Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode
Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electro...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 13; no. 7; pp. 8595 - 8611 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.07.2013
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s130708595 |
Cover
Loading…
Abstract | Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. |
---|---|
AbstractList | Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit.Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s(-1). The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10(-10) mol cm(-2). The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K(m)(app)) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of -0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s-1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10-10 mol cm-2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s−1. The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10−10 mol cm−2. The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold nanoparticles (AuNPs) nanocomplex-modified glassy carbon electrode. The ultraviolet-visible absorption spectrometry (UV-Vis), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) methods were utilized for additional characterization of the AuNPs and FMWCNTs. The cyclic voltammogram of the modified electrode has a pair of well-defined quasi-reversible redox peaks with a formal potential of −0.270 ± 0.002 V ( vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was evaluated to be 4.0 ± 0.2 s −1 . The average surface concentration of electro-active Hb on the surface of the modified glassy carbon electrode was calculated to be 6.8 ± 0.3 × 10 −10 mol cm −2 . The cathodic peak current of the modified electrode increased linearly with increasing concentration of hydrogen peroxide (from 0.05 nM to 1 nM) with a detection limit of 0.05 ± 0.01 nM. The apparent Michaelis-Menten constant (K m app ) was calculated to be 0.85 ± 0.1 nM. Thus, the modified electrode could be applied as a third generation biosensor with high sensitivity, long-term stability and low detection limit. |
Author | Moosavi-Movahedi, Ali Hong, Jun Sheibani, Nader Zhao, Ying-Xue Xiao, Bao-Lin Ghourchian, Hedayatollah |
AuthorAffiliation | 1 School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China; E-Mails: 66yingxue@163.com (Y.-X.Z.); arixxl@163.com (B.-L.X.) 2 Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran; E-Mail: hadi@ibb.ut.ac.ir 3 Department of Ophthalmology and Visual Sciences, University of Wisconsin, 600 Highland Avenue, K6/456 CSC, Madison, WI 53792-4673, USA; E-Mail: nsheibanikar@wisc.edu |
AuthorAffiliation_xml | – name: 1 School of Life Sciences, Henan University, JinMing Road, Kaifeng 475000, China; E-Mails: 66yingxue@163.com (Y.-X.Z.); arixxl@163.com (B.-L.X.) – name: 3 Department of Ophthalmology and Visual Sciences, University of Wisconsin, 600 Highland Avenue, K6/456 CSC, Madison, WI 53792-4673, USA; E-Mail: nsheibanikar@wisc.edu – name: 2 Institute of Biochemistry and Biophysics, University of Tehran, Enquelab Avenue, P.O. Box 13145-1384, Tehran, Iran; E-Mail: hadi@ibb.ut.ac.ir |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0001-6028-4103 surname: Hong fullname: Hong, Jun – sequence: 2 givenname: Ying-Xue surname: Zhao fullname: Zhao, Ying-Xue – sequence: 3 givenname: Bao-Lin orcidid: 0000-0002-4489-6238 surname: Xiao fullname: Xiao, Bao-Lin – sequence: 4 givenname: Ali surname: Moosavi-Movahedi fullname: Moosavi-Movahedi, Ali – sequence: 5 givenname: Hedayatollah surname: Ghourchian fullname: Ghourchian, Hedayatollah – sequence: 6 givenname: Nader surname: Sheibani fullname: Sheibani, Nader |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23881129$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttuEzEQhleoiB7ghgdAK3GDkBbG9h5vkFDappFauAFxafkwmzry2sHeRaQvxGviNGlpK25sz_ib3781c5wdOO8wy14T-MBYBx8jYdBAW3XVs-yIlLQsWkrh4MH5MDuOcQVAGWPti-yQsrYlhHZH2Z9TE1CN-ZlNa_DqGgcTx7DJfZ9f4OCX1kvj8sUwpN2aG9S5d7nIzyenRuOd2OWuJjua4oewNgUzEWSCvgjnx0lizIXT-dxbfZtaizAaZVN6Gyk_rC3-Lq68Nr1JxXMrYtzcaextaXyZPe-Fjfhqv59k38_Pvs0uisuv88Xs82WhamjHogPWs7avmgZU2alGCwpU0rrUtSA9Mug7wJ5ho0BKJqDpNApNqrqsFPa0ZCfZYqervVjxdTCDCBvuheG3CR-WfO-fl7WQKNK7EtsSSZmCGiopKSrWQCeS1qed1nqSA2qFbgzCPhJ9fOPMNV_6X5w1VVsTlgTe7QWC_zlhHHlqjkJrhUM_RU5KQitCU-cT-vYJuvJTSO1JVMU62gBAm6g3Dx3dW7mbhwS83wEq-BgD9vcIAb4dNv5v2BIMT2BlRrGdivQbY_9X8hekPtne |
CitedBy_id | crossref_primary_10_1016_j_electacta_2015_03_173 crossref_primary_10_1038_s41467_018_06994_5 crossref_primary_10_1039_D0TB00934B crossref_primary_10_3390_coatings12101459 crossref_primary_10_1007_s13738_015_0756_z crossref_primary_10_1016_j_jiec_2018_07_031 crossref_primary_10_1016_j_materresbull_2015_08_037 crossref_primary_10_1134_S1023193519100094 crossref_primary_10_1016_j_jallcom_2016_06_246 crossref_primary_10_1080_00958972_2019_1596263 crossref_primary_10_1002_elan_201400353 crossref_primary_10_1007_s12161_017_0793_6 crossref_primary_10_3390_nano6070132 crossref_primary_10_3390_s23063209 crossref_primary_10_1016_j_jelechem_2017_11_027 crossref_primary_10_3390_molecules27061826 crossref_primary_10_1016_j_bios_2014_08_064 crossref_primary_10_1016_j_sbsr_2020_100340 crossref_primary_10_3390_nano10050825 crossref_primary_10_1016_j_apsusc_2018_06_108 crossref_primary_10_1016_j_snb_2017_04_139 crossref_primary_10_3390_s17071652 crossref_primary_10_3390_chemosensors11030171 crossref_primary_10_1016_j_apsusc_2016_07_158 crossref_primary_10_1016_j_bioelechem_2019_107407 crossref_primary_10_1007_s10008_013_2362_2 crossref_primary_10_1149_2_0521608jes crossref_primary_10_1007_s00604_017_2342_9 crossref_primary_10_1021_acs_analchem_5b02949 crossref_primary_10_3390_bios11060192 crossref_primary_10_1007_s13738_014_0527_2 crossref_primary_10_1007_s12161_016_0439_0 crossref_primary_10_1016_j_msec_2016_12_114 crossref_primary_10_1016_j_molliq_2019_111919 crossref_primary_10_1039_D1AN00537E crossref_primary_10_1016_j_bioelechem_2015_05_010 crossref_primary_10_1149_1945_7111_ac61bf crossref_primary_10_3390_s150101008 crossref_primary_10_1016_j_snb_2018_05_164 crossref_primary_10_1007_s40089_018_0253_3 crossref_primary_10_1016_j_bios_2018_08_050 crossref_primary_10_1016_j_electacta_2021_138999 crossref_primary_10_1016_j_bios_2017_12_019 crossref_primary_10_1039_D3NJ03306F |
Cites_doi | 10.1021/cr030698+ 10.1016/j.elecom.2007.03.018 10.1016/j.freeradbiomed.2004.04.008 10.1021/ar00155a004 10.1016/j.bios.2004.12.006 10.1016/j.snb.2009.06.039 10.1016/j.snb.2009.03.046 10.1016/j.jelechem.2006.08.002 10.1016/S0003-2670(99)00610-8 10.1016/j.jcis.2007.06.059 10.1016/S0302-4598(98)00222-0 10.1016/j.bioelechem.2011.08.003 10.1016/j.msea.2007.02.091 10.5012/bkcs.2007.28.12.2266 10.1016/j.elecom.2006.06.017 10.1016/j.bioelechem.2011.06.007 10.1021/bi010067e 10.1021/la991296t 10.1016/j.bioelechem.2012.02.002 10.1016/S0013-4686(00)00342-X 10.1016/j.cis.2005.05.006 10.1016/S0968-0004(01)01811-4 10.1016/S0003-2697(02)00014-3 10.1016/S1452-3981(23)15470-8 10.1016/j.elecom.2009.08.002 10.1007/s12010-011-9465-y 10.1016/j.elecom.2010.06.023 10.1021/cr970102g 10.1002/elan.201000263 10.1016/j.talanta.2006.04.025 10.1080/00032710601017664 10.1016/j.ab.2006.11.035 10.1016/j.snb.2009.12.073 10.1021/ja00078a030 10.1016/j.bios.2006.05.022 10.1021/ac0702084 10.1002/1439-7641(20020315)3:3<249::AID-CPHC249>3.0.CO;2-A 10.2116/analsci.19.1537 10.1016/j.freeradbiomed.2006.12.017 10.1021/cm0511421 10.1016/j.electacta.2012.11.054 10.1016/j.elecom.2006.07.011 10.1016/j.jbiotec.2003.11.005 10.14447/jnmes.v16i2.15 10.1016/j.elecom.2007.02.015 10.1021/la050947k 10.1002/app.22647 10.1016/j.bios.2005.09.014 10.1016/S0022-0728(79)80075-3 10.1016/j.jcis.2007.08.016 10.1016/j.bios.2010.01.024 10.1016/j.bios.2009.10.020 10.1016/j.electacta.2007.04.024 10.1351/pac199466122527 10.1016/S0022-0728(74)80448-1 10.1038/354056a0 10.1016/j.bioelechem.2004.04.004 10.1021/jp0028296 10.1038/358220a0 10.1039/c002416c 10.1016/j.elecom.2006.02.005 10.1016/S0010-8545(96)90199-X 10.1016/j.polymer.2005.11.034 10.1016/j.electacta.2011.01.037 10.1016/j.snb.2011.05.013 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2013 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
Copyright_xml | – notice: Copyright MDPI AG 2013 – notice: 2013 by the authors; licensee MDPI, Basel, Switzerland. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s130708595 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 8611 |
ExternalDocumentID | oai_doaj_org_article_46abeac60be84e14bea605bb2ec3709a PMC3758613 3346204531 23881129 10_3390_s130708595 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c608t-903f38f5770c49c7da202b264d6a1fe30f90ef3e7c0bb3a079dead15645cef243 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Thu Aug 21 14:13:02 EDT 2025 Sun Aug 24 03:46:05 EDT 2025 Fri Jul 25 05:59:15 EDT 2025 Wed Feb 19 02:06:55 EST 2025 Tue Jul 01 00:40:05 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-903f38f5770c49c7da202b264d6a1fe30f90ef3e7c0bb3a079dead15645cef243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4489-6238 0000-0001-6028-4103 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s130708595 |
PMID | 23881129 |
PQID | 1539270008 |
PQPubID | 2032333 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_46abeac60be84e14bea605bb2ec3709a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3758613 proquest_miscellaneous_1412512859 proquest_journals_1539270008 pubmed_primary_23881129 crossref_primary_10_3390_s130708595 crossref_citationtrail_10_3390_s130708595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130705 |
PublicationDateYYYYMMDD | 2013-07-05 |
PublicationDate_xml | – month: 7 year: 2013 text: 20130705 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2013 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Shamsipur (ref_68) 2012; 83 Ma (ref_57) 2000; 16 Zhang (ref_21) 2011; 157 Lee (ref_11) 2009; 141 Hong (ref_40) 2013; 89 Liu (ref_13) 2011; 56 Shen (ref_53) 2007; 464 Yang (ref_20) 2010; 12 Haiss (ref_51) 2007; 79 Rhieu (ref_14) 2009; 11 Yang (ref_19) 1999; 48 Park (ref_52) 2006; 18 Hong (ref_46) 2007; 40 Zhang (ref_23) 2007; 316 Ghourchian (ref_65) 2007; 362 Ajayan (ref_33) 1999; 99 Yang (ref_41) 2013; 16 Zhang (ref_55) 2007; 9 Buehler (ref_26) 2004; 37 Hong (ref_47) 2007; 52 Yao (ref_8) 2007; 71 Saboury (ref_48) 2007; 28 Liu (ref_12) 2004; 108 Shourian (ref_49) 2010; 145 Guo (ref_9) 2009; 139 Scheller (ref_39) 2005; 116 Laviron (ref_56) 1974; 52 Armstrong (ref_1) 1988; 21 Royer (ref_27) 2001; 26 Laviron (ref_58) 1979; 101 Xu (ref_22) 2007; 315 Xu (ref_18) 2008; 3 Rahimi (ref_59) 2010; 25 Olsson (ref_25) 2007; 42 Chen (ref_38) 2010; 26 Chen (ref_36) 2006; 47 Ferapontova (ref_30) 2005; 66 Wang (ref_54) 2006; 100 Jirkovsky (ref_64) 2010; 12 Toth (ref_4) 2001; 16 Salimi (ref_6) 2006; 8 Sun (ref_5) 2012; 166 Nada (ref_37) 2001; 105 Chen (ref_10) 2006; 597 Tian (ref_50) 2005; 21 Xian (ref_44) 2006; 21 He (ref_29) 2006; 8 Cao (ref_32) 2001; 40 Ebbesen (ref_34) 1992; 358 Yamazaki (ref_62) 1978; 11 Shang (ref_16) 2003; 11 Chen (ref_67) 2007; 22 Li (ref_7) 2012; 86 Ding (ref_28) 2010; 25 Lin (ref_42) 2002; 307 Wang (ref_60) 2005; 21 Wang (ref_63) 2010; 22 Sun (ref_17) 2011; 82 Iijima (ref_35) 1991; 354 Buck (ref_66) 1994; 66 Armstrong (ref_2) 2000; 45 Parak (ref_31) 2002; 3 Daniel (ref_43) 2004; 104 Rusling (ref_15) 1993; 115 Hong (ref_45) 2006; 8 Hill (ref_3) 1996; 151 Gorton (ref_24) 1999; 400 Wang (ref_61) 2007; 9 17234148 - Anal Biochem. 2007 Mar 1;362(1):38-43 27955 - Adv Biophys. 1978;11:249-81 10228578 - Bioelectrochem Bioenerg. 1999 Feb;48(1):117-27 16171360 - Langmuir. 2005 Sep 27;21(20):9260-6 11261847 - Biosens Bioelectron. 2001 Jan;16(1-2):121-31 14640454 - Anal Sci. 2003 Nov;19(11):1537-9 17458937 - Anal Chem. 2007 Jun 1;79(11):4215-21 15129723 - J Biotechnol. 2004 Mar 4;108(2):145-52 21880554 - Bioelectrochemistry. 2012 Feb;83:31-7 14719978 - Chem Rev. 2004 Jan;104(1):293-346 17320766 - Free Radic Biol Med. 2007 Mar 15;42(6):842-51 12137787 - Anal Biochem. 2002 Aug 1;307(1):110-6 17681509 - J Colloid Interface Sci. 2007 Nov 1;315(1):170-6 16275055 - Biosens Bioelectron. 2006 Apr 15;21(10):1996-2000 11849010 - Chem Rev. 1999 Jul 14;99(7):1787-1800 22139732 - Appl Biochem Biotechnol. 2012 Feb;166(3):764-73 20505889 - Phys Chem Chem Phys. 2010 Jul 28;12(28):8042-52 20167467 - Biosens Bioelectron. 2010 May 15;25(9):2009-15 11341838 - Biochemistry. 2001 May 15;40(19):5728-37 17904150 - J Colloid Interface Sci. 2007 Dec 15;316(2):517-22 16820288 - Biosens Bioelectron. 2007 Feb 15;22(7):1268-74 16202868 - Biosens Bioelectron. 2005 Oct 15;21(4):557-64 21795123 - Bioelectrochemistry. 2011 Oct;82(2):125-30 11343922 - Trends Biochem Sci. 2001 May;26(5):297-304 12503170 - Chemphyschem. 2002 Mar 12;3(3):249-54 22386304 - Bioelectrochemistry. 2012 Aug;86:60-6 15833703 - Bioelectrochemistry. 2005 Apr;66(1-2):55-63 16099417 - Adv Colloid Interface Sci. 2005 Nov 30;116(1-3):111-20 15183200 - Free Radic Biol Med. 2004 Jul 1;37(1):124-35 19071339 - Talanta. 2007 Feb 15;71(2):550-4 19914054 - Biosens Bioelectron. 2010 Feb 15;25(6):1301-6 |
References_xml | – volume: 104 start-page: 293 year: 2004 ident: ref_43 article-title: Gold Nanoparticles: Assembly, supramolecular chemistry, quantum-Size-related properties, and applications toward biology, catalysis, and nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr030698+ – volume: 9 start-page: 1709 year: 2007 ident: ref_61 article-title: Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.03.018 – volume: 16 start-page: 121 year: 2001 ident: ref_4 article-title: Electrochemical biosensors: Recommended definitions and classification publication-title: Biosens. Bioelectron. – volume: 37 start-page: 124 year: 2004 ident: ref_26 article-title: Polynitroxyl hemoglobin: A pharmacokinetic study of covalently bound nitroxides to hemoglobin platforms publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.04.008 – volume: 21 start-page: 407 year: 1988 ident: ref_1 article-title: Direct electrochemistry of redox proteins publication-title: Acc. Chem. Res. doi: 10.1021/ar00155a004 – volume: 21 start-page: 557 year: 2005 ident: ref_50 article-title: A carbon fiber microelectrode-based third-generation biosensor for superoxide anion publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.12.006 – volume: 141 start-page: 518 year: 2009 ident: ref_11 article-title: Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2009.06.039 – volume: 26 start-page: 711 year: 2010 ident: ref_38 article-title: Progress of electrochemical biosensors fabricated with nanomaterials publication-title: Acta Biophys. Sin. – volume: 139 start-page: 598 year: 2009 ident: ref_9 article-title: Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2009.03.046 – volume: 597 start-page: 51 year: 2006 ident: ref_10 article-title: Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte–surfactant polymer, carbon nanotubes and hemoglobin publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.08.002 – volume: 400 start-page: 91 year: 1999 ident: ref_24 article-title: Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(99)00610-8 – volume: 315 start-page: 170 year: 2007 ident: ref_22 article-title: Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.06.059 – volume: 48 start-page: 117 year: 1999 ident: ref_19 article-title: Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes publication-title: Bioelectrochem. Bioenerg. doi: 10.1016/S0302-4598(98)00222-0 – volume: 83 start-page: 31 year: 2012 ident: ref_68 article-title: A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2011.08.003 – volume: 464 start-page: 151 year: 2007 ident: ref_53 article-title: Study on amino-functionalized multiwalled carbon nanotubes publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.02.091 – volume: 28 start-page: 2266 year: 2007 ident: ref_48 article-title: Electrochemical behavior of redox proteins immobilized on Nafion-riboflavin modified gold electrode publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2007.28.12.2266 – volume: 8 start-page: 1499 year: 2006 ident: ref_6 article-title: Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.06.017 – volume: 82 start-page: 125 year: 2011 ident: ref_17 article-title: Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2011.06.007 – volume: 40 start-page: 5728 year: 2001 ident: ref_32 article-title: Water penetration and binding to ferric myoglobin publication-title: Biochemistry doi: 10.1021/bi010067e – volume: 16 start-page: 4969 year: 2000 ident: ref_57 article-title: Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes publication-title: Langmuir doi: 10.1021/la991296t – volume: 86 start-page: 60 year: 2012 ident: ref_7 article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized on polyacrylamide-P123 film modified glassy carbon electrode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2012.02.002 – volume: 45 start-page: 2623 year: 2000 ident: ref_2 article-title: Recent developments in faradaic bioelectrochemistry publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00342-X – volume: 116 start-page: 111 year: 2005 ident: ref_39 article-title: Thirty years of haemoglobin electrochemistry publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2005.05.006 – volume: 26 start-page: 297 year: 2001 ident: ref_27 article-title: Cooperative hemoglobins: Conserved fold, diverse quaternary assemblies and allosteric mechanisms publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(01)01811-4 – volume: 307 start-page: 110 year: 2002 ident: ref_42 article-title: Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode publication-title: Anal. Biochem. doi: 10.1016/S0003-2697(02)00014-3 – volume: 11 start-page: 249 year: 1978 ident: ref_62 article-title: Analysis of acid-base properties of peroxidase and myoglobin publication-title: Adv. Biophys. – volume: 3 start-page: 519 year: 2008 ident: ref_18 article-title: A third-generation biosensor based on the enzyme-like activity of cytochrome c on a room temperature ionic liquid and gold nanoparticles composite publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15470-8 – volume: 11 start-page: 1857 year: 2009 ident: ref_14 article-title: Direct electrochemistry of cytochrome P450 27B1 in surfactant films publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.08.002 – volume: 166 start-page: 764 year: 2012 ident: ref_5 article-title: A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-011-9465-y – volume: 12 start-page: 1218 year: 2010 ident: ref_20 article-title: Direct electrochemistry of cytochrome c on nanotextured diamond surface publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.06.023 – volume: 99 start-page: 1787 year: 1999 ident: ref_33 article-title: Nanotubes from carbon publication-title: Chem. Rev. doi: 10.1021/cr970102g – volume: 22 start-page: 2536 year: 2010 ident: ref_63 article-title: Gold nanoparticles electrodeposited on ordered mesoporous carbon as an enhanced material for nonenzymatic hydrogen peroxide sensor publication-title: Electroanalysis doi: 10.1002/elan.201000263 – volume: 71 start-page: 550 year: 2007 ident: ref_8 article-title: Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode publication-title: Talanta doi: 10.1016/j.talanta.2006.04.025 – volume: 40 start-page: 483 year: 2007 ident: ref_46 article-title: Nafion-methylene blue functional memberane and its application in chemical/bio-sensing publication-title: Anal. Lett. doi: 10.1080/00032710601017664 – volume: 362 start-page: 38 year: 2007 ident: ref_65 article-title: Spectrophotometric assay for horseradish peroxidase activity based on pyrocatechol–aniline coupling hydrogen donor publication-title: Anal. Biochem. doi: 10.1016/j.ab.2006.11.035 – volume: 145 start-page: 607 year: 2010 ident: ref_49 article-title: Biosensing improvement of horseradish peroxidase towards hydrogen peroxide upon modifying the accessible lysines publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2009.12.073 – volume: 115 start-page: 11891 year: 1993 ident: ref_15 article-title: Enhanced electron transfer for myoglobin in surfactant films on electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00078a030 – volume: 22 start-page: 1268 year: 2007 ident: ref_67 article-title: Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.05.022 – volume: 79 start-page: 4215 year: 2007 ident: ref_51 article-title: Determination of size and concentration of gold nanoparticles from UV-vis spectra publication-title: Anal. Chem. doi: 10.1021/ac0702084 – volume: 3 start-page: 249 year: 2002 ident: ref_31 article-title: Myoglobin, a paradigm in the study of protein dynamics publication-title: Chemphyschem doi: 10.1002/1439-7641(20020315)3:3<249::AID-CPHC249>3.0.CO;2-A – volume: 11 start-page: 1537 year: 2003 ident: ref_16 article-title: Enhanced peroxidase activity of hemoglobin in a DNA membrane and its application to an unmediated hydrogen peroxide biosensor publication-title: Anal. Sci. doi: 10.2116/analsci.19.1537 – volume: 42 start-page: 842 year: 2007 ident: ref_25 article-title: Up-regulation of alpha1-microglobulin by hemoglobin and reactive oxygen species in hepatoma and blood cell lines publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.12.017 – volume: 18 start-page: 1546 year: 2006 ident: ref_52 article-title: Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids: Effect of anions on solubility publication-title: Chem. Mater. doi: 10.1021/cm0511421 – volume: 89 start-page: 317 year: 2013 ident: ref_40 article-title: Catalase immobilized on a functionalized multi-walled carbon nanotubes–gold nanocomposite as a highly sensitive bio-sensing system for detection of hydrogen peroxide publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.054 – volume: 8 start-page: 1572 year: 2006 ident: ref_45 article-title: Direct electron transfer of redox proteins on a Nafion-cysteine modified gold electrode publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.07.011 – volume: 108 start-page: 145 year: 2004 ident: ref_12 article-title: Enhanced electron-transfer reactivity of horseradish peroxidase in phosphatidylcholine films and its catalysis to nitric oxide publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2003.11.005 – volume: 16 start-page: 89 year: 2013 ident: ref_41 article-title: Electrochemical study of a nano vesicular artificial peroxidase on a functional nano complex modified glassy carbon electrode publication-title: J. New Mat. Electrochem. Syst. doi: 10.14447/jnmes.v16i2.15 – volume: 9 start-page: 1530 year: 2007 ident: ref_55 article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic–organic hybrid film publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.02.015 – volume: 21 start-page: 9260 year: 2005 ident: ref_60 article-title: Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids publication-title: Langmuir doi: 10.1021/la050947k – volume: 100 start-page: 97 year: 2006 ident: ref_54 article-title: Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.22647 – volume: 21 start-page: 1996 year: 2006 ident: ref_44 article-title: Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2005.09.014 – volume: 101 start-page: 19 year: 1979 ident: ref_58 article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(79)80075-3 – volume: 316 start-page: 517 year: 2007 ident: ref_23 article-title: Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube (Hb–CNT) assembly publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.08.016 – volume: 25 start-page: 2009 year: 2010 ident: ref_28 article-title: Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.01.024 – volume: 25 start-page: 1301 year: 2010 ident: ref_59 article-title: Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry publication-title: Biosen. Bioelectron. doi: 10.1016/j.bios.2009.10.020 – volume: 52 start-page: 6261 year: 2007 ident: ref_47 article-title: Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.04.024 – volume: 66 start-page: 2527 year: 1994 ident: ref_66 article-title: Recommendations for nomenclature of ion selective electrodes publication-title: Pure Appl. Chem. doi: 10.1351/pac199466122527 – volume: 52 start-page: 355 year: 1974 ident: ref_56 article-title: Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(74)80448-1 – volume: 354 start-page: 56 year: 1991 ident: ref_35 article-title: Helical microtubules of graphitic carbon publication-title: Nature doi: 10.1038/354056a0 – volume: 66 start-page: 55 year: 2005 ident: ref_30 article-title: Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2004.04.004 – volume: 105 start-page: 954 year: 2001 ident: ref_37 article-title: Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane publication-title: J. Phys. Chem. B doi: 10.1021/jp0028296 – volume: 358 start-page: 220 year: 1992 ident: ref_34 article-title: Large-Scale synthesis of carbon nanotubes publication-title: Nature doi: 10.1038/358220a0 – volume: 12 start-page: 8042 year: 2010 ident: ref_64 article-title: Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c002416c – volume: 8 start-page: 615 year: 2006 ident: ref_29 article-title: Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: Redox thermodynamics and electrocatalysis to nitric oxide publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.02.005 – volume: 151 start-page: 115 year: 1996 ident: ref_3 article-title: Direct electrochemistry of cytochrome c publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(96)90199-X – volume: 47 start-page: 763 year: 2006 ident: ref_36 article-title: One-Step preparation and characterization of PDDA-protected gold nanoparticles publication-title: Polymer doi: 10.1016/j.polymer.2005.11.034 – volume: 56 start-page: 3238 year: 2011 ident: ref_13 article-title: A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.01.037 – volume: 157 start-page: 527 year: 2011 ident: ref_21 article-title: Direct electrochemistry and electrocatalysis of hemoglobin immobilized into poly (lactic-co-glycolic acid)/room temperature ionic liquid composite film publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.05.013 – reference: 15833703 - Bioelectrochemistry. 2005 Apr;66(1-2):55-63 – reference: 11343922 - Trends Biochem Sci. 2001 May;26(5):297-304 – reference: 16171360 - Langmuir. 2005 Sep 27;21(20):9260-6 – reference: 22139732 - Appl Biochem Biotechnol. 2012 Feb;166(3):764-73 – reference: 15183200 - Free Radic Biol Med. 2004 Jul 1;37(1):124-35 – reference: 22386304 - Bioelectrochemistry. 2012 Aug;86:60-6 – reference: 17320766 - Free Radic Biol Med. 2007 Mar 15;42(6):842-51 – reference: 17458937 - Anal Chem. 2007 Jun 1;79(11):4215-21 – reference: 19071339 - Talanta. 2007 Feb 15;71(2):550-4 – reference: 15129723 - J Biotechnol. 2004 Mar 4;108(2):145-52 – reference: 11261847 - Biosens Bioelectron. 2001 Jan;16(1-2):121-31 – reference: 27955 - Adv Biophys. 1978;11:249-81 – reference: 11849010 - Chem Rev. 1999 Jul 14;99(7):1787-1800 – reference: 16099417 - Adv Colloid Interface Sci. 2005 Nov 30;116(1-3):111-20 – reference: 11341838 - Biochemistry. 2001 May 15;40(19):5728-37 – reference: 16820288 - Biosens Bioelectron. 2007 Feb 15;22(7):1268-74 – reference: 20505889 - Phys Chem Chem Phys. 2010 Jul 28;12(28):8042-52 – reference: 17234148 - Anal Biochem. 2007 Mar 1;362(1):38-43 – reference: 16275055 - Biosens Bioelectron. 2006 Apr 15;21(10):1996-2000 – reference: 20167467 - Biosens Bioelectron. 2010 May 15;25(9):2009-15 – reference: 21880554 - Bioelectrochemistry. 2012 Feb;83:31-7 – reference: 14640454 - Anal Sci. 2003 Nov;19(11):1537-9 – reference: 19914054 - Biosens Bioelectron. 2010 Feb 15;25(6):1301-6 – reference: 14719978 - Chem Rev. 2004 Jan;104(1):293-346 – reference: 12503170 - Chemphyschem. 2002 Mar 12;3(3):249-54 – reference: 10228578 - Bioelectrochem Bioenerg. 1999 Feb;48(1):117-27 – reference: 17681509 - J Colloid Interface Sci. 2007 Nov 1;315(1):170-6 – reference: 21795123 - Bioelectrochemistry. 2011 Oct;82(2):125-30 – reference: 17904150 - J Colloid Interface Sci. 2007 Dec 15;316(2):517-22 – reference: 12137787 - Anal Biochem. 2002 Aug 1;307(1):110-6 – reference: 16202868 - Biosens Bioelectron. 2005 Oct 15;21(4):557-64 |
SSID | ssj0023338 |
Score | 2.276764 |
Snippet | Direct electron transfer of hemoglobin (Hb) was realized by immobilizing Hb on a carboxyl functionalized multi-walled carbon nanotubes (FMWCNTs) and gold... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8595 |
SubjectTerms | Animals Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Carbon Cattle Chemicals direct electrochemistry Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Electrodes Electronic mail systems Electrons Fourier transforms functionalized multi-walled carbon nanotubes Glass - chemistry Gold Gold - chemistry gold nanoparticles Hemoglobin Hemoglobins - chemistry Hemoglobins - metabolism Hydrogen peroxide Hydrogen Peroxide - analysis Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Immobilized Proteins - chemistry Immobilized Proteins - metabolism Limit of Detection Metal Nanoparticles - chemistry nanocomplex Nanoparticles Nanotechnology Nanotubes, Carbon - chemistry Proteins Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoHylFGQEFw5WHduJ4yNU3S5I5USl3iI7HouVSlJ1dyXoH-rfZGwnyy6qxIWjnVE08Uw8b5LxG0LeC9GU3ATDtAqcoVMIZsBY5sHVpoYgnIznnc-_1vML9eWyutxq9RVrwjI9cF64Y1Vbh5tDzR00CkqFA0TgzgnopOYmQSOMeVMyNaZaUqYe1vEYF8MQyDMxqcQE_3hZRjePtF47oSgx9t8HM_-ultwKP7PH5NGIG-nHrO8T8gD6A_Jwi03wKbnL2xc9zZ1tuqmVGx0CncOPIXJ_LHr6GT0vVsTegqdDTy2dYWjLXwTTXDqSy-IHdhyc2BuHQrgHD6u1gyW1vadnw5VPU9dTWV0apep0-MnOB78IiGzpWUTmv6Z7jGp5eEYuZqffTuZs7MPAcNmbFTNcBtmESmveKdNpbwUXDpGUr20ZQPJgOAQJuuPOScu18eifkYWm6tDaSj4ne_3Qw0tCXeNBguFdWQWFUM_6ToTGojgmTuChIB8mk7TdSFIee2VctZisRPO1f8xXkHcb2etMzXGv1Kdo2Y1EpNNOE-hk7bhK7b-crCBHk1-04zu-bDFWmPjbnjcFebu5jJaNv1xsD8MaZVQCkKhIQV5kN9pogmCpiWi3IHrHwXZU3b3SL74nBnCJWR7isMP_8WyvyL5ILT4049UR2VvdrOE1Aq2Ve5Peqd8lOyug priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gICO4cLDqxHn5hGi12wWpFUJU6i3yY1xWKsmyDwn4Q_xNxo6TdlHF0c5oNZsZj7-xJ98Q8jbL6pRLJ1mVO87QKTImQSpmQZeyBJdp4b93Pjkt52f5p_PiPB64rWNZ5RATQ6C2nfFn5Ae4MqW_JOX1--UP5rtG-dvV2ELjNtnDEFwXE7J3OD39_GVMuQRmYD0pqcDk_mCdehf3lF4721Bg678JYv5bKXlt65ndJ_ciZqQfeiM_ILegfUjuXmMSfET-9KGLTvuuNmZo40Y7R-fwvfO8H4uWfsS_4athf4OlXUsVneG21p8GhrnwOS7zh-s4OFIrjUIYf7vNVsOaqtbS4-7ShqnlUFIXRqEyHX6yk84uHKJaeuxR-a_hN6JaFh6Ts9n069GcxR4MzJS83jDJhRO1K6qKm1yayqqMZxpRlC1V6kBwJzk4AZXhWgvFK2nRNz0DTWHQ0rl4QiZt18IzQnVtQYDkJi1cjjBPWZO5WqE4Jk1gISHvBpM0JhKU-z4Zlw0mKt58zZX5EvJmlF32tBw3Sh16y44Snko7THSriya-pSYvlcbdp-Qa6hzSHAeY4mmdgREVlyoh-4NfNHF9r5srb0zI6_ExWtZft6gWui3K5AE8oiIJedq70agJAqXaI92EVDsOtqPq7pN28S2wfwvM8BCDPf-_Wi_InSw07qgYL_bJZLPawkuETxv9Kq6RvxY6ITI priority: 102 providerName: ProQuest |
Title | Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23881129 https://www.proquest.com/docview/1539270008 https://www.proquest.com/docview/1412512859 https://pubmed.ncbi.nlm.nih.gov/PMC3758613 https://doaj.org/article/46abeac60be84e14bea605bb2ec3709a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1LiRbBhcPC2ut4vQeEKGqokFohRKTcrH2WSMFu8xAtf4i_yezaDk2VA5fIXk-SlWfs-cY7_j6A11lWpkx6SUXuGcWgyKh0UlHrdCEL5zPNw_vOp2fFyTj_MhlOdqDX7-xO4GJraRf0pMbz2dury-sPeMG_DxUnluzvFmkI3EDUtQv7mJGKEN2n-Xo1IeM8KlqHl7ooJkTW0pTe-u5GYor8_dtA5-3eyRvJaHQf7nUoknxs3f4Adlz9EO7e4BZ8BH_amxnpdG5ML-xGGk9wuwlMINOaTDEOQ3_sb2dJUxNFQqJrnw_GsdhwSH8FxRVLjJprNKpV3SxX2i2Iqi05b2Y2Dl30TXZxL_aquyv6s7FTjziXRJx-3f9GNy3rHsN4dPz90wntVBmoKVi5pJJxz0s_FIKZXBphVcYyjbjKFir1jjMvmfPcCcO05ooJaTFaAyfN0KDvc_4E9uqmds-A6NI67iQz6dDnCPyUNZkvFZpjGeWsS-BN75LKdJTlQTljVmHpEtxX_XNfAq_WthctUcdWq6Pg2bVFINeOA838vOrOUpUXSmM-Kph2Ze7SHHew6NM6c4YLJlUCh31cVH3AVpg5ZFjEZ2UCL9eH0bNhAUbVrlmhTR7hJE4kgadtGK1ngtCpDNg3AbERYBtT3TxST39EPnCONR-isoP_-N_ncCeLeh6CsuEh7C3nK_cCUdVSD2BXTAR-lqPPA9g_Oj77-m0Qn1AM4sX0FyNtK50 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxLMEChgBBw5WnTibxAeEoHQftNtTK_UW_BjDSiVZ9iEof4gbv5Gxk2y7qOLWo-2RNfKMxzP2-BtCXiVJEXPpJMtTxxkqRcIkSMUs6Exm4BIt_H_n8WE2PE4_nfRONsif7i-MT6vsbGIw1LY2_o58B3em9I-kvHg3_c581Sj_utqV0GjUYh_OfmDINn87-ojyfZ0k_b2j3SFrqwowk_FiwSQXThSul-fcpNLkVmH8r9EvsJmKHQjuJAcnIDdca6F4Li2utsdU6RnkPRU47zVyPRVCeqz-oj9YBXgC470GAhUH-c489hvKA4itHXqhNsBlDu2_eZkXDrr-HXK79VDp-0al7pINqO6RWxdwC--T342hpHtNDR3TFY2jtaND-FZ7lJFJRUe4aD739hdYWldU0T4eos3dY-gLn3-Zv8rHxq6aaSRCa18vlhrmVFWWDupTG7qmXQJfaIU8ePjJxrWdOPSh6cDHAGfdHC1bFh6Q4yuRzUOyWdUVPCJUFxYESG7inkvRqVTWJK5QSI4hGliIyJtOJKVp4dB9VY7TEsMiL77yXHwRebminTYgIJdSffCSXVF44O7QUc--lO0qlWmmNJ51GddQpBCn2MCAUusEjMi5VBHZ7vSibK3JvDzX_Yi8WA2jZP3jjqqgXiJNGlxVZCQiW40arThBt6zwfnVE8jUFW2N1faSafA1Y4wLjSfT4Hv-frefkxvBofFAejA73n5CbSSgZkjPe2yabi9kSnqLjttDPwm6h5PNVb8-_IN5dKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCcEB8SZQwAg4cLDWibNJfECItrvdpXRVISr1lvoxhpVKsuxDUH6If-DrGOex7aKKW492RtbE87bHM4S8iqIs5NJJlsaOM2SKiEmQilnQiUzARVr4984H42R4FH847h1vkD_tWxifVtnqxEpR29L4M_IuSqb0l6Q867omLeJwd_Bu-p35DlL-prVtp1GzyD6c_cDwbf52tIu0fh1Fg_7nnSFrOgwwk_BswSQXTmSul6bcxNKkVkU80ugj2ESFDgR3koMTkBqutVA8lRZ33tdX6Rn8j1jgutfIZopWMeuQze3--PDTKtwTGP3VBVGFkLw7D714-XJiayaw6hRwmXv7b5bmBbM3uE1uNf4qfV8z2B2yAcVdcvNCFcN75HetNmm_7qhj2hZytHR0CN9KX3NkUtARbpvPxP0FlpYFVXSAJrU-iazmqqfAzB_s42BHzTQCoe4vF0sNc6oKS_fKU1tNTdt0vmpUZcXDT3ZQ2olDj5ru-YjgrF2jQcvCfXJ0JdR5QDpFWcAjQnVmQYDkJuy5GF1MZU3kMoXgGLCBhYC8aUmSm6Y4uu_RcZpjkOTJl5-TLyAvV7DTuiTIpVDbnrIrCF_Gu5ooZ1_yZpfyOFEaLV_CNWQxhDEOMLzUOgIjUi5VQLZavsgb3TLPzyUhIC9Wn5Gy_qpHFVAuESauHFdEJCAPazZaYYJOWua97ICkawy2hur6l2Lytao8LjC6RP_v8f_Rek6uo2jmH0fj_SfkRlT1D0kZ722RzmK2hKfoxS30s0ZcKDm5agn9C9--YsU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+electrochemistry+of+hemoglobin+immobilized+on+a+functionalized+multi-walled+carbon+nanotubes+and+gold+nanoparticles+nanocomplex-modified+glassy+carbon+electrode&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hong%2C+Jun&rft.au=Zhao%2C+Ying-Xue&rft.au=Xiao%2C+Bao-Lin&rft.au=Moosavi-Movahedi%2C+Ali+Akbar&rft.date=2013-07-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=13&rft.issue=7&rft.spage=8595&rft_id=info:doi/10.3390%2Fs130708595&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |