Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier

Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 13; no. 12; pp. 16494 - 16511
Main Authors Li, Gang, Chung, Wan-Young
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.12.2013
Molecular Diversity Preservation International (MDPI)
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s131216494

Cover

Loading…
Abstract Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.
AbstractList Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.
Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently for the detection of driver drowsiness. However, the detection reliability has been lower than anticipated, because the HRV signals of drivers were always regarded as stationary signals. The wavelet transform method is a method for analyzing non-stationary signals. The aim of this study is to classify alert and drowsy driving events using the wavelet transform of HRV signals over short time periods and to compare the classification performance of this method with the conventional method that uses fast Fourier transform (FFT)-based features. Based on the standard shortest duration for FFT-based short-term HRV evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as 1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) analysis and a support vector machine (SVM) classifier are used for feature selection and classification, respectively. The ROC analysis results show that the wavelet-based method performs better than the FFT-based method regardless of the duration of the HRV sample that is used. Finally, based on the real-time requirements for driver drowsiness detection, the SVM classifier is trained using eighty FFT and wavelet-based features that are extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is inexpensive and easy-to-use.
Author Chung, Wan-Young
Li, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Li
  fullname: Li, Gang
– sequence: 2
  givenname: Wan-Young
  orcidid: 0000-0002-0121-855X
  surname: Chung
  fullname: Chung, Wan-Young
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24316564$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AhR-ALHFBSAF_rde-IFUppZWKkKCUozXrHaeONutgb1Ll39chLbQVp7Fm3nn0emYOq70hDlhVrxn9IIShHzMTjDMljXxWHTDJ5URzTvcevPerw5znlHIhhH5R7XMpmKqVPKhuTnBEN4Y4kOjJSQprTCXEmxwGzJn8LHFGfsEaexzJ8QD9Joe81Z4hpJF8hxHJFaQAbejDuCEwdATIj9VyGUv5qrBjIl_BXRcemfaQc_AB08vquYc-46u7eFRdnn6-nJ5NLr59OZ8eX0yconqcgAehNW8EF5QiNt5z5MAlU60zpmR0LWmnW1HXjdNGgabaCN-pplOt0uKoOt9huwhzu0xhAWljIwT7JxHTzJZfBNej7YQ3wiA3UqMUXoDR3htET4F1hqvC-rRjLVftAjuHw5igfwR9XBnCtZ3FtRXacM2aAnh3B0jx9wrzaBchO-x7GDCusmVSNVTpxrAifftEOo-rVKZfVLUobuoyj6J689DRXyv36y0CuhO4FHNO6K0LI2y3XQyG3jJqtxdk_11QaXn_pOWe-h_xLV22xcw
CitedBy_id crossref_primary_10_1016_j_sleh_2020_03_005
crossref_primary_10_1109_ACCESS_2019_2945136
crossref_primary_10_1109_JBHI_2021_3134024
crossref_primary_10_1109_JSEN_2015_2475638
crossref_primary_10_1007_s41105_021_00369_y
crossref_primary_10_1038_s41597_024_03254_8
crossref_primary_10_3390_s17030609
crossref_primary_10_3390_app12083805
crossref_primary_10_3390_s150820873
crossref_primary_10_1016_j_trf_2023_06_018
crossref_primary_10_1155_2020_8151720
crossref_primary_10_1007_s13177_019_00199_w
crossref_primary_10_1109_ACCESS_2024_3438617
crossref_primary_10_1299_transjsme_16_00516
crossref_primary_10_1016_j_bspc_2017_09_027
crossref_primary_10_1016_j_aap_2022_106830
crossref_primary_10_1109_ACCESS_2019_2951028
crossref_primary_10_1109_TITS_2020_2981941
crossref_primary_10_1016_j_aap_2015_02_021
crossref_primary_10_1007_s12239_024_00187_4
crossref_primary_10_1155_2018_9058674
crossref_primary_10_3390_s22031100
crossref_primary_10_30516_bilgesci_1531426
crossref_primary_10_2139_ssrn_4112893
crossref_primary_10_1109_THMS_2017_2658442
crossref_primary_10_3390_electronics8020192
crossref_primary_10_1016_j_eswa_2017_01_040
crossref_primary_10_3389_fnhum_2019_00131
crossref_primary_10_3390_s16050659
crossref_primary_10_3390_s140917491
crossref_primary_10_1007_s12239_024_00109_4
crossref_primary_10_1177_15485129231158580
crossref_primary_10_1049_iet_its_2016_0183
crossref_primary_10_1109_ACCESS_2020_3020742
crossref_primary_10_1007_s13177_019_0176_z
crossref_primary_10_1109_ACCESS_2019_2914373
crossref_primary_10_1007_s11517_024_03116_w
crossref_primary_10_3390_en15020480
crossref_primary_10_1007_s13177_023_00343_7
crossref_primary_10_1109_TITS_2021_3134222
crossref_primary_10_1371_journal_pone_0225592
crossref_primary_10_1007_s40903_017_0069_x
crossref_primary_10_3788_AOS230755
crossref_primary_10_3390_app11010088
crossref_primary_10_1109_JSEN_2018_2869775
crossref_primary_10_1145_3550307
crossref_primary_10_3390_s150924191
crossref_primary_10_1007_s11042_023_15994_7
crossref_primary_10_1007_s11042_024_19890_6
crossref_primary_10_1016_j_trc_2020_102712
crossref_primary_10_1109_TBME_2018_2879346
crossref_primary_10_3233_JIFS_220024
crossref_primary_10_1109_JSEN_2015_2447012
crossref_primary_10_1109_TITS_2018_2868499
crossref_primary_10_1109_TVT_2016_2631604
crossref_primary_10_1177_0018720819849783
crossref_primary_10_3390_s22176529
crossref_primary_10_3390_ijerph18136705
crossref_primary_10_3390_e23020135
crossref_primary_10_56554_jtom_1245965
crossref_primary_10_3390_s141017915
crossref_primary_10_3390_s20041029
crossref_primary_10_1016_j_trf_2023_12_010
crossref_primary_10_31083_j_rcm2203090
crossref_primary_10_3390_info12010003
crossref_primary_10_3233_JIFS_235075
crossref_primary_10_3390_s22197296
crossref_primary_10_3390_s24123723
crossref_primary_10_3389_fnhum_2016_00219
crossref_primary_10_3390_app9173555
crossref_primary_10_1109_TITS_2021_3127944
crossref_primary_10_1016_j_cmpb_2021_106535
crossref_primary_10_1049_ipr2_12373
crossref_primary_10_1109_ACCESS_2022_3167708
crossref_primary_10_3390_data7050062
crossref_primary_10_1016_j_trip_2024_101148
crossref_primary_10_1109_TITS_2019_2917866
crossref_primary_10_3390_s16111805
crossref_primary_10_1145_3478084
crossref_primary_10_3390_s17030486
crossref_primary_10_1016_j_apergo_2023_104202
crossref_primary_10_37394_23203_2022_17_45
crossref_primary_10_1109_TCE_2018_2872162
crossref_primary_10_3389_fncom_2024_1475530
crossref_primary_10_1088_1361_6579_ab998c
crossref_primary_10_3390_su142114159
crossref_primary_10_1080_21577323_2016_1164765
crossref_primary_10_1155_2015_832621
crossref_primary_10_1007_s12239_016_0016_y
crossref_primary_10_1073_pnas_2201937119
crossref_primary_10_1016_j_aap_2017_11_004
crossref_primary_10_1016_j_neulet_2016_01_028
crossref_primary_10_1109_TBCAS_2020_2974154
crossref_primary_10_1109_ACCESS_2018_2849358
crossref_primary_10_3390_s140917832
crossref_primary_10_1016_j_trf_2016_11_002
crossref_primary_10_1109_JSEN_2024_3491836
crossref_primary_10_3390_s17030495
crossref_primary_10_1080_1206212X_2023_2293348
crossref_primary_10_3390_s22124495
crossref_primary_10_1016_j_heliyon_2024_e39592
crossref_primary_10_1108_ECAM_02_2021_0106
crossref_primary_10_1109_JSEN_2015_2473679
crossref_primary_10_1016_j_bspc_2024_106357
crossref_primary_10_1109_TITS_2016_2617881
crossref_primary_10_1109_ACCESS_2023_3236814
crossref_primary_10_1109_TCYB_2021_3110813
crossref_primary_10_3390_s16020242
crossref_primary_10_3390_ijerph191710736
crossref_primary_10_1080_00207543_2019_1639842
crossref_primary_10_1109_TII_2016_2573259
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_3156_jsoft_32_2_33
crossref_primary_10_1109_TMC_2023_3323280
crossref_primary_10_1080_1463922X_2021_1965670
crossref_primary_10_3390_s21093003
crossref_primary_10_1007_s11517_015_1448_7
crossref_primary_10_1016_j_compind_2017_05_005
crossref_primary_10_3390_f13101565
crossref_primary_10_1016_j_psyneuen_2017_01_028
crossref_primary_10_1109_THMS_2017_2693230
crossref_primary_10_1145_3407899
crossref_primary_10_1016_j_bspc_2022_103608
crossref_primary_10_1115_1_4035611
crossref_primary_10_1080_10803548_2022_2135281
Cites_doi 10.1109/ICECE.2006.355316
10.3390/s90906913
10.1007/978-1-4419-9893-4
10.1109/iccsp.2013.6577036
10.1093/oxfordjournals.eurheartj.a014868
10.1109/CISP.2009.5301253
10.1109/JVA.2006.17
10.1016/j.eswa.2010.12.028
10.1109/ITSC.2009.5309881
10.1016/j.ins.2010.01.011
10.1109/TBME.2005.844028
10.1109/SEANES.2012.6299577
10.3390/s121217536
10.1016/B978-1-59749-272-0.50007-4
10.1109/TBME.2010.2077291
10.1109/JSEN.2012.2190505
10.1109/TITB.2008.2004495
10.1109/TBME.2010.2086456
10.1109/TITB.2009.2031639
10.1007/s11517-010-0715-x
10.1007/s00420-003-0493-y
ContentType Journal Article
Copyright Copyright MDPI AG 2013
2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
Copyright_xml – notice: Copyright MDPI AG 2013
– notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s131216494
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 16511
ExternalDocumentID oai_doaj_org_article_d3f939e2948e43f3a98ff9eef0a1d926
PMC3892817
3346156291
24316564
10_3390_s131216494
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c608t-afa3882732300ee7ff2e2a2416bc990ee8540d8b3557c896a80893fd67d6b683
IEDL.DBID BENPR
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:29 EDT 2025
Thu Aug 21 18:22:19 EDT 2025
Thu Jul 10 18:50:25 EDT 2025
Tue Sep 02 09:14:02 EDT 2025
Thu Apr 03 07:02:06 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 00:40:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-afa3882732300ee7ff2e2a2416bc990ee8540d8b3557c896a80893fd67d6b683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0121-855X
OpenAccessLink https://www.proquest.com/docview/1539265300?pq-origsite=%requestingapplication%
PMID 24316564
PQID 1539265300
PQPubID 2032333
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_d3f939e2948e43f3a98ff9eef0a1d926
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3892817
proquest_miscellaneous_1467068791
proquest_journals_1539265300
pubmed_primary_24316564
crossref_citationtrail_10_3390_s131216494
crossref_primary_10_3390_s131216494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-02
PublicationDateYYYYMMDD 2013-12-02
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2013
Publisher MDPI AG
Molecular Diversity Preservation International (MDPI)
Publisher_xml – name: MDPI AG
– name: Molecular Diversity Preservation International (MDPI)
References ref_13
ref_12
ref_31
ref_30
ref_18
ref_17
Lee (ref_21) 2012; 12
ref_16
ref_15
Malik (ref_10) 1996; 17
Khushaba (ref_19) 2011; 58
Swarnkar (ref_1) 2010; 48
Yang (ref_7) 2010; 180
Jiao (ref_5) 2004; 77
Patel (ref_8) 2011; 38
Liang (ref_3) 2009; 9
Clifford (ref_11) 2005; 52
ref_25
ref_24
ref_23
Poh (ref_2) 2011; 58
Lee (ref_20) 2012; 12
ref_29
ref_28
ref_27
Khandoker (ref_22) 2009; 13
ref_26
ref_9
Khandoker (ref_14) 2009; 13
ref_4
ref_6
14762667 - Int Arch Occup Environ Health. 2004 Apr;77(3):205-12
20952328 - IEEE Trans Biomed Eng. 2011 Jan;58(1):7-11
19775974 - IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):1057-67
21107745 - Med Biol Eng Comput. 2010 Dec;48(12):1203-13
20858575 - IEEE Trans Biomed Eng. 2011 Jan;58(1):121-31
19129022 - IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):37-48
15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8
23247416 - Sensors (Basel). 2012;12(12):17536-52
8737210 - Eur Heart J. 1996 Mar;17(3):354-81
22399979 - Sensors (Basel). 2009;9(9):6913-33
References_xml – ident: ref_28
– ident: ref_13
  doi: 10.1109/ICECE.2006.355316
– ident: ref_24
– volume: 9
  start-page: 6913
  year: 2009
  ident: ref_3
  article-title: Changes in physiological parameters induced by indoor simulated driving: Effect of lower body exercise at mid-term break
  publication-title: Sensors
  doi: 10.3390/s90906913
– ident: ref_26
– ident: ref_29
  doi: 10.1007/978-1-4419-9893-4
– ident: ref_16
  doi: 10.1109/iccsp.2013.6577036
– volume: 17
  start-page: 354
  year: 1996
  ident: ref_10
  article-title: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology
  publication-title: Eur. Heart J.
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– ident: ref_18
  doi: 10.1109/CISP.2009.5301253
– ident: ref_12
  doi: 10.1109/JVA.2006.17
– volume: 38
  start-page: 7235
  year: 2011
  ident: ref_8
  article-title: Applying neural network analysis on heart rate variability data to assess driver drowsiness
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.028
– ident: ref_23
– ident: ref_4
  doi: 10.1109/ITSC.2009.5309881
– ident: ref_6
– volume: 180
  start-page: 1942
  year: 2010
  ident: ref_7
  article-title: A driver drowsiness recognition model based on information fusion and dynamic Bayesian network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.01.011
– ident: ref_25
– ident: ref_31
– ident: ref_27
– volume: 52
  start-page: 630
  year: 2005
  ident: ref_11
  article-title: Quantifying errors in spectral estimates of HRV due to beat replacement and resampling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.844028
– ident: ref_9
  doi: 10.1109/SEANES.2012.6299577
– volume: 12
  start-page: 17536
  year: 2012
  ident: ref_20
  article-title: A smartphone-based driver safety monitoring system using data fusion
  publication-title: Sensors
  doi: 10.3390/s121217536
– ident: ref_30
  doi: 10.1016/B978-1-59749-272-0.50007-4
– volume: 58
  start-page: 121
  year: 2011
  ident: ref_19
  article-title: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2077291
– volume: 12
  start-page: 2416
  year: 2012
  ident: ref_21
  article-title: Driver alertness monitoring using fusion of facial features and bio-signals
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2012.2190505
– volume: 13
  start-page: 37
  year: 2009
  ident: ref_22
  article-title: Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.2004495
– ident: ref_15
– ident: ref_17
– volume: 58
  start-page: 7
  year: 2011
  ident: ref_2
  article-title: Advancements in noncontact multiparameter physiological measurements using a webcam
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2086456
– volume: 13
  start-page: 1057
  year: 2009
  ident: ref_14
  article-title: Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2031639
– volume: 48
  start-page: 1203
  year: 2010
  ident: ref_1
  article-title: Objective measure of sleepiness and sleep latency via bispectrum analysis of EEG
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-010-0715-x
– volume: 77
  start-page: 205
  year: 2004
  ident: ref_5
  article-title: Effect of different vibration frequencies on heart rate variability and driving drowsiness in healthy drivers
  publication-title: Int. Arch. Occup. Environ. Health.
  doi: 10.1007/s00420-003-0493-y
– reference: 22399979 - Sensors (Basel). 2009;9(9):6913-33
– reference: 20952328 - IEEE Trans Biomed Eng. 2011 Jan;58(1):7-11
– reference: 21107745 - Med Biol Eng Comput. 2010 Dec;48(12):1203-13
– reference: 23247416 - Sensors (Basel). 2012;12(12):17536-52
– reference: 14762667 - Int Arch Occup Environ Health. 2004 Apr;77(3):205-12
– reference: 19775974 - IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):1057-67
– reference: 8737210 - Eur Heart J. 1996 Mar;17(3):354-81
– reference: 19129022 - IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):37-48
– reference: 20858575 - IEEE Trans Biomed Eng. 2011 Jan;58(1):121-31
– reference: 15825865 - IEEE Trans Biomed Eng. 2005 Apr;52(4):630-8
SSID ssj0023338
Score 2.5005443
Snippet Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. Heart rate variability (HRV) analysis has been studied recently...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16494
SubjectTerms Accuracy
Automobile Driving
Bluetooth
Classification
driver fatigue
Drunk driving
Electrocardiography
Fatigue
Fourier transforms
Heart rate
Heart Rate - physiology
heart rate variability
Humans
internet
Methods
Nervous system
photoplethysmography
Physiology
Power
Sensors
Sleep Stages - physiology
smartphone
Support Vector Machine
Support vector machines
Time series
Wavelet Analysis
wavelet decomposition
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSA6AcQSpFRuXCIcOz469iyoFWl5VAB5RY58VggoSxigxD_nrGT3e5WSFw4RYodaWLPZN5zRm8IOWSWe8eky4XBcCtrKXMjg8yVcgGYL2rr4tHA5FyNL8vf1_J6qdVXrAnr5YH7hTv2IlhhgdvSQCmCcNaEYAECc4W3PIltY86bk6mBaglkXr0YqUBSfzwrRMGRGNhyJf0klf7XoOX_FZJLKedsk2wMWJH-7G38RD5A-5l8XFIQ_EKeRtClYqqWTgMdPcQqC7xMn_pydpoqAuhfF9tLdHSuQBLnjtHFO_oHoSa9Qr7cy3U_U9d66mjs9Ym4nF6lM306SRWXQFMHzduAmfQruTg7vTgZ50MvhbxRzHS5C04gmNYCKQcD0CFw4A7Tt6obTEgABqGbNzXCD90Yq5xhiGSCV9qrWhmxRdbaaQs7hPJS-Rp4CD4-YrRhAaAsvTGN5BZYRo7mK1w1g854bHdxVyHfiLtR_duNjPxYzL3v1TVenfUrbtRiRlTETjfQT6rBT6q3_CQje_NtroYwnVX4ucchiUuSkYPFMAZY_GviWpg-ziI30kwZbYuMbPdesbCERyEBqdBCveIvK6aujrS3N0nEG4EiN4XefY93-0bWeezSEats-B5Z6x4e4Ttipa7eT2HxAqGoFAk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8SZtQUZw4RBwbMePQ1UBpVohLQfUlt4iJx6XSlVCd1O1_feM86JbrThFiieSNTPOfJOMvo-Q98xy71juUmHwuMkyz1OThzxVygVgPiuti58G5j_U7Eh-P8lPNsio3zk4cLm2tYt6UkeL84_XFzd7eOB3Y8eJLfunZSYyjrDfynvkPlYkHSUc5nL6m8AF9mE9Nekd-5Vi1HH2rwOad-clbxWgg8fk0YAc6ec-1E_IBtRPycNbfILPyNU-tN1oVU2bQPcXceYCL81VP9xOu_kA-stFsYmWjnwk0XaGCd_Snwg86TF2zz159w11taeORuVPdBA97r7w03k3fwm009M8C1hXn5PDg2-HX2fpoKyQVoqZNnXBCYTWWmADwgB0CBy4Q9epssLyBGAQyHlTIhjRlbHKGYa4JnilvSqVES_IZt3U8IpQLpUvgYfg4yNGGxYApPTGVDm3wBLyYfRwUQ2s41H84rzA7iNGo_gXjYS8m2z_9Fwba62-xEBNFpEfu7vRLE6L4bgVXgQrLHArDUgRhLMmBAsQmMu85SohO2OYizHnCnz541KOLknI22kZj1v8h-JqaC6XsVPSTBlts4S87LNi2gmPtAK5wh3qlXxZ2erqSn32u6P0RtjITaa3_r-tbfKARzWOOE3Dd8hmu7iE14iJ2vJNl_B_AXcVDGY
  priority: 102
  providerName: Scholars Portal
Title Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier
URI https://www.ncbi.nlm.nih.gov/pubmed/24316564
https://www.proquest.com/docview/1539265300
https://www.proquest.com/docview/1467068791
https://pubmed.ncbi.nlm.nih.gov/PMC3892817
https://doaj.org/article/d3f939e2948e43f3a98ff9eef0a1d926
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNcmkPpe86TReV9tKDiSzZepxK02S7FDaUkKZ7M7I1SgPFTnYdQv99R7LXyZbQiwyWDMIzo_lmNHxDyAdmuLOssKnQaG55VRSpLnyRSmk9MJdVxobUwPxYzn7k3xbFYki4rYayyvWZGA9q19YhR76Plmm4LARjny6v0tA1KtyuDi00tsgOHsEaNXzn4Oj4-8kYcgmMwHpSUoHB_f4qExnHAMHkG24osvXfBzH_rZS843qmT8jjATPSz72Qn5IH0Dwjj-4wCT4nN4fQxaKqhraeHi5DtQU-2pu-rJ3GygD604Y2Ex1dM5GEtTNU9Y6eIOSkZxg397Tdf6htHLU09PxEfE7PYm6fzmPlJdDYSfPCo0d9QU6nR6dfZunQUyGtJdNdar0VCKqVwNCDASjvOXCLblxWNTomAI0QzukKYYiqtZFWM0Q03knlZCW1eEm2m7aB14TyXLoKuPcufKKVZh4gz53WdcENsIR8XP_hsh74xkPbi98lxh1BGuWtNBLyflx72bNs3LvqIAhqXBGYseOLdnleDoZWOuGNMMBNriEXXlijvTcAntnMoQYlZG8t5nIw11V5q1wJeTdOo6GF2xPbQHu9CjGSYlIrkyXkVa8V4054IBQoJO5QbejLxlY3Z5qLX5HMGwEj15na_f-23pCHPPThCHU0fI9sd8treItoqKsmZEstFI56-nUyqP8kZhZwnOf6L9DSD8M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPgwCGqYyd-HBAClmpLuz2gpewtcuIxVEJJ2U216o_iPzLOY7eLKm49rZQ4K8sz45mJv3wfIa-Z4c6yzMZCY7ilRZbFOvNZLKX1wFxSGBteDUyO5Phb-mWWzbbIn-FbmACrHPbEdqN2dRneke9iZBouM8HY-9PfcVCNCqerg4RG5xYHcL7Elm3xbn-E9n3D-d7n6adx3KsKxKVkuomttwLLSiWw-GYAynsO3GIik0WJWzOAxiLG6QITsSq1kVYzzOneSeVkIbXAv71GrmPeZQFBqGbr_k5gu9cxoAph2O4iEQnHbsSkGzmvlQa4rJ79F5Z5Ic_t3SG3-wKVfug86i7ZguoeuXWBtvA-WY6gaRFcFa09Hc0DtAN_6mWHoactDIF-t0HToqED7UkYO8YFbOhXrG_pMTbpHUf4ObWVo5YGgVFsBuhxe5BAJy3ME2gr23niMX0_INOrWOqHZLuqK3hMKE-lK4B778IjWmnmAdLUaV1m3ACLyNthhfOyJzcPGhu_cmxygjXytTUi8mo19rSj9Lh01MdgqNWIQMPdXqjnP_I-qnMnvBEGuEk1pMILa7T3BsAzmzh014jsDGbO-71hka89OSIvV7cxqsNRja2gPluEhkwxqZVJIvKo84rVTHhgL8gkzlBt-MvGVDfvVCc_W-ZwrE65TtST_0_rBbkxnk4O88P9o4On5CYPAiABwMN3yHYzP4NnWIY1xfPW-SnJrzjY_gJXB0YU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYyAA4doHTvx44AQsKy2lFYIlbK3yInHUAklZTfVqj-Nf8c4j90uqrj1tFLirCzPjGcm_vJ9hLxkhjvLMhsLjeGWFlkW68xnsZTWA3NJYWx4NbB_IKff0k-zbLZF_gzfwgRY5bAnthu1q8vwjnyEkWm4zARjI9_DIr6MJ29PfsdBQSqctA5yGp2L7MHZEtu3xZvdMdr6FeeTj4cfpnGvMBCXkukmtt4KLDGVwEKcASjvOXCLSU0WJW7TABoLGqcLTMqq1EZazTC_eyeVk4XUAv_2CrmqBGZNDCU1W_d6Alu_jg1VCMNGi0QkHDsTk27kv1Ym4KLa9l-I5rmcN7lFbvbFKn3XeddtsgXVHXLjHIXhXbIcQ9OiuSpaezqeB5gH_tTLDk9PW0gC_W6DvkVDBwqUMHaKC9jQr1jr0iNs2Du-8DNqK0ctDWKj2BjQo_ZQge63kE-grYTnscdUfo8cXsZS3yfbVV3BQ0J5Kl0B3HsXHtFKMw-Qpk7rMuMGWEReDyuclz3RedDb-JVjwxOska-tEZEXq7EnHb3HhaPeB0OtRgRK7vZCPf-R9xGeO-GNMMBNqiEVXlijvTcAntnEoetGZGcwc97vE4t87dUReb66jREejm1sBfXpIjRnikmtTBKRB51XrGbCA5NBJnGGasNfNqa6eac6_tmyiGOlynWiHv1_Ws_INQyz_PPuwd5jcp0HLZCA5eE7ZLuZn8ITrMia4mnr-5TklxxrfwFgaUpK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Driver+Drowsiness+Using+Wavelet+Analysis+of+Heart+Rate+Variability+and+a+Support+Vector+Machine+Classifier&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Gang&rft.au=Chung%2C+Wan-Young&rft.date=2013-12-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=13&rft.issue=12&rft.spage=16494&rft_id=info:doi/10.3390%2Fs131216494&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3346156291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon