Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium

Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH...

Full description

Saved in:
Bibliographic Details
Published inJournal of Applied Glycoscience Vol. 67; no. 3; pp. 79 - 86
Main Authors Yamaguchi, Sora, Sunagawa, Naoki, Tachioka, Mikako, Igarashi, Kiyohiko, Samejima, Masahiro
Format Journal Article
LanguageEnglish
Published Tsukuba The Japanese Society of Applied Glycoscience 03.09.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase PcCel6A from the fungus Phanerochaete chrysosporium, and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris. Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of PcCel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.
AbstractList Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase PcCel6A from the fungus Phanerochaete chrysosporium, and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris. Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of PcCel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.
Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.
Author Samejima, Masahiro
Tachioka, Mikako
Sunagawa, Naoki
Igarashi, Kiyohiko
Yamaguchi, Sora
Author_xml – sequence: 1
  orcidid: 0000-0001-5152-7177
  fullname: Yamaguchi, Sora
  organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 2
  orcidid: 0000-0001-5152-7177
  fullname: Sunagawa, Naoki
  organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 3
  orcidid: 0000-0001-5152-7177
  fullname: Tachioka, Mikako
  organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 4
  orcidid: 0000-0001-5152-7177
  fullname: Igarashi, Kiyohiko
  organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 5
  fullname: Samejima, Masahiro
  organization: Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
BookMark eNplUU1v1DAUtFAR_YCfgGSJC5cUf8e5IJUV3QJFcChny3FeNl4l8WInlfLv8XarSMDh2c96M6M3nkt0NoYREHpLybUUUn_Y2931sb7ebAtGGDGEEPECXVCtSVGyip7lngtRlFqzc3SZ0j4DFNXqFTrngmcRzi_Q8tBBHEKabN0D_j5PdpwSDi3e9osLyTeA75Ymht4mwLd28P2CFd5A34fah24dtTEMeOoAf7KZ5MOwOJgA_-zsCDG4zh5frotLCukQop-H1-hla_sEb57vK_Tr9vPD5q64_7H9srm5L5wieiokbaWsmFSkEkxUUnPbEm1BOtXUjWJVNgVtSytqZVsS6WjJgNqmtpKVqmr4Ffp40j3M9QCNg3GKtjeH6AcbFxOsN39PRt-ZXXg0mnJGSpEF3j8LxPB7hjSZwSeXfyBbC3MyLO8nmCwJy9B3_0D3YY5jtmeY4BVXmimdUfKEcjGkFKFdl6HEHMM1OdinyuGaNdzM-3bi7XNcO1hZNk7e9fDEUKXhx-M_9orKWUQDI_8D8me3rA
CitedBy_id crossref_primary_10_5458_jag_jag_JAG_2023_0018
crossref_primary_10_5458_jag_jag_JAG_2023_0017
crossref_primary_10_3390_microorganisms12020346
crossref_primary_10_1186_s13568_021_01311_8
crossref_primary_10_5458_jag_jag_JAG_2023_0011
crossref_primary_10_1093_protein_gzad002
crossref_primary_10_5458_bag_12_4_209
ContentType Journal Article
Copyright 2020 by The Japanese Society of Applied Glycoscience
2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by The Japanese Society of Applied Glycoscience
– notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
5PM
DOI 10.5458/jag.jag.JAG-2020_0004
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1880-7291
EndPage 86
ExternalDocumentID 10_5458_jag_jag_JAG_2020_0004
article_jag_67_3_67_jag_JAG_2020_0004_article_char_en
GroupedDBID 2WC
ACIWK
ACPRK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
DU5
JSF
JSH
KQ8
OK1
RJT
RPM
RZJ
AAYXX
CITATION
PGMZT
7QO
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c608t-51f559256094249583af08ae5c6dbd629046eff191a5f705c172e1adba52769d3
IEDL.DBID RPM
ISSN 1344-7882
IngestDate Tue Sep 17 21:11:16 EDT 2024
Fri Aug 16 00:43:19 EDT 2024
Thu Oct 10 21:52:59 EDT 2024
Fri Aug 23 01:31:50 EDT 2024
Wed Apr 05 11:33:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License This is an open-access paper distributed under the terms of the Creative Commons Attribution Non-Commercial (by-nc) License (CC-BY-NC4.0: https://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-51f559256094249583af08ae5c6dbd629046eff191a5f705c172e1adba52769d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5152-7177
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132074/
PMID 34354533
PQID 2439368268
PQPubID 2048451
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8132074
proquest_miscellaneous_2559425702
proquest_journals_2439368268
crossref_primary_10_5458_jag_jag_JAG_2020_0004
jstage_primary_article_jag_67_3_67_jag_JAG_2020_0004_article_char_en
PublicationCentury 2000
PublicationDate 20200903
PublicationDateYYYYMMDD 2020-09-03
PublicationDate_xml – month: 9
  year: 2020
  text: 20200903
  day: 3
PublicationDecade 2020
PublicationPlace Tsukuba
PublicationPlace_xml – name: Tsukuba
– name: Tokyo, JAPAN
PublicationTitle Journal of Applied Glycoscience
PublicationTitleAlternate J. Appl. Glycosci.
PublicationYear 2020
Publisher The Japanese Society of Applied Glycoscience
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society of Applied Glycoscience
– name: Japan Science and Technology Agency
References 9) M. Tachioka, N. Sugimoto, A. Nakamura, N. Sunagawa, T. Ishida, T. Uchiyama, K. Igarashi, and M. Samejima: Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris. Biotechnol. Biofuels, 9, 1–10 (2016).
2) V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho, and B. Henrissat: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 42, 490–495 (2014).
4) I. Wu and F.H. Arnold: Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol. Bioeng., 110, 1874–1883 (2013).
14) M. Tachioka, A. Nakamura, T. Ishida, K. Igarashi, and M. Samejima: Crystal structure of a family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol. Commun., 73, 398–403 (2017).
19) A. Koivula, T. Kinnari, V. Harjunpää, L. Ruohonen, A. Teleman, T. Drakenberg, J. Rouvinen, T.A. Jones, and T.T. Teeri: Tryptophan 272: An essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett., 429, 341–346 (1998).
13) M. Wada, H. Chanzy, Y. Nishiyama, and P. Langan: Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules, 37, 8548–8555 (2004).
7) S. Macauley-Patrick, M.L. Fazenda, B. McNeil, and L.M. Harvey: Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270 (2005).
20) V. Gupta and K.S. Carroll: Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta - Gen. Subj., 1840, 847–875 (2014).
1) S.P. Voutilainen, T. Puranen, M. Siika-Aho, A. Lappalainen, M. Alapuranen, J. Kallio, S. Hooman, L. Viikri, J. Vehmaanperä, and A. Koivula: Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng., 101, 515–528 (2008).
3) K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, T. Okamoto, M. Penttilä, T. Ando, and M. Samejima: Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 333, 1279–1282 (2011).
15) Y. Ito, A. Ikeuchi, and C. Imamura: Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library. Protein Eng. Des. Sel., 26, 73–79 (2013).
22) L.A. Kelley, S. Mezulis, C.A.M. Yates, M.A.N. Wass, and M.J.E. Sternberg: The Phyre2 web portal protein modeling, prediction and analysis. Nat. Protoc., 10, 845–858 (2015).
6) Y.P. Zhang, M.E. Himmel, and J.R. Mielenz: Outlook for cellulase improvement : Screening and selection strategies. Biotechnol. Adv., 24, 452–481 (2006).
5) X.J. Wang, Y.J. Peng, L.Q. Zhang, A.N. Li, and D.C. Li: Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl. Microbiol. Biotechnol., 95, 1469–1478 (2012).
8) K. Igarashi, M. Maruyama, A. Nakamura, T. Ishida, M. Wada, and M. Samejima: Degradation of crystalline celluloses by Phanerochaete chrysosporium cellobiohydrolase II (Cel6A) heterologously expressed in methylotrophic yeast Pichia pastoris. J. Appl. Glycosci., 59, 105–110 (2012).
12) A. Nakamura, H. Watanabe, T. Ishida, T. Uchihashi, M. Wada, T. Ando, K. Igarashi, and M. Samejima: Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. J. Am. Chem. Soc., 136, 4584–4592 (2014).
11) I. Wu, T. Heel, and F.H. Arnold: Role of cysteine residues in thermal inactivation of fungal Cel6A cellobiohydrolases. BBA - Proteins Proteomics, 1834, 1539–1544 (2013).
16) C. Steentoft, Y. Vakhrushev, H.J. Joshi, Y. Kong, M.B. Vester-christensen, K.T. Schjoldager, K. Lavrsen, S. Dabelsteen, N.B. Pedersen, L. Marcos-silva, R. Gupta, E.P. Bennett, U. Mandel, S. Brunak, H.H. Wandall, S.B. Levery, and H. Clausen: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J., 32, 1478–1488 (2013).
10) P. Heinzelman, C.D. Snow, M.A. Smith, X. Yu, A. Kannan, K. Boulware, A. Villalobos, S. Govindarajan, J. Minshull, and F. H. Arnold: SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J. Biol. Chem., 284, 26229–26233 (2009).
17) J.G. Duman, R.G. Miele, H. Liang, D.K. Grella, K.L. Sim, F.J. Castellino, and R.K. Bretthauer: O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol. Appl. Biochem., 28, 39–45 (1998).
21) J.V. Vermaas, R. Kont, G.T. Beckham, M.F. Crowley, M. Gudmundsson, M. Sandgren, J. Ståhlberg, P. Väljamäe, and B.C. Knott: The dissociation mechanism of processive cellulases. Proc. Natl. Acad. Sci. USA, 116, 23061–23067 (2019).
18) C.M. Payne, Y.J. Bomble, C.B. Taylor, C. McCabe, M.E. Himmel, M.F. Crowley, and G. T. Beckham: Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation. J. Biol. Chem., 286, 41028–41035 (2011).
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 2
– ident: 17
– ident: 3
– ident: 18
– ident: 5
– ident: 4
– ident: 1
– ident: 12
– ident: 11
– ident: 10
– ident: 19
– ident: 13
– ident: 16
– ident: 14
– ident: 15
– ident: 6
– ident: 9
– ident: 7
– ident: 8
– ident: 21
– ident: 20
– ident: 22
SSID ssj0046186
Score 2.2242205
Snippet Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource....
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 79
SubjectTerms Biodegradation
Biomass
Carbohydrates
Cellobiohydrolase
Cellulase
Deactivation
Disulfide bonds
enzymatic saccharification
Enzymes
Fungi
Glycosidases
Glycoside hydrolase
Glycosides
Hydrolase
Inactivation
Mutants
Phanerochaete chrysosporium
protein engineering
Random mutagenesis
Regular Paper
Renewable resources
Thermal stability
Yeasts
Title Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium
URI https://www.jstage.jst.go.jp/article/jag/67/3/67_jag.JAG-2020_0004/_article/-char/en
https://www.proquest.com/docview/2439368268
https://search.proquest.com/docview/2559425702
https://pubmed.ncbi.nlm.nih.gov/PMC8132074
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Applied Glycoscience, 2020/09/03, Vol.67(3), pp.79-86
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaigMXBBREoCAjIW7ZTeJHkuOy0K4qLeJApd4i27G7qTZJtY_D_ntmnIeIuHHISivbcuIZT74vngchXxIurUxNGmqDX6skS0MFhjDkcaLAXhotvBPN-qdc3fHbe3F_RsQQC-Od9o2uZs22njXVxvtWPtVmPviJzX-tlxnG_aZ8fk7OQUEHit6ZX44J4D3L4hxd5ZIubAfPh-aP6mGG1-3iBrQjwcSYERbmYYAZuGBs8m569gjw7MFOkOfUb_KvF9H1S_KiR5B00d3pK3Jmm9fkctEAe65P9Cv1Pp3-Y_klwbJ0u7qFKfTW0vURSwbvaevozfZkWqzUSVencgf0dm9pVwODSrrEAxldtZuxCYNQKEBF-k3BoAomMgC2YSrVWKy5pfCf2exO-xZpcnWs35C76x-_l6uwL7YQGhllh1DEDsgFAqCcYz3qjCkXZcoKI0tdyiSHlbXOAb1TwqWRMIB8bKxKrUSSyrxkb8lF0zb2HaEqYi7RWe5gt3Nn8yxWKja5FibKHc9UQGbDMhdPXU6NArgIiqgA8fgLRFSMIgrI904YY_deG3xXmRYMf_4ZNvbCADawAgG5GkRZ9Dt1XySAyJgEkpUF5PPYDHsMD05gEdsj9IGVQdsWJQFJJyow3hBm6Z62gPL6bN29sr7_75EfyHN8JO_Yxq7IxWF3tB8BCR30J6_5fwBC9gvk
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKQYILAgoiUMBIiFtmknhJchwG2qF0Kg6t1FvkOHYn1SSpZjnMv-c9ZxERNw6JFNmWHb8l34vfQsiXiEsjYx37uca_VZLFvgJF6PMwUqAvdS6cE83ySi5u-MWtuD0ioo-FcU77Oi8n9bqa1OXK-VY-VHra-4lNfy_nCcb9xnz6iDwGeQ14b6S3CphjCnhnZ3GOznJRG7iDJ0TTe3U3wetidg78EWFqzABL8zBADVwwNvo6PbkHgHZnRthz7Dn516fo7AV53mFIOmvX-pIcmfoVOZnVYD9XB_qVOq9O97v8hGBhuk3VwBT52tDlHosGb2lj6fn6oBus1UkXh2IDBu7W0LYKBpV0jkcyedmshiYMQ6EAFuk3BYNKmEgD3IapVG2w6pbCJ73aHLYNGsrlvnpNbs5-XM8XflduwdcySHa-CC2YFwiBUo4VqROmbJAoI7Qs8kJGKeyssRYMPCVsHAgN2MeEqsiViGKZFuwNOa6b2rwlVAXMRnmSWpB3bk2ahEqFOs2FDlLLE-WRSb_N2UObVSMDawRJlAF53AUkygYSeeR7S4yhe8cPrquMM4a3f4YNvTCEDfSAR057UmadrG6zCDAZk2BmJR75PDSDlOHRCWxis4c-sDOo3YLII_GIBYYFYZ7ucQuwr8vX3bHru_8e-Yk8XVwvL7PLn1e_3pNn-HrOzY2dkuPdZm8-AC7a5R-dFPwBeGoPOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgIMQFAQMRGGAkxC1tEjtOciwdXRl02oFJu0W2Y6-ZmqTqx6H_Pe85abSIG4dUqmzLid9Hfi9-fj9CvkZcGJHoxFcav1YJlvgSHKHPw0iCv9Qqdkk0iysxv-GXt_HtA6ovl7SvVTmqV9WoLpcut3Jd6fExT2x8vZimeO434eN1YcePyROw2UAcA_XWCXMsA-9iLc4xYS5qD-_gLtH4Xt6N8LqcXICORFgeM0B6HgbIgceMDd5QT-8BpN2ZAf4cZk8-eB3NXpIXHY6kk_Z-X5FHpn5NTic1xNDVgX6jLrPTfTI_JUhOt6kamEKtDF3skTh4SxtLL1YH3SBfJ50fig0EuVtDWyYMKugUt2VU2Sz7JjyKQgEw0u8SBpUwkQbIDVPJ2iDzlsR_erk5bBsMlst99YbczH78mc79jnLB1yJId34cWggxEAZlHFmpUyZtkEoTa1GoQkQZrKyxFoI8GdskiDXgHxPKQsk4SkRWsLfkpG5q845QGTAbqTSzYPPcmiwNpQx1pmIdZJan0iOj4zLn67ayRg4RCYooB_G4C0SU9yLyyHkrjL57pxOuq0hyhj__DOt74TE28AUeOTuKMu_sdZtHgMuYgFAr9ciXvhksDbdPYBGbPfSBlUEPF0QeSQYq0N8Q1uoetoAKu5rdncq-_--Rn8mz6_NZ_vvn1a8P5Dk-nct0Y2fkZLfZm48AjXbqkzOCv0iFEE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermostable+Mutants+of+Glycoside+Hydrolase+Family+6+Cellobiohydrolase+from+the+Basidiomycete+Phanerochaete+chrysosporium&rft.jtitle=Journal+of+applied+glycoscience+%3A+JAG&rft.au=Yamaguchi%2C+Sora&rft.au=Sunagawa%2C+Naoki&rft.au=Tachioka%2C+Mikako&rft.au=Igarashi%2C+Kiyohiko&rft.date=2020-09-03&rft.eissn=1880-7291&rft.volume=67&rft.issue=3&rft.spage=79&rft.epage=86&rft_id=info:doi/10.5458%2Fjag.jag.JAG-2020_0004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7882&client=summon