Photodynamic DNA Strand Breaking Activities of Acridine Compounds
Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoact...
Saved in:
Published in | Biological & pharmaceutical bulletin Vol. 16; no. 12; pp. 1244 - 1247 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Pharmaceutical Society of Japan
1993
Maruzen Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0918-6158 1347-5215 |
DOI | 10.1248/bpb.16.1244 |
Cover
Abstract | Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose convertion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 μM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3, 6-dimethylamino-derivative (acridine orange) was less than 1 μM while the ED50 values of the other acridines were greater than 80 μM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, α-tocopherol or β-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast.This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes. |
---|---|
AbstractList | Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose convertion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 μM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3, 6-dimethylamino-derivative (acridine orange) was less than 1 μM while the ED50 values of the other acridines were greater than 80 μM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, α-tocopherol or β-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast.This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes. Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes.Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes. Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine produced single-strand breaks following irradiation but not in the control maintained in the dark. The single strand breaking activity of photoactivated euflavine was found to be dose-dependent. The effective dose conversion 50% (ED50) of the closed circular DNA to the open circular form was 0.53 microM. A comparison of 8 acridine compounds revealed that the ED50 of diaminoacridines such as euflavine, proflavine and acridine yellow or the 3,6-dimethylamino-derivative (acridine orange) was less than 1 microM while the ED50 values of the other acridines were greater than 80 microM. Euflavine was markedly inhibited by singlet oxygen scavengers such as NaN3, histidine, alpha-tocopherol or beta-carotene and partly inhibited by superoxide dismutase, mannitol or catalase. These results suggest that enflavine induces single strand breaks in DNA mainly by a type II photodynamic mechanism. Photodynamic single strand breaking activities appeared related to their mutagenic activities on yeast. This experimental system described here is useful for the quantitative assessment of the single strand breaking activities of various photosensitizers in vitro and for the determination of active oxygen species involved in those processes. |
Author | MASUZAWA, Toshiyuki MORITA, Tamotsu SHIMIZU, Tadayori YASUDA, Kyoko IWAMOTO, Yoshihisa YANAGIHARA, Yasutake ITOYAMA, Toshio |
Author_xml | – sequence: 1 fullname: SHIMIZU, Tadayori – sequence: 1 fullname: YASUDA, Kyoko – sequence: 1 fullname: IWAMOTO, Yoshihisa – sequence: 1 fullname: MORITA, Tamotsu – sequence: 1 fullname: YANAGIHARA, Yasutake – sequence: 1 fullname: MASUZAWA, Toshiyuki – sequence: 1 fullname: ITOYAMA, Toshio |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4084429$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/8130775$$D View this record in MEDLINE/PubMed |
BookMark | eNp10d2L1DAQAPAgJ-fe6ZPPQkHxRXpm8tX0cV09FQ4V1OeSptO7rG2yJqlw_71Zdt2HA18yCfObIcxckDMfPBLyHOgVMKHf9rv-CtT-Lh6RFXDR1JKBPCMr2oKuFUj9hFyktKWUNpTxc3KugdOmkSuy_nYXchjuvZmdrd5_WVffczR-qN5FNL-cv63WNrs_LjtMVRjLK7rBeaw2Yd6FxQ_pKXk8minhs2O8JD-vP_zYfKpvvn78vFnf1FZRnWvOeqEAhWxRWWsZk22DCodW98AUKm1Yi9pi37CRlQhaDk3PG6N5A1IO_JK8PvTdxfB7wZS72SWL02Q8hiV1jWIClOIFvnwAt2GJvvytAyFakMClLurFUS39jEO3i2428b47TqbkXx3zJlkzjWUo1qUTE1QLwdrC3hyYjSGliONJAO322-nKdjpQ-7soGh5o67LJLvgydDf9p-b6ULNN2dziqb-J2dkJ9xbalh_8v7MUnoC9M7FDz_8CiV-oVw |
CitedBy_id | crossref_primary_10_1007_BF02505042 crossref_primary_10_1097_DCR_0b013e3182982776 crossref_primary_10_1089_photob_2023_0186 crossref_primary_10_1002_lsm_20765 crossref_primary_10_1002_tbio_202000007 crossref_primary_10_1111_j_1751_1097_2006_tb09813_x crossref_primary_10_1016_j_gie_2016_05_011 crossref_primary_10_1016_S0960_894X_00_00081_0 crossref_primary_10_1562_2006_05_10_RA_895 crossref_primary_10_1111_j_1349_7006_2000_tb00964_x crossref_primary_10_1111_his_12597 crossref_primary_10_1053_j_gastro_2009_03_034 crossref_primary_10_1006_abbi_1997_0124 crossref_primary_10_1111_j_1747_4477_2004_tb00417_x crossref_primary_10_1111_jgh_14864 crossref_primary_10_1080_14756366_2017_1335310 crossref_primary_10_1111_j_1574_695X_1997_tb01074_x |
ContentType | Journal Article |
Copyright | The Pharmaceutical Society of Japan 1994 INIST-CNRS Copyright Japan Science and Technology Agency 1993 |
Copyright_xml | – notice: The Pharmaceutical Society of Japan – notice: 1994 INIST-CNRS – notice: Copyright Japan Science and Technology Agency 1993 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
DOI | 10.1248/bpb.16.1244 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 1247 |
ExternalDocumentID | 3120219221 8130775 4084429 10_1248_bpb_16_1244 article_bpb1993_16_12_16_12_1244_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JSF JSH KQ8 OK1 P2P RJT RZJ TKC TR2 VH1 X7M ZXP 1CY 23N AAYXX ABJNI BKOMP CITATION JMI MOJWN XSB ZY4 IQODW ABTAH CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c608t-32b461e459e6ccc22597e6ed98b126e68a29e8ceb72f28ce185d7b37a837155d3 |
ISSN | 0918-6158 |
IngestDate | Thu Jul 10 23:02:28 EDT 2025 Mon Jun 30 10:00:16 EDT 2025 Sat Sep 28 08:39:40 EDT 2024 Mon Jul 21 09:13:31 EDT 2025 Tue Jul 01 02:29:02 EDT 2025 Thu Apr 24 22:57:37 EDT 2025 Wed Sep 03 06:08:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Single strand break Mutagenesis Acridine derivatives DNA Lesion Mechanism of action In vitro Photosensitizer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c608t-32b461e459e6ccc22597e6ed98b126e68a29e8ceb72f28ce185d7b37a837155d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb1993/16/12/16_12_1244/_article/-char/en |
PMID | 8130775 |
PQID | 1449151358 |
PQPubID | 1966364 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_76241663 proquest_journals_1449151358 pubmed_primary_8130775 pascalfrancis_primary_4084429 crossref_primary_10_1248_bpb_16_1244 crossref_citationtrail_10_1248_bpb_16_1244 jstage_primary_article_bpb1993_16_12_16_12_1244_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1993-00-00 |
PublicationDateYYYYMMDD | 1993-01-01 |
PublicationDate_xml | – year: 1993 text: 1993-00-00 |
PublicationDecade | 1990 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Japan |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 1993 |
Publisher | The Pharmaceutical Society of Japan Maruzen Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Maruzen – name: Japan Science and Technology Agency |
References | 33) H. Kasai, S. Nishimura, Nucleic Acids Res., 12, 2137 (1984). 8) Y. Iwamoto, I. Mifuchi, K.L. Yielding, Mutat. Res., 158, 169 (1985). 12) M. Tsuchiya, Y. Iwamoto, T. Masuzawa, T. Shimizu, T. Morita, Y. Yanagihara, Photochem. Photobiol., 48, 545 (1988). 6) Y. Iwamoto, I. Mifuchi, L.W. Yielding, W.J. Firth III, K.L. Yielding, Mutat. Res., 125, 213 (1984). 37) J. Morita, T. Komano, Agric. Biol. Chem., 47, 11 (1983). 14) J. Piette, Calberg-Bacq, A.V.D. Vorst, Photochem. Photobiol., 30, 369 (1979). 25) T. Artuso, J. Bernadou, B. Meunier, J. Piette, N. Paillous, Photochem. Photobiol., 54, 205 (1991). 4) T. Ito, Photochem. Photobiol. Rev., 7, 141 (1983). 32) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 491 (1968). 15) J. Piette, M. Lopez, Calsberg-Bacq, A.V.D. Vorst, Int. Radiat. Biol., 40, 427 (1981). 13) H. Triebel, H. Baer, H.E. Jacob, E. Sarfert, H. Berg, Photochem. Photobiol., 28, 331 (1978). 31) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 476 (1968). 21) J. Decuyper, J. Piette, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 35, 1345 (1986). 22) J. Decuyper, A.V.D. Vorst, "Oxygen Radicals in Chemistry and Biology," H. Sies, Academic Press Inc., New York, 1985, pp. 11-36. W. Bors, M. Saran, D. Tait, Walter de Gruyter & Co., Berlin-New York, 1984, pp. 555-558. 2) J.P. Pooler, Med. Phys., 8, 614 (1981). 23) A. Aboul-Enein, P. Schulter-Frohlinde, Photochem. Photobiol., 48, 27 (1988). 7) Y. Iwamoto, I. Mifuchi, Chem. Pharm. Bull., 32, 2759 (1984). 36) E.M. Nelson, K.M. Tewey, L.F. Liu, Proc. Natl. Acad. Sci. U.S.A., 81, 1361 (1984). 3) M.A. Pathak, J. Natl. Cancer Inst., 69, 163 (1982). 5) J.H. Epstein, B.U. Wintroub, Drugs, 30, 42 (1985). 17) A.A. Schothorst, D. Suurmond, R. Schouten, Photochem. Photobiol., 38, 659 (1983). 16) B.S. Rosenstein, J.M. Ducore, S.W. Cummings, Mutat. Res., 112, 397 (1983). 24) J. Piette, J. Decuyper, A.V.D. Vorst, J. Invest. Dermatol., 86, 653 (1986). 26) V.S. Gupta, S.C. Kraft, J.S. Samuelson, J. Chromatogr., 26, 158 (1967). 34) H. Kasai, S. Nishimura, "Oxidative Stress, Oxidants and Antioxidants," 9) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, I. Mifuchi, Chem. Pharm. Bull., 33, 5529 (1985). 38) T.A. Ciulla, J.R. Van Camp, E. Rosenfeld, I.E. Kochevar, Photochem. Photobiol., 49, 293 (1989). 30) D.S. Frohlinde, C.V. Sonntag, "Oxidative Stress," 27) T. Maniatis, E.F. Fritsch, J. Sambrook, "Molecular Cloning, a Laboratory Manual," Cold Spring Harbor Laboratory, New York, 1982, pp. 86-96. 35) T.C. Rowe, G.L. Chen, Y.H. Hsiang, L.F. Liu, Cancer Res., 46, 2021 (1986). 29) M. Rosenberg-Arska, B.S.V. Asbeck, T.J. Martens, J. Verhoef, J. Gen. Microbiol., 131, 3325 (1985). 1) J. Amagasa, Photochem. Photobiol., 33, 947 (1981). 11) Y. Iwamoto, C. Tominaga, Y. Yanagihara, Chem. Pharm. Bull., 37, 1632 (1989). H. Sies, Academic Press Inc., New York, 1991, pp. 99-116. 19) H. Fujita, I. Matsuo, Chem.-Biol. Interact., 66, 27 (1988). 39) Y. Iwamoto, T. Itoyama, K. Yasuda, T. Uzuhashi, H. Tanizawa, Y. Takino, T. Oku, H. Hashizume, Y. Yanagihara, Chem. Pharm. Bull., 40, 1868 (1992). 10) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, Chem. Pharm. Bull., 35, 2478 (1987). 18) H. Fujita, Mutat. Res., 158, 135 (1985). 20) J. Decuyper, J. Piette, M. Lopez, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 33, 4025 (1984). 28) R. Radloff, W. Bauer, J. Vinograd, Proc. Natl. Acad. Sci. U.S.A., 57, 1514 (1967). |
References_xml | – reference: 24) J. Piette, J. Decuyper, A.V.D. Vorst, J. Invest. Dermatol., 86, 653 (1986). – reference: 35) T.C. Rowe, G.L. Chen, Y.H. Hsiang, L.F. Liu, Cancer Res., 46, 2021 (1986). – reference: 12) M. Tsuchiya, Y. Iwamoto, T. Masuzawa, T. Shimizu, T. Morita, Y. Yanagihara, Photochem. Photobiol., 48, 545 (1988). – reference: 32) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 491 (1968). – reference: 21) J. Decuyper, J. Piette, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 35, 1345 (1986). – reference: 15) J. Piette, M. Lopez, Calsberg-Bacq, A.V.D. Vorst, Int. Radiat. Biol., 40, 427 (1981). – reference: 2) J.P. Pooler, Med. Phys., 8, 614 (1981). – reference: 18) H. Fujita, Mutat. Res., 158, 135 (1985). – reference: 39) Y. Iwamoto, T. Itoyama, K. Yasuda, T. Uzuhashi, H. Tanizawa, Y. Takino, T. Oku, H. Hashizume, Y. Yanagihara, Chem. Pharm. Bull., 40, 1868 (1992). – reference: 6) Y. Iwamoto, I. Mifuchi, L.W. Yielding, W.J. Firth III, K.L. Yielding, Mutat. Res., 125, 213 (1984). – reference: 23) A. Aboul-Enein, P. Schulter-Frohlinde, Photochem. Photobiol., 48, 27 (1988). – reference: 36) E.M. Nelson, K.M. Tewey, L.F. Liu, Proc. Natl. Acad. Sci. U.S.A., 81, 1361 (1984). – reference: 29) M. Rosenberg-Arska, B.S.V. Asbeck, T.J. Martens, J. Verhoef, J. Gen. Microbiol., 131, 3325 (1985). – reference: 16) B.S. Rosenstein, J.M. Ducore, S.W. Cummings, Mutat. Res., 112, 397 (1983). – reference: 4) T. Ito, Photochem. Photobiol. Rev., 7, 141 (1983). – reference: 7) Y. Iwamoto, I. Mifuchi, Chem. Pharm. Bull., 32, 2759 (1984). – reference: 11) Y. Iwamoto, C. Tominaga, Y. Yanagihara, Chem. Pharm. Bull., 37, 1632 (1989). – reference: 13) H. Triebel, H. Baer, H.E. Jacob, E. Sarfert, H. Berg, Photochem. Photobiol., 28, 331 (1978). – reference: 5) J.H. Epstein, B.U. Wintroub, Drugs, 30, 42 (1985). – reference: 30) D.S. Frohlinde, C.V. Sonntag, "Oxidative Stress," – reference: 25) T. Artuso, J. Bernadou, B. Meunier, J. Piette, N. Paillous, Photochem. Photobiol., 54, 205 (1991). – reference: H. Sies, Academic Press Inc., New York, 1991, pp. 99-116. – reference: 28) R. Radloff, W. Bauer, J. Vinograd, Proc. Natl. Acad. Sci. U.S.A., 57, 1514 (1967). – reference: H. Sies, Academic Press Inc., New York, 1985, pp. 11-36. – reference: 20) J. Decuyper, J. Piette, M. Lopez, M.P. Merville, A.V.D. Vorst, Biochem. Pharmacol., 33, 4025 (1984). – reference: 22) J. Decuyper, A.V.D. Vorst, "Oxygen Radicals in Chemistry and Biology," – reference: 34) H. Kasai, S. Nishimura, "Oxidative Stress, Oxidants and Antioxidants," – reference: 10) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, Chem. Pharm. Bull., 35, 2478 (1987). – reference: 19) H. Fujita, I. Matsuo, Chem.-Biol. Interact., 66, 27 (1988). – reference: 31) H.J. Rhaese, E. Freese, Biochim. Biophys. Acta, 155, 476 (1968). – reference: 27) T. Maniatis, E.F. Fritsch, J. Sambrook, "Molecular Cloning, a Laboratory Manual," Cold Spring Harbor Laboratory, New York, 1982, pp. 86-96. – reference: 26) V.S. Gupta, S.C. Kraft, J.S. Samuelson, J. Chromatogr., 26, 158 (1967). – reference: 33) H. Kasai, S. Nishimura, Nucleic Acids Res., 12, 2137 (1984). – reference: 3) M.A. Pathak, J. Natl. Cancer Inst., 69, 163 (1982). – reference: 38) T.A. Ciulla, J.R. Van Camp, E. Rosenfeld, I.E. Kochevar, Photochem. Photobiol., 49, 293 (1989). – reference: 9) Y. Iwamoto, H. Yoshioka, Y. Yanagihara, I. Mifuchi, Chem. Pharm. Bull., 33, 5529 (1985). – reference: 14) J. Piette, Calberg-Bacq, A.V.D. Vorst, Photochem. Photobiol., 30, 369 (1979). – reference: 1) J. Amagasa, Photochem. Photobiol., 33, 947 (1981). – reference: 17) A.A. Schothorst, D. Suurmond, R. Schouten, Photochem. Photobiol., 38, 659 (1983). – reference: 37) J. Morita, T. Komano, Agric. Biol. Chem., 47, 11 (1983). – reference: 8) Y. Iwamoto, I. Mifuchi, K.L. Yielding, Mutat. Res., 158, 169 (1985). – reference: W. Bors, M. Saran, D. Tait, Walter de Gruyter & Co., Berlin-New York, 1984, pp. 555-558. |
SSID | ssj0007023 |
Score | 1.5028013 |
Snippet | Induction of single strand breaks in DNA was assessed by the conversion of supercoiled closed circular plasmid DNA into the open circular form. Euflavine... |
SourceID | proquest pubmed pascalfrancis crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1244 |
SubjectTerms | acridine compound Acriflavine - toxicity active oxygen scavenger Biological and medical sciences Biological effects of radiation DNA - drug effects DNA - radiation effects DNA Damage DNA strand break ED50 Free Radical Scavengers Fundamental and applied biological sciences. Psychology Light Oxygen photodynamic Radiosensitizing agents. Photosensitizing agents. Thermosensitizing agents Singlet Oxygen singlet oxygen production Tissues, organs and organisms biophysics |
Title | Photodynamic DNA Strand Breaking Activities of Acridine Compounds |
URI | https://www.jstage.jst.go.jp/article/bpb1993/16/12/16_12_1244/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/8130775 https://www.proquest.com/docview/1449151358 https://www.proquest.com/docview/76241663 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 1993/12/15, Vol.16(12), pp.1244-1247 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgIDEJIeiYCGzgh2kPsHT5cOzkCVVjU4W2sodWKk-R7bgaiDXVkoLKX8_ZSZxEKuLjJY3csxX5dz79zvbdIXSUBFGm86y5oZLMJcGCuAJYhqsYjxTQa0JNmc6rCR3PyMd5NG-rt5noklIM5c-tcSX_gyq0Aa46SvYfkLWDQgO8A77wBITh-VcYX9_kZZ5VNeXffZiMdOSH3ggHN9cUmTKZMr6bnKnmvB8sRKZZpb5HrsspFb0j3S_WDmp1WN30NrtFN023VqUfHEDOWwuu28p8w2957-r1Z16sM97bT73K9YZEK5XVQXhhd9vQj8HdrNKtWwtKu5oSdOyhZg9bDXVAdPCBWImhT4eNVD8d9uRTejG7vEyn5_PpffQgYMw3aXzHrX_DPFO_z35UHYAJg592hu5RjodfgXXrdAqPV7yA-VtU9Ut-72AYojF9ip7UHgIeVXA_Q_fUcoD2Rkte5rcbfIzNnV1zGDJAj86aen0DdHxdIbY5wdM2qK44MV1sfvLNHhp11QaD2uBKbXCjNrhVG5wvcKM22KrNczS7OJ-ejd26koYrqReXbhgIQn1FokRRKSXY8IQpqrIkFn5AFY15kKhYKsGCRQC_QOIyJkLG4xAmHVbzPtpZ5kv1AmGZEE8uYBFznZnOT4RHJPRgkvie8LLEQW-byU5lnWZeVzv5lmp3E5BJAZnUp_qdOOjICq-q7Crbxd5XqFmheslpIa2flWDzhB5WQMcugqlw0GEPbjsQ8WIClMxBBw38ab3AC_CKSQKEOIxiB72xfwOq-kyNL1W-LlLgEuDS0NBB-5XS2JFjYIeMRS__2PUV2q1u0ep9vQO0U96t1SEw3VK8Ntr-C0Wjqv4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodynamic+DNA+strand+breaking+activities+of+acridine+compounds&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Iwamoto%2C+Y&rft.au=Itoyama%2C+T&rft.au=Yasuda%2C+K&rft.au=Morita%2C+T&rft.date=1993&rft.issn=0918-6158&rft.volume=16&rft.issue=12&rft.spage=1244&rft_id=info:doi/10.1248%2Fbpb.16.1244&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |