Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis

Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the di...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 7; no. C; pp. 306 - 314
Main Authors Eshaghi, Arman, Riyahi-Alam, Sadjad, Saeedi, Roghayyeh, Roostaei, Tina, Nazeri, Arash, Aghsaei, Aida, Doosti, Rozita, Ganjgahi, Habib, Bodini, Benedetta, Shakourirad, Ali, Pakravan, Manijeh, Ghana'ati, Hossein, Firouznia, Kavous, Zarei, Mojtaba, Azimi, Amir Reza, Sahraian, Mohammad Ali
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS. •We developed models for automatic differential diagnosis between multiple sclerosis and neuromyelitis optica.•Multimodal imaging may be integrated with clinical and cognitive data to develop multidimensional classification algorithms.•Classification algorithms could be used to aid in objective clinical decision making.•Future research should assess the generalizability of classification algorithms in independent cohorts.
AbstractList Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cogni-tive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.
Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS. •We developed models for automatic differential diagnosis between multiple sclerosis and neuromyelitis optica.•Multimodal imaging may be integrated with clinical and cognitive data to develop multidimensional classification algorithms.•Classification algorithms could be used to aid in objective clinical decision making.•Future research should assess the generalizability of classification algorithms in independent cohorts.
Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.
Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.
AbstractNeuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.
Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS. • We developed models for automatic differential diagnosis between multiple sclerosis and neuromyelitis optica. • Multimodal imaging may be integrated with clinical and cognitive data to develop multidimensional classification algorithms. • Classification algorithms could be used to aid in objective clinical decision making. • Future research should assess the generalizability of classification algorithms in independent cohorts.
Author Nazeri, Arash
Shakourirad, Ali
Aghsaei, Aida
Doosti, Rozita
Zarei, Mojtaba
Riyahi-Alam, Sadjad
Firouznia, Kavous
Ganjgahi, Habib
Pakravan, Manijeh
Azimi, Amir Reza
Bodini, Benedetta
Eshaghi, Arman
Sahraian, Mohammad Ali
Saeedi, Roghayyeh
Roostaei, Tina
Ghana'ati, Hossein
AuthorAffiliation f Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
e Centre de Recherche de l'Institut du Cerveau et de la Moelle Pinire, Universitat Pierre et Marie Curie, Inserm, Paris U975, France
b Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
c Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
d National Brain Mapping Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
a MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
g Iranian Center of Neurological Research, Neuroscience Institute, University of Medical Sciences, Tehran, Iran
AuthorAffiliation_xml – name: f Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
– name: a MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– name: d National Brain Mapping Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– name: c Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
– name: b Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
– name: e Centre de Recherche de l'Institut du Cerveau et de la Moelle Pinire, Universitat Pierre et Marie Curie, Inserm, Paris U975, France
– name: g Iranian Center of Neurological Research, Neuroscience Institute, University of Medical Sciences, Tehran, Iran
Author_xml – sequence: 1
  givenname: Arman
  surname: Eshaghi
  fullname: Eshaghi, Arman
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 2
  givenname: Sadjad
  surname: Riyahi-Alam
  fullname: Riyahi-Alam, Sadjad
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 3
  givenname: Roghayyeh
  surname: Saeedi
  fullname: Saeedi, Roghayyeh
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 4
  givenname: Tina
  surname: Roostaei
  fullname: Roostaei, Tina
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 5
  givenname: Arash
  surname: Nazeri
  fullname: Nazeri, Arash
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 6
  givenname: Aida
  surname: Aghsaei
  fullname: Aghsaei, Aida
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 7
  givenname: Rozita
  surname: Doosti
  fullname: Doosti, Rozita
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 8
  givenname: Habib
  surname: Ganjgahi
  fullname: Ganjgahi, Habib
  organization: National Brain Mapping Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 9
  givenname: Benedetta
  surname: Bodini
  fullname: Bodini, Benedetta
  organization: Centre de Recherche de l'Institut du Cerveau et de la Moelle Pinire, Universitat Pierre et Marie Curie, Inserm, Paris U975, France
– sequence: 10
  givenname: Ali
  surname: Shakourirad
  fullname: Shakourirad, Ali
  organization: Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 11
  givenname: Manijeh
  surname: Pakravan
  fullname: Pakravan, Manijeh
  organization: Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
– sequence: 12
  givenname: Hossein
  surname: Ghana'ati
  fullname: Ghana'ati, Hossein
  organization: Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
– sequence: 13
  givenname: Kavous
  surname: Firouznia
  fullname: Firouznia, Kavous
  organization: Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
– sequence: 14
  givenname: Mojtaba
  surname: Zarei
  fullname: Zarei, Mojtaba
  organization: National Brain Mapping Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 15
  givenname: Amir Reza
  surname: Azimi
  fullname: Azimi, Amir Reza
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 16
  givenname: Mohammad Ali
  surname: Sahraian
  fullname: Sahraian, Mohammad Ali
  email: msahrai@sina.tums.ac.ir
  organization: MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25610795$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-01310716$$DView record in HAL
BookMark eNp9kk9vEzEQxVeoiJbSL8AB-QiHBNsb_1kOSFUEtFIlDsDZmrW9iYN3HWxvUG58dLxNitpKdC9ejd_8ZuT3XlYnQxhsVb0meE4w4e8388FpP6eYsDkmc4zJs-qMUlLPCJP05N7_aXWR0gaXT2IsOH9RnVLGCRYNO6v-LD2k5DqnIbswIPCrEF1e9wn9LgfqR5_drA8GPDKQAXVjmnQ6jN4g0HqMkK3fI-NSdsNqdGmNBjvG0O-td9klFLa50FFXSgfc1luUtLcxJJdeVc878MleHM_z6sfnT9-XV7Obr1-ul5c3M82xzLO6M0IwkMIspG4bLhZcSyMBWkGIwRS4EVgLzkAANYJZKiyz0BIOtRW0rs-r6wPXBNiobXQ9xL0K4NRtIcSVglgW9VZpJsu0tuVg5KLr2raxrTRtzRpOuo7owvp4YG3HtrdG2yFH8A-gD28Gt1arsFML2ggpeQG8OwDWj9quLm_UVMOkLgYRviNF-_Y4LIZfo01Z9S5p6z0MNoxJEc7oAhNMJ-yb-3v9I9_ZXQTyINDl7VO0ndIu3xpf1nReEaymcKmNmsKlpnCVVVQJV2mlj1rv6E82HR_KFmd3zkalvSsq8D_t3qZNGONQTFdEJaqw-jZldoosYVNcaVMAH_4PKM65p6b_BS4MAJQ
CitedBy_id crossref_primary_10_1089_brain_2021_0104
crossref_primary_10_3390_life11020122
crossref_primary_10_1212_WNL_0000000000003395
crossref_primary_10_3389_fneur_2018_00828
crossref_primary_10_3390_jpm13010122
crossref_primary_10_3389_fneur_2020_599042
crossref_primary_10_1007_s00415_022_11488_y
crossref_primary_10_1007_s00415_024_12827_x
crossref_primary_10_1109_TMI_2017_2678483
crossref_primary_10_1080_14737175_2017_1240615
crossref_primary_10_1038_s41598_023_38271_x
crossref_primary_10_1002_jmri_26287
crossref_primary_10_1016_j_msard_2024_105682
crossref_primary_10_1007_s13167_017_0102_x
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1097_WCO_0000000000000206
crossref_primary_10_1002_jmri_25866
crossref_primary_10_1016_j_neurad_2018_01_053
crossref_primary_10_1016_j_lanepe_2024_100978
crossref_primary_10_1212_NXI_0000000000000687
crossref_primary_10_1007_s00521_022_07099_3
crossref_primary_10_1007_s00330_022_08779_3
crossref_primary_10_1016_j_nicl_2019_102003
crossref_primary_10_3390_diagnostics12092263
crossref_primary_10_1016_j_jocn_2021_02_018
crossref_primary_10_1016_j_compbiomed_2023_107777
crossref_primary_10_3389_fneur_2021_722237
crossref_primary_10_1016_j_media_2021_102267
crossref_primary_10_1097_RLI_0000000000000666
crossref_primary_10_2174_1574893618666230227105703
Cites_doi 10.1212/WNL.0b013e3181dbb664
10.1016/j.tics.2012.10.008
10.1002/hbm.10062
10.1038/nrneurol.2010.72
10.1006/nimg.2002.1313
10.1016/j.nicl.2014.01.004
10.1073/pnas.0905267106
10.1212/01.wnl.0000216139.44259.74
10.1177/1352458513519838
10.1093/brain/awm319
10.1212/WNL.0b013e3182648bc8
10.1371/journal.pone.0021138
10.1016/j.neuroimage.2013.09.044
10.1016/j.neuroimage.2009.12.121
10.1016/S1474-4422(12)70230-2
10.1016/S0140-6736(04)17551-X
10.1001/archneur.58.6.961
10.1016/j.neuroimage.2006.01.021
10.1212/WNL.0000000000000101
10.1098/rstb.2005.1634
10.1093/brain/awq058
10.1371/journal.pone.0110189
10.1177/1352458513494490
10.1002/ana.23721
10.1212/WNL.0000000000000834
10.1212/WNL.53.8.1705
10.1016/j.neuroimage.2011.12.070
10.1016/j.neuroimage.2011.11.032
10.1016/j.ejrad.2010.05.002
10.1016/j.neuroimage.2011.11.002
10.1212/WNL.0b013e318200d80c
10.1016/j.neuroimage.2010.03.051
10.1006/nimg.1998.0395
10.1177/1352458511431072
10.1212/01.WNL.0000106946.08741.41
10.1038/nrn2012
10.1016/j.neuroimage.2011.01.008
10.1016/j.neuroimage.2012.05.022
10.1002/ana.20703
10.1016/j.clineuro.2013.09.019
10.1080/13854046.2012.694912
10.1023/A:1012487302797
10.1212/WNL.0b013e31826e9a96
ContentType Journal Article
Copyright 2015
Attribution
2015 The Authors. Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015
– notice: Attribution
– notice: 2015 The Authors. Published by Elsevier Inc. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.nicl.2015.01.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 314
ExternalDocumentID oai_doaj_org_article_c58fd7bb6ad84ffbb9eb8db35961ff1c
PMC4297886
oai_HAL_hal_01310716v1
25610795
10_1016_j_nicl_2015_01_001
1_s2_0_S2213158215000029
S2213158215000029
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AFCTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
AACTN
VOOES
5PM
ID FETCH-LOGICAL-c608t-3fd775a87d48cb96746c8d8aab711d02a6d70c765a7a2d75e27e5eab16a3e7233
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:29:06 EDT 2025
Thu Aug 21 18:05:45 EDT 2025
Fri May 09 12:07:29 EDT 2025
Fri Jul 11 06:10:52 EDT 2025
Mon Jul 21 05:55:47 EDT 2025
Tue Jul 01 01:09:14 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Wed Jun 18 06:48:27 EDT 2025
Tue Aug 26 17:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Computational diagnosis
Multiple sclerosis
Neuromyelitis optica
Differential diagnosis
Multi-modal imaging
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-3fd775a87d48cb96746c8d8aab711d02a6d70c765a7a2d75e27e5eab16a3e7233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8010-1220
0000-0002-6652-3512
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2015.01.001
PMID 25610795
PQID 1652401026
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_c58fd7bb6ad84ffbb9eb8db35961ff1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4297886
hal_primary_oai_HAL_hal_01310716v1
proquest_miscellaneous_1652401026
pubmed_primary_25610795
crossref_citationtrail_10_1016_j_nicl_2015_01_001
crossref_primary_10_1016_j_nicl_2015_01_001
elsevier_clinicalkeyesjournals_1_s2_0_S2213158215000029
elsevier_clinicalkey_doi_10_1016_j_nicl_2015_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhang, Wang, Zhou, Yuan, Shen (ref50) 2011; 55
Saji, Arakawa, Yanagawa, Toyoshima, Yokoseki, Okamoto, Otsuki, Akazawa, Kakita, Takahashi, Nishizawa, Kawachi (ref33) 2013; 73
Guyon, Weston, Barnhill, Vapnik (ref14) 2002; 46
Pantano, Mainero, Iannetti, Caramia, Di Legge, Piattella, Pozzilli, Bozzao, Lenzi (ref25) 2002; 17
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (ref20) 2008; 131
Polman, Reingold, Edan, Filippi, Hartung, Kappos, Lublin, Metz, McFarland, O'Connor, Sandberg-Wollheim, Thompson, Weinshenker, Wolinsky (ref27) 2005; 58
Jarius, Wildemann (ref17) 2010; 6
Pichiecchio, Tavazzi, Poloni, Ponzio, Palesi, Pasin, Piccolo, Tosello, Romani, Bergamaschi, Piccolo, Bastianello (ref26) 2012; 18
Kim, Kim, Huh, Kim (ref18) 2012; 2012
Lennon, Wingerchuk, Kryzer, Pittock, Lucchinetti, Fujihara, Nakashima, Weinshenker (ref22) 2004; 364
Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (ref19) 2012; 61
Wingerchuk, Lennon, Pittock, Lucchinetti, Weinshenker (ref48) 2006; 66
Kuhn, Johnson (ref21) 2013
Rocca, Agosta, Mezzapesa, Martinelli, Salvi, Ghezzi, Bergamaschi, Comi, Filippi (ref31) 2004; 62
Horsfield, Sala, Neema, Absinta, Bakshi, Sormani, Rocca, Bakshi, Filippi (ref16) 2010; 50
Dale, Fischl, Sereno (ref8) 1999; 9
Von Glehn, Jarius, Cavalcanti Lira, Alves Ferreira, von Glehn, Costa E Castro, Beltramini, Bergo, Farias, Brandão, Wildemann, Damasceno, Cendes, Santos, Yasuda (ref44) 2014
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (ref38) 2009; 106
Popescu, Parisi, Cabrera-Gómez, Newell, Mandler, Pittock, Lennon, Weinshenker, Lucchinetti (ref28) 2010; 75
Rifkin, Klautau (ref30) 2004; 5
(ref49) 2000
Anticevic, Cole, Murray, Corlett, Wang, Krystal (ref1) 2012; 16
Schmidt, Gaser, Arsic, Buck, Förschler, Berthele, Hoshi, Ilg, Schmid, Zimmer, Hemmer, Mühlau (ref35) 2012; 59
Popescu, Ran, Barkhof, Chard, Wheeler-Kingshott, Vrenken (ref29) 2014; 4
Wegner (ref45) 2013; 115
Sinnecker, Dörr, Pfueller, Harms, Ruprecht, Jarius, Brück, Niendorf, Wuerfel, Paul (ref36) 2012; 79
Balcer, Frohman (ref2) 2010; 74
Beckmann, Mackay, Filippini, Smith (ref4) 2009
Filippi, Rocca, Moiola, Martinelli, Ghezzi, Capra, Salvi, Comi (ref11) 1999; 53
Beckmann, DeLuca, Devlin, Smith (ref3) 2005; 360
Sui, Huster, Yu, Segall, Calhoun (ref41) 2014; 102P1
Toga, Thompson, Mori, Amunts, Zilles (ref43) 2006; 7
Sonnenburg, Rätsch, Schäfer, Schölkopf (ref39) 2006; 7
Hackmack, Paul, Weygandt, Allefeld, Haynes (ref15) 2012; 62
Liu, Liang, Duan, Jia, Wang, Yu, Qin, Dong, Ye, Li (ref23) 2011; 80
Cohen, Cutter, Fischer, Goodman, Heidenreich, Jak, Kniker, Kooijmans, Lull, Sandrock, Simon, Simonian, Whitaker (ref7) 2001; 58
Bendfeldt, Klöppel, Nichols, Smieskova, Kuster, Traud, Mueller-Lenke, Naegelin, Kappos, Radue, Borgwardt (ref5) 2012; 60
Geurts, Calabrese, Fisher, Rudick (ref12) 2012; 11
Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (ref40) 2010; 51
Lui, Xue, Kenul, Ge, Grossman, Wang (ref24) 2014; 83
Sato, Callegaro, Lana-Peixoto, Waters, de Haidar Jorge, Takahashi, Nakashima, Apostolos-Pereira, Talim, Simm, Lino, Misu, Leite, Aoki, Fujihara (ref34) 2014; 82
Weygandt, Hackmack, Pfüller, Bellmann-Strobl, Paul, Zipp, Haynes (ref47) 2011; 6
Eshaghi, Riyahi-Alam, Roostaei, Haeri, Aghsaei, Aidi, Pouretemad, Zarei, Farhang, Saeedi, Nazeri, Ganjgahi, Etesam, Azimi, Benedict, Sahraian (ref10) 2012; 26
Giorgio, Stromillo, Bartolozzi, Rossi, Battaglini, De Leucio, Guidi, Maritato, Portaccio, Sormani, Amato, De Stefano (ref13) 2014; 20
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (ref9) 2006; 31
Roosendaal, Schoonheim, Hulst, Sanz-Arigita, Smith, Geurts, Barkhof (ref32) 2010; 133
Smith (ref37) 2002; 17
Weier, Eshaghi, Magon, Andelova, Radue, Kappos, Azimi, Sahraian, Sprenger (ref46) 2014
Thompson, Murray, Sudlow, Dennis, Whiteley (ref42) 2014; 9
Calabrese, Oh, Favaretto, Rinaldi, Poretto, Alessio, Lee, Yu, Ma, Perini, Gallo (ref6) 2012; 79
Desikan (10.1016/j.nicl.2015.01.001_ref9) 2006; 31
Sato (10.1016/j.nicl.2015.01.001_ref34) 2014; 82
Horsfield (10.1016/j.nicl.2015.01.001_ref16) 2010; 50
Calabrese (10.1016/j.nicl.2015.01.001_ref6) 2012; 79
Dale (10.1016/j.nicl.2015.01.001_ref8) 1999; 9
Zhang (10.1016/j.nicl.2015.01.001_ref50) 2011; 55
(10.1016/j.nicl.2015.01.001_ref49) 2000
Wegner (10.1016/j.nicl.2015.01.001_ref45) 2013; 115
Weier (10.1016/j.nicl.2015.01.001_ref46) 2014
Kuhn (10.1016/j.nicl.2015.01.001_ref21) 2013
Pichiecchio (10.1016/j.nicl.2015.01.001_ref26) 2012; 18
Polman (10.1016/j.nicl.2015.01.001_ref27) 2005; 58
Cohen (10.1016/j.nicl.2015.01.001_ref7) 2001; 58
Sui (10.1016/j.nicl.2015.01.001_ref41) 2014; 102P1
Smith (10.1016/j.nicl.2015.01.001_ref37) 2002; 17
Smith (10.1016/j.nicl.2015.01.001_ref38) 2009; 106
Beckmann (10.1016/j.nicl.2015.01.001_ref3) 2005; 360
Anticevic (10.1016/j.nicl.2015.01.001_ref1) 2012; 16
Beckmann (10.1016/j.nicl.2015.01.001_ref4) 2009
Jarius (10.1016/j.nicl.2015.01.001_ref17) 2010; 6
Stonnington (10.1016/j.nicl.2015.01.001_ref40) 2010; 51
Wingerchuk (10.1016/j.nicl.2015.01.001_ref48) 2006; 66
Eshaghi (10.1016/j.nicl.2015.01.001_ref10) 2012; 26
Geurts (10.1016/j.nicl.2015.01.001_ref12) 2012; 11
Thompson (10.1016/j.nicl.2015.01.001_ref42) 2014; 9
Filippi (10.1016/j.nicl.2015.01.001_ref11) 1999; 53
Liu (10.1016/j.nicl.2015.01.001_ref23) 2011; 80
Guyon (10.1016/j.nicl.2015.01.001_ref14) 2002; 46
Schmidt (10.1016/j.nicl.2015.01.001_ref35) 2012; 59
Lennon (10.1016/j.nicl.2015.01.001_ref22) 2004; 364
Sinnecker (10.1016/j.nicl.2015.01.001_ref36) 2012; 79
Von Glehn (10.1016/j.nicl.2015.01.001_ref44) 2014
Lui (10.1016/j.nicl.2015.01.001_ref24) 2014; 83
Balcer (10.1016/j.nicl.2015.01.001_ref2) 2010; 74
Kim (10.1016/j.nicl.2015.01.001_ref18) 2012; 2012
Klöppel (10.1016/j.nicl.2015.01.001_ref19) 2012; 61
Hackmack (10.1016/j.nicl.2015.01.001_ref15) 2012; 62
Rifkin (10.1016/j.nicl.2015.01.001_ref30) 2004; 5
Sonnenburg (10.1016/j.nicl.2015.01.001_ref39) 2006; 7
Popescu (10.1016/j.nicl.2015.01.001_ref28) 2010; 75
Weygandt (10.1016/j.nicl.2015.01.001_ref47) 2011; 6
Toga (10.1016/j.nicl.2015.01.001_ref43) 2006; 7
Pantano (10.1016/j.nicl.2015.01.001_ref25) 2002; 17
Rocca (10.1016/j.nicl.2015.01.001_ref31) 2004; 62
Klöppel (10.1016/j.nicl.2015.01.001_ref20) 2008; 131
Roosendaal (10.1016/j.nicl.2015.01.001_ref32) 2010; 133
Bendfeldt (10.1016/j.nicl.2015.01.001_ref5) 2012; 60
Giorgio (10.1016/j.nicl.2015.01.001_ref13) 2014; 20
Saji (10.1016/j.nicl.2015.01.001_ref33) 2013; 73
Popescu (10.1016/j.nicl.2015.01.001_ref29) 2014; 4
References_xml – volume: 16
  start-page: 584
  year: 2012
  end-page: 592
  ident: ref1
  article-title: The role of default network deactivation in cognition and disease
  publication-title: Trends Cogn. Sci.
– volume: 6
  start-page: 383
  year: 2010
  end-page: 392
  ident: ref17
  article-title: AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance
  publication-title: Nat. Rev. Neurol.
– volume: 18
  start-page: 817
  year: 2012
  end-page: 824
  ident: ref26
  article-title: Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approach
  publication-title: Mult. Scler.
– volume: 59
  start-page: 3774
  year: 2012
  end-page: 3783
  ident: ref35
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
– year: 2013
  ident: ref21
  publication-title: Applied Predictive Modeling
– volume: 6
  start-page: e21138
  year: 2011
  ident: ref47
  article-title: MRI pattern recognition in multiple sclerosis normal-appearing brain areas
  publication-title: PLOS One
– volume: 58
  start-page: 961
  year: 2001
  end-page: 967
  ident: ref7
  article-title: Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial
  publication-title: Arch. Neurol.
– volume: 2012
  start-page: 735486
  year: 2012
  ident: ref18
  article-title: Brain abnormalities in neuromyelitis optica spectrum disorder
  publication-title: Mult. Scler. Int.
– volume: 58
  start-page: 840
  year: 2005
  end-page: 846
  ident: ref27
  article-title: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”
  publication-title: Ann. Neurol.
– volume: 9
  start-page: e110189
  year: 2014
  ident: ref42
  article-title: Comparison of statistical and clinical predictions of functional outcome after ischemic stroke
  publication-title: PLOS One
– volume: 20
  start-page: 214
  year: 2014
  end-page: 219
  ident: ref13
  article-title: Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing multiple sclerosis
  publication-title: Mult. Scler.
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: ref38
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U S A
– year: 2014
  ident: ref46
  article-title: The role of cerebellar abnormalities in neuromyelitis optica — a comparison with multiple sclerosis and healthy controls
  publication-title: Mult. Scler.
– volume: 115
  start-page: S38
  year: 2013
  end-page: S41
  ident: ref45
  article-title: Recent insights into the pathology of multiple sclerosis and neuromyelitis optica
  publication-title: Clin. Neurol. Neurosurg.
– volume: 11
  start-page: 1082
  year: 2012
  end-page: 1092
  ident: ref12
  article-title: Measurement and clinical effect of grey matter pathology in multiple sclerosis
  publication-title: Lancet Neurol.
– volume: 73
  start-page: 65
  year: 2013
  end-page: 76
  ident: ref33
  article-title: Cognitive impairment and cortical degeneration in neuromyelitis optica
  publication-title: Ann. Neurol.
– volume: 5
  start-page: 101
  year: 2004
  end-page: 141
  ident: ref30
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 1405
  year: 2010
  end-page: 1413
  ident: ref40
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
– volume: 61
  start-page: 457
  year: 2012
  end-page: 463
  ident: ref19
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
– volume: 364
  start-page: 2106
  year: 2004
  end-page: 2112
  ident: ref22
  article-title: A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis
  publication-title: Lancet
– volume: 60
  start-page: 400
  year: 2012
  end-page: 408
  ident: ref5
  article-title: Multivariate pattern classification of gray matter pathology in multiple sclerosis
  publication-title: Neuroimage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: ref37
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 133
  start-page: 1612
  year: 2010
  end-page: 1621
  ident: ref32
  article-title: Resting state networks change in clinically isolated syndrome
  publication-title: Brain
– volume: 4
  start-page: 366
  year: 2014
  end-page: 373
  ident: ref29
  article-title: Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks
  publication-title: Neuroimage Clin.
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: ref3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 53
  start-page: 1705
  year: 1999
  end-page: 1710
  ident: ref11
  article-title: MRI and magnetization transfer imaging changes in the brain and cervical cord of patients with Devic's neuromyelitis optica
  publication-title: Neurol.
– volume: 62
  start-page: 48
  year: 2012
  end-page: 58
  ident: ref15
  article-title: Multi-scale classification of disease using structural MRI and wavelet transform
  publication-title: Neuroimage
– volume: 83
  start-page: 1235
  year: 2014
  end-page: 1240
  ident: ref24
  article-title: Classification algorithms using multiple MRI features in mild traumatic brain injury
  publication-title: Neurology
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: ref14
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 66
  start-page: 1485
  year: 2006
  end-page: 1489
  ident: ref48
  article-title: Revised diagnostic criteria for neuromyelitis optica
  publication-title: Neurology
– volume: 79
  start-page: 1671
  year: 2012
  end-page: 1676
  ident: ref6
  article-title: No MRI evidence of cortical lesions in neuromyelitis optica
  publication-title: Neurology
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: ref9
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 79
  start-page: 708
  year: 2012
  end-page: 714
  ident: ref36
  article-title: Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis
  publication-title: Neurology
– volume: 74
  start-page: S16
  year: 2010
  end-page: S23
  ident: ref2
  article-title: Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity
  publication-title: Neurology
– volume: 75
  start-page: 2103
  year: 2010
  end-page: 2109
  ident: ref28
  article-title: Absence of cortical demyelination in neuromyelitis optica
  publication-title: Neurology
– volume: 17
  start-page: 1837
  year: 2002
  end-page: 1843
  ident: ref25
  article-title: Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis
  publication-title: Neuroimage
– year: 2014
  ident: ref44
  article-title: Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders
  publication-title: Mult. Scler.
– volume: 7
  start-page: 1531
  year: 2006
  end-page: 1565
  ident: ref39
  article-title: Large scale multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: ref8
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 26
  start-page: 975
  year: 2012
  end-page: 984
  ident: ref10
  article-title: Validity and reliability of a Persian translation of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS)
  publication-title: Clin. Neuropsychol.
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: ref20
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 102P1
  start-page: 11
  year: 2014
  end-page: 23
  ident: ref41
  article-title: Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies
  publication-title: Neuroimage
– year: 2009
  ident: ref4
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: Organization of Human Brain Mapping Congress
– volume: 82
  start-page: 474
  year: 2014
  end-page: 481
  ident: ref34
  article-title: Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders
  publication-title: Neurology
– year: 2000
  ident: ref49
  publication-title: Declaration of Helsinki, Ethical Principles for Medical Research Involving Human Subjects
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: ref50
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 62
  start-page: 476
  year: 2004
  end-page: 478
  ident: ref31
  article-title: Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica
  publication-title: Neurology
– volume: 7
  start-page: 952
  year: 2006
  end-page: 966
  ident: ref43
  article-title: Towards multimodal atlases of the human brain
  publication-title: Nat. Rev. Neurosci.
– volume: 50
  start-page: 446
  year: 2010
  end-page: 455
  ident: ref16
  article-title: Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis
  publication-title: Neuroimage
– volume: 80
  start-page: 407
  year: 2011
  end-page: 411
  ident: ref23
  article-title: Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study
  publication-title: Eur. J. Radiol.
– year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref46
  article-title: The role of cerebellar abnormalities in neuromyelitis optica — a comparison with multiple sclerosis and healthy controls
  publication-title: Mult. Scler.
– volume: 74
  start-page: S16
  issue: Suppl. 3
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref2
  article-title: Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181dbb664
– volume: 16
  start-page: 584
  issue: 12
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref1
  article-title: The role of default network deactivation in cognition and disease
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2012.10.008
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2015.01.001_ref37
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 6
  start-page: 383
  issue: 7
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref17
  article-title: AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2010.72
– volume: 17
  start-page: 1837
  issue: 4
  year: 2002
  ident: 10.1016/j.nicl.2015.01.001_ref25
  article-title: Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1313
– volume: 4
  start-page: 366
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref29
  article-title: Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.01.004
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.nicl.2015.01.001_ref38
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0905267106
– volume: 66
  start-page: 1485
  issue: 10
  year: 2006
  ident: 10.1016/j.nicl.2015.01.001_ref48
  article-title: Revised diagnostic criteria for neuromyelitis optica
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000216139.44259.74
– year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref44
  article-title: Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders
  publication-title: Mult. Scler.
  doi: 10.1177/1352458513519838
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.nicl.2015.01.001_ref20
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 5
  start-page: 101
  year: 2004
  ident: 10.1016/j.nicl.2015.01.001_ref30
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 708
  issue: 7
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref36
  article-title: Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182648bc8
– volume: 6
  start-page: e21138
  issue: 6
  year: 2011
  ident: 10.1016/j.nicl.2015.01.001_ref47
  article-title: MRI pattern recognition in multiple sclerosis normal-appearing brain areas
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0021138
– volume: 102P1
  start-page: 11
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref41
  article-title: Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.044
– volume: 50
  start-page: 446
  issue: 2
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref16
  article-title: Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.121
– volume: 11
  start-page: 1082
  issue: 12
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref12
  article-title: Measurement and clinical effect of grey matter pathology in multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70230-2
– volume: 364
  start-page: 2106
  issue: 9451
  year: 2004
  ident: 10.1016/j.nicl.2015.01.001_ref22
  article-title: A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17551-X
– volume: 58
  start-page: 961
  issue: 6
  year: 2001
  ident: 10.1016/j.nicl.2015.01.001_ref7
  article-title: Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.58.6.961
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 10.1016/j.nicl.2015.01.001_ref9
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 82
  start-page: 474
  issue: 6
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref34
  article-title: Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000101
– volume: 2012
  start-page: 735486
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref18
  article-title: Brain abnormalities in neuromyelitis optica spectrum disorder
  publication-title: Mult. Scler. Int.
– year: 2009
  ident: 10.1016/j.nicl.2015.01.001_ref4
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression
  publication-title: Organization of Human Brain Mapping Congress
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 10.1016/j.nicl.2015.01.001_ref3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1634
– volume: 133
  start-page: 1612
  issue: 6
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref32
  article-title: Resting state networks change in clinically isolated syndrome
  publication-title: Brain
  doi: 10.1093/brain/awq058
– volume: 9
  start-page: e110189
  issue: 10
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref42
  article-title: Comparison of statistical and clinical predictions of functional outcome after ischemic stroke
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0110189
– volume: 20
  start-page: 214
  issue: 2
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref13
  article-title: Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1177/1352458513494490
– volume: 73
  start-page: 65
  issue: 1
  year: 2013
  ident: 10.1016/j.nicl.2015.01.001_ref33
  article-title: Cognitive impairment and cortical degeneration in neuromyelitis optica
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23721
– volume: 83
  start-page: 1235
  issue: 14
  year: 2014
  ident: 10.1016/j.nicl.2015.01.001_ref24
  article-title: Classification algorithms using multiple MRI features in mild traumatic brain injury
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000834
– volume: 53
  start-page: 1705
  issue: 8
  year: 1999
  ident: 10.1016/j.nicl.2015.01.001_ref11
  article-title: MRI and magnetization transfer imaging changes in the brain and cervical cord of patients with Devic's neuromyelitis optica
  publication-title: Neurol.
  doi: 10.1212/WNL.53.8.1705
– volume: 60
  start-page: 400
  issue: 1
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref5
  article-title: Multivariate pattern classification of gray matter pathology in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.070
– volume: 59
  start-page: 3774
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref35
  article-title: An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.032
– volume: 80
  start-page: 407
  issue: 2
  year: 2011
  ident: 10.1016/j.nicl.2015.01.001_ref23
  article-title: Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2010.05.002
– volume: 61
  start-page: 457
  issue: 2
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref19
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 75
  start-page: 2103
  issue: 23
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref28
  article-title: Absence of cortical demyelination in neuromyelitis optica
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318200d80c
– volume: 51
  start-page: 1405
  issue: 4
  year: 2010
  ident: 10.1016/j.nicl.2015.01.001_ref40
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.051
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.nicl.2015.01.001_ref8
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 18
  start-page: 817
  issue: 6
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref26
  article-title: Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approach
  publication-title: Mult. Scler.
  doi: 10.1177/1352458511431072
– volume: 62
  start-page: 476
  issue: 3
  year: 2004
  ident: 10.1016/j.nicl.2015.01.001_ref31
  article-title: Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000106946.08741.41
– year: 2000
  ident: 10.1016/j.nicl.2015.01.001_ref49
– volume: 7
  start-page: 952
  issue: 12
  year: 2006
  ident: 10.1016/j.nicl.2015.01.001_ref43
  article-title: Towards multimodal atlases of the human brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2012
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2015.01.001_ref50
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 62
  start-page: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref15
  article-title: Multi-scale classification of disease using structural MRI and wavelet transform
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.022
– volume: 58
  start-page: 840
  issue: 6
  year: 2005
  ident: 10.1016/j.nicl.2015.01.001_ref27
  article-title: Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20703
– volume: 115
  start-page: S38
  issue: Suppl. 1
  year: 2013
  ident: 10.1016/j.nicl.2015.01.001_ref45
  article-title: Recent insights into the pathology of multiple sclerosis and neuromyelitis optica
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2013.09.019
– volume: 26
  start-page: 975
  issue: 6
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref10
  article-title: Validity and reliability of a Persian translation of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS)
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2012.694912
– year: 2013
  ident: 10.1016/j.nicl.2015.01.001_ref21
– volume: 46
  start-page: 389
  issue: 1/3
  year: 2002
  ident: 10.1016/j.nicl.2015.01.001_ref14
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 7
  start-page: 1531
  year: 2006
  ident: 10.1016/j.nicl.2015.01.001_ref39
  article-title: Large scale multiple kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 1671
  issue: 16
  year: 2012
  ident: 10.1016/j.nicl.2015.01.001_ref6
  article-title: No MRI evidence of cortical lesions in neuromyelitis optica
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31826e9a96
SSID ssj0000800766
Score 2.1959631
Snippet Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been...
AbstractNeuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Adult
Algorithms
Bioengineering
Computational diagnosis
Diagnosis, Computer-Assisted - methods
Diagnosis, Differential
Differential diagnosis
Female
Humans
Image Interpretation, Computer-Assisted
Imaging
Life Sciences
Magnetic Resonance Imaging - methods
Male
Multi-modal imaging
Multiple sclerosis
Multiple Sclerosis - diagnosis
Neuromyelitis optica
Neuromyelitis Optica - diagnosis
Neurons and Cognition
Radiology
Regular
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QF8SblIYO4oYjYiR85FkS1QpQLVOrN8ivdrXaTqtkg9cZPZyaP1QZQuXD1JhPHMzszGX_-hpC33loRuRdpqJxLi9zq1BbRpi5TEHC5c6rCOuTJV7k4LT6fibO9Vl-ICRvogYeFe--FroJyTtqgiwoEltHp4HJRSlZVzKP3hZi39zF1MeZBqt-o5JzlKROajydmBnAXss4irmvg7Bw7wkxRqSfvnwWn20tESf6Zgv6OpNwLTcf3yb0xp6RHw7s8ILdi_ZDcORl3zR-Rn33nS8QE9Wqgdn3eXK22y01LsQxLe1BhumkCCEHEKK06rKFRj-2vqfW-Qz6J9TUN6BDq827VLmlPhLm5jgifa2lziTVxiodV6IRRpC3MBl531T4mp8efvn9cpGPnhdTLTG_THJZcCatVKLR3pVSF9Dpoa51iLGTcyqAyr6SwyvKgQNsqimgdkzaPiuf5E3JQN3V8Rih3pS-c4lHoWPjIy4pHGKl45b0uo0oIm1be-JGWHLtjrM2EP7swqC2D2jIZQxBeQt7t7rkcSDluvPoDKnR3JRJq9wNgZmY0M_MvM0tIPpmDmc6sgpcFQasbH63-dldsR0fRGmZabjLzDc0UrZRhg4qMlwl5AzY3m_Pi6IvBMWRIgsRQ_gDxryeTNOAVcKvH1rHpQKwUkKpB8igT8nQw0Z0sjimzKgVMbma8s4fNf6lXy555HJIXpbU8_B8r-pzcxZUaylkvyMH2qosvIcHbulf9f_kXz7pT2A
  priority: 102
  providerName: Directory of Open Access Journals
Title Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158215000029
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158215000029
https://www.ncbi.nlm.nih.gov/pubmed/25610795
https://www.proquest.com/docview/1652401026
https://hal.sorbonne-universite.fr/hal-01310716
https://pubmed.ncbi.nlm.nih.gov/PMC4297886
https://doaj.org/article/c58fd7bb6ad84ffbb9eb8db35961ff1c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUJcEO_NAiuDuKGgxEls54DQglhViHKBSnuz_EqbVZssTbOiN346M2lStlDtgasTTxx77JlMvvmGkNdW68wzm4WuMCZMEy1DnXodmkiAwWXGiALjkOOvfDRJP59n5wdkKHfUT2Cz99MO60lNlvO3P3-s38OGf_cHq4UksgjT2lBwYjrXbbBMAisajHt3_6L3jgTnfe7M_q7IDow-hcCKE9dMVcfov2Oxbs0QOvmvX_o3vPKavTq7T-71jiY93WjGA3Lgq4fkzrj_lf6I_OrKYSJQqFsbqufTelmuZouGYmyWdkjDcFE7EIIwUlq0GFijFmtiU21tiyQT8zV1eEpU07ZsZrRjx1ysPWLqGlpfYqCcYgYLHYCLtIHRwOuWzWMyOfv0_eMo7MsxhJZHchUmhRMi01K4VFqTc5FyK53U2og4dhHT3InICp5poZkToALCZ16bmOvEC5YkT8hhVVf-iFBmcpsawXwmfWo9ywvmoaVghbUy9yIg8TDzyvZc5VgyY64GUNqFwoVTuHAqihGZF5A32z6XG6aOG-_-gAu6vRNZtruGejlV_aZVNpPwzsZw7WRagDLn3khnkizncVHENiDJoA5qSGSFoxcElTc-Wuzr5ZtB-VWsGqYi9Y2xOIkxkxmrVkQsD8gr0LmdMY9OvyhsQ9ok8Bb5FYh_OaikgqMC___oytctiOUZ-G_gUfKAPN2o6FbWoPMwuB3l3XnY7pWqnHV05ODRCCn58X_3fEbu4vRsAlvPyeFq2foX4OqtzEkXIjnpdvFv5PNZQA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+algorithms+with+multi-modal+data+fusion+could+accurately+distinguish+neuromyelitis+optica+from+multiple+sclerosis&rft.jtitle=NeuroImage+clinical&rft.au=Eshaghi%2C+Arman&rft.au=Riyahi-Alam%2C+Sadjad&rft.au=Saeedi%2C+Roghayyeh&rft.au=Roostaei%2C+Tina&rft.date=2015-01-01&rft.pub=Elsevier&rft.eissn=2213-1582&rft.volume=7&rft.spage=306&rft.epage=314&rft_id=info:doi/10.1016%2Fj.nicl.2015.01.001&rft_id=info%3Apmid%2F25610795&rft.externalDocID=PMC4297886
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00045%2Fcov150h.gif