Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium
Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH...
Saved in:
Published in | Journal of Applied Glycoscience Vol. 67; no. 3; pp. 79 - 86 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tsukuba
The Japanese Society of Applied Glycoscience
03.09.2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase PcCel6A from the fungus Phanerochaete chrysosporium, and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris. Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of PcCel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds. |
---|---|
AbstractList | Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase PcCel6A from the fungus Phanerochaete chrysosporium, and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris. Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of PcCel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds. Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds. |
Author | Samejima, Masahiro Tachioka, Mikako Sunagawa, Naoki Igarashi, Kiyohiko Yamaguchi, Sora |
Author_xml | – sequence: 1 orcidid: 0000-0001-5152-7177 fullname: Yamaguchi, Sora organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 2 orcidid: 0000-0001-5152-7177 fullname: Sunagawa, Naoki organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 3 orcidid: 0000-0001-5152-7177 fullname: Tachioka, Mikako organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 4 orcidid: 0000-0001-5152-7177 fullname: Igarashi, Kiyohiko organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 5 fullname: Samejima, Masahiro organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo |
BookMark | eNplUU1v1DAUtFAR_YCfgGSJC5cUf8e5IJUV3QJFcChny3FeNl4l8WInlfLv8XarSMDh2c96M6M3nkt0NoYREHpLybUUUn_Y2931sb7ebAtGGDGEEPECXVCtSVGyip7lngtRlFqzc3SZ0j4DFNXqFTrngmcRzi_Q8tBBHEKabN0D_j5PdpwSDi3e9osLyTeA75Ymht4mwLd28P2CFd5A34fah24dtTEMeOoAf7KZ5MOwOJgA_-zsCDG4zh5frotLCukQop-H1-hla_sEb57vK_Tr9vPD5q64_7H9srm5L5wieiokbaWsmFSkEkxUUnPbEm1BOtXUjWJVNgVtSytqZVsS6WjJgNqmtpKVqmr4Ffp40j3M9QCNg3GKtjeH6AcbFxOsN39PRt-ZXXg0mnJGSpEF3j8LxPB7hjSZwSeXfyBbC3MyLO8nmCwJy9B3_0D3YY5jtmeY4BVXmimdUfKEcjGkFKFdl6HEHMM1OdinyuGaNdzM-3bi7XNcO1hZNk7e9fDEUKXhx-M_9orKWUQDI_8D8me3rA |
CitedBy_id | crossref_primary_10_5458_jag_jag_JAG_2023_0018 crossref_primary_10_5458_jag_jag_JAG_2023_0017 crossref_primary_10_3390_microorganisms12020346 crossref_primary_10_1186_s13568_021_01311_8 crossref_primary_10_5458_jag_jag_JAG_2023_0011 crossref_primary_10_1093_protein_gzad002 crossref_primary_10_5458_bag_12_4_209 |
ContentType | Journal Article |
Copyright | 2020 by The Japanese Society of Applied Glycoscience 2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by The Japanese Society of Applied Glycoscience – notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.5458/jag.jag.JAG-2020_0004 |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1880-7291 |
EndPage | 86 |
ExternalDocumentID | 10_5458_jag_jag_JAG_2020_0004 article_jag_67_3_67_jag_JAG_2020_0004_article_char_en |
GroupedDBID | 2WC ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS DU5 JSF JSH KQ8 OK1 RJT RPM RZJ AAYXX CITATION PGMZT 7QO 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c608t-51f559256094249583af08ae5c6dbd629046eff191a5f705c172e1adba52769d3 |
IEDL.DBID | RPM |
ISSN | 1344-7882 |
IngestDate | Tue Sep 17 21:11:16 EDT 2024 Fri Aug 16 00:43:19 EDT 2024 Thu Oct 10 21:52:59 EDT 2024 Fri Aug 23 01:31:50 EDT 2024 Wed Apr 05 11:33:06 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open-access paper distributed under the terms of the Creative Commons Attribution Non-Commercial (by-nc) License (CC-BY-NC4.0: https://creativecommons.org/licenses/by-nc/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-51f559256094249583af08ae5c6dbd629046eff191a5f705c172e1adba52769d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5152-7177 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132074/ |
PMID | 34354533 |
PQID | 2439368268 |
PQPubID | 2048451 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8132074 proquest_miscellaneous_2559425702 proquest_journals_2439368268 crossref_primary_10_5458_jag_jag_JAG_2020_0004 jstage_primary_article_jag_67_3_67_jag_JAG_2020_0004_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 20200903 |
PublicationDateYYYYMMDD | 2020-09-03 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200903 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Tsukuba |
PublicationPlace_xml | – name: Tsukuba – name: Tokyo, JAPAN |
PublicationTitle | Journal of Applied Glycoscience |
PublicationTitleAlternate | J. Appl. Glycosci. |
PublicationYear | 2020 |
Publisher | The Japanese Society of Applied Glycoscience Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society of Applied Glycoscience – name: Japan Science and Technology Agency |
References | 9) M. Tachioka, N. Sugimoto, A. Nakamura, N. Sunagawa, T. Ishida, T. Uchiyama, K. Igarashi, and M. Samejima: Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnol. Biofuels, 9, 1–10 (2016). 2) V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho, and B. Henrissat: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 42, 490–495 (2014). 4) I. Wu and F.H. Arnold: Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol. Bioeng., 110, 1874–1883 (2013). 14) M. Tachioka, A. Nakamura, T. Ishida, K. Igarashi, and M. Samejima: Crystal structure of a family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol. Commun., 73, 398–403 (2017). 19) A. Koivula, T. Kinnari, V. Harjunpää, L. Ruohonen, A. Teleman, T. Drakenberg, J. Rouvinen, T.A. Jones, and T.T. Teeri: Tryptophan 272: An essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett., 429, 341–346 (1998). 13) M. Wada, H. Chanzy, Y. Nishiyama, and P. Langan: Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules, 37, 8548–8555 (2004). 7) S. Macauley-Patrick, M.L. Fazenda, B. McNeil, and L.M. Harvey: Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270 (2005). 20) V. Gupta and K.S. Carroll: Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta - Gen. Subj., 1840, 847–875 (2014). 1) S.P. Voutilainen, T. Puranen, M. Siika-Aho, A. Lappalainen, M. Alapuranen, J. Kallio, S. Hooman, L. Viikri, J. Vehmaanperä, and A. Koivula: Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng., 101, 515–528 (2008). 3) K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttilä, T. Ando, and M. Samejima: Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279–1282 (2011). 15) Y. Ito, A. Ikeuchi, and C. Imamura: Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library. Protein Eng. Des. Sel., 26, 73–79 (2013). 22) L.A. Kelley, S. Mezulis, C.A.M. Yates, M.A.N. Wass, and M.J.E. Sternberg: The Phyre2 web portal protein modeling, prediction and analysis. Nat. Protoc., 10, 845–858 (2015). 6) Y.P. Zhang, M.E. Himmel, and J.R. Mielenz: Outlook for cellulase improvement : Screening and selection strategies. Biotechnol. Adv., 24, 452–481 (2006). 5) X.J. Wang, Y.J. Peng, L.Q. Zhang, A.N. Li, and D.C. Li: Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl. Microbiol. Biotechnol., 95, 1469–1478 (2012). 8) K. Igarashi, M. Maruyama, A. Nakamura, T. Ishida, M. Wada, and M. Samejima: Degradation of crystalline celluloses by Phanerochaete chrysosporium cellobiohydrolase II (Cel6A) heterologously expressed in methylotrophic yeast Pichia pastoris. J. Appl. Glycosci., 59, 105–110 (2012). 12) A. Nakamura, H. Watanabe, T. Ishida, T. Uchihashi, M. Wada, T. Ando, K. Igarashi, and M. Samejima: Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J. Am. Chem. Soc., 136, 4584–4592 (2014). 11) I. Wu, T. Heel, and F.H. Arnold: Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases. BBA - Proteins Proteomics, 1834, 1539–1544 (2013). 16) C. Steentoft, Y. Vakhrushev, H.J. Joshi, Y. Kong, M.B. Vester-christensen, K.T. Schjoldager, K. Lavrsen, S. Dabelsteen, N.B. Pedersen, L. Marcos-silva, R. Gupta, E.P. Bennett, U. Mandel, S. Brunak, H.H. Wandall, S.B. Levery, and H. Clausen: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J., 32, 1478–1488 (2013). 10) P. Heinzelman, C.D. Snow, M.A. Smith, X. Yu, A. Kannan, K. Boulware, A. Villalobos, S. Govindarajan, J. Minshull, and F. H. Arnold: SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J. Biol. Chem., 284, 26229–26233 (2009). 17) J.G. Duman, R.G. Miele, H. Liang, D.K. Grella, K.L. Sim, F.J. Castellino, and R.K. Bretthauer: O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol. Appl. Biochem., 28, 39–45 (1998). 21) J.V. Vermaas, R. Kont, G.T. Beckham, M.F. Crowley, M. Gudmundsson, M. Sandgren, J. Ståhlberg, P. Väljamäe, and B.C. Knott: The dissociation mechanism of processive cellulases. Proc. Natl. Acad. Sci. USA, 116, 23061–23067 (2019). 18) C.M. Payne, Y.J. Bomble, C.B. Taylor, C. McCabe, M.E. Himmel, M.F. Crowley, and G. T. Beckham: Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J. Biol. Chem., 286, 41028–41035 (2011). 11 22 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – ident: 2 – ident: 17 – ident: 3 – ident: 18 – ident: 5 – ident: 4 – ident: 1 – ident: 12 – ident: 11 – ident: 10 – ident: 19 – ident: 13 – ident: 16 – ident: 14 – ident: 15 – ident: 6 – ident: 9 – ident: 7 – ident: 8 – ident: 21 – ident: 20 – ident: 22 |
SSID | ssj0046186 |
Score | 2.2242205 |
Snippet | Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource.... |
SourceID | pubmedcentral proquest crossref jstage |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 79 |
SubjectTerms | Biodegradation Biomass Carbohydrates Cellobiohydrolase Cellulase Deactivation Disulfide bonds enzymatic saccharification Enzymes Fungi Glycosidases Glycoside hydrolase Glycosides Hydrolase Inactivation Mutants Phanerochaete chrysosporium protein engineering Random mutagenesis Regular Paper Renewable resources Thermal stability Yeasts |
Title | Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium |
URI | https://www.jstage.jst.go.jp/article/jag/67/3/67_jag.JAG-2020_0004/_article/-char/en https://www.proquest.com/docview/2439368268 https://search.proquest.com/docview/2559425702 https://pubmed.ncbi.nlm.nih.gov/PMC8132074 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Applied Glycoscience, 2020/09/03, Vol.67(3), pp.79-86 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaigMXBBREoCAjIW7ZTeJHkuOy0K4qLeJApd4i27G7qTZJtY_D_ntmnIeIuHHISivbcuIZT74vngchXxIurUxNGmqDX6skS0MFhjDkcaLAXhotvBPN-qdc3fHbe3F_RsQQC-Od9o2uZs22njXVxvtWPtVmPviJzX-tlxnG_aZ8fk7OQUEHit6ZX44J4D3L4hxd5ZIubAfPh-aP6mGG1-3iBrQjwcSYERbmYYAZuGBs8m569gjw7MFOkOfUb_KvF9H1S_KiR5B00d3pK3Jmm9fkctEAe65P9Cv1Pp3-Y_klwbJ0u7qFKfTW0vURSwbvaevozfZkWqzUSVencgf0dm9pVwODSrrEAxldtZuxCYNQKEBF-k3BoAomMgC2YSrVWKy5pfCf2exO-xZpcnWs35C76x-_l6uwL7YQGhllh1DEDsgFAqCcYz3qjCkXZcoKI0tdyiSHlbXOAb1TwqWRMIB8bKxKrUSSyrxkb8lF0zb2HaEqYi7RWe5gt3Nn8yxWKja5FibKHc9UQGbDMhdPXU6NArgIiqgA8fgLRFSMIgrI904YY_deG3xXmRYMf_4ZNvbCADawAgG5GkRZ9Dt1XySAyJgEkpUF5PPYDHsMD05gEdsj9IGVQdsWJQFJJyow3hBm6Z62gPL6bN29sr7_75EfyHN8JO_Yxq7IxWF3tB8BCR30J6_5fwBC9gvk |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKQYILAgoiUMBIiFtmknhJchwG2qF0Kg6t1FvkOHYn1SSpZjnMv-c9ZxERNw6JFNmWHb8l34vfQsiXiEsjYx37uca_VZLFvgJF6PMwUqAvdS6cE83ySi5u-MWtuD0ioo-FcU77Oi8n9bqa1OXK-VY-VHra-4lNfy_nCcb9xnz6iDwGeQ14b6S3CphjCnhnZ3GOznJRG7iDJ0TTe3U3wetidg78EWFqzABL8zBADVwwNvo6PbkHgHZnRthz7Dn516fo7AV53mFIOmvX-pIcmfoVOZnVYD9XB_qVOq9O97v8hGBhuk3VwBT52tDlHosGb2lj6fn6oBus1UkXh2IDBu7W0LYKBpV0jkcyedmshiYMQ6EAFuk3BYNKmEgD3IapVG2w6pbCJ73aHLYNGsrlvnpNbs5-XM8XflduwdcySHa-CC2YFwiBUo4VqROmbJAoI7Qs8kJGKeyssRYMPCVsHAgN2MeEqsiViGKZFuwNOa6b2rwlVAXMRnmSWpB3bk2ahEqFOs2FDlLLE-WRSb_N2UObVSMDawRJlAF53AUkygYSeeR7S4yhe8cPrquMM4a3f4YNvTCEDfSAR057UmadrG6zCDAZk2BmJR75PDSDlOHRCWxis4c-sDOo3YLII_GIBYYFYZ7ucQuwr8vX3bHru_8e-Yk8XVwvL7PLn1e_3pNn-HrOzY2dkuPdZm8-AC7a5R-dFPwBeGoPOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgIMQFAQMRGGAkxC1tEjtOciwdXRl02oFJu0W2Y6-ZmqTqx6H_Pe85abSIG4dUqmzLid9Hfi9-fj9CvkZcGJHoxFcav1YJlvgSHKHPw0iCv9Qqdkk0iysxv-GXt_HtA6ovl7SvVTmqV9WoLpcut3Jd6fExT2x8vZimeO434eN1YcePyROw2UAcA_XWCXMsA-9iLc4xYS5qD-_gLtH4Xt6N8LqcXICORFgeM0B6HgbIgceMDd5QT-8BpN2ZAf4cZk8-eB3NXpIXHY6kk_Z-X5FHpn5NTic1xNDVgX6jLrPTfTI_JUhOt6kamEKtDF3skTh4SxtLL1YH3SBfJ50fig0EuVtDWyYMKugUt2VU2Sz7JjyKQgEw0u8SBpUwkQbIDVPJ2iDzlsR_erk5bBsMlst99YbczH78mc79jnLB1yJId34cWggxEAZlHFmpUyZtkEoTa1GoQkQZrKyxFoI8GdskiDXgHxPKQsk4SkRWsLfkpG5q845QGTAbqTSzYPPcmiwNpQx1pmIdZJan0iOj4zLn67ayRg4RCYooB_G4C0SU9yLyyHkrjL57pxOuq0hyhj__DOt74TE28AUeOTuKMu_sdZtHgMuYgFAr9ciXvhksDbdPYBGbPfSBlUEPF0QeSQYq0N8Q1uoetoAKu5rdncq-_--Rn8mz6_NZ_vvn1a8P5Dk-nct0Y2fkZLfZm48AjXbqkzOCv0iFEE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermostable+Mutants+of+Glycoside+Hydrolase+Family+6+Cellobiohydrolase+from+the+Basidiomycete+Phanerochaete+chrysosporium&rft.jtitle=Journal+of+applied+glycoscience+%3A+JAG&rft.au=Yamaguchi%2C+Sora&rft.au=Sunagawa%2C+Naoki&rft.au=Tachioka%2C+Mikako&rft.au=Igarashi%2C+Kiyohiko&rft.date=2020-09-03&rft.eissn=1880-7291&rft.volume=67&rft.issue=3&rft.spage=79&rft.epage=86&rft_id=info:doi/10.5458%2Fjag.jag.JAG-2020_0004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7882&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7882&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7882&client=summon |