419-9893-4 10.1109/iccsp.2013.6577036 10.1093/oxfordjournals.eurheartj.a014868 10.1109/CISP.2009.5301253 10.1109/JVA.2006.17 10.1016/j.eswa.2010.12.028 10.1109/ITSC.2009.5309881 10.1016/j.ins.2010.01.011 10.1109/TBME.2005.844028 10.1109/SEANES.2012.6299577 10.3390/s121217536 10.1016/B978-1-59749-272-0.50007-4 10.1109/TBME.2010.2077291 10.1109/JSEN.2012.2190505 10.1109/TITB.2008.2004495 10.1109/TBME.2010.2086456 10.1109/TITB.2009.2031639 10.1007/s11517-010-0715-x 10.1007/s00420-003-0493-y |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2013 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
Copyright_xml | – notice: Copyright MDPI AG 2013 – notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s131216494 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 16511 |
ExternalDocumentID | oai_doaj_org_article_d3f939e2948e43f3a98ff9eef0a1d926 PMC3892817 3346156291 24316564 10_3390_s131216494 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c608t-afa3882732300ee7ff2e2a2416bc990ee8540d8b3557c896a80893fd67d6b683 |
IEDL.DBID | BENPR |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 18:22:19 EDT 2025 Thu Jul 10 18:50:25 EDT 2025 Tue Sep 02 09:14:02 EDT 2025 Thu Apr 03 07:02:06 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 00:40:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-afa3882732300ee7ff2e2a2416bc990ee8540d8b3557c896a80893fd67d6b683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0121-855X |
OpenAccessLink | https://www.proquest.com/docview/1539265300?pq-origsite=%requestingapplication% |
PMID | 24316564 |
PQID | 1539265300 |
PQPubID | 2032333 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3f939e2948e43f3a98ff9eef0a1d926 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3892817 proquest_miscellaneous_1467068791 proquest_journals_1539265300 pubmed_primary_24316564 crossref_citationtrail_10_3390_s131216494 crossref_primary_10_3390_s131216494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-02 |
PublicationDateYYYYMMDD | 2013-12-02 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2013 |
Publisher | MDPI AG Molecular Diversity Preservation International (MDPI) |
Publisher_xml | – name: MDPI AG – name: Molecular Diversity Preservation International (MDPI) |
References | ref_13 ref_12 ref_31 ref_30 ref_18 ref_17 Lee (ref_21) 2012; 12 ref_16 ref_15 Malik (ref_10) 1996; 17 Khushaba (ref_19) 2011; 58 Swarnkar (ref_1) 2010; 48 Yang (ref_7) 2010; 180 Jiao (ref_5) 2004; 77 Patel (ref_8) 2011; 38 Liang (ref_3) 2009; 9 Clifford (ref_11) 2005; 52 ref_25 ref_24 ref_23 Poh (ref_2) 2011; 58 Lee (ref_20) 2012; 12 ref_29 ref_28 ref_27 Khandoker (ref_22) 2009; 13 ref_26 ref_9 Khandoker (ref_14) 2009; 13 ref_4 ref_6 14762667 - Int Arch Occup Environ Health. 2004 Apr;77(3):205-12 20952328 - IEEE Trans Biomed Eng. 2011 Jan;58(1):7-11 19775974 - IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):1057-67 21107745 - Med Biol Eng Comput. 2010 Dec;48(12):1203-13 20858575 - IEEE Trans Biomed Eng. 2011 Jan;58(1):121-31 19129022 - IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):37-48 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8 23247416 - Sensors (Basel). 2012;12(12):17536-52 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 22399979 - Sensors (Basel). 2009;9(9):6913-33 |
References_xml | – ident: ref_28 – ident: ref_13 doi: 10.1109/ICECE.2006.355316 – ident: ref_24 – volume: 9 start-page: 6913 year: 2009 ident: ref_3 article-title: Changes in physiological parameters induced by indoor simulated driving: Effect of lower body exercise at mid-term break publication-title: Sensors doi: 10.3390/s90906913 – ident: ref_26 – ident: ref_29 doi: 10.1007/978-1-4419-9893-4 – ident: ref_16 doi: 10.1109/iccsp.2013.6577036 – volume: 17 start-page: 354 year: 1996 ident: ref_10 article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology publication-title: Eur. Heart J. doi: 10.1093/oxfordjournals.eurheartj.a014868 – ident: ref_18 doi: 10.1109/CISP.2009.5301253 – ident: ref_12 doi: 10.1109/JVA.2006.17 – volume: 38 start-page: 7235 year: 2011 ident: ref_8 article-title: Applying neural network analysis on heart rate variability data to assess driver drowsiness publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2010.12.028 – ident: ref_23 – ident: ref_4 doi: 10.1109/ITSC.2009.5309881 – ident: ref_6 – volume: 180 start-page: 1942 year: 2010 ident: ref_7 article-title: A driver drowsiness recognition model based on information fusion and dynamic Bayesian network publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.01.011 – ident: ref_25 – ident: ref_31 – ident: ref_27 – volume: 52 start-page: 630 year: 2005 ident: ref_11 article-title: Quantifying errors in spectral estimates of HRV due to beat replacement and resampling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.844028 – ident: ref_9 doi: 10.1109/SEANES.2012.6299577 – volume: 12 start-page: 17536 year: 2012 ident: ref_20 article-title: A smartphone-based driver safety monitoring system using data fusion publication-title: Sensors doi: 10.3390/s121217536 – ident: ref_30 doi: 10.1016/B978-1-59749-272-0.50007-4 – volume: 58 start-page: 121 year: 2011 ident: ref_19 article-title: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2077291 – volume: 12 start-page: 2416 year: 2012 ident: ref_21 article-title: Driver alertness monitoring using fusion of facial features and bio-signals publication-title: IEEE Sens. doi: 10.1109/JSEN.2012.2190505 – volume: 13 start-page: 37 year: 2009 ident: ref_22 article-title: Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2008.2004495 – ident: ref_15 – ident: ref_17 – volume: 58 start-page: 7 year: 2011 ident: ref_2 article-title: Advancements in noncontact multiparameter physiological measurements using a webcam publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2086456 – volume: 13 start-page: 1057 year: 2009 ident: ref_14 article-title: Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2031639 – volume: 48 start-page: 1203 year: 2010 ident: ref_1 article-title: Objective measure of sleepiness and sleep latency via bispectrum analysis of EEG publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-010-0715-x – volume: 77 start-page: 205 year: 2004 ident: ref_5 article-title: Effect of different vibration frequencies on heart rate variability and driving drowsiness in healthy drivers publication-title: Int. Arch. Occup. Environ. Health. doi: 10.1007/s00420-003-0493-y – reference: 22399979 - Sensors (Basel). 2009;9(9):6913-33 – reference: 20952328 - IEEE Trans Biomed Eng. 2011 Jan;58(1):7-11 – reference: 21107745 - Med Biol Eng Comput. 2010 Dec;48(12):1203-13 – reference: 23247416 - Sensors (Basel). 2012;12(12):17536-52 – reference: 14762667 - Int Arch Occup Environ Health. 2004 Apr;77(3):205-12 – reference: 19775974 - IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):1057-67 – reference: 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 – reference: 19129022 - IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):37-48 – reference: 20858575 - IEEE Trans Biomed Eng. 2011 Jan;58(1):121-31 – reference: 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8 |
SSID | ssj0023338 |
Score | 2.5005443 |
Snippet | Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 16494 |
SubjectTerms | Accuracy Automobile Driving Bluetooth Classification driver fatigue Drunk driving Electrocardiography Fatigue Fourier transforms Heart rate Heart Rate - physiology heart rate variability Humans internet Methods Nervous system photoplethysmography Physiology Power Sensors Sleep Stages - physiology smartphone Support Vector Machine Support vector machines Time series Wavelet Analysis wavelet decomposition Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSA6AcQSpFRuXCIcOz469iyoFWl5VAB5RY58VggoSxigxD_nrGT3e5WSFw4RYodaWLPZN5zRm8IOWSWe8eky4XBcCtrKXMjg8yVcgGYL2rr4tHA5FyNL8vf1_J6qdVXrAnr5YH7hTv2IlhhgdvSQCmCcNaEYAECc4W3PIltY86bk6mBaglkXr0YqUBSfzwrRMGRGNhyJf0klf7XoOX_FZJLKedsk2wMWJH-7G38RD5A-5l8XFIQ_EKeRtClYqqWTgMdPcQqC7xMn_pydpoqAuhfF9tLdHSuQBLnjtHFO_oHoSa9Qr7cy3U_U9d66mjs9Ym4nF6lM306SRWXQFMHzduAmfQruTg7vTgZ50MvhbxRzHS5C04gmNYCKQcD0CFw4A7Tt6obTEgABqGbNzXCD90Yq5xhiGSCV9qrWhmxRdbaaQs7hPJS-Rp4CD4-YrRhAaAsvTGN5BZYRo7mK1w1g854bHdxVyHfiLtR_duNjPxYzL3v1TVenfUrbtRiRlTETjfQT6rBT6q3_CQje_NtroYwnVX4ucchiUuSkYPFMAZY_GviWpg-ziI30kwZbYuMbPdesbCERyEBqdBCveIvK6aujrS3N0nEG4EiN4XefY93-0bWeezSEats-B5Z6x4e4Ttipa7eT2HxAqGoFAk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8SZtQUZw4RBwbMePQ1UBpVohLQfUlt4iJx6XSlVCd1O1_feM86JbrThFiieSNTPOfJOMvo-Q98xy71juUmHwuMkyz1OThzxVygVgPiuti58G5j_U7Eh-P8lPNsio3zk4cLm2tYt6UkeL84_XFzd7eOB3Y8eJLfunZSYyjrDfynvkPlYkHSUc5nL6m8AF9mE9Nekd-5Vi1HH2rwOad-clbxWgg8fk0YAc6ec-1E_IBtRPycNbfILPyNU-tN1oVU2bQPcXceYCL81VP9xOu_kA-stFsYmWjnwk0XaGCd_Snwg86TF2zz159w11taeORuVPdBA97r7w03k3fwm009M8C1hXn5PDg2-HX2fpoKyQVoqZNnXBCYTWWmADwgB0CBy4Q9epssLyBGAQyHlTIhjRlbHKGYa4JnilvSqVES_IZt3U8IpQLpUvgYfg4yNGGxYApPTGVDm3wBLyYfRwUQ2s41H84rzA7iNGo_gXjYS8m2z_9Fwba62-xEBNFpEfu7vRLE6L4bgVXgQrLHArDUgRhLMmBAsQmMu85SohO2OYizHnCnz541KOLknI22kZj1v8h-JqaC6XsVPSTBlts4S87LNi2gmPtAK5wh3qlXxZ2erqSn32u6P0RtjITaa3_r-tbfKARzWOOE3Dd8hmu7iE14iJ2vJNl_B_AXcVDGY priority: 102 providerName: Scholars Portal |
Title | Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24316564 https://www.proquest.com/docview/1539265300 https://www.proquest.com/docview/1467068791 https://pubmed.ncbi.nlm.nih.gov/PMC3892817 https://doaj.org/article/d3f939e2948e43f3a98ff9eef0a1d926 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNcmkPpe86TReV9tKDiSzZepxK02S7FDaUkKZ7M7I1SgPFTnYdQv99R7LXyZbQiwyWDMIzo_lmNHxDyAdmuLOssKnQaG55VRSpLnyRSmk9MJdVxobUwPxYzn7k3xbFYki4rYayyvWZGA9q19YhR76Plmm4LARjny6v0tA1KtyuDi00tsgOHsEaNXzn4Oj4-8kYcgmMwHpSUoHB_f4qExnHAMHkG24osvXfBzH_rZS843qmT8jjATPSz72Qn5IH0Dwjj-4wCT4nN4fQxaKqhraeHi5DtQU-2pu-rJ3GygD604Y2Ex1dM5GEtTNU9Y6eIOSkZxg397Tdf6htHLU09PxEfE7PYm6fzmPlJdDYSfPCo0d9QU6nR6dfZunQUyGtJdNdar0VCKqVwNCDASjvOXCLblxWNTomAI0QzukKYYiqtZFWM0Q03knlZCW1eEm2m7aB14TyXLoKuPcufKKVZh4gz53WdcENsIR8XP_hsh74xkPbi98lxh1BGuWtNBLyflx72bNs3LvqIAhqXBGYseOLdnleDoZWOuGNMMBNriEXXlijvTcAntnMoQYlZG8t5nIw11V5q1wJeTdOo6GF2xPbQHu9CjGSYlIrkyXkVa8V4054IBQoJO5QbejLxlY3Z5qLX5HMGwEj15na_f-23pCHPPThCHU0fI9sd8treItoqKsmZEstFI56-nUyqP8kZhZwnOf6L9DSD8M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPgwCGqYyd-HBAClmpLuz2gpewtcuIxVEJJ2U216o_iPzLOY7eLKm49rZQ4K8sz45mJv3wfIa-Z4c6yzMZCY7ilRZbFOvNZLKX1wFxSGBteDUyO5Phb-mWWzbbIn-FbmACrHPbEdqN2dRneke9iZBouM8HY-9PfcVCNCqerg4RG5xYHcL7Elm3xbn-E9n3D-d7n6adx3KsKxKVkuomttwLLSiWw-GYAynsO3GIik0WJWzOAxiLG6QITsSq1kVYzzOneSeVkIbXAv71GrmPeZQFBqGbr_k5gu9cxoAph2O4iEQnHbsSkGzmvlQa4rJ79F5Z5Ic_t3SG3-wKVfug86i7ZguoeuXWBtvA-WY6gaRFcFa09Hc0DtAN_6mWHoactDIF-t0HToqED7UkYO8YFbOhXrG_pMTbpHUf4ObWVo5YGgVFsBuhxe5BAJy3ME2gr23niMX0_INOrWOqHZLuqK3hMKE-lK4B778IjWmnmAdLUaV1m3ACLyNthhfOyJzcPGhu_cmxygjXytTUi8mo19rSj9Lh01MdgqNWIQMPdXqjnP_I-qnMnvBEGuEk1pMILa7T3BsAzmzh014jsDGbO-71hka89OSIvV7cxqsNRja2gPluEhkwxqZVJIvKo84rVTHhgL8gkzlBt-MvGVDfvVCc_W-ZwrE65TtST_0_rBbkxnk4O88P9o4On5CYPAiABwMN3yHYzP4NnWIY1xfPW-SnJrzjY_gJXB0YU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYyAA4doHTvx44AQsKy2lFYIlbK3yInHUAklZTfVqj-Nf8c4j90uqrj1tFLirCzPjGcm_vJ9hLxkhjvLMhsLjeGWFlkW68xnsZTWA3NJYWx4NbB_IKff0k-zbLZF_gzfwgRY5bAnthu1q8vwjnyEkWm4zARjI9_DIr6MJ29PfsdBQSqctA5yGp2L7MHZEtu3xZvdMdr6FeeTj4cfpnGvMBCXkukmtt4KLDGVwEKcASjvOXCLSU0WJW7TABoLGqcLTMqq1EZazTC_eyeVk4XUAv_2CrmqBGZNDCU1W_d6Alu_jg1VCMNGi0QkHDsTk27kv1Ym4KLa9l-I5rmcN7lFbvbFKn3XeddtsgXVHXLjHIXhXbIcQ9OiuSpaezqeB5gH_tTLDk9PW0gC_W6DvkVDBwqUMHaKC9jQr1jr0iNs2Du-8DNqK0ctDWKj2BjQo_ZQge63kE-grYTnscdUfo8cXsZS3yfbVV3BQ0J5Kl0B3HsXHtFKMw-Qpk7rMuMGWEReDyuclz3RedDb-JVjwxOska-tEZEXq7EnHb3HhaPeB0OtRgRK7vZCPf-R9xGeO-GNMMBNqiEVXlijvTcAntnEoetGZGcwc97vE4t87dUReb66jREejm1sBfXpIjRnikmtTBKRB51XrGbCA5NBJnGGasNfNqa6eac6_tmyiGOlynWiHv1_Ws_INQyz_PPuwd5jcp0HLZCA5eE7ZLuZn8ITrMia4mnr-5TklxxrfwFgaUpK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Driver+Drowsiness+Using+Wavelet+Analysis+of+Heart+Rate+Variability+and+a+Support+Vector+Machine+Classifier&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Gang&rft.au=Chung%2C+Wan-Young&rft.date=2013-12-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=13&rft.issue=12&rft.spage=16494&rft_id=info:doi/10.3390%2Fs131216494&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3346156291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |