Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections
Abstract Coronaviruses belong to the family Coronaviridae , which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials...
Saved in:
Published in | Biomaterials Vol. 35; no. 13; pp. 4195 - 4203 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract Coronaviruses belong to the family Coronaviridae , which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro . Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. |
---|---|
AbstractList | Coronaviruses belong to the family
Coronaviridae
, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection
in vitro
. Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. Coronaviruses belong to the family Coronaviridae, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro. Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. Abstract Coronaviruses belong to the family Coronaviridae , which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro . Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. Coronaviruses belong to the family Coronaviridae, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible gastroenteritis virus (TGEV) is an economically significant coronavirus that can cause severe diarrhea in pigs. Silver nanomaterials (Ag NMs) have attracted great interests in recent years due to their excellent anti-microorganism properties. Herein, four representative Ag NMs including spherical Ag nanoparticles (Ag NPs, NM-300), two kinds of silver nanowires (XFJ011) and silver colloids (XFJ04) were selected to study their inhibitory effect on TGEV-induced host cell infection in vitro. Ag NPs were uniformly distributed, with particle sizes less than 20 nm by characterization of environmental scanning electron microscope and transmission electron microscope. Two types of silver nanowires were 60 nm and 400 nm in diameter, respectively. The average diameter of the silver colloids was approximately 10 nm. TGEV infection induced the occurring of apoptosis in swine testicle (ST) cells, down-regulated the expression of Bcl-2, up-regulated the expression of Bax, altered mitochondrial membrane potential, activated p38 MAPK signal pathway, and increased expression of p53 as evidenced by immunofluorescence assays, real-time PCR, flow cytometry and Western blot. Under non-toxic concentrations, Ag NPs and silver nanowires significantly diminished the infectivity of TGEV in ST cells. Moreover, further results showed that Ag NPs and silver nanowires decreased the number of apoptotic cells induced by TGEV through regulating p38/mitochondria-caspase-3 signaling pathway. Our data indicate that Ag NMs are effective in prevention of TGEV-mediated cell infection as a virucidal agent or as an inhibitor of viral entry and the present findings may provide new insights into antiviral therapy of coronaviruses. |
Author | Wang, Peng Suo, Siqingaowa Lv, Xiaonan Cong, Yingying Chen, Chunying Bai, Ru Ren, Xiaofeng |
AuthorAffiliation | b National Center for Nanoscience and Technology of China, No. 11, Beiyitiao, Zhongguancun, Beijing 100190, PR China a Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai Street, Xiangfang District, Harbin 150030, PR China |
AuthorAffiliation_xml | – name: b National Center for Nanoscience and Technology of China, No. 11, Beiyitiao, Zhongguancun, Beijing 100190, PR China – name: a Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai Street, Xiangfang District, Harbin 150030, PR China |
Author_xml | – sequence: 1 fullname: Lv, Xiaonan – sequence: 2 fullname: Wang, Peng – sequence: 3 fullname: Bai, Ru – sequence: 4 fullname: Cong, Yingying – sequence: 5 fullname: Suo, Siqingaowa – sequence: 6 fullname: Ren, Xiaofeng – sequence: 7 fullname: Chen, Chunying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24524838$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9vFCEUxYlpY7fVr2CI7zMCA7OsD01M658mTfrQ-mgIMBf3rrPQwOwm--1lslqrTz4Rcu85B37nnJzEFIGQt5y1nPH-3aZ1mLZ2gox2LK1gXLaMt0zJF2TB9VI3asXUCVnUgWhWPRdn5LyUDat3JsVLciakElJ3ekG-3cQ1OpxSPlAIAfxEU6AFxz1kGm38k0NTpFO2sWyxFHQj0D3mXWkwDjsPA12nMlEP40gxzj6YYnlFTkOVwutf5wX5-unjw9WX5vbu883Vh9vG90xPjbaqU53uQDtQ3SoEPkgtmYCer4JUfpDc1S8BSKWU7713bnDaBuWDEEutuwtyefR93LktDB5ifeloHjNubT6YZNH8PYm4Nt_T3iw5F53uq8H7o4HPqZQM4UnLmZmhm415Dt3M0A3jpkKv4jfP05-kvynXhevjAlQGe4RsikeIlRrmSsoMCf8v5_IfGz9iRG_HH3CAskm7HGcNN0UYZu7n-uf2a-uMaSm6n9RHtNM |
CitedBy_id | crossref_primary_10_1109_TNB_2020_2997257 crossref_primary_10_1246_cl_230205 crossref_primary_10_3390_nano12060990 crossref_primary_10_1039_C5NR07918G crossref_primary_10_1021_acs_est_7b00663 crossref_primary_10_1134_S2635167623700027 crossref_primary_10_1186_s11671_016_1419_4 crossref_primary_10_1039_C6EM00256K crossref_primary_10_2217_nnm_2020_0163 crossref_primary_10_3390_coatings13050919 crossref_primary_10_1002_gch2_202000115 crossref_primary_10_1016_j_bcab_2021_102056 crossref_primary_10_1016_j_ijbiomac_2021_10_215 crossref_primary_10_1021_acsbiomaterials_1c00318 crossref_primary_10_1186_s11671_023_03900_x crossref_primary_10_1021_acs_analchem_4c01500 crossref_primary_10_1016_j_biomaterials_2018_04_056 crossref_primary_10_3390_molecules27113455 crossref_primary_10_3390_nano10091645 crossref_primary_10_1016_j_mehy_2021_110753 crossref_primary_10_2147_IJN_S280976 crossref_primary_10_1021_acsanm_0c01978 crossref_primary_10_1680_jnaen_20_00052 crossref_primary_10_1016_j_colcom_2021_100459 crossref_primary_10_1016_j_ccr_2022_214559 crossref_primary_10_15826_chimtech_2022_9_4_02 crossref_primary_10_1002_VIW_20200181 crossref_primary_10_3390_pr9081428 crossref_primary_10_1186_s11671_021_03558_3 crossref_primary_10_3390_pharmaceutics16030407 crossref_primary_10_1021_acsomega_1c06093 crossref_primary_10_1088_2053_1591_ab6ad8 crossref_primary_10_1002_slct_202304941 crossref_primary_10_1016_j_nano_2016_01_021 crossref_primary_10_1007_s42247_021_00168_8 crossref_primary_10_1080_10643389_2020_1784666 crossref_primary_10_1016_j_dental_2020_08_006 crossref_primary_10_1038_s41598_022_24540_8 crossref_primary_10_1002_masy_202000336 crossref_primary_10_1002_sstr_202200021 crossref_primary_10_1007_s11051_023_05867_3 crossref_primary_10_1515_ntrev_2023_0155 crossref_primary_10_1016_j_nantod_2020_101031 crossref_primary_10_1007_s44174_023_00077_w crossref_primary_10_1088_1748_605X_ac3208 crossref_primary_10_1007_s40097_021_00465_y crossref_primary_10_1021_acsanm_3c01351 crossref_primary_10_1016_j_medidd_2021_100099 crossref_primary_10_1021_acsami_3c13843 crossref_primary_10_3390_microorganisms11030629 crossref_primary_10_1016_j_nantod_2022_101583 crossref_primary_10_3390_nano11113118 crossref_primary_10_3390_coatings12040532 crossref_primary_10_1021_acs_chas_1c00005 crossref_primary_10_1002_ppsc_202200154 crossref_primary_10_1021_acs_bioconjchem_0c00287 crossref_primary_10_1002_mabi_202000196 crossref_primary_10_3390_v13091825 crossref_primary_10_1021_acsami_5b06876 crossref_primary_10_1134_S0040579523040085 crossref_primary_10_3390_nano12142345 crossref_primary_10_1016_j_addr_2022_114615 crossref_primary_10_3390_nano11082086 crossref_primary_10_1007_s42765_023_00275_7 crossref_primary_10_1021_acsnano_0c04117 crossref_primary_10_1039_D2MA00797E crossref_primary_10_1093_femsle_fnab112 crossref_primary_10_2217_nnm_2020_0117 crossref_primary_10_1007_s40089_022_00367_z crossref_primary_10_3390_pharmaceutics13101570 crossref_primary_10_3389_fbioe_2022_1083232 crossref_primary_10_3389_fnano_2020_589541 crossref_primary_10_1021_acsanm_8b00779 crossref_primary_10_3390_ijms242316719 crossref_primary_10_3390_jfb11040084 crossref_primary_10_1007_s11468_022_01754_0 crossref_primary_10_54617_adoklinikbilimler_1293984 crossref_primary_10_3390_nano10112318 crossref_primary_10_1016_j_porgcoat_2021_106670 crossref_primary_10_1016_j_virol_2015_01_020 crossref_primary_10_1016_j_jtemb_2022_126977 crossref_primary_10_3390_nano10081566 crossref_primary_10_3390_polym13234234 crossref_primary_10_1007_s11051_021_05341_y crossref_primary_10_1021_acsnano_0c07258 crossref_primary_10_1208_s12249_020_01908_5 crossref_primary_10_1021_acsami_0c22381 crossref_primary_10_1002_ppsc_202100044 crossref_primary_10_1142_S0219581X23300043 crossref_primary_10_1088_2632_959X_abb714 crossref_primary_10_1016_j_jddst_2021_102634 crossref_primary_10_3390_ijms21124549 crossref_primary_10_1371_journal_pone_0294972 crossref_primary_10_1007_s40089_020_00323_9 crossref_primary_10_1016_j_fpsl_2023_101171 crossref_primary_10_1038_s41929_022_00823_1 crossref_primary_10_1002_ppsc_202100159 crossref_primary_10_1016_j_biomaterials_2015_11_008 crossref_primary_10_2174_1573413717666211118105415 crossref_primary_10_1080_23744235_2021_1916071 crossref_primary_10_3390_antiox11020345 crossref_primary_10_1016_j_onano_2022_100078 |
Cites_doi | 10.1099/vir.0.051557-0 10.1016/0378-1135(92)90053-V 10.1016/j.virol.2007.04.001 10.1002/smll.201300607 10.1016/j.jviromet.2011.09.003 10.1371/journal.pone.0057468 10.1126/science.1115035 10.1371/journal.pone.0018669 10.1016/j.biomaterials.2011.09.091 10.1016/j.toxlet.2013.07.011 10.1177/095632020501600104 10.1002/ptr.2198 10.1016/j.biomaterials.2011.07.037 10.1016/0042-6822(91)90135-X 10.1016/j.jcis.2004.02.012 10.1021/cr030063a 10.1128/JVI.74.9.3975-3983.2000 10.1152/ajpcell.00049.2005 10.1023/A:1011147832586 10.1073/pnas.93.6.2239 10.1002/adma.201301890 10.1016/j.vetmic.2012.01.017 10.1007/s11095-010-0073-2 10.1128/JVI.77.21.11846-11848.2003 10.1007/s11671-008-9128-2 10.1038/357417a0 10.1177/135965350801300210 10.1016/0022-1759(86)90368-6 10.1021/nl201391e 10.1016/S0014-5793(98)00324-X 10.1016/j.antiviral.2009.10.014 10.1038/20959 10.1016/j.virusres.2008.07.023 10.1021/bc900215b 10.1016/S0966-842X(99)01487-0 10.1002/smll.201101059 10.1126/science.1088755 10.1089/mab.2012.0067 10.1016/S0196-6553(99)70055-6 10.1128/JVI.72.6.4918-4924.1998 10.1126/science.1099320 10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M 10.1166/jbn.2008.012 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. Copyright © 2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Ltd |
Copyright_xml | – notice: Elsevier Ltd – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1016/j.biomaterials.2014.01.054 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1878-5905 |
EndPage | 4203 |
ExternalDocumentID | 10_1016_j_biomaterials_2014_01_054 24524838 S0142961214000842 1_s2_0_S0142961214000842 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYOK ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ACDAQ ACGFS ACIUM ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AEVXI AEZYN AFCTW AFFNX AFJKZ AFKWA AFRHN AFRZQ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AJUYK AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- AAIAV ABYKQ AJBFU DOVZS EFLBG CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c608t-8a535383e8be539ff1d48402e619f45cd41b590ee4555c6ccbbdb8af5cf227883 |
IEDL.DBID | AIKHN |
ISSN | 0142-9612 |
IngestDate | Tue Sep 17 21:17:01 EDT 2024 Thu Sep 26 18:41:14 EDT 2024 Sat Nov 02 12:26:33 EDT 2024 Fri Feb 23 02:31:39 EST 2024 Tue Oct 15 22:54:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Transmissible gastroenteritis virus Silver nanomaterials Antiviral treatment p38 MAPK signaling pathway |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-8a535383e8be539ff1d48402e619f45cd41b590ee4555c6ccbbdb8af5cf227883 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0002-6027-0315 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7112386 |
PMID | 24524838 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7112386 crossref_primary_10_1016_j_biomaterials_2014_01_054 pubmed_primary_24524838 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2014_01_054 elsevier_clinicalkeyesjournals_1_s2_0_S0142961214000842 |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biomaterials |
PublicationTitleAlternate | Biomaterials |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Wang, Chen (bib2) 2013; 25 Lakhani, Masud, Kuida, Porter, Booth, Mehal (bib42) 2006; 311 Gebauer, Posthumus, Correa, Sae, Smerdou, Sanchez (bib44) 1991; 183 Mehrbod, Motamed, Tabatabaian, Estyar, Amini, Shahidi (bib16) 2009; 17 Sondi, Salopek-Sondi (bib4) 2004; 275 Clerk, Sugden (bib41) 1998; 426 Li, Chen (bib3) 2011; 7 Sun, Singh, Vig, Pillai, Singh (bib7) 2008; 4 Zhao, Zhu, Zhu, Li, Tao, Lv (bib12) 2013; 32 Burda, Chen, Narayanan, El-Sayed (bib31) 2005; 105 Qu, Li, Zhou, Liu, Zhang, Wang (bib32) 2011; 11 Miyashita, Krajewski, Krajewska, Wang, Lin, Liebermann (bib39) 1994; 9 Baba, Yanagida, Kanzaki, Baba (bib24) 2005; 16 Huang, Ding, Li, Dai, Zhao, Li (bib40) 2013; 94 Ren, Meng, Yin, Li, Li, Wang (bib13) 2011 Wang, Nie, Wang, Li, Ge, Zhang (bib33) 2013; 9 Elechiguerra, Burt, Morones, Camacho-Bragado, Gao, Lara (bib6) 2005; 3 Rogers, Parkinson, Choi, Speshock, Hussain (bib9) 2008; 3 Lee, Spielmann, Bork, Thévenod (bib29) 2005; 289 Enjuanes, Suñé, Gebauer, Smerdou, Camacho, Antón (bib43) 1992; 33 Schwegmann-Wessels, Zimmer, Schröder, Breves, Herrler (bib45) 2003; 77 Wright, Lam, Hansen, Burrell (bib5) 1999; 27 Lu, Sun, Chen, Hui, Ho, Luk (bib10) 2008; 13 Shimizu, Narita, Tsujimoto (bib38) 1999; 399 Sui, Yin, Ren (bib23) 2010; 85 Baram-Pinto, Shukla, Perkas, Gedanken, Sarid (bib15) 2009; 20 Filipe, Hawe, Jiskoot (bib30) 2010; 27 van Engeland, Ramaekers, Schutte, Reutelingsperger (bib28) 1996; 24 Penzes, González, Calvo, Izeta, Smerdou, Méndez (bib34) 2001; 23 Eleouet, Chilmonczyk, Besnardeau, Laude (bib19) 1998; 72 Meng, Ren, Suo, Sun, Li, Li (bib46) 2013 Liu, Li, Lao, Liu, Wang, Bai (bib27) 2011; 32 Nam, Thaxton, Mirkin (bib1) 2003; 301 Vaux, Strasser (bib36) 1996; 93 Jiang, Foldbjerg, Miclaus, Wang, Singh, Hayashi (bib35) 2013; 222 Everett, McFadden (bib17) 1999; 7 Ding, Xu, Huang, Li, Zhang, Chen (bib21) 2012; 158 Denizot, Lang (bib22) 1986; 89 Ren, Glende, Yin, Schwegmann-Wessels, Herrler (bib11) 2008; 137 Eléouët, Slee, Saurini, Castagné, Poncet, Garrido (bib20) 2000; 74 Müller, Chávez, Reginatto, Zucolotto, Niero, Navarro (bib25) 2007; 21 Zou, Zarlenga, Sestak, Suo, Ren (bib14) 2013; 99 Lee, Kleiboeker (bib18) 2007; 365 Green, Kroemer (bib37) 2004; 305 Xiang, Chen, Pang, Zheng (bib8) 2011; 178 Li, Liu, Fu, Wei, Le Guyader, Gao (bib26) 2012; 33 Delmas, Gelfi, L'Haridon, Vogel, Sjöström, Norén (bib47) 1992; 357 Sui (10.1016/j.biomaterials.2014.01.054_bib23) 2010; 85 Ding (10.1016/j.biomaterials.2014.01.054_bib21) 2012; 158 Lakhani (10.1016/j.biomaterials.2014.01.054_bib42) 2006; 311 Green (10.1016/j.biomaterials.2014.01.054_bib37) 2004; 305 Qu (10.1016/j.biomaterials.2014.01.054_bib32) 2011; 11 Penzes (10.1016/j.biomaterials.2014.01.054_bib34) 2001; 23 Huang (10.1016/j.biomaterials.2014.01.054_bib40) 2013; 94 Ren (10.1016/j.biomaterials.2014.01.054_bib13) 2011 Mehrbod (10.1016/j.biomaterials.2014.01.054_bib16) 2009; 17 Müller (10.1016/j.biomaterials.2014.01.054_bib25) 2007; 21 Shimizu (10.1016/j.biomaterials.2014.01.054_bib38) 1999; 399 Wright (10.1016/j.biomaterials.2014.01.054_bib5) 1999; 27 Lu (10.1016/j.biomaterials.2014.01.054_bib10) 2008; 13 Delmas (10.1016/j.biomaterials.2014.01.054_bib47) 1992; 357 Vaux (10.1016/j.biomaterials.2014.01.054_bib36) 1996; 93 Filipe (10.1016/j.biomaterials.2014.01.054_bib30) 2010; 27 Lee (10.1016/j.biomaterials.2014.01.054_bib29) 2005; 289 Elechiguerra (10.1016/j.biomaterials.2014.01.054_bib6) 2005; 3 Everett (10.1016/j.biomaterials.2014.01.054_bib17) 1999; 7 Clerk (10.1016/j.biomaterials.2014.01.054_bib41) 1998; 426 Sun (10.1016/j.biomaterials.2014.01.054_bib7) 2008; 4 Baram-Pinto (10.1016/j.biomaterials.2014.01.054_bib15) 2009; 20 Sondi (10.1016/j.biomaterials.2014.01.054_bib4) 2004; 275 Eleouet (10.1016/j.biomaterials.2014.01.054_bib19) 1998; 72 Gebauer (10.1016/j.biomaterials.2014.01.054_bib44) 1991; 183 van Engeland (10.1016/j.biomaterials.2014.01.054_bib28) 1996; 24 Zou (10.1016/j.biomaterials.2014.01.054_bib14) 2013; 99 Rogers (10.1016/j.biomaterials.2014.01.054_bib9) 2008; 3 Wang (10.1016/j.biomaterials.2014.01.054_bib33) 2013; 9 Meng (10.1016/j.biomaterials.2014.01.054_bib46) 2013 Miyashita (10.1016/j.biomaterials.2014.01.054_bib39) 1994; 9 Liu (10.1016/j.biomaterials.2014.01.054_bib27) 2011; 32 Burda (10.1016/j.biomaterials.2014.01.054_bib31) 2005; 105 Xiang (10.1016/j.biomaterials.2014.01.054_bib8) 2011; 178 Lee (10.1016/j.biomaterials.2014.01.054_bib18) 2007; 365 Baba (10.1016/j.biomaterials.2014.01.054_bib24) 2005; 16 Li (10.1016/j.biomaterials.2014.01.054_bib3) 2011; 7 Ren (10.1016/j.biomaterials.2014.01.054_bib11) 2008; 137 Eléouët (10.1016/j.biomaterials.2014.01.054_bib20) 2000; 74 Li (10.1016/j.biomaterials.2014.01.054_bib26) 2012; 33 Zhao (10.1016/j.biomaterials.2014.01.054_bib12) 2013; 32 Jiang (10.1016/j.biomaterials.2014.01.054_bib35) 2013; 222 Zhang (10.1016/j.biomaterials.2014.01.054_bib2) 2013; 25 Schwegmann-Wessels (10.1016/j.biomaterials.2014.01.054_bib45) 2003; 77 Denizot (10.1016/j.biomaterials.2014.01.054_bib22) 1986; 89 Enjuanes (10.1016/j.biomaterials.2014.01.054_bib43) 1992; 33 Nam (10.1016/j.biomaterials.2014.01.054_bib1) 2003; 301 |
References_xml | – volume: 365 start-page: 419 year: 2007 end-page: 434 ident: bib18 article-title: Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway publication-title: Virology contributor: fullname: Kleiboeker – volume: 9 start-page: 1799 year: 2013 end-page: 1811 ident: bib33 article-title: Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway publication-title: Small contributor: fullname: Zhang – volume: 3 start-page: 1 year: 2005 end-page: 10 ident: bib6 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J Nanobiotechnol contributor: fullname: Lara – volume: 301 start-page: 1884 year: 2003 end-page: 1886 ident: bib1 article-title: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins publication-title: Science contributor: fullname: Mirkin – volume: 222 start-page: 55 year: 2013 end-page: 63 ident: bib35 article-title: Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1 publication-title: Toxicol Lett contributor: fullname: Hayashi – volume: 3 start-page: 129 year: 2008 end-page: 133 ident: bib9 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res Lett contributor: fullname: Hussain – volume: 11 start-page: 3174 year: 2011 end-page: 3183 ident: bib32 article-title: Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism publication-title: Nano Lett contributor: fullname: Wang – volume: 426 start-page: 93 year: 1998 end-page: 96 ident: bib41 article-title: The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs) publication-title: FEBS Lett contributor: fullname: Sugden – volume: 399 start-page: 483 year: 1999 end-page: 487 ident: bib38 article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC publication-title: Nature contributor: fullname: Tsujimoto – volume: 105 start-page: 1025 year: 2005 end-page: 1102 ident: bib31 article-title: Chemistry and properties of nanocrystals of different shapes publication-title: Chem Rev contributor: fullname: El-Sayed – volume: 7 start-page: 2965 year: 2011 end-page: 2980 ident: bib3 article-title: Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications publication-title: Small contributor: fullname: Chen – volume: 16 start-page: 33 year: 2005 end-page: 39 ident: bib24 article-title: Colorimetric lactate dehydrogenase (LDH) assay for evaluation of antiviral activity against bovine viral diarrhoea virus (BVDV) in vitro publication-title: Antivir Chem Chemother contributor: fullname: Baba – volume: 25 start-page: 3869 year: 2013 end-page: 3880 ident: bib2 article-title: Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging publication-title: Adv Mater contributor: fullname: Chen – volume: 13 start-page: 253 year: 2008 end-page: 262 ident: bib10 article-title: Silver nanoparticles inhibit hepatitis B virus replication publication-title: Antivir Ther contributor: fullname: Luk – volume: 17 start-page: 88 year: 2009 end-page: 93 ident: bib16 article-title: antiviral effect of “nanosilver” on influenza virus publication-title: J Pharm Sci contributor: fullname: Shahidi – volume: 9 start-page: 1799 year: 1994 end-page: 1805 ident: bib39 article-title: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo publication-title: Oncogene contributor: fullname: Liebermann – volume: 94 start-page: 1807 year: 2013 end-page: 1817 ident: bib40 article-title: Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signaling publication-title: J Gen Virol contributor: fullname: Li – volume: 20 start-page: 1497 year: 2009 end-page: 1502 ident: bib15 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate publication-title: Bioconjug Chem contributor: fullname: Sarid – volume: 21 start-page: 970 year: 2007 end-page: 974 ident: bib25 article-title: Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus publication-title: Phytother Res contributor: fullname: Navarro – volume: 33 start-page: 402 year: 2012 end-page: 411 ident: bib26 article-title: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways publication-title: Biomaterials contributor: fullname: Gao – volume: 23 start-page: 105 year: 2001 end-page: 118 ident: bib34 article-title: Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster publication-title: Virus Genes contributor: fullname: Méndez – volume: 27 start-page: 344 year: 1999 end-page: 350 ident: bib5 article-title: Efficacy of topical silver against fungal burn wound pathogens publication-title: Am J Infect Control contributor: fullname: Burrell – volume: 85 start-page: 346 year: 2010 end-page: 353 ident: bib23 article-title: Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus publication-title: Antivir Res contributor: fullname: Ren – volume: 33 start-page: 249 year: 1992 end-page: 262 ident: bib43 article-title: Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus publication-title: Vet Microbiol contributor: fullname: Antón – volume: 311 start-page: 847 year: 2006 end-page: 851 ident: bib42 article-title: Caspases 3 and 7: key mediators of mitochondrial events of apoptosis publication-title: Science contributor: fullname: Mehal – volume: 4 start-page: 149 year: 2008 end-page: 158 ident: bib7 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J Biomed Nanotechnol contributor: fullname: Singh – volume: 137 start-page: 220 year: 2008 end-page: 224 ident: bib11 article-title: Importance of cholesterol for infection of cells by transmissible gastroenteritis virus publication-title: Virus Res contributor: fullname: Herrler – volume: 93 start-page: 2239 year: 1996 end-page: 2244 ident: bib36 article-title: The molecular biology of apoptosis publication-title: Proc Natl Acad Sci U S A contributor: fullname: Strasser – volume: 72 start-page: 4918 year: 1998 end-page: 4924 ident: bib19 article-title: Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway publication-title: J Virol contributor: fullname: Laude – volume: 77 start-page: 11846 year: 2003 end-page: 11848 ident: bib45 article-title: Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins publication-title: J Virol contributor: fullname: Herrler – volume: 32 start-page: 8291 year: 2011 end-page: 8303 ident: bib27 article-title: Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes publication-title: Biomaterials contributor: fullname: Bai – volume: 305 start-page: 626 year: 2004 end-page: 629 ident: bib37 article-title: The pathophysiology of mitochondrial cell death publication-title: Science contributor: fullname: Kroemer – volume: 7 start-page: 160 year: 1999 end-page: 165 ident: bib17 article-title: Apoptosis: an innate immune response to virus infection publication-title: Trends Microbiol contributor: fullname: McFadden – volume: 183 start-page: 225 year: 1991 end-page: 238 ident: bib44 article-title: Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein publication-title: Virology contributor: fullname: Sanchez – volume: 158 start-page: 12 year: 2012 end-page: 22 ident: bib21 article-title: Transmissible gastroenteritis virus infection induces apoptosis through FasL-and mitochondria-mediated pathways publication-title: Vet Microbiol contributor: fullname: Chen – volume: 275 start-page: 177 year: 2004 end-page: 182 ident: bib4 article-title: Silver nanoparticles as antimicrobial agent: a case study on publication-title: J Colloid Interface Sci contributor: fullname: Salopek-Sondi – year: 2013 ident: bib46 article-title: Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing spike genes from porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus publication-title: PloS One contributor: fullname: Li – volume: 89 start-page: 271 year: 1986 end-page: 277 ident: bib22 article-title: Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability publication-title: J Immunol Methods contributor: fullname: Lang – volume: 27 start-page: 796 year: 2010 end-page: 810 ident: bib30 article-title: Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates publication-title: Pharm Res contributor: fullname: Jiskoot – volume: 74 start-page: 3975 year: 2000 end-page: 3983 ident: bib20 article-title: The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis publication-title: J Virol contributor: fullname: Garrido – year: 2011 ident: bib13 article-title: Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus publication-title: PloS One contributor: fullname: Wang – volume: 99 start-page: 383 year: 2013 end-page: 390 ident: bib14 article-title: Transmissible gastroenteritis Virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential publication-title: Virus Res contributor: fullname: Ren – volume: 357 start-page: 417 year: 1992 end-page: 420 ident: bib47 article-title: Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV publication-title: Nature contributor: fullname: Norén – volume: 24 start-page: 131 year: 1996 end-page: 139 ident: bib28 article-title: A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture publication-title: Cytometry contributor: fullname: Reutelingsperger – volume: 289 start-page: C656 year: 2005 end-page: C664 ident: bib29 article-title: Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force publication-title: Am J Physiol Cell Physiol contributor: fullname: Thévenod – volume: 178 start-page: 137 year: 2011 end-page: 142 ident: bib8 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus publication-title: J Virol Methods contributor: fullname: Zheng – volume: 32 start-page: 50 year: 2013 end-page: 54 ident: bib12 article-title: A monoclonal antibody against transmissible gastroenteritis virus generated via immunization of a DNA plasmid bearing TGEV S1 gene publication-title: Monoclon Antib Inimmunodiagn Immunother contributor: fullname: Lv – volume: 94 start-page: 1807 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib40 article-title: Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signaling publication-title: J Gen Virol doi: 10.1099/vir.0.051557-0 contributor: fullname: Huang – volume: 33 start-page: 249 year: 1992 ident: 10.1016/j.biomaterials.2014.01.054_bib43 article-title: Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus publication-title: Vet Microbiol doi: 10.1016/0378-1135(92)90053-V contributor: fullname: Enjuanes – volume: 365 start-page: 419 year: 2007 ident: 10.1016/j.biomaterials.2014.01.054_bib18 article-title: Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway publication-title: Virology doi: 10.1016/j.virol.2007.04.001 contributor: fullname: Lee – volume: 9 start-page: 1799 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib33 article-title: Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway publication-title: Small doi: 10.1002/smll.201300607 contributor: fullname: Wang – volume: 178 start-page: 137 year: 2011 ident: 10.1016/j.biomaterials.2014.01.054_bib8 article-title: Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro publication-title: J Virol Methods doi: 10.1016/j.jviromet.2011.09.003 contributor: fullname: Xiang – year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib46 article-title: Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing spike genes from porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus publication-title: PloS One doi: 10.1371/journal.pone.0057468 contributor: fullname: Meng – volume: 311 start-page: 847 year: 2006 ident: 10.1016/j.biomaterials.2014.01.054_bib42 article-title: Caspases 3 and 7: key mediators of mitochondrial events of apoptosis publication-title: Science doi: 10.1126/science.1115035 contributor: fullname: Lakhani – year: 2011 ident: 10.1016/j.biomaterials.2014.01.054_bib13 article-title: Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus publication-title: PloS One doi: 10.1371/journal.pone.0018669 contributor: fullname: Ren – volume: 33 start-page: 402 year: 2012 ident: 10.1016/j.biomaterials.2014.01.054_bib26 article-title: The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.091 contributor: fullname: Li – volume: 17 start-page: 88 year: 2009 ident: 10.1016/j.biomaterials.2014.01.054_bib16 article-title: In vitro antiviral effect of “nanosilver” on influenza virus publication-title: J Pharm Sci contributor: fullname: Mehrbod – volume: 222 start-page: 55 issue: 1 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib35 article-title: Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2013.07.011 contributor: fullname: Jiang – volume: 16 start-page: 33 year: 2005 ident: 10.1016/j.biomaterials.2014.01.054_bib24 article-title: Colorimetric lactate dehydrogenase (LDH) assay for evaluation of antiviral activity against bovine viral diarrhoea virus (BVDV) in vitro publication-title: Antivir Chem Chemother doi: 10.1177/095632020501600104 contributor: fullname: Baba – volume: 9 start-page: 1799 year: 1994 ident: 10.1016/j.biomaterials.2014.01.054_bib39 article-title: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo publication-title: Oncogene contributor: fullname: Miyashita – volume: 21 start-page: 970 year: 2007 ident: 10.1016/j.biomaterials.2014.01.054_bib25 article-title: Evaluation of antiviral activity of South American plant extracts against herpes simplex virus type 1 and rabies virus publication-title: Phytother Res doi: 10.1002/ptr.2198 contributor: fullname: Müller – volume: 32 start-page: 8291 year: 2011 ident: 10.1016/j.biomaterials.2014.01.054_bib27 article-title: Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.037 contributor: fullname: Liu – volume: 183 start-page: 225 year: 1991 ident: 10.1016/j.biomaterials.2014.01.054_bib44 article-title: Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein publication-title: Virology doi: 10.1016/0042-6822(91)90135-X contributor: fullname: Gebauer – volume: 275 start-page: 177 year: 2004 ident: 10.1016/j.biomaterials.2014.01.054_bib4 article-title: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2004.02.012 contributor: fullname: Sondi – volume: 105 start-page: 1025 year: 2005 ident: 10.1016/j.biomaterials.2014.01.054_bib31 article-title: Chemistry and properties of nanocrystals of different shapes publication-title: Chem Rev doi: 10.1021/cr030063a contributor: fullname: Burda – volume: 74 start-page: 3975 year: 2000 ident: 10.1016/j.biomaterials.2014.01.054_bib20 article-title: The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis publication-title: J Virol doi: 10.1128/JVI.74.9.3975-3983.2000 contributor: fullname: Eléouët – volume: 289 start-page: C656 year: 2005 ident: 10.1016/j.biomaterials.2014.01.054_bib29 article-title: Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00049.2005 contributor: fullname: Lee – volume: 23 start-page: 105 year: 2001 ident: 10.1016/j.biomaterials.2014.01.054_bib34 article-title: Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster publication-title: Virus Genes doi: 10.1023/A:1011147832586 contributor: fullname: Penzes – volume: 93 start-page: 2239 year: 1996 ident: 10.1016/j.biomaterials.2014.01.054_bib36 article-title: The molecular biology of apoptosis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.6.2239 contributor: fullname: Vaux – volume: 25 start-page: 3869 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib2 article-title: Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging publication-title: Adv Mater doi: 10.1002/adma.201301890 contributor: fullname: Zhang – volume: 158 start-page: 12 year: 2012 ident: 10.1016/j.biomaterials.2014.01.054_bib21 article-title: Transmissible gastroenteritis virus infection induces apoptosis through FasL-and mitochondria-mediated pathways publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2012.01.017 contributor: fullname: Ding – volume: 27 start-page: 796 year: 2010 ident: 10.1016/j.biomaterials.2014.01.054_bib30 article-title: Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates publication-title: Pharm Res doi: 10.1007/s11095-010-0073-2 contributor: fullname: Filipe – volume: 77 start-page: 11846 year: 2003 ident: 10.1016/j.biomaterials.2014.01.054_bib45 article-title: Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins publication-title: J Virol doi: 10.1128/JVI.77.21.11846-11848.2003 contributor: fullname: Schwegmann-Wessels – volume: 3 start-page: 129 year: 2008 ident: 10.1016/j.biomaterials.2014.01.054_bib9 article-title: A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation publication-title: Nanoscale Res Lett doi: 10.1007/s11671-008-9128-2 contributor: fullname: Rogers – volume: 357 start-page: 417 year: 1992 ident: 10.1016/j.biomaterials.2014.01.054_bib47 article-title: Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV publication-title: Nature doi: 10.1038/357417a0 contributor: fullname: Delmas – volume: 13 start-page: 253 year: 2008 ident: 10.1016/j.biomaterials.2014.01.054_bib10 article-title: Silver nanoparticles inhibit hepatitis B virus replication publication-title: Antivir Ther doi: 10.1177/135965350801300210 contributor: fullname: Lu – volume: 89 start-page: 271 year: 1986 ident: 10.1016/j.biomaterials.2014.01.054_bib22 article-title: Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability publication-title: J Immunol Methods doi: 10.1016/0022-1759(86)90368-6 contributor: fullname: Denizot – volume: 11 start-page: 3174 year: 2011 ident: 10.1016/j.biomaterials.2014.01.054_bib32 article-title: Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism publication-title: Nano Lett doi: 10.1021/nl201391e contributor: fullname: Qu – volume: 426 start-page: 93 year: 1998 ident: 10.1016/j.biomaterials.2014.01.054_bib41 article-title: The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs) publication-title: FEBS Lett doi: 10.1016/S0014-5793(98)00324-X contributor: fullname: Clerk – volume: 85 start-page: 346 year: 2010 ident: 10.1016/j.biomaterials.2014.01.054_bib23 article-title: Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus publication-title: Antivir Res doi: 10.1016/j.antiviral.2009.10.014 contributor: fullname: Sui – volume: 399 start-page: 483 year: 1999 ident: 10.1016/j.biomaterials.2014.01.054_bib38 article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC publication-title: Nature doi: 10.1038/20959 contributor: fullname: Shimizu – volume: 137 start-page: 220 year: 2008 ident: 10.1016/j.biomaterials.2014.01.054_bib11 article-title: Importance of cholesterol for infection of cells by transmissible gastroenteritis virus publication-title: Virus Res doi: 10.1016/j.virusres.2008.07.023 contributor: fullname: Ren – volume: 20 start-page: 1497 year: 2009 ident: 10.1016/j.biomaterials.2014.01.054_bib15 article-title: Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate publication-title: Bioconjug Chem doi: 10.1021/bc900215b contributor: fullname: Baram-Pinto – volume: 7 start-page: 160 year: 1999 ident: 10.1016/j.biomaterials.2014.01.054_bib17 article-title: Apoptosis: an innate immune response to virus infection publication-title: Trends Microbiol doi: 10.1016/S0966-842X(99)01487-0 contributor: fullname: Everett – volume: 99 start-page: 383 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib14 article-title: Transmissible gastroenteritis Virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential publication-title: Virus Res contributor: fullname: Zou – volume: 7 start-page: 2965 year: 2011 ident: 10.1016/j.biomaterials.2014.01.054_bib3 article-title: Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications publication-title: Small doi: 10.1002/smll.201101059 contributor: fullname: Li – volume: 301 start-page: 1884 year: 2003 ident: 10.1016/j.biomaterials.2014.01.054_bib1 article-title: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins publication-title: Science doi: 10.1126/science.1088755 contributor: fullname: Nam – volume: 3 start-page: 1 year: 2005 ident: 10.1016/j.biomaterials.2014.01.054_bib6 article-title: Interaction of silver nanoparticles with HIV-1 publication-title: J Nanobiotechnol contributor: fullname: Elechiguerra – volume: 32 start-page: 50 year: 2013 ident: 10.1016/j.biomaterials.2014.01.054_bib12 article-title: A monoclonal antibody against transmissible gastroenteritis virus generated via immunization of a DNA plasmid bearing TGEV S1 gene publication-title: Monoclon Antib Inimmunodiagn Immunother doi: 10.1089/mab.2012.0067 contributor: fullname: Zhao – volume: 27 start-page: 344 year: 1999 ident: 10.1016/j.biomaterials.2014.01.054_bib5 article-title: Efficacy of topical silver against fungal burn wound pathogens publication-title: Am J Infect Control doi: 10.1016/S0196-6553(99)70055-6 contributor: fullname: Wright – volume: 72 start-page: 4918 year: 1998 ident: 10.1016/j.biomaterials.2014.01.054_bib19 article-title: Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway publication-title: J Virol doi: 10.1128/JVI.72.6.4918-4924.1998 contributor: fullname: Eleouet – volume: 305 start-page: 626 year: 2004 ident: 10.1016/j.biomaterials.2014.01.054_bib37 article-title: The pathophysiology of mitochondrial cell death publication-title: Science doi: 10.1126/science.1099320 contributor: fullname: Green – volume: 24 start-page: 131 year: 1996 ident: 10.1016/j.biomaterials.2014.01.054_bib28 article-title: A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture publication-title: Cytometry doi: 10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M contributor: fullname: van Engeland – volume: 4 start-page: 149 year: 2008 ident: 10.1016/j.biomaterials.2014.01.054_bib7 article-title: Silver nanoparticles inhibit replication of respiratory syncytial virus publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2008.012 contributor: fullname: Sun |
SSID | ssj0014042 |
Score | 2.5183325 |
Snippet | Abstract Coronaviruses belong to the family Coronaviridae , which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts.... Coronaviruses belong to the family Coronaviridae, which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible... Coronaviruses belong to the family Coronaviridae , which primarily cause infection of the upper respiratory and gastrointestinal tract of hosts. Transmissible... |
SourceID | pubmedcentral crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4195 |
SubjectTerms | Advanced Basic Science Animals Antiviral Agents - adverse effects Antiviral Agents - chemistry Antiviral Agents - pharmacology Antiviral treatment Cell Line Cell Survival - drug effects Dentistry Flow Cytometry Fluorescent Antibody Technique, Indirect Metal Nanoparticles - chemistry Nanostructures - chemistry p38 MAPK signaling pathway p38 Mitogen-Activated Protein Kinases - metabolism Silver - chemistry Silver nanomaterials Swine Transmissible gastroenteritis virus Transmissible gastroenteritis virus - drug effects Transmissible gastroenteritis virus - pathogenicity |
Title | Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0142961214000842 https://dx.doi.org/10.1016/j.biomaterials.2014.01.054 https://www.ncbi.nlm.nih.gov/pubmed/24524838 https://pubmed.ncbi.nlm.nih.gov/PMC7112386 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1td6WqHBCFtizQlQ-9ho1jO-scOCAEWkDLqUhcKit2bJGq8iISOPLb8eRj2VUPReoxia2MPOMZ2_PmGeBHqjPKqHMRz7SJOHVxlNNCYrqwyO0s0VJgofDiJp3f8qs7cTeAs74WBmGVne9vfXrjrbs30240pw9lOUVYUpIhARbHQMaDHx6FcJTIIYxOL6_nN6tkAo-bO3SwfYQdeu7RBuaFVe553WobkV68YfEU_J9xahNDuRaULnZgu1tNktNW4M8wsH4XttY4Bnfh46LLnu_Br0t_X-oS0-qkxXGQpSNVieBo4nP_JiJZelJjFAtWEObMH0uey8enKgob-GAKBcHSEIJn_qQHc_nqC9xenP88m0fd9QqRSWNZRzIXLLg7ZqW2gmXO0YKH7V5iw57KcWEKTrXIYmu5EMKkxmhdaJk7YRzWz0r2FYZ-6e0-kFmCxPWcFZlh3FqqGdNZbiizaewSq8fA-sFUDy2LhurhZb_VugoUqkDFVAUVjGHWj7vq60SDZ7NVN80qRVWVqFj9ZQpjOFn13LAmFQLFu_78rdXuSlpMUHPJZJBpQ--rBkjTvfnFl_cNXfcsLGmZTA_-U6ZD-IRPLWroCIb145P9HhZEtZ7Ah-MXOunM_hWGDw87 |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6tQIL2gHi1XUqLD1yjjWM76xx6WCHQbmH3BBIXZMWOLVJVXkRCf389eWx3xQGkXuNYGXnGM-PMN58BzlOdUUadi3imTcSpi6OcFhLLhUVux4mWAhuF54t0esd_3ov7AVz0vTAIq-x8f-vTG2_dPRl1qzl6KssRwpKSDAmwOAYyHvzwdsgGsrA7tyez6-liVUzgcXOHDr4f4YSee7SBeWGXe1632kakF29YPAV_M05tYijXgtLVPux12SSZtAIfwMD6Q_i4xjF4CDvzrnp-BA8z_1jqEsvqpMVxkKUjVYngaOJz_09EsvSkxigWrCDsmd-W_CmfX6ooHOCDKRQEW0MI_vMnPZjLV8dwd3V5ezGNuusVIpPGso5kLlhwd8xKbQXLnKMFD8e9xIYzlePCFJxqkcXWciGESY3RutAyd8I47J-V7BNs-aW3X4CMEySu56zIDOPWUs2YznJDmU1jl1g9BNYvpnpqWTRUDy_7pdZVoFAFKqYqqGAI437dVd8nGjybrbptVimqqkTF6pUpDOHHauaGNakQKN715c-tdlfSYoGaSyaDTBt6X72ANN2bI758bOi6xyGlZTI9-U-ZzmB3eju_UTezxfVX-IAjLYLoFLbq5xf7LSRHtf7eGf9fEs8RLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibitory+effect+of+silver+nanomaterials+on+transmissible+virus-induced+host+cell+infections&rft.jtitle=Biomaterials&rft.au=Lv%2C+Xiaonan&rft.au=Wang%2C+Peng&rft.au=Bai%2C+Ru&rft.au=Cong%2C+Yingying&rft.date=2014-04-01&rft.eissn=1878-5905&rft.volume=35&rft.issue=13&rft.spage=4195&rft_id=info:doi/10.1016%2Fj.biomaterials.2014.01.054&rft_id=info%3Apmid%2F24524838&rft.externalDocID=24524838 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961214X00062%2Fcov150h.gif |