Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode

Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electro...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 13; no. 7; pp. 8595 - 8611
Main Authors Hong, Jun, Zhao, Ying-Xue, Xiao, Bao-Lin, Moosavi-Movahedi, Ali, Ghourchian, Hedayatollah, Sheibani, Nader
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.07.2013
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s130708595

Cover

Loading…
Abstract Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
AbstractList Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s-1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10-10 mol cm-2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V ( vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s −1 . The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10 −10 mol cm −2 . The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K m app ) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.
Author Moosavi-Movahedi, Ali
Hong, Jun
Sheibani, Nader
Zhao, Ying-Xue
Xiao, Bao-Lin
Ghourchian, Hedayatollah
AuthorAffiliation 1 School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China; E-Mails: 66yingxue@163.com (Y.-X.Z.); arixxl@163.com (B.-L.X.)
2 Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran; E-Mail: hadi@ibb.ut.ac.ir
3 Department of Ophthalmology and Visual Sciences, University of Wisconsin, 600 Highland Avenue, K6/456 CSC, Madison, WI 53792-4673, USA; E-Mail: nsheibanikar@wisc.edu
AuthorAffiliation_xml – name: 1 School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China; E-Mails: 66yingxue@163.com (Y.-X.Z.); arixxl@163.com (B.-L.X.)
– name: 3 Department of Ophthalmology and Visual Sciences, University of Wisconsin, 600 Highland Avenue, K6/456 CSC, Madison, WI 53792-4673, USA; E-Mail: nsheibanikar@wisc.edu
– name: 2 Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran; E-Mail: hadi@ibb.ut.ac.ir
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-6028-4103
  surname: Hong
  fullname: Hong, Jun
– sequence: 2
  givenname: Ying-Xue
  surname: Zhao
  fullname: Zhao, Ying-Xue
– sequence: 3
  givenname: Bao-Lin
  orcidid: 0000-0002-4489-6238
  surname: Xiao
  fullname: Xiao, Bao-Lin
– sequence: 4
  givenname: Ali
  surname: Moosavi-Movahedi
  fullname: Moosavi-Movahedi, Ali
– sequence: 5
  givenname: Hedayatollah
  surname: Ghourchian
  fullname: Ghourchian, Hedayatollah
– sequence: 6
  givenname: Nader
  surname: Sheibani
  fullname: Sheibani, Nader
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23881129$$D View this record in MEDLINE/PubMed
BookMark eNptkttuEzEQhleoiB7ghgdAK3GDkBbG9h5vkFDappFauAFxafkwmzry2sHeRaQvxGviNGlpK25sz_ib3781c5wdOO8wy14T-MBYBx8jYdBAW3XVs-yIlLQsWkrh4MH5MDuOcQVAGWPti-yQsrYlhHZH2Z9TE1CN-ZlNa_DqGgcTx7DJfZ9f4OCX1kvj8sUwpN2aG9S5d7nIzyenRuOd2OWuJjua4oewNgUzEWSCvgjnx0lizIXT-dxbfZtaizAaZVN6Gyk_rC3-Lq68Nr1JxXMrYtzcaextaXyZPe-Fjfhqv59k38_Pvs0uisuv88Xs82WhamjHogPWs7avmgZU2alGCwpU0rrUtSA9Mug7wJ5ho0BKJqDpNApNqrqsFPa0ZCfZYqervVjxdTCDCBvuheG3CR-WfO-fl7WQKNK7EtsSSZmCGiopKSrWQCeS1qed1nqSA2qFbgzCPhJ9fOPMNV_6X5w1VVsTlgTe7QWC_zlhHHlqjkJrhUM_RU5KQitCU-cT-vYJuvJTSO1JVMU62gBAm6g3Dx3dW7mbhwS83wEq-BgD9vcIAb4dNv5v2BIMT2BlRrGdivQbY_9X8hekPtne
CitedBy_id crossref_primary_10_1016_j_electacta_2015_03_173
crossref_primary_10_1038_s41467_018_06994_5
crossref_primary_10_1039_D0TB00934B
crossref_primary_10_3390_coatings12101459
crossref_primary_10_1007_s13738_015_0756_z
crossref_primary_10_1016_j_jiec_2018_07_031
crossref_primary_10_1016_j_materresbull_2015_08_037
crossref_primary_10_1134_S1023193519100094
crossref_primary_10_1016_j_jallcom_2016_06_246
crossref_primary_10_1080_00958972_2019_1596263
crossref_primary_10_1002_elan_201400353
crossref_primary_10_1007_s12161_017_0793_6
crossref_primary_10_3390_nano6070132
crossref_primary_10_3390_s23063209
crossref_primary_10_1016_j_jelechem_2017_11_027
crossref_primary_10_3390_molecules27061826
crossref_primary_10_1016_j_bios_2014_08_064
crossref_primary_10_1016_j_sbsr_2020_100340
crossref_primary_10_3390_nano10050825
crossref_primary_10_1016_j_apsusc_2018_06_108
crossref_primary_10_1016_j_snb_2017_04_139
crossref_primary_10_3390_s17071652
crossref_primary_10_3390_chemosensors11030171
crossref_primary_10_1016_j_apsusc_2016_07_158
crossref_primary_10_1016_j_bioelechem_2019_107407
crossref_primary_10_1007_s10008_013_2362_2
crossref_primary_10_1149_2_0521608jes
crossref_primary_10_1007_s00604_017_2342_9
crossref_primary_10_1021_acs_analchem_5b02949
crossref_primary_10_3390_bios11060192
crossref_primary_10_1007_s13738_014_0527_2
crossref_primary_10_1007_s12161_016_0439_0
crossref_primary_10_1016_j_msec_2016_12_114
crossref_primary_10_1016_j_molliq_2019_111919
crossref_primary_10_1039_D1AN00537E
crossref_primary_10_1016_j_bioelechem_2015_05_010
crossref_primary_10_1149_1945_7111_ac61bf
crossref_primary_10_3390_s150101008
crossref_primary_10_1016_j_snb_2018_05_164
crossref_primary_10_1007_s40089_018_0253_3
crossref_primary_10_1016_j_bios_2018_08_050
crossref_primary_10_1016_j_electacta_2021_138999
crossref_primary_10_1016_j_bios_2017_12_019
crossref_primary_10_1039_D3NJ03306F
Cites_doi 10.1021/cr030698+
10.1016/j.elecom.2007.03.018
10.1016/j.freeradbiomed.2004.04.008
10.1021/ar00155a004
10.1016/j.bios.2004.12.006
10.1016/j.snb.2009.06.039
10.1016/j.snb.2009.03.046
10.1016/j.jelechem.2006.08.002
10.1016/S0003-2670(99)00610-8
10.1016/j.jcis.2007.06.059
10.1016/S0302-4598(98)00222-0
10.1016/j.bioelechem.2011.08.003
10.1016/j.msea.2007.02.091
10.5012/bkcs.2007.28.12.2266
10.1016/j.elecom.2006.06.017
10.1016/j.bioelechem.2011.06.007
10.1021/bi010067e
10.1021/la991296t
10.1016/j.bioelechem.2012.02.002
10.1016/S0013-4686(00)00342-X
10.1016/j.cis.2005.05.006
10.1016/S0968-0004(01)01811-4
10.1016/S0003-2697(02)00014-3
10.1016/S1452-3981(23)15470-8
10.1016/j.elecom.2009.08.002
10.1007/s12010-011-9465-y
10.1016/j.elecom.2010.06.023
10.1021/cr970102g
10.1002/elan.201000263
10.1016/j.talanta.2006.04.025
10.1080/00032710601017664
10.1016/j.ab.2006.11.035
10.1016/j.snb.2009.12.073
10.1021/ja00078a030
10.1016/j.bios.2006.05.022
10.1021/ac0702084
10.1002/1439-7641(20020315)3:3<249::AID-CPHC249>3.0.CO;2-A
10.2116/analsci.19.1537
10.1016/j.freeradbiomed.2006.12.017
10.1021/cm0511421
10.1016/j.electacta.2012.11.054
10.1016/j.elecom.2006.07.011
10.1016/j.jbiotec.2003.11.005
10.14447/jnmes.v16i2.15
10.1016/j.elecom.2007.02.015
10.1021/la050947k
10.1002/app.22647
10.1016/j.bios.2005.09.014
10.1016/S0022-0728(79)80075-3
10.1016/j.jcis.2007.08.016
10.1016/j.bios.2010.01.024
10.1016/j.bios.2009.10.020
10.1016/j.electacta.2007.04.024
10.1351/pac199466122527
10.1016/S0022-0728(74)80448-1
10.1038/354056a0
10.1016/j.bioelechem.2004.04.004
10.1021/jp0028296
10.1038/358220a0
10.1039/c002416c
10.1016/j.elecom.2006.02.005
10.1016/S0010-8545(96)90199-X
10.1016/j.polymer.2005.11.034
10.1016/j.electacta.2011.01.037
10.1016/j.snb.2011.05.013
ContentType Journal Article
Copyright Copyright MDPI AG 2013
2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
Copyright_xml – notice: Copyright MDPI AG 2013
– notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s130708595
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 8611
ExternalDocumentID oai_doaj_org_article_46abeac60be84e14bea605bb2ec3709a
PMC3758613
3346204531
23881129
10_3390_s130708595
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c608t-903f38f5770c49c7da202b264d6a1fe30f90ef3e7c0bb3a079dead15645cef243
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:43 EDT 2025
Thu Aug 21 14:13:02 EDT 2025
Sun Aug 24 03:46:05 EDT 2025
Fri Jul 25 05:59:15 EDT 2025
Wed Feb 19 02:06:55 EST 2025
Tue Jul 01 00:40:05 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-903f38f5770c49c7da202b264d6a1fe30f90ef3e7c0bb3a079dead15645cef243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4489-6238
0000-0001-6028-4103
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s130708595
PMID 23881129
PQID 1539270008
PQPubID 2032333
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_46abeac60be84e14bea605bb2ec3709a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3758613
proquest_miscellaneous_1412512859
proquest_journals_1539270008
pubmed_primary_23881129
crossref_primary_10_3390_s130708595
crossref_citationtrail_10_3390_s130708595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130705
PublicationDateYYYYMMDD 2013-07-05
PublicationDate_xml – month: 7
  year: 2013
  text: 20130705
  day: 5
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2013
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shamsipur (ref_68) 2012; 83
Ma (ref_57) 2000; 16
Zhang (ref_21) 2011; 157
Lee (ref_11) 2009; 141
Hong (ref_40) 2013; 89
Liu (ref_13) 2011; 56
Shen (ref_53) 2007; 464
Yang (ref_20) 2010; 12
Haiss (ref_51) 2007; 79
Rhieu (ref_14) 2009; 11
Yang (ref_19) 1999; 48
Park (ref_52) 2006; 18
Hong (ref_46) 2007; 40
Zhang (ref_23) 2007; 316
Ghourchian (ref_65) 2007; 362
Ajayan (ref_33) 1999; 99
Yang (ref_41) 2013; 16
Zhang (ref_55) 2007; 9
Buehler (ref_26) 2004; 37
Hong (ref_47) 2007; 52
Yao (ref_8) 2007; 71
Saboury (ref_48) 2007; 28
Liu (ref_12) 2004; 108
Shourian (ref_49) 2010; 145
Guo (ref_9) 2009; 139
Scheller (ref_39) 2005; 116
Laviron (ref_56) 1974; 52
Armstrong (ref_1) 1988; 21
Royer (ref_27) 2001; 26
Laviron (ref_58) 1979; 101
Xu (ref_22) 2007; 315
Xu (ref_18) 2008; 3
Rahimi (ref_59) 2010; 25
Olsson (ref_25) 2007; 42
Chen (ref_38) 2010; 26
Chen (ref_36) 2006; 47
Ferapontova (ref_30) 2005; 66
Wang (ref_54) 2006; 100
Jirkovsky (ref_64) 2010; 12
Toth (ref_4) 2001; 16
Salimi (ref_6) 2006; 8
Sun (ref_5) 2012; 166
Nada (ref_37) 2001; 105
Chen (ref_10) 2006; 597
Tian (ref_50) 2005; 21
Xian (ref_44) 2006; 21
He (ref_29) 2006; 8
Cao (ref_32) 2001; 40
Ebbesen (ref_34) 1992; 358
Yamazaki (ref_62) 1978; 11
Shang (ref_16) 2003; 11
Chen (ref_67) 2007; 22
Li (ref_7) 2012; 86
Ding (ref_28) 2010; 25
Lin (ref_42) 2002; 307
Wang (ref_60) 2005; 21
Wang (ref_63) 2010; 22
Sun (ref_17) 2011; 82
Iijima (ref_35) 1991; 354
Buck (ref_66) 1994; 66
Armstrong (ref_2) 2000; 45
Parak (ref_31) 2002; 3
Daniel (ref_43) 2004; 104
Rusling (ref_15) 1993; 115
Hong (ref_45) 2006; 8
Hill (ref_3) 1996; 151
Gorton (ref_24) 1999; 400
Wang (ref_61) 2007; 9
17234148 - Anal Biochem. 2007 Mar 1;362(1):38-43
27955 - Adv Biophys. 1978;11:249-81
10228578 - Bioelectrochem Bioenerg. 1999 Feb;48(1):117-27
16171360 - Langmuir. 2005 Sep 27;21(20):9260-6
11261847 - Biosens Bioelectron. 2001 Jan;16(1-2):121-31
14640454 - Anal Sci. 2003 Nov;19(11):1537-9
17458937 - Anal Chem. 2007 Jun 1;79(11):4215-21
15129723 - J Biotechnol. 2004 Mar 4;108(2):145-52
21880554 - Bioelectrochemistry. 2012 Feb;83:31-7
14719978 - Chem Rev. 2004 Jan;104(1):293-346
17320766 - Free Radic Biol Med. 2007 Mar 15;42(6):842-51
12137787 - Anal Biochem. 2002 Aug 1;307(1):110-6
17681509 - J Colloid Interface Sci. 2007 Nov 1;315(1):170-6
16275055 - Biosens Bioelectron. 2006 Apr 15;21(10):1996-2000
11849010 - Chem Rev. 1999 Jul 14;99(7):1787-1800
22139732 - Appl Biochem Biotechnol. 2012 Feb;166(3):764-73
20505889 - Phys Chem Chem Phys. 2010 Jul 28;12(28):8042-52
20167467 - Biosens Bioelectron. 2010 May 15;25(9):2009-15
11341838 - Biochemistry. 2001 May 15;40(19):5728-37
17904150 - J Colloid Interface Sci. 2007 Dec 15;316(2):517-22
16820288 - Biosens Bioelectron. 2007 Feb 15;22(7):1268-74
16202868 - Biosens Bioelectron. 2005 Oct 15;21(4):557-64
21795123 - Bioelectrochemistry. 2011 Oct;82(2):125-30
11343922 - Trends Biochem Sci. 2001 May;26(5):297-304
12503170 - Chemphyschem. 2002 Mar 12;3(3):249-54
22386304 - Bioelectrochemistry. 2012 Aug;86:60-6
15833703 - Bioelectrochemistry. 2005 Apr;66(1-2):55-63
16099417 - Adv Colloid Interface Sci. 2005 Nov 30;116(1-3):111-20
15183200 - Free Radic Biol Med. 2004 Jul 1;37(1):124-35
19071339 - Talanta. 2007 Feb 15;71(2):550-4
19914054 - Biosens Bioelectron. 2010 Feb 15;25(6):1301-6
References_xml – volume: 104
  start-page: 293
  year: 2004
  ident: ref_43
  article-title: Gold Nanoparticles: Assembly, supramolecular chemistry, quantum-Size-related properties, and applications toward biology, catalysis, and nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr030698+
– volume: 9
  start-page: 1709
  year: 2007
  ident: ref_61
  article-title: Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.03.018
– volume: 16
  start-page: 121
  year: 2001
  ident: ref_4
  article-title: Electrochemical biosensors: Recommended definitions and classification
  publication-title: Biosens. Bioelectron.
– volume: 37
  start-page: 124
  year: 2004
  ident: ref_26
  article-title: Polynitroxyl hemoglobin: A pharmacokinetic study of covalently bound nitroxides to hemoglobin platforms
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.04.008
– volume: 21
  start-page: 407
  year: 1988
  ident: ref_1
  article-title: Direct electrochemistry of redox proteins
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00155a004
– volume: 21
  start-page: 557
  year: 2005
  ident: ref_50
  article-title: A carbon fiber microelectrode-based third-generation biosensor for superoxide anion
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.12.006
– volume: 141
  start-page: 518
  year: 2009
  ident: ref_11
  article-title: Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.06.039
– volume: 26
  start-page: 711
  year: 2010
  ident: ref_38
  article-title: Progress of electrochemical biosensors fabricated with nanomaterials
  publication-title: Acta Biophys. Sin.
– volume: 139
  start-page: 598
  year: 2009
  ident: ref_9
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.03.046
– volume: 597
  start-page: 51
  year: 2006
  ident: ref_10
  article-title: Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte–surfactant polymer, carbon nanotubes and hemoglobin
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.08.002
– volume: 400
  start-page: 91
  year: 1999
  ident: ref_24
  article-title: Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(99)00610-8
– volume: 315
  start-page: 170
  year: 2007
  ident: ref_22
  article-title: Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.06.059
– volume: 48
  start-page: 117
  year: 1999
  ident: ref_19
  article-title: Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes
  publication-title: Bioelectrochem. Bioenerg.
  doi: 10.1016/S0302-4598(98)00222-0
– volume: 83
  start-page: 31
  year: 2012
  ident: ref_68
  article-title: A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2011.08.003
– volume: 464
  start-page: 151
  year: 2007
  ident: ref_53
  article-title: Study on amino-functionalized multiwalled carbon nanotubes
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.02.091
– volume: 28
  start-page: 2266
  year: 2007
  ident: ref_48
  article-title: Electrochemical behavior of redox proteins immobilized on Nafion-riboflavin modified gold electrode
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2007.28.12.2266
– volume: 8
  start-page: 1499
  year: 2006
  ident: ref_6
  article-title: Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.06.017
– volume: 82
  start-page: 125
  year: 2011
  ident: ref_17
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2011.06.007
– volume: 40
  start-page: 5728
  year: 2001
  ident: ref_32
  article-title: Water penetration and binding to ferric myoglobin
  publication-title: Biochemistry
  doi: 10.1021/bi010067e
– volume: 16
  start-page: 4969
  year: 2000
  ident: ref_57
  article-title: Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes
  publication-title: Langmuir
  doi: 10.1021/la991296t
– volume: 86
  start-page: 60
  year: 2012
  ident: ref_7
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized on polyacrylamide-P123 film modified glassy carbon electrode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2012.02.002
– volume: 45
  start-page: 2623
  year: 2000
  ident: ref_2
  article-title: Recent developments in faradaic bioelectrochemistry
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00342-X
– volume: 116
  start-page: 111
  year: 2005
  ident: ref_39
  article-title: Thirty years of haemoglobin electrochemistry
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2005.05.006
– volume: 26
  start-page: 297
  year: 2001
  ident: ref_27
  article-title: Cooperative hemoglobins: Conserved fold, diverse quaternary assemblies and allosteric mechanisms
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(01)01811-4
– volume: 307
  start-page: 110
  year: 2002
  ident: ref_42
  article-title: Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode
  publication-title: Anal. Biochem.
  doi: 10.1016/S0003-2697(02)00014-3
– volume: 11
  start-page: 249
  year: 1978
  ident: ref_62
  article-title: Analysis of acid-base properties of peroxidase and myoglobin
  publication-title: Adv. Biophys.
– volume: 3
  start-page: 519
  year: 2008
  ident: ref_18
  article-title: A third-generation biosensor based on the enzyme-like activity of cytochrome c on a room temperature ionic liquid and gold nanoparticles composite
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15470-8
– volume: 11
  start-page: 1857
  year: 2009
  ident: ref_14
  article-title: Direct electrochemistry of cytochrome P450 27B1 in surfactant films
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.08.002
– volume: 166
  start-page: 764
  year: 2012
  ident: ref_5
  article-title: A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-011-9465-y
– volume: 12
  start-page: 1218
  year: 2010
  ident: ref_20
  article-title: Direct electrochemistry of cytochrome c on nanotextured diamond surface
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.06.023
– volume: 99
  start-page: 1787
  year: 1999
  ident: ref_33
  article-title: Nanotubes from carbon
  publication-title: Chem. Rev.
  doi: 10.1021/cr970102g
– volume: 22
  start-page: 2536
  year: 2010
  ident: ref_63
  article-title: Gold nanoparticles electrodeposited on ordered mesoporous carbon as an enhanced material for nonenzymatic hydrogen peroxide sensor
  publication-title: Electroanalysis
  doi: 10.1002/elan.201000263
– volume: 71
  start-page: 550
  year: 2007
  ident: ref_8
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.04.025
– volume: 40
  start-page: 483
  year: 2007
  ident: ref_46
  article-title: Nafion-methylene blue functional memberane and its application in chemical/bio-sensing
  publication-title: Anal. Lett.
  doi: 10.1080/00032710601017664
– volume: 362
  start-page: 38
  year: 2007
  ident: ref_65
  article-title: Spectrophotometric assay for horseradish peroxidase activity based on pyrocatechol–aniline coupling hydrogen donor
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2006.11.035
– volume: 145
  start-page: 607
  year: 2010
  ident: ref_49
  article-title: Biosensing improvement of horseradish peroxidase towards hydrogen peroxide upon modifying the accessible lysines
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.12.073
– volume: 115
  start-page: 11891
  year: 1993
  ident: ref_15
  article-title: Enhanced electron transfer for myoglobin in surfactant films on electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00078a030
– volume: 22
  start-page: 1268
  year: 2007
  ident: ref_67
  article-title: Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.05.022
– volume: 79
  start-page: 4215
  year: 2007
  ident: ref_51
  article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra
  publication-title: Anal. Chem.
  doi: 10.1021/ac0702084
– volume: 3
  start-page: 249
  year: 2002
  ident: ref_31
  article-title: Myoglobin, a paradigm in the study of protein dynamics
  publication-title: Chemphyschem
  doi: 10.1002/1439-7641(20020315)3:3<249::AID-CPHC249>3.0.CO;2-A
– volume: 11
  start-page: 1537
  year: 2003
  ident: ref_16
  article-title: Enhanced peroxidase activity of hemoglobin in a DNA membrane and its application to an unmediated hydrogen peroxide biosensor
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.19.1537
– volume: 42
  start-page: 842
  year: 2007
  ident: ref_25
  article-title: Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.12.017
– volume: 18
  start-page: 1546
  year: 2006
  ident: ref_52
  article-title: Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: Effect of anions on solubility
  publication-title: Chem. Mater.
  doi: 10.1021/cm0511421
– volume: 89
  start-page: 317
  year: 2013
  ident: ref_40
  article-title: Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.054
– volume: 8
  start-page: 1572
  year: 2006
  ident: ref_45
  article-title: Direct electron transfer of redox proteins on a Nafion-cysteine modified gold electrode
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.07.011
– volume: 108
  start-page: 145
  year: 2004
  ident: ref_12
  article-title: Enhanced electron-transfer reactivity of horseradish peroxidase in phosphatidylcholine films and its catalysis to nitric oxide
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2003.11.005
– volume: 16
  start-page: 89
  year: 2013
  ident: ref_41
  article-title: Electrochemical study of a nano vesicular artificial peroxidase on a functional nano complex modified glassy carbon electrode
  publication-title: J. New Mat. Electrochem. Syst.
  doi: 10.14447/jnmes.v16i2.15
– volume: 9
  start-page: 1530
  year: 2007
  ident: ref_55
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic–organic hybrid film
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.02.015
– volume: 21
  start-page: 9260
  year: 2005
  ident: ref_60
  article-title: Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids
  publication-title: Langmuir
  doi: 10.1021/la050947k
– volume: 100
  start-page: 97
  year: 2006
  ident: ref_54
  article-title: Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.22647
– volume: 21
  start-page: 1996
  year: 2006
  ident: ref_44
  article-title: Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2005.09.014
– volume: 101
  start-page: 19
  year: 1979
  ident: ref_58
  article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(79)80075-3
– volume: 316
  start-page: 517
  year: 2007
  ident: ref_23
  article-title: Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube (Hb–CNT) assembly
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.08.016
– volume: 25
  start-page: 2009
  year: 2010
  ident: ref_28
  article-title: Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.01.024
– volume: 25
  start-page: 1301
  year: 2010
  ident: ref_59
  article-title: Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry
  publication-title: Biosen. Bioelectron.
  doi: 10.1016/j.bios.2009.10.020
– volume: 52
  start-page: 6261
  year: 2007
  ident: ref_47
  article-title: Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.024
– volume: 66
  start-page: 2527
  year: 1994
  ident: ref_66
  article-title: Recommendations for nomenclature of ion selective electrodes
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199466122527
– volume: 52
  start-page: 355
  year: 1974
  ident: ref_56
  article-title: Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(74)80448-1
– volume: 354
  start-page: 56
  year: 1991
  ident: ref_35
  article-title: Helical microtubules of graphitic carbon
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 66
  start-page: 55
  year: 2005
  ident: ref_30
  article-title: Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2004.04.004
– volume: 105
  start-page: 954
  year: 2001
  ident: ref_37
  article-title: Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0028296
– volume: 358
  start-page: 220
  year: 1992
  ident: ref_34
  article-title: Large-Scale synthesis of carbon nanotubes
  publication-title: Nature
  doi: 10.1038/358220a0
– volume: 12
  start-page: 8042
  year: 2010
  ident: ref_64
  article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c002416c
– volume: 8
  start-page: 615
  year: 2006
  ident: ref_29
  article-title: Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: Redox thermodynamics and electrocatalysis to nitric oxide
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.02.005
– volume: 151
  start-page: 115
  year: 1996
  ident: ref_3
  article-title: Direct electrochemistry of cytochrome c
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(96)90199-X
– volume: 47
  start-page: 763
  year: 2006
  ident: ref_36
  article-title: One-Step preparation and characterization of PDDA-protected gold nanoparticles
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.11.034
– volume: 56
  start-page: 3238
  year: 2011
  ident: ref_13
  article-title: A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.01.037
– volume: 157
  start-page: 527
  year: 2011
  ident: ref_21
  article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized into poly (lactic-co-glycolic acid)/room temperature ionic liquid composite film
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.05.013
– reference: 15833703 - Bioelectrochemistry. 2005 Apr;66(1-2):55-63
– reference: 11343922 - Trends Biochem Sci. 2001 May;26(5):297-304
– reference: 16171360 - Langmuir. 2005 Sep 27;21(20):9260-6
– reference: 22139732 - Appl Biochem Biotechnol. 2012 Feb;166(3):764-73
– reference: 15183200 - Free Radic Biol Med. 2004 Jul 1;37(1):124-35
– reference: 22386304 - Bioelectrochemistry. 2012 Aug;86:60-6
– reference: 17320766 - Free Radic Biol Med. 2007 Mar 15;42(6):842-51
– reference: 17458937 - Anal Chem. 2007 Jun 1;79(11):4215-21
– reference: 19071339 - Talanta. 2007 Feb 15;71(2):550-4
– reference: 15129723 - J Biotechnol. 2004 Mar 4;108(2):145-52
– reference: 11261847 - Biosens Bioelectron. 2001 Jan;16(1-2):121-31
– reference: 27955 - Adv Biophys. 1978;11:249-81
– reference: 11849010 - Chem Rev. 1999 Jul 14;99(7):1787-1800
– reference: 16099417 - Adv Colloid Interface Sci. 2005 Nov 30;116(1-3):111-20
– reference: 11341838 - Biochemistry. 2001 May 15;40(19):5728-37
– reference: 16820288 - Biosens Bioelectron. 2007 Feb 15;22(7):1268-74
– reference: 20505889 - Phys Chem Chem Phys. 2010 Jul 28;12(28):8042-52
– reference: 17234148 - Anal Biochem. 2007 Mar 1;362(1):38-43
– reference: 16275055 - Biosens Bioelectron. 2006 Apr 15;21(10):1996-2000
– reference: 20167467 - Biosens Bioelectron. 2010 May 15;25(9):2009-15
– reference: 21880554 - Bioelectrochemistry. 2012 Feb;83:31-7
– reference: 14640454 - Anal Sci. 2003 Nov;19(11):1537-9
– reference: 19914054 - Biosens Bioelectron. 2010 Feb 15;25(6):1301-6
– reference: 14719978 - Chem Rev. 2004 Jan;104(1):293-346
– reference: 12503170 - Chemphyschem. 2002 Mar 12;3(3):249-54
– reference: 10228578 - Bioelectrochem Bioenerg. 1999 Feb;48(1):117-27
– reference: 17681509 - J Colloid Interface Sci. 2007 Nov 1;315(1):170-6
– reference: 21795123 - Bioelectrochemistry. 2011 Oct;82(2):125-30
– reference: 17904150 - J Colloid Interface Sci. 2007 Dec 15;316(2):517-22
– reference: 12137787 - Anal Biochem. 2002 Aug 1;307(1):110-6
– reference: 16202868 - Biosens Bioelectron. 2005 Oct 15;21(4):557-64
SSID ssj0023338
Score 2.276764
Snippet Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8595
SubjectTerms Animals
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Carbon
Cattle
Chemicals
direct electrochemistry
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrodes
Electronic mail systems
Electrons
Fourier transforms
functionalized multi-walled carbon nanotubes
Glass - chemistry
Gold
Gold - chemistry
gold nanoparticles
Hemoglobin
Hemoglobins - chemistry
Hemoglobins - metabolism
Hydrogen peroxide
Hydrogen Peroxide - analysis
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Immobilized Proteins - chemistry
Immobilized Proteins - metabolism
Limit of Detection
Metal Nanoparticles - chemistry
nanocomplex
Nanoparticles
Nanotechnology
Nanotubes, Carbon - chemistry
Proteins
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoHylFGQEFw5WHduJ4yNU3S5I5USl3iI7HouVSlJ1dyXoH-rfZGwnyy6qxIWjnVE08Uw8b5LxG0LeC9GU3ATDtAqcoVMIZsBY5sHVpoYgnIznnc-_1vML9eWyutxq9RVrwjI9cF64Y1Vbh5tDzR00CkqFA0TgzgnopOYmQSOMeVMyNaZaUqYe1vEYF8MQyDMxqcQE_3hZRjePtF47oSgx9t8HM_-ultwKP7PH5NGIG-nHrO8T8gD6A_Jwi03wKbnL2xc9zZ1tuqmVGx0CncOPIXJ_LHr6GT0vVsTegqdDTy2dYWjLXwTTXDqSy-IHdhyc2BuHQrgHD6u1gyW1vadnw5VPU9dTWV0apep0-MnOB78IiGzpWUTmv6Z7jGp5eEYuZqffTuZs7MPAcNmbFTNcBtmESmveKdNpbwUXDpGUr20ZQPJgOAQJuuPOScu18eifkYWm6tDaSj4ne_3Qw0tCXeNBguFdWQWFUM_6ToTGojgmTuChIB8mk7TdSFIee2VctZisRPO1f8xXkHcb2etMzXGv1Kdo2Y1EpNNOE-hk7bhK7b-crCBHk1-04zu-bDFWmPjbnjcFebu5jJaNv1xsD8MaZVQCkKhIQV5kN9pogmCpiWi3IHrHwXZU3b3SL74nBnCJWR7isMP_8WyvyL5ILT4049UR2VvdrOE1Aq2Ve5Peqd8lOyug
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gICO4cLDqxHn5hGi12wWpFUJU6i3yY1xWKsmyDwn4Q_xNxo6TdlHF0c5oNZsZj7-xJ98Q8jbL6pRLJ1mVO87QKTImQSpmQZeyBJdp4b93Pjkt52f5p_PiPB64rWNZ5RATQ6C2nfFn5Ae4MqW_JOX1--UP5rtG-dvV2ELjNtnDEFwXE7J3OD39_GVMuQRmYD0pqcDk_mCdehf3lF4721Bg678JYv5bKXlt65ndJ_ciZqQfeiM_ILegfUjuXmMSfET-9KGLTvuuNmZo40Y7R-fwvfO8H4uWfsS_4athf4OlXUsVneG21p8GhrnwOS7zh-s4OFIrjUIYf7vNVsOaqtbS4-7ShqnlUFIXRqEyHX6yk84uHKJaeuxR-a_hN6JaFh6Ts9n069GcxR4MzJS83jDJhRO1K6qKm1yayqqMZxpRlC1V6kBwJzk4AZXhWgvFK2nRNz0DTWHQ0rl4QiZt18IzQnVtQYDkJi1cjjBPWZO5WqE4Jk1gISHvBpM0JhKU-z4Zlw0mKt58zZX5EvJmlF32tBw3Sh16y44Snko7THSriya-pSYvlcbdp-Qa6hzSHAeY4mmdgREVlyoh-4NfNHF9r5srb0zI6_ExWtZft6gWui3K5AE8oiIJedq70agJAqXaI92EVDsOtqPq7pN28S2wfwvM8BCDPf-_Wi_InSw07qgYL_bJZLPawkuETxv9Kq6RvxY6ITI
  priority: 102
  providerName: ProQuest
Title Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode
URI https://www.ncbi.nlm.nih.gov/pubmed/23881129
https://www.proquest.com/docview/1539270008
https://www.proquest.com/docview/1412512859
https://pubmed.ncbi.nlm.nih.gov/PMC3758613
https://doaj.org/article/46abeac60be84e14bea605bb2ec3709a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1LiRbBhcPC2ut4vQeEKGqokFohRKTcrH2WSMFu8xAtf4i_yezaDk2VA5fIXk-SlWfs-cY7_j6A11lWpkx6SUXuGcWgyKh0UlHrdCEL5zPNw_vOp2fFyTj_MhlOdqDX7-xO4GJraRf0pMbz2dury-sPeMG_DxUnluzvFmkI3EDUtQv7mJGKEN2n-Xo1IeM8KlqHl7ooJkTW0pTe-u5GYor8_dtA5-3eyRvJaHQf7nUoknxs3f4Adlz9EO7e4BZ8BH_amxnpdG5ML-xGGk9wuwlMINOaTDEOQ3_sb2dJUxNFQqJrnw_GsdhwSH8FxRVLjJprNKpV3SxX2i2Iqi05b2Y2Dl30TXZxL_aquyv6s7FTjziXRJx-3f9GNy3rHsN4dPz90wntVBmoKVi5pJJxz0s_FIKZXBphVcYyjbjKFir1jjMvmfPcCcO05ooJaTFaAyfN0KDvc_4E9uqmds-A6NI67iQz6dDnCPyUNZkvFZpjGeWsS-BN75LKdJTlQTljVmHpEtxX_XNfAq_WthctUcdWq6Pg2bVFINeOA838vOrOUpUXSmM-Kph2Ze7SHHew6NM6c4YLJlUCh31cVH3AVpg5ZFjEZ2UCL9eH0bNhAUbVrlmhTR7hJE4kgadtGK1ngtCpDNg3AbERYBtT3TxST39EPnCONR-isoP_-N_ncCeLeh6CsuEh7C3nK_cCUdVSD2BXTAR-lqPPA9g_Oj77-m0Qn1AM4sX0FyNtK50
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxLMEChgBBw5WnTibxAeEoHQftNtTK_UW_BjDSiVZ9iEof4gbv5Gxk2y7qOLWo-2RNfKMxzP2-BtCXiVJEXPpJMtTxxkqRcIkSMUs6Exm4BIt_H_n8WE2PE4_nfRONsif7i-MT6vsbGIw1LY2_o58B3em9I-kvHg3_c581Sj_utqV0GjUYh_OfmDINn87-ojyfZ0k_b2j3SFrqwowk_FiwSQXThSul-fcpNLkVmH8r9EvsJmKHQjuJAcnIDdca6F4Li2utsdU6RnkPRU47zVyPRVCeqz-oj9YBXgC470GAhUH-c489hvKA4itHXqhNsBlDu2_eZkXDrr-HXK79VDp-0al7pINqO6RWxdwC--T342hpHtNDR3TFY2jtaND-FZ7lJFJRUe4aD739hdYWldU0T4eos3dY-gLn3-Zv8rHxq6aaSRCa18vlhrmVFWWDupTG7qmXQJfaIU8ePjJxrWdOPSh6cDHAGfdHC1bFh6Q4yuRzUOyWdUVPCJUFxYESG7inkvRqVTWJK5QSI4hGliIyJtOJKVp4dB9VY7TEsMiL77yXHwRebminTYgIJdSffCSXVF44O7QUc--lO0qlWmmNJ51GddQpBCn2MCAUusEjMi5VBHZ7vSibK3JvDzX_Yi8WA2jZP3jjqqgXiJNGlxVZCQiW40arThBt6zwfnVE8jUFW2N1faSafA1Y4wLjSfT4Hv-frefkxvBofFAejA73n5CbSSgZkjPe2yabi9kSnqLjttDPwm6h5PNVb8-_IN5dKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCcEB8SZQwAg4cLDWibNJfECItrvdpXRVISr1lvoxhpVKsuxDUH6If-DrGOex7aKKW492RtbE87bHM4S8iqIs5NJJlsaOM2SKiEmQilnQiUzARVr4984H42R4FH847h1vkD_tWxifVtnqxEpR29L4M_IuSqb0l6Q867omLeJwd_Bu-p35DlL-prVtp1GzyD6c_cDwbf52tIu0fh1Fg_7nnSFrOgwwk_BswSQXTmSul6bcxNKkVkU80ugj2ESFDgR3koMTkBqutVA8lRZ33tdX6Rn8j1jgutfIZopWMeuQze3--PDTKtwTGP3VBVGFkLw7D714-XJiayaw6hRwmXv7b5bmBbM3uE1uNf4qfV8z2B2yAcVdcvNCFcN75HetNmm_7qhj2hZytHR0CN9KX3NkUtARbpvPxP0FlpYFVXSAJrU-iazmqqfAzB_s42BHzTQCoe4vF0sNc6oKS_fKU1tNTdt0vmpUZcXDT3ZQ2olDj5ru-YjgrF2jQcvCfXJ0JdR5QDpFWcAjQnVmQYDkJuy5GF1MZU3kMoXgGLCBhYC8aUmSm6Y4uu_RcZpjkOTJl5-TLyAvV7DTuiTIpVDbnrIrCF_Gu5ooZ1_yZpfyOFEaLV_CNWQxhDEOMLzUOgIjUi5VQLZavsgb3TLPzyUhIC9Wn5Gy_qpHFVAuESauHFdEJCAPazZaYYJOWua97ICkawy2hur6l2Lytao8LjC6RP_v8f_Rek6uo2jmH0fj_SfkRlT1D0kZ722RzmK2hKfoxS30s0ZcKDm5agn9C9--YsU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+electrochemistry+of+hemoglobin+immobilized+on+a+functionalized+multi-walled+carbon+nanotubes+and+gold+nanoparticles+nanocomplex-modified+glassy+carbon+electrode&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hong%2C+Jun&rft.au=Zhao%2C+Ying-Xue&rft.au=Xiao%2C+Bao-Lin&rft.au=Moosavi-Movahedi%2C+Ali+Akbar&rft.date=2013-07-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=13&rft.issue=7&rft.spage=8595&rft_id=info:doi/10.3390%2Fs130708595&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon