Photodynamic DNA Strand Breaking Activities of Acridine Compounds

Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoact...

Full description

Saved in:
Bibliographic Details
Published inBiological & pharmaceutical bulletin Vol. 16; no. 12; pp. 1244 - 1247
Main Authors SHIMIZU, Tadayori, YASUDA, Kyoko, IWAMOTO, Yoshihisa, MORITA, Tamotsu, YANAGIHARA, Yasutake, MASUZAWA, Toshiyuki, ITOYAMA, Toshio
Format Journal Article
LanguageEnglish
Published Tokyo The Pharmaceutical Society of Japan 1993
Maruzen
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0918-6158
1347-5215
DOI10.1248/bpb.16.1244

Cover

Abstract Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose convertion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 μM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3, 6-dimethylamino-derivative (acridine orange) was less than 1 μM while the ED50 values of the other acridines were greater than 80 μM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, α-tocopherol or β-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast.This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.
AbstractList Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose convertion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 μM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3, 6-dimethylamino-derivative (acridine orange) was less than 1 μM while the ED50 values of the other acridines were greater than 80 μM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, α-tocopherol or β-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast.This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.
Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.
Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.
Author MASUZAWA, Toshiyuki
MORITA, Tamotsu
SHIMIZU, Tadayori
YASUDA, Kyoko
IWAMOTO, Yoshihisa
YANAGIHARA, Yasutake
ITOYAMA, Toshio
Author_xml – sequence: 1
  fullname: SHIMIZU, Tadayori
– sequence: 1
  fullname: YASUDA, Kyoko
– sequence: 1
  fullname: IWAMOTO, Yoshihisa
– sequence: 1
  fullname: MORITA, Tamotsu
– sequence: 1
  fullname: YANAGIHARA, Yasutake
– sequence: 1
  fullname: MASUZAWA, Toshiyuki
– sequence: 1
  fullname: ITOYAMA, Toshio
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4084429$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/8130775$$D View this record in MEDLINE/PubMed
BookMark eNp10d2L1DAQAPAgJ-fe6ZPPQkHxRXpm8tX0cV09FQ4V1OeSptO7rG2yJqlw_71Zdt2HA18yCfObIcxckDMfPBLyHOgVMKHf9rv-CtT-Lh6RFXDR1JKBPCMr2oKuFUj9hFyktKWUNpTxc3KugdOmkSuy_nYXchjuvZmdrd5_WVffczR-qN5FNL-cv63WNrs_LjtMVRjLK7rBeaw2Yd6FxQ_pKXk8minhs2O8JD-vP_zYfKpvvn78vFnf1FZRnWvOeqEAhWxRWWsZk22DCodW98AUKm1Yi9pi37CRlQhaDk3PG6N5A1IO_JK8PvTdxfB7wZS72SWL02Q8hiV1jWIClOIFvnwAt2GJvvytAyFakMClLurFUS39jEO3i2428b47TqbkXx3zJlkzjWUo1qUTE1QLwdrC3hyYjSGliONJAO322-nKdjpQ-7soGh5o67LJLvgydDf9p-b6ULNN2dziqb-J2dkJ9xbalh_8v7MUnoC9M7FDz_8CiV-oVw
CitedBy_id crossref_primary_10_1007_BF02505042
crossref_primary_10_1097_DCR_0b013e3182982776
crossref_primary_10_1089_photob_2023_0186
crossref_primary_10_1002_lsm_20765
crossref_primary_10_1002_tbio_202000007
crossref_primary_10_1111_j_1751_1097_2006_tb09813_x
crossref_primary_10_1016_j_gie_2016_05_011
crossref_primary_10_1016_S0960_894X_00_00081_0
crossref_primary_10_1562_2006_05_10_RA_895
crossref_primary_10_1111_j_1349_7006_2000_tb00964_x
crossref_primary_10_1111_his_12597
crossref_primary_10_1053_j_gastro_2009_03_034
crossref_primary_10_1006_abbi_1997_0124
crossref_primary_10_1111_j_1747_4477_2004_tb00417_x
crossref_primary_10_1111_jgh_14864
crossref_primary_10_1080_14756366_2017_1335310
crossref_primary_10_1111_j_1574_695X_1997_tb01074_x
ContentType Journal Article
Copyright The Pharmaceutical Society of Japan
1994 INIST-CNRS
Copyright Japan Science and Technology Agency 1993
Copyright_xml – notice: The Pharmaceutical Society of Japan
– notice: 1994 INIST-CNRS
– notice: Copyright Japan Science and Technology Agency 1993
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
DOI 10.1248/bpb.16.1244
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 1247
ExternalDocumentID 3120219221
8130775
4084429
10_1248_bpb_16_1244
article_bpb1993_16_12_16_12_1244_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
2WC
53G
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
X7M
ZXP
1CY
23N
AAYXX
ABJNI
BKOMP
CITATION
JMI
MOJWN
XSB
ZY4
IQODW
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c608t-32b461e459e6ccc22597e6ed98b126e68a29e8ceb72f28ce185d7b37a837155d3
ISSN 0918-6158
IngestDate Thu Jul 10 23:02:28 EDT 2025
Mon Jun 30 10:00:16 EDT 2025
Sat Sep 28 08:39:40 EDT 2024
Mon Jul 21 09:13:31 EDT 2025
Tue Jul 01 02:29:02 EDT 2025
Thu Apr 24 22:57:37 EDT 2025
Wed Sep 03 06:08:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Single strand break
Mutagenesis
Acridine derivatives
DNA
Lesion
Mechanism of action
In vitro
Photosensitizer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c608t-32b461e459e6ccc22597e6ed98b126e68a29e8ceb72f28ce185d7b37a837155d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb1993/16/12/16_12_1244/_article/-char/en
PMID 8130775
PQID 1449151358
PQPubID 1966364
PageCount 4
ParticipantIDs proquest_miscellaneous_76241663
proquest_journals_1449151358
pubmed_primary_8130775
pascalfrancis_primary_4084429
crossref_primary_10_1248_bpb_16_1244
crossref_citationtrail_10_1248_bpb_16_1244
jstage_primary_article_bpb1993_16_12_16_12_1244_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1993-00-00
PublicationDateYYYYMMDD 1993-01-01
PublicationDate_xml – year: 1993
  text: 1993-00-00
PublicationDecade 1990
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Japan
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 1993
Publisher The Pharmaceutical Society of Japan
Maruzen
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Maruzen
– name: Japan Science and Technology Agency
References 33) H. Kasai, S. Nishimura, Nucleic Acids Res., 12, 2137 (1984).
8) Y. Iwamoto, I. Mifuchi, K.L. Yielding, Mutat. Res., 158, 169 (1985).
12) M. Tsuchiya, Y. Iwamoto, T. Masuzawa, T. Shimizu, T. Morita, Y. Yanagihara, Photochem. Photobiol., 48, 545 (1988).
6) Y. Iwamoto, I. Mifuchi, L.W. Yielding, W.J. Firth III, K.L. Yielding, Mutat. Res., 125, 213 (1984).
37) J. Morita, T. Komano, Agric. Biol. Chem., 47, 11 (1983).
14) J. Piette, Calberg-Bacq, A.V.D. Vorst, Photochem. Photobiol., 30, 369 (1979).
25) T. Artuso, J. Bernadou, B. Meunier, J. Piette, N. Paillous, Photochem. Photobiol., 54, 205 (1991).
4) T. Ito, Photochem. Photobiol. Rev., 7, 141 (1983).
32) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 491 (1968).
15) J. Piette, M. Lopez, Calsberg-Bacq, A.V.D. Vorst, Int. Radiat. Biol., 40, 427 (1981).
13) H. Triebel, H. Baer, H.E. Jacob, E. Sarfert, H. Berg, Photochem. Photobiol., 28, 331 (1978).
31) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 476 (1968).
21) J. Decuyper, J. Piette, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 35, 1345 (1986).
22) J. Decuyper, A.V.D. Vorst, "Oxygen Radicals in Chemistry and Biology,"
H. Sies, Academic Press Inc., New York, 1985, pp. 11-36.
W. Bors, M. Saran, D. Tait, Walter de Gruyter & Co., Berlin-New York, 1984, pp. 555-558.
2) J.P. Pooler, Med. Phys., 8, 614 (1981).
23) A. Aboul-Enein, P. Schulter-Frohlinde, Photochem. Photobiol., 48, 27 (1988).
7) Y. Iwamoto, I. Mifuchi, Chem. Pharm. Bull., 32, 2759 (1984).
36) E.M. Nelson, K.M. Tewey, L.F. Liu, Proc. Natl. Acad. Sci. U.S.A., 81, 1361 (1984).
3) M.A. Pathak, J. Natl. Cancer Inst., 69, 163 (1982).
5) J.H. Epstein, B.U. Wintroub, Drugs, 30, 42 (1985).
17) A.A. Schothorst, D. Suurmond, R. Schouten, Photochem. Photobiol., 38, 659 (1983).
16) B.S. Rosenstein, J.M. Ducore, S.W. Cummings, Mutat. Res., 112, 397 (1983).
24) J. Piette, J. Decuyper, A.V.D. Vorst, J. Invest. Dermatol., 86, 653 (1986).
26) V.S. Gupta, S.C. Kraft, J.S. Samuelson, J. Chromatogr., 26, 158 (1967).
34) H. Kasai, S. Nishimura, "Oxidative Stress, Oxidants and Antioxidants,"
9) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, I. Mifuchi, Chem. Pharm. Bull., 33, 5529 (1985).
38) T.A. Ciulla, J.R. Van Camp, E. Rosenfeld, I.E. Kochevar, Photochem. Photobiol., 49, 293 (1989).
30) D.S. Frohlinde, C.V. Sonntag, "Oxidative Stress,"
27) T. Maniatis, E.F. Fritsch, J. Sambrook, "Molecular Cloning, a Laboratory Manual," Cold Spring Harbor Laboratory, New York, 1982, pp. 86-96.
35) T.C. Rowe, G.L. Chen, Y.H. Hsiang, L.F. Liu, Cancer Res., 46, 2021 (1986).
29) M. Rosenberg-Arska, B.S.V. Asbeck, T.J. Martens, J. Verhoef, J. Gen. Microbiol., 131, 3325 (1985).
1) J. Amagasa, Photochem. Photobiol., 33, 947 (1981).
11) Y. Iwamoto, C. Tominaga, Y. Yanagihara, Chem. Pharm. Bull., 37, 1632 (1989).
H. Sies, Academic Press Inc., New York, 1991, pp. 99-116.
19) H. Fujita, I. Matsuo, Chem.-Biol. Interact., 66, 27 (1988).
39) Y. Iwamoto, T. Itoyama, K. Yasuda, T. Uzuhashi, H. Tanizawa, Y. Takino, T. Oku, H. Hashizume, Y. Yanagihara, Chem. Pharm. Bull., 40, 1868 (1992).
10) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, Chem. Pharm. Bull., 35, 2478 (1987).
18) H. Fujita, Mutat. Res., 158, 135 (1985).
20) J. Decuyper, J. Piette, M. Lopez, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 33, 4025 (1984).
28) R. Radloff, W. Bauer, J. Vinograd, Proc. Natl. Acad. Sci. U.S.A., 57, 1514 (1967).
References_xml – reference: 24) J. Piette, J. Decuyper, A.V.D. Vorst, J. Invest. Dermatol., 86, 653 (1986).
– reference: 35) T.C. Rowe, G.L. Chen, Y.H. Hsiang, L.F. Liu, Cancer Res., 46, 2021 (1986).
– reference: 12) M. Tsuchiya, Y. Iwamoto, T. Masuzawa, T. Shimizu, T. Morita, Y. Yanagihara, Photochem. Photobiol., 48, 545 (1988).
– reference: 32) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 491 (1968).
– reference: 21) J. Decuyper, J. Piette, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 35, 1345 (1986).
– reference: 15) J. Piette, M. Lopez, Calsberg-Bacq, A.V.D. Vorst, Int. Radiat. Biol., 40, 427 (1981).
– reference: 2) J.P. Pooler, Med. Phys., 8, 614 (1981).
– reference: 18) H. Fujita, Mutat. Res., 158, 135 (1985).
– reference: 39) Y. Iwamoto, T. Itoyama, K. Yasuda, T. Uzuhashi, H. Tanizawa, Y. Takino, T. Oku, H. Hashizume, Y. Yanagihara, Chem. Pharm. Bull., 40, 1868 (1992).
– reference: 6) Y. Iwamoto, I. Mifuchi, L.W. Yielding, W.J. Firth III, K.L. Yielding, Mutat. Res., 125, 213 (1984).
– reference: 23) A. Aboul-Enein, P. Schulter-Frohlinde, Photochem. Photobiol., 48, 27 (1988).
– reference: 36) E.M. Nelson, K.M. Tewey, L.F. Liu, Proc. Natl. Acad. Sci. U.S.A., 81, 1361 (1984).
– reference: 29) M. Rosenberg-Arska, B.S.V. Asbeck, T.J. Martens, J. Verhoef, J. Gen. Microbiol., 131, 3325 (1985).
– reference: 16) B.S. Rosenstein, J.M. Ducore, S.W. Cummings, Mutat. Res., 112, 397 (1983).
– reference: 4) T. Ito, Photochem. Photobiol. Rev., 7, 141 (1983).
– reference: 7) Y. Iwamoto, I. Mifuchi, Chem. Pharm. Bull., 32, 2759 (1984).
– reference: 11) Y. Iwamoto, C. Tominaga, Y. Yanagihara, Chem. Pharm. Bull., 37, 1632 (1989).
– reference: 13) H. Triebel, H. Baer, H.E. Jacob, E. Sarfert, H. Berg, Photochem. Photobiol., 28, 331 (1978).
– reference: 5) J.H. Epstein, B.U. Wintroub, Drugs, 30, 42 (1985).
– reference: 30) D.S. Frohlinde, C.V. Sonntag, "Oxidative Stress,"
– reference: 25) T. Artuso, J. Bernadou, B. Meunier, J. Piette, N. Paillous, Photochem. Photobiol., 54, 205 (1991).
– reference: H. Sies, Academic Press Inc., New York, 1991, pp. 99-116.
– reference: 28) R. Radloff, W. Bauer, J. Vinograd, Proc. Natl. Acad. Sci. U.S.A., 57, 1514 (1967).
– reference: H. Sies, Academic Press Inc., New York, 1985, pp. 11-36.
– reference: 20) J. Decuyper, J. Piette, M. Lopez, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 33, 4025 (1984).
– reference: 22) J. Decuyper, A.V.D. Vorst, "Oxygen Radicals in Chemistry and Biology,"
– reference: 34) H. Kasai, S. Nishimura, "Oxidative Stress, Oxidants and Antioxidants,"
– reference: 10) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, Chem. Pharm. Bull., 35, 2478 (1987).
– reference: 19) H. Fujita, I. Matsuo, Chem.-Biol. Interact., 66, 27 (1988).
– reference: 31) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 476 (1968).
– reference: 27) T. Maniatis, E.F. Fritsch, J. Sambrook, "Molecular Cloning, a Laboratory Manual," Cold Spring Harbor Laboratory, New York, 1982, pp. 86-96.
– reference: 26) V.S. Gupta, S.C. Kraft, J.S. Samuelson, J. Chromatogr., 26, 158 (1967).
– reference: 33) H. Kasai, S. Nishimura, Nucleic Acids Res., 12, 2137 (1984).
– reference: 3) M.A. Pathak, J. Natl. Cancer Inst., 69, 163 (1982).
– reference: 38) T.A. Ciulla, J.R. Van Camp, E. Rosenfeld, I.E. Kochevar, Photochem. Photobiol., 49, 293 (1989).
– reference: 9) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, I. Mifuchi, Chem. Pharm. Bull., 33, 5529 (1985).
– reference: 14) J. Piette, Calberg-Bacq, A.V.D. Vorst, Photochem. Photobiol., 30, 369 (1979).
– reference: 1) J. Amagasa, Photochem. Photobiol., 33, 947 (1981).
– reference: 17) A.A. Schothorst, D. Suurmond, R. Schouten, Photochem. Photobiol., 38, 659 (1983).
– reference: 37) J. Morita, T. Komano, Agric. Biol. Chem., 47, 11 (1983).
– reference: 8) Y. Iwamoto, I. Mifuchi, K.L. Yielding, Mutat. Res., 158, 169 (1985).
– reference: W. Bors, M. Saran, D. Tait, Walter de Gruyter & Co., Berlin-New York, 1984, pp. 555-558.
SSID ssj0007023
Score 1.5028013
Snippet Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine...
SourceID proquest
pubmed
pascalfrancis
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1244
SubjectTerms acridine compound
Acriflavine - toxicity
active oxygen scavenger
Biological and medical sciences
Biological effects of radiation
DNA - drug effects
DNA - radiation effects
DNA Damage
DNA strand break
ED50
Free Radical Scavengers
Fundamental and applied biological sciences. Psychology
Light
Oxygen
photodynamic
Radiosensitizing agents. Photosensitizing agents. Thermosensitizing agents
Singlet Oxygen
singlet oxygen production
Tissues, organs and organisms biophysics
Title Photodynamic DNA Strand Breaking Activities of Acridine Compounds
URI https://www.jstage.jst.go.jp/article/bpb1993/16/12/16_12_1244/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/8130775
https://www.proquest.com/docview/1449151358
https://www.proquest.com/docview/76241663
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 1993/12/15, Vol.16(12), pp.1244-1247
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgIDEJIeiYCGzgh2kPsHT5cOzkCVVjU4W2sodWKk-R7bgaiDXVkoLKX8_ZSZxEKuLjJY3csxX5dz79zvbdIXSUBFGm86y5oZLMJcGCuAJYhqsYjxTQa0JNmc6rCR3PyMd5NG-rt5noklIM5c-tcSX_gyq0Aa46SvYfkLWDQgO8A77wBITh-VcYX9_kZZ5VNeXffZiMdOSH3ggHN9cUmTKZMr6bnKnmvB8sRKZZpb5HrsspFb0j3S_WDmp1WN30NrtFN023VqUfHEDOWwuu28p8w2957-r1Z16sM97bT73K9YZEK5XVQXhhd9vQj8HdrNKtWwtKu5oSdOyhZg9bDXVAdPCBWImhT4eNVD8d9uRTejG7vEyn5_PpffQgYMw3aXzHrX_DPFO_z35UHYAJg592hu5RjodfgXXrdAqPV7yA-VtU9Ut-72AYojF9ip7UHgIeVXA_Q_fUcoD2Rkte5rcbfIzNnV1zGDJAj86aen0DdHxdIbY5wdM2qK44MV1sfvLNHhp11QaD2uBKbXCjNrhVG5wvcKM22KrNczS7OJ-ejd26koYrqReXbhgIQn1FokRRKSXY8IQpqrIkFn5AFY15kKhYKsGCRQC_QOIyJkLG4xAmHVbzPtpZ5kv1AmGZEE8uYBFznZnOT4RHJPRgkvie8LLEQW-byU5lnWZeVzv5lmp3E5BJAZnUp_qdOOjICq-q7Crbxd5XqFmheslpIa2flWDzhB5WQMcugqlw0GEPbjsQ8WIClMxBBw38ab3AC_CKSQKEOIxiB72xfwOq-kyNL1W-LlLgEuDS0NBB-5XS2JFjYIeMRS__2PUV2q1u0ep9vQO0U96t1SEw3VK8Ntr-C0Wjqv4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodynamic+DNA+strand+breaking+activities+of+acridine+compounds&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Iwamoto%2C+Y&rft.au=Itoyama%2C+T&rft.au=Yasuda%2C+K&rft.au=Morita%2C+T&rft.date=1993&rft.issn=0918-6158&rft.volume=16&rft.issue=12&rft.spage=1244&rft_id=info:doi/10.1248%2Fbpb.16.1244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon