An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study
Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membr...
Saved in:
Published in | EJNMMI research Vol. 14; no. 1; pp. 86 - 12 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
27.09.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.
Results
The main liver metastasis of the CRC patient exhibited high 2-[
18
F]FDG uptake and moderate and focal [
68
Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[
18
F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [
68
Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [
68
Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.
Conclusions
We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [
68
Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[
18
F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Graphical Abstract |
---|---|
AbstractList | Abstract Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. Results The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. Conclusions We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Graphical Abstract BackgroundPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.ResultsThe main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.ConclusionsWe successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. Results The main liver metastasis of the CRC patient exhibited high 2-[ 18 F]FDG uptake and moderate and focal [ 68 Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[ 18 F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [ 68 Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [ 68 Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. Conclusions We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [ 68 Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[ 18 F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Graphical Abstract Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. The main liver metastasis of the CRC patient exhibited high 2-[ F]FDG uptake and moderate and focal [ Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[ F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [ Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [ Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [ Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[ F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.BACKGROUNDPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.RESULTSThe main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.CONCLUSIONSWe successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. |
ArticleNumber | 86 |
Author | Tran, Loan Friske, Joachim Egger, Gerda Bergmann, Michael Hacker, Marcus Haug, Alexander Mitterhauser, Markus Zeitlinger, Markus Bevc, Kajetana Helbich, Thomas H. Balber, Theresa Benčurová, Katarína |
Author_xml | – sequence: 1 givenname: Katarína surname: Benčurová fullname: Benčurová, Katarína organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics – sequence: 2 givenname: Loan surname: Tran fullname: Tran, Loan organization: Ludwig Boltzmann Institute Applied Diagnostics, Department of Pathology, Medical University of Vienna – sequence: 3 givenname: Joachim surname: Friske fullname: Friske, Joachim organization: Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna – sequence: 4 givenname: Kajetana surname: Bevc fullname: Bevc, Kajetana organization: Ludwig Boltzmann Institute Applied Diagnostics – sequence: 5 givenname: Thomas H. surname: Helbich fullname: Helbich, Thomas H. organization: Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna – sequence: 6 givenname: Marcus surname: Hacker fullname: Hacker, Marcus organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna – sequence: 7 givenname: Michael surname: Bergmann fullname: Bergmann, Michael organization: Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna – sequence: 8 givenname: Markus surname: Zeitlinger fullname: Zeitlinger, Markus organization: Department of Clinical Pharmacology, Medical University of Vienna – sequence: 9 givenname: Alexander surname: Haug fullname: Haug, Alexander organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Christian Doppler Laboratory Applied Metabolomics – sequence: 10 givenname: Markus orcidid: 0000-0003-3173-5272 surname: Mitterhauser fullname: Mitterhauser, Markus email: markus.mitterhauser@univie.ac.at organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics, Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna – sequence: 11 givenname: Gerda surname: Egger fullname: Egger, Gerda organization: Ludwig Boltzmann Institute Applied Diagnostics, Department of Pathology, Medical University of Vienna, Comprehensive Cancer Center, Medical University of Vienna – sequence: 12 givenname: Theresa surname: Balber fullname: Balber, Theresa organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics, Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39331331$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARfdAfYIEssWETsGMncdigqqJQqRIbkNhZjn0z42liD7Yz0nwOf8qdmVLaLmpZfp5zfO_1OS2OfPBQFG8Y_cCYbD4mxuualrQSJWWsZiV9UZxUrGMlDr-OHqyPi_OUVhRbzeqOy1fFMe84Z9hPij8XnjhPNm4TSJ6nMEcS4kL74CyZgoWR9DqBJcGTvARils7cEpj6uA3eGdyH6IIeR-1zwP20u9IeyOQmZxK5hS1idNQmQ3Qp787CsJda6-zAZ5JdSjN8IpqsYwhDid0Eb2CdScqz3b4uXg56THB-N58VP6--_Lj8Vt58_3p9eXFTmobKXDKcbN-3Ha-o1LKngktOG22F0WC7TjKoBe8rI3tpZdXw3soB2l5za5hsK35WXB90bdArtY5u0nGrgnZqf4BVUTpiAiMoIYeqFq1kwlBRUaxm30ngQnZDB207oNbng9Z67iewBvOMenwk-vjGu6VahI1iTPCmphwV3t8pxPB7hpTV5JKBXaEhzElxxqigUrQCoe-eQFf4jR5rtUfVouMNQ9TbhyHdx_LPCgioDgATQ0oRhnsIo2pnOXWwnELLqb3lFEWSfEIyLuPHhl1abnyeyg_UhO_4BcT_YT_D-gtxN-yk |
CitedBy_id | crossref_primary_10_3390_biomedicines12122835 crossref_primary_10_1007_s11307_025_01983_9 crossref_primary_10_1186_s41181_024_00323_6 |
Cites_doi | 10.1158/1078-0432.CCR-04-1195 10.1016/j.mvr.2020.104026 10.1038/s41698-021-00168-1 10.1002/CAM4.441 10.3390/cancers13164007 10.1016/j.bbcan.2022.188790 10.3390/cells10061274 10.1038/s41467-021-26081-6 10.1007/s11307-012-0550-6 10.3389/fphys.2022.818463 10.1038/s44303-023-00001-3 10.1007/978-1-4613-4169-7_5 10.2967/jnumed.112.117150 10.1021/acsabm.3c00237 10.1016/S0171-2985(11)80211-1 10.1093/GASTRO/GOY040 10.3382/ps.0680805 10.1016/j.cell.2011.02.013 10.1038/s41563-019-0287-6 10.1016/j.remn.2013.07.002 10.1016/j.nucmedbio.2014.10.010 10.1126/scitranslmed.aad8278 10.1038/s41568-018-0007-6 10.1016/j.stem.2023.04.011 10.1021/acs.jmedchem.7b01245 10.1186/s41181-024-00271-1 10.3390/organoids1010005 10.1200/JCO.2005.07.078 10.3390/cancers14225549 10.1038/nprot.2015.088 10.1016/j.yexcr.2021.112510 10.1007/s00418-008-0536-2 10.1016/j.stem.2018.09.016 10.1016/j.biomaterials.2018.11.033 10.1038/s41598-020-75660-y 10.3322/caac.21660 10.3390/cancers12051248 10.1001/jama.1911.02560100033015 10.3390/cancers14163870 10.1007/s00441-021-03510-y 10.7150/thno.48620 10.1126/science.aao2774 10.3389/fbioe.2019.00039 10.1007/s11307-019-01337-2 10.3390/cancers15041126 10.3389/fmed.2022.1003914 10.1038/s41598-019-52204-7 10.1038/nature07935 10.3390/cancers15010191 10.1016/j.yexcr.2014.06.010 10.1016/j.mod.2016.05.003 10.1016/j.mvr.2021.104304 10.1016/J.JCMGH.2023.02.014 10.1016/j.tranon.2021.101174 10.3791/60995 10.5694/j.1326-5377.1960.tb73127.x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH HCIFZ K9. M0S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13550-024-01151-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2191-219X |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_48f2547814c0420393b98e3489f9e77f PMC11436503 39331331 10_1186_s13550_024_01151_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: University of Vienna |
GroupedDBID | -A0 0R~ 3V. 40G 53G 5VS 7X7 8AO 8FE 8FG 8FI 8FJ AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABUWG ACACY ACGFS ACIHN ACUHS ACULB ADBBV ADINQ AEAQA AENEX AFGXO AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BCNDV BENPR BFQNJ BGLVJ BPHCQ BVXVI C24 C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE HZ~ IAO IHR ITC KQ8 M48 M~E OK1 P62 PGMZT PIMPY PQQKQ PROAC RBZ RNS RPM RSV SMD SOJ U2A UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c608t-1c60dbb793208a8b0438306ad4caed9981e543b2c8b8d8263bd8fe7ba3dc18723 |
IEDL.DBID | 7X7 |
ISSN | 2191-219X |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 18:31:14 EDT 2025 Fri Jul 11 15:28:00 EDT 2025 Fri Jul 25 22:29:42 EDT 2025 Mon Jul 21 05:56:43 EDT 2025 Thu Apr 24 22:52:49 EDT 2025 Tue Jul 01 03:28:25 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Patient-derived organoids Ga]Ga-Pentixafor PET/MRI PDX CRC F]FDG [ 2- In ovo CAM [68Ga]Ga-Pentixafor 2-[18F]FDG |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-1c60dbb793208a8b0438306ad4caed9981e543b2c8b8d8263bd8fe7ba3dc18723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3173-5272 |
OpenAccessLink | https://www.proquest.com/docview/3110549361?pq-origsite=%requestingapplication% |
PMID | 39331331 |
PQID | 3110549361 |
PQPubID | 2034773 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48f2547814c0420393b98e3489f9e77f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436503 proquest_miscellaneous_3110408474 proquest_journals_3110549361 pubmed_primary_39331331 crossref_primary_10_1186_s13550_024_01151_0 crossref_citationtrail_10_1186_s13550_024_01151_0 springer_journals_10_1186_s13550_024_01151_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | EJNMMI research |
PublicationTitleAbbrev | EJNMMI Res |
PublicationTitleAlternate | EJNMMI Res |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Vandana, Manrique, Lacko, Chen (CR8) 2023; 30 Rosenbruch (CR28) 1997; 14 Dekkers, Berkers, Kruisselbrink, Vonk, De Jonge, Janssens (CR13) 2016; 8 Haller, Ametamey, Schibli, Müller (CR37) 2015; 42 Zierke, Rangger, Samadikhah, Panzer, Dichtl, Hörmann (CR55) 2024; 9 Benčurová, Friske, Anderla, Mayrhofer, Wanek, Nics (CR42) 2022; 14 Ribatti (CR25) 2021; 400 Hanahan, Weinberg (CR50) 2011; 144 Yan, Siu, Law, Ho, Yue, Tsui (CR7) 2018; 23 Khan, Ho Shin, Ferri, Cheng, Noel, Kuo (CR54) 2021; 12 CR33 Zahmatkesh, Ghanian, Zarkesh, Farzaneh, Halvaei, Heydari (CR19) 2021; 10 CR32 Löffler, Hamp, Scheidhauer, Di Carlo, Solbach, Abaei (CR40) 2021; 13 Ribatti, Annese, Tamma (CR24) 2020; 131 Carter, Kesner, Pratt, Sanders, Massicano, Cutler (CR57) 2019; 22 Winter, Koch, Löffler, Lindén, Solbach, Abaei (CR39) 2020; 12 Wörsdörfer, Dalda, Kern, Krüger, Wagner, Kwok (CR14) 2019; 9 Xi, Xu (CR2) 2021; 14 Grebenyuk, Ranga (CR15) 2019; 7 Ribatti (CR23) 2014; 328 Schimanski, Schwald, Simiantonaki, Jayasinghe, Gönner, Wilsberg (CR4) 2005; 11 Drost, Clevers (CR6) 2018; 18 Atanasova, de Jesus Cardona, Hejret, Tiefenbacher, Mair, Tran (CR48) 2023; 15 Zlatopolskiy, Zischler, Schäfer, Urusova, Guliyev, Bannykh (CR38) 2018; 61 Würbach, Heidrich, Opfermann, Gebhardt, Saluz (CR34) 2012; 14 Ribatti (CR9) 2022; 140 Schmidt, Alt, Deoghare, Krüger, Kern, Rockel (CR21) 2022; 1 Fujii, Matano, Nanki, Sato (CR47) 2015; 10 Wensink, Elias, Mullenders, Koopman, Boj, Kranenburg (CR11) 2021; 5 Warnock, Turtoi, Blomme, Bretin, Bahri, Lemaire (CR36) 2013; 54 Janse, Jeurissen (CR30) 1991; 182 Schulze, Librizzi, Bender, Jedelská, Yousefi, Schaefer (CR45) 2023; 6 Smith, Greenwood, Tyrrell, Edwards, De Santis, Baark (CR44) 2023; 1 Varzideh, Pahlavan, Ansari, Halvaei, Kostin, Feiz (CR17) 2019; 192 CR18 Mayerhoefer, Raderer, Lamm, Pichler, Pfaff, Weber (CR46) 2021; 11 Weber, Mausner, Benedict (CR29) 1977 Hilbrig, Löffler, Fischer, Scheidhauer, Solbach, Huber-Lang (CR43) 2023; 15 Sato, Vries, Snippert, Van De Wetering, Barker, Stange (CR5) 2009; 459 Kleibeuker, ten Hooven, Castricum, Honeywell, Griffioen, Verheul (CR52) 2015; 4 Vlachogiannis, Hedayat, Vatsiou, Jamin, Fernández-Mateos, Khan (CR12) 2018; 359 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (CR1) 2021; 71 Garreta, Prado, Tarantino, Oria, Fanlo, Martí (CR16) 2019; 18 Rous, Murphy (CR22) 1911; 56 Moeinvaziri, Shojaei, Haghparast, Yakhkeshi, Nemati, Hassani (CR20) 2021; 386 Ribatti (CR27) 2016; 141 Fischer, Fluegen, Garcia, Ghaffari-Tabrizi-Wizsy, Gribaldo, Huang (CR31) 2023; 15 Deryugina, Quigley (CR26) 2008; 130 Kim, Takeuchi, Lam, Turner, Wang, Kuo (CR3) 2005; 23 Charbonneau, Harper, Brochu-Gaudreau, Perreault, McDonald, Ekindi-Ndongo (CR53) 2022; 9 Löffler, Herrmann, Scheidhauer, Wirth, Wasserloos, Solbach (CR41) 2022; 14 Burke, Sharp (CR49) 1989; 68 Nengroo, Khan, Verma, Datta (CR56) 2022; 1877 Kertész, Beyer, Panin, Jentzen, Cal-Gonzalez, Berger (CR58) 2022; 13 Eckrich, Kugler, Buhr, Ernst, Mendler, Baumgart (CR51) 2020; 10 Yang, Sun, Liu, Mao (CR10) 2018; 6 Gebhardt, Würbach, Heidrich, Heinrich, Walther, Opfermann (CR35) 2013; 32 LM Smith (1151_CR44) 2023; 1 G Winter (1151_CR39) 2020; 12 EA Kleibeuker (1151_CR52) 2015; 4 G Vlachogiannis (1151_CR12) 2018; 359 J Drost (1151_CR6) 2018; 18 M Fujii (1151_CR47) 2015; 10 J Löffler (1151_CR41) 2022; 14 H Kertész (1151_CR58) 2022; 13 D Ribatti (1151_CR23) 2014; 328 S Grebenyuk (1151_CR15) 2019; 7 D Ribatti (1151_CR27) 2016; 141 J Eckrich (1151_CR51) 2020; 10 Y Xi (1151_CR2) 2021; 14 1151_CR18 M Charbonneau (1151_CR53) 2022; 9 J Schulze (1151_CR45) 2023; 6 D Ribatti (1151_CR24) 2020; 131 G Warnock (1151_CR36) 2013; 54 P Rous (1151_CR22) 1911; 56 S Haller (1151_CR37) 2015; 42 WH Burke (1151_CR49) 1989; 68 L Würbach (1151_CR34) 2012; 14 D Hanahan (1151_CR50) 2011; 144 H Sung (1151_CR1) 2021; 71 JJ Vandana (1151_CR8) 2023; 30 C Hilbrig (1151_CR43) 2023; 15 LM Carter (1151_CR57) 2019; 22 H Yang (1151_CR10) 2018; 6 GE Wensink (1151_CR11) 2021; 5 P Wörsdörfer (1151_CR14) 2019; 9 S Schmidt (1151_CR21) 2022; 1 BD Zlatopolskiy (1151_CR38) 2018; 61 F Moeinvaziri (1151_CR20) 2021; 386 MA Zierke (1151_CR55) 2024; 9 F Varzideh (1151_CR17) 2019; 192 ME Mayerhoefer (1151_CR46) 2021; 11 E Zahmatkesh (1151_CR19) 2021; 10 P Gebhardt (1151_CR35) 2013; 32 D Fischer (1151_CR31) 2023; 15 1151_CR32 1151_CR33 WT Weber (1151_CR29) 1977 CC Schimanski (1151_CR4) 2005; 11 MA Nengroo (1151_CR56) 2022; 1877 M Rosenbruch (1151_CR28) 1997; 14 S Khan (1151_CR54) 2021; 12 T Sato (1151_CR5) 2009; 459 JF Dekkers (1151_CR13) 2016; 8 EM Janse (1151_CR30) 1991; 182 EI Deryugina (1151_CR26) 2008; 130 D Ribatti (1151_CR9) 2022; 140 J Löffler (1151_CR40) 2021; 13 K Benčurová (1151_CR42) 2022; 14 E Garreta (1151_CR16) 2019; 18 J Kim (1151_CR3) 2005; 23 HHN Yan (1151_CR7) 2018; 23 VS Atanasova (1151_CR48) 2023; 15 D Ribatti (1151_CR25) 2021; 400 |
References_xml | – volume: 11 start-page: 1743 year: 2005 end-page: 50 ident: CR4 article-title: Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-1195 – volume: 131 start-page: 104026 year: 2020 ident: CR24 article-title: The use of the chick embryo CAM assay in the study of angiogenic activity of biomaterials publication-title: Microvasc Res doi: 10.1016/j.mvr.2020.104026 – volume: 5 start-page: 30 year: 2021 ident: CR11 article-title: Patient-derived organoids as a predictive biomarker for treatment response in cancer patients publication-title: NPJ Precis Oncol doi: 10.1038/s41698-021-00168-1 – volume: 4 start-page: 1003 year: 2015 end-page: 15 ident: CR52 article-title: Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction publication-title: Cancer Med doi: 10.1002/CAM4.441 – volume: 13 start-page: 4007 year: 2021 ident: CR40 article-title: Comparison of quantification of target-specific accumulation of [ F]F-siPSMA-14 in the HET-CAM model and in mice using PET/MRI publication-title: Cancers (Basel) doi: 10.3390/cancers13164007 – volume: 1877 start-page: 188790 year: 2022 ident: CR56 article-title: Demystifying the CXCR4 conundrum in cancer biology: beyond the surface signaling paradigm publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2022.188790 – volume: 10 start-page: 1274 year: 2021 ident: CR19 article-title: Tissue-specific microparticles improve organoid microenvironment for efficient maturation of pluripotent stem-cell-derived hepatocytes publication-title: Cells doi: 10.3390/cells10061274 – volume: 12 start-page: 5883 year: 2021 ident: CR54 article-title: High-resolution positron emission microscopy of patient-derived tumor organoids publication-title: Nat Commun doi: 10.1038/s41467-021-26081-6 – volume: 14 start-page: 688 year: 2012 end-page: 98 ident: CR34 article-title: Insights into bone metabolism of avian embryos in ovo via 3D and 4D F-fluoride positron emission tomography publication-title: Mol Imaging Biol doi: 10.1007/s11307-012-0550-6 – volume: 13 start-page: 818463 year: 2022 ident: CR58 article-title: Implementation of a spatially-variant and tissue-dependent positron range correction for PET/CT imaging publication-title: Front Physiol doi: 10.3389/fphys.2022.818463 – volume: 1 start-page: 1 year: 2023 end-page: 12 ident: CR44 article-title: The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging publication-title: Npj Imaging doi: 10.1038/s44303-023-00001-3 – start-page: 47 year: 1977 end-page: 59 ident: CR29 article-title: Migration patterns of avian embryonic bone marrow cells and their differentiation to functional T and B cells publication-title: Avian immunology doi: 10.1007/978-1-4613-4169-7_5 – volume: 54 start-page: 1782 year: 2013 end-page: 8 ident: CR36 article-title: In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development publication-title: J Nucl Med doi: 10.2967/jnumed.112.117150 – volume: 6 start-page: 2435 year: 2023 end-page: 45 ident: CR45 article-title: How to xenograft cancer cells on the chorioallantoic membrane of a fertilized hen’s egg and its visualization by PET/CT and MRI publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.3c00237 – volume: 14 start-page: 111 year: 1997 end-page: 3 ident: CR28 article-title: The sensitivity of chicken embryos in incubated eggs publication-title: Altex – volume: 182 start-page: 472 year: 1991 end-page: 81 ident: CR30 article-title: Ontogeny and function of two non-lymphoid cell populations in the chicken embryo publication-title: Immunobiology doi: 10.1016/S0171-2985(11)80211-1 – volume: 6 start-page: 243 year: 2018 end-page: 5 ident: CR10 article-title: Patient-derived organoids: a promising model for personalized cancer treatment publication-title: Gastroenterol Rep doi: 10.1093/GASTRO/GOY040 – volume: 68 start-page: 805 year: 1989 end-page: 10 ident: CR49 article-title: Sex differences in body weight of chicken embryos publication-title: Poult Sci doi: 10.3382/ps.0680805 – volume: 144 start-page: 646 year: 2011 end-page: 74 ident: CR50 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 18 start-page: 397 year: 2019 end-page: 405 ident: CR16 article-title: Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells publication-title: Nat Mater doi: 10.1038/s41563-019-0287-6 – volume: 32 start-page: 371 year: 2013 end-page: 7 ident: CR35 article-title: Dynamic behaviour of selected PET tracers in embryonated chicken eggs publication-title: Rev Esp Med Nucl Imagen Mol doi: 10.1016/j.remn.2013.07.002 – volume: 42 start-page: 226 year: 2015 end-page: 33 ident: CR37 article-title: Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2014.10.010 – volume: 8 start-page: 344ra84 year: 2016 ident: CR13 article-title: Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aad8278 – volume: 18 start-page: 407 year: 2018 end-page: 18 ident: CR6 article-title: Organoids in cancer research publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0007-6 – volume: 30 start-page: 571 year: 2023 end-page: 91 ident: CR8 article-title: Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2023.04.011 – volume: 61 start-page: 189 year: 2018 end-page: 206 ident: CR38 article-title: Discovery of 7-[ F]fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b01245 – ident: CR32 – volume: 9 start-page: 41 year: 2024 ident: CR55 article-title: [ Ga]Ga-NODAGA-TriGalactan, a low molecular weight tracer for the non-invasive imaging of the functional liver reserve publication-title: EJNMMI Radiopharm Chem doi: 10.1186/s41181-024-00271-1 – volume: 1 start-page: 41 year: 2022 end-page: 53 ident: CR21 article-title: A blood vessel organoid model recapitulating aspects of vasculogenesis, angiogenesis and vessel wall maturation publication-title: Organoids doi: 10.3390/organoids1010005 – volume: 23 start-page: 2744 year: 2005 end-page: 53 ident: CR3 article-title: Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival publication-title: J Clin Oncol doi: 10.1200/JCO.2005.07.078 – volume: 14 start-page: 5549 year: 2022 ident: CR42 article-title: CAM-xenograft model provides preclinical evidence for the applicability of [ Ga]Ga-Pentixafor in CRC imaging publication-title: Cancers (Basel) doi: 10.3390/cancers14225549 – volume: 10 start-page: 1474 year: 2015 end-page: 85 ident: CR47 article-title: Efficient genetic engineering of human intestinal organoids using electroporation publication-title: Nat Protoc doi: 10.1038/nprot.2015.088 – ident: CR18 – volume: 400 start-page: 112510 year: 2021 ident: CR25 article-title: The CAM assay in the study of the metastatic process publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2021.112510 – volume: 130 start-page: 1119 year: 2008 end-page: 30 ident: CR26 article-title: Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis publication-title: Histochem Cell Biol doi: 10.1007/s00418-008-0536-2 – volume: 23 start-page: 882 year: 2018 end-page: 97.e11 ident: CR7 article-title: A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.09.016 – volume: 192 start-page: 537 year: 2019 end-page: 50 ident: CR17 article-title: Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.11.033 – volume: 10 start-page: 18585 year: 2020 ident: CR51 article-title: Monitoring of tumor growth and vascularization with repetitive ultrasonography in the chicken chorioallantoic-membrane-assay publication-title: Sci Rep doi: 10.1038/s41598-020-75660-y – volume: 71 start-page: 209 year: 2021 end-page: 49 ident: CR1 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 12 start-page: 1248 year: 2020 ident: CR39 article-title: Multi-modal PET and MR imaging in the hen’s egg test-chorioallantoic membrane (HET-CAM) model for initial in vivo testing of target-specific radioligands publication-title: Cancers (Basel) doi: 10.3390/cancers12051248 – ident: CR33 – volume: 56 start-page: 741 year: 1911 end-page: 2 ident: CR22 article-title: Tumor implantations in the developing embryo publication-title: J Am Med Assoc doi: 10.1001/jama.1911.02560100033015 – volume: 14 start-page: 3870 year: 2022 ident: CR41 article-title: Blocking studies to evaluate receptor-specific radioligand binding in the CAM model by PET and MR imaging publication-title: Cancers (Basel) doi: 10.3390/cancers14163870 – volume: 386 start-page: 321 year: 2021 end-page: 33 ident: CR20 article-title: Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants publication-title: Cell Tissue Res doi: 10.1007/s00441-021-03510-y – volume: 11 start-page: 567 year: 2021 end-page: 78 ident: CR46 article-title: CXCR4 PET imaging of mantle cell lymphoma using [ Ga]Pentixafor: comparison with [ F]FDG-PET publication-title: Theranostics doi: 10.7150/thno.48620 – volume: 359 start-page: 920 year: 2018 end-page: 6 ident: CR12 article-title: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers publication-title: Science doi: 10.1126/science.aao2774 – volume: 7 start-page: 39 year: 2019 ident: CR15 article-title: Engineering organoid vascularization publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00039 – volume: 22 start-page: 73 year: 2019 end-page: 84 ident: CR57 article-title: The impact of positron range on PET resolution, evaluated with phantoms and PHITS Monte Carlo simulations for conventional and non-conventional radionuclides publication-title: Mol Imaging Biol doi: 10.1007/s11307-019-01337-2 – volume: 15 start-page: 1126 year: 2023 ident: CR43 article-title: Evaluation of the EPR effect in the CAM-model by molecular imaging with MRI and PET using Zr-labeled HSA publication-title: Cancers (Basel) doi: 10.3390/cancers15041126 – volume: 9 start-page: 1003914 year: 2022 ident: CR53 article-title: Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2022.1003914 – volume: 9 start-page: 15663 year: 2019 ident: CR14 article-title: Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells publication-title: Sci Rep doi: 10.1038/s41598-019-52204-7 – volume: 459 start-page: 262 year: 2009 end-page: 5 ident: CR5 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 15 start-page: 191 year: 2023 ident: CR31 article-title: The CAM model—Q&A with experts publication-title: Cancers (Basel) doi: 10.3390/cancers15010191 – volume: 328 start-page: 314 year: 2014 end-page: 24 ident: CR23 article-title: The chick embryo chorioallantoic membrane as a model for tumor biology publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2014.06.010 – volume: 141 start-page: 70 year: 2016 end-page: 7 ident: CR27 article-title: The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model publication-title: Mech Dev doi: 10.1016/j.mod.2016.05.003 – volume: 140 start-page: 104304 year: 2022 ident: CR9 article-title: Two new applications in the study of angiogenesis the CAM assay: Acellular scaffolds and organoids publication-title: Microvasc Res doi: 10.1016/j.mvr.2021.104304 – volume: 15 start-page: 1391 year: 2023 end-page: 419 ident: CR48 article-title: Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model publication-title: Cell Mol Gastroenterol Hepatol doi: 10.1016/J.JCMGH.2023.02.014 – volume: 14 start-page: 101174 year: 2021 ident: CR2 article-title: Global colorectal cancer burden in 2020 and projections to 2040 publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101174 – volume: 10 start-page: 1474 year: 2015 ident: 1151_CR47 publication-title: Nat Protoc doi: 10.1038/nprot.2015.088 – volume: 15 start-page: 1391 year: 2023 ident: 1151_CR48 publication-title: Cell Mol Gastroenterol Hepatol doi: 10.1016/J.JCMGH.2023.02.014 – volume: 23 start-page: 882 year: 2018 ident: 1151_CR7 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.09.016 – volume: 359 start-page: 920 year: 2018 ident: 1151_CR12 publication-title: Science doi: 10.1126/science.aao2774 – volume: 5 start-page: 30 year: 2021 ident: 1151_CR11 publication-title: NPJ Precis Oncol doi: 10.1038/s41698-021-00168-1 – volume: 386 start-page: 321 year: 2021 ident: 1151_CR20 publication-title: Cell Tissue Res doi: 10.1007/s00441-021-03510-y – volume: 42 start-page: 226 year: 2015 ident: 1151_CR37 publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2014.10.010 – volume: 14 start-page: 111 year: 1997 ident: 1151_CR28 publication-title: Altex – volume: 10 start-page: 1274 year: 2021 ident: 1151_CR19 publication-title: Cells doi: 10.3390/cells10061274 – volume: 14 start-page: 688 year: 2012 ident: 1151_CR34 publication-title: Mol Imaging Biol doi: 10.1007/s11307-012-0550-6 – volume: 9 start-page: 15663 year: 2019 ident: 1151_CR14 publication-title: Sci Rep doi: 10.1038/s41598-019-52204-7 – volume: 8 start-page: 344ra84 year: 2016 ident: 1151_CR13 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aad8278 – volume: 459 start-page: 262 year: 2009 ident: 1151_CR5 publication-title: Nature doi: 10.1038/nature07935 – volume: 13 start-page: 818463 year: 2022 ident: 1151_CR58 publication-title: Front Physiol doi: 10.3389/fphys.2022.818463 – volume: 400 start-page: 112510 year: 2021 ident: 1151_CR25 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2021.112510 – volume: 10 start-page: 18585 year: 2020 ident: 1151_CR51 publication-title: Sci Rep doi: 10.1038/s41598-020-75660-y – volume: 11 start-page: 567 year: 2021 ident: 1151_CR46 publication-title: Theranostics doi: 10.7150/thno.48620 – volume: 18 start-page: 407 year: 2018 ident: 1151_CR6 publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0007-6 – volume: 14 start-page: 101174 year: 2021 ident: 1151_CR2 publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101174 – volume: 1 start-page: 41 year: 2022 ident: 1151_CR21 publication-title: Organoids doi: 10.3390/organoids1010005 – volume: 61 start-page: 189 year: 2018 ident: 1151_CR38 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b01245 – volume: 14 start-page: 3870 year: 2022 ident: 1151_CR41 publication-title: Cancers (Basel) doi: 10.3390/cancers14163870 – volume: 9 start-page: 1003914 year: 2022 ident: 1151_CR53 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2022.1003914 – ident: 1151_CR18 doi: 10.3791/60995 – volume: 6 start-page: 2435 year: 2023 ident: 1151_CR45 publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.3c00237 – volume: 18 start-page: 397 year: 2019 ident: 1151_CR16 publication-title: Nat Mater doi: 10.1038/s41563-019-0287-6 – volume: 12 start-page: 1248 year: 2020 ident: 1151_CR39 publication-title: Cancers (Basel) doi: 10.3390/cancers12051248 – volume: 144 start-page: 646 year: 2011 ident: 1151_CR50 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 4 start-page: 1003 year: 2015 ident: 1151_CR52 publication-title: Cancer Med doi: 10.1002/CAM4.441 – volume: 1 start-page: 1 year: 2023 ident: 1151_CR44 publication-title: Npj Imaging doi: 10.1038/s44303-023-00001-3 – volume: 130 start-page: 1119 year: 2008 ident: 1151_CR26 publication-title: Histochem Cell Biol doi: 10.1007/s00418-008-0536-2 – volume: 23 start-page: 2744 year: 2005 ident: 1151_CR3 publication-title: J Clin Oncol doi: 10.1200/JCO.2005.07.078 – volume: 56 start-page: 741 year: 1911 ident: 1151_CR22 publication-title: J Am Med Assoc doi: 10.1001/jama.1911.02560100033015 – ident: 1151_CR33 – volume: 15 start-page: 191 year: 2023 ident: 1151_CR31 publication-title: Cancers (Basel) doi: 10.3390/cancers15010191 – volume: 1877 start-page: 188790 year: 2022 ident: 1151_CR56 publication-title: Biochim Biophys Acta Rev Cancer doi: 10.1016/j.bbcan.2022.188790 – volume: 32 start-page: 371 year: 2013 ident: 1151_CR35 publication-title: Rev Esp Med Nucl Imagen Mol doi: 10.1016/j.remn.2013.07.002 – volume: 141 start-page: 70 year: 2016 ident: 1151_CR27 publication-title: Mech Dev doi: 10.1016/j.mod.2016.05.003 – ident: 1151_CR32 doi: 10.5694/j.1326-5377.1960.tb73127.x – start-page: 47 volume-title: Avian immunology year: 1977 ident: 1151_CR29 doi: 10.1007/978-1-4613-4169-7_5 – volume: 14 start-page: 5549 year: 2022 ident: 1151_CR42 publication-title: Cancers (Basel) doi: 10.3390/cancers14225549 – volume: 192 start-page: 537 year: 2019 ident: 1151_CR17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.11.033 – volume: 182 start-page: 472 year: 1991 ident: 1151_CR30 publication-title: Immunobiology doi: 10.1016/S0171-2985(11)80211-1 – volume: 68 start-page: 805 year: 1989 ident: 1151_CR49 publication-title: Poult Sci doi: 10.3382/ps.0680805 – volume: 9 start-page: 41 year: 2024 ident: 1151_CR55 publication-title: EJNMMI Radiopharm Chem doi: 10.1186/s41181-024-00271-1 – volume: 54 start-page: 1782 year: 2013 ident: 1151_CR36 publication-title: J Nucl Med doi: 10.2967/jnumed.112.117150 – volume: 13 start-page: 4007 year: 2021 ident: 1151_CR40 publication-title: Cancers (Basel) doi: 10.3390/cancers13164007 – volume: 15 start-page: 1126 year: 2023 ident: 1151_CR43 publication-title: Cancers (Basel) doi: 10.3390/cancers15041126 – volume: 71 start-page: 209 year: 2021 ident: 1151_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 12 start-page: 5883 year: 2021 ident: 1151_CR54 publication-title: Nat Commun doi: 10.1038/s41467-021-26081-6 – volume: 6 start-page: 243 year: 2018 ident: 1151_CR10 publication-title: Gastroenterol Rep doi: 10.1093/GASTRO/GOY040 – volume: 11 start-page: 1743 year: 2005 ident: 1151_CR4 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-1195 – volume: 7 start-page: 39 year: 2019 ident: 1151_CR15 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00039 – volume: 131 start-page: 104026 year: 2020 ident: 1151_CR24 publication-title: Microvasc Res doi: 10.1016/j.mvr.2020.104026 – volume: 22 start-page: 73 year: 2019 ident: 1151_CR57 publication-title: Mol Imaging Biol doi: 10.1007/s11307-019-01337-2 – volume: 328 start-page: 314 year: 2014 ident: 1151_CR23 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2014.06.010 – volume: 140 start-page: 104304 year: 2022 ident: 1151_CR9 publication-title: Microvasc Res doi: 10.1016/j.mvr.2021.104304 – volume: 30 start-page: 571 year: 2023 ident: 1151_CR8 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2023.04.011 |
SSID | ssj0000515938 |
Score | 2.3386374 |
Snippet | Background
Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this... Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming,... BackgroundPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this... Abstract Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | 2-[18F]FDG [68Ga]Ga-Pentixafor CAM Cardiac Imaging Chemokine receptors Colorectal cancer Imaging In ovo In vivo methods and tests Liver Medicine Medicine & Public Health Membranes Metastasis Nuclear Medicine Oncology Original Research Orthopedics Patient-derived organoids PDX Radioactive tracers Radiology Tumors Xenotransplantation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXxJvAggaJG1gbx04y4bYgViuk5cRKe7PiR0QEjVGbrsTP4Z8ydtKy4XlBilSldlvHM9P5vjj-hrHnjfDYigq5U8YRQWktx1ZZbpQ12JWyMWkj7dn76vRcvbsoL66U-orPhE3ywNPEHSnsiqg5JZQl_4o7SU2DXipsusbXdRf_fSnnXSFTs6p32Ujc7ZLB6mgjKLPmnFISjyiIOPQiEyXB_t-hzF8flvxpxTQlopNb7OaMIOF4Gvltds0Pd9j1s3mN_C77djxAP8Blfxlg3BKzX0Mq3RR6B6nuDcTM5SAMQOAPYi2UT-BXZv01quTSeVj3Id5eH8ZA56vY1A4eVv2qtxugoAe7VHmG0KWvmjVaYUzGfAUt0HWGjtNhp92RkNRs77Hzk7cf3pzyuRADt1WOIxf04oyhUC5ybNEkfdO8ap2yrXdE2IQvlTSFRYOO-Io0Djtfm1Y6K7Au5H12MITBP2QgG0Uh7_Oy8-QShTd1Z-NiLBKSMEXRZEzsjKLtrFIei2V81omtYKUnQ2oypE6G1HnGXuw_82XS6Phr79fR1vueUV87vUG20LPX6X95XcYOd56i56DfaElQiui2rETGnu2bKVzjGgwZKmynPionSKAy9mByrP1I6FekoCNjuHC5xVCXLUP_MUmCE6uVhLVlxl7uvPPHuP48F4_-x1w8ZjeKFFYNL-pDdjCut_4JIbXRPE1B-R03Hjjy priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA7nCeKL-Nuep4zgm0abJm1TQeQUj0NYn1y4t9CkKZa7bbTbPe7-HP9TJ2m7Ul0PCks36W7amcl832bzDSEvC2ZlyTJJK6ErJCilobIUhmphtKxTXuiwkXbxNTtZii-n6ekemcodjQ9wvZPa-XpSy-78zeXPqw8Y8O9DwMvs7Zph0owpZhvqAQ7S4xvkJmam3AfqYoT7o9Z3WnA57Z3ZeeksPwUZ_13Y89-_UP61jhrS0_FdcmfElXA0OMI9smfb--TWYlw5f0B-HbXQtHDRXDjoN8j3OwgFnVxTQaiGAz6fVeBaQEgIvkLKGdiV7q68di6eu65x_kf3tnd4vvJNZWth1awaswacCsDMtZ_B1eGjRuVW6IOJ30EJeJ-upniYYc8kBI3bh2R5_PnbpxM6lmegJotlTxm-VFpjgCexLKUOqqdxVlbClLZCGsdsKrhOjNSyQhbDdSVrm-uSV4bJPOGPyH7rWvuEAC8ETgQ2TmuLjpJYndfGL9FKtKJOkiIibDKKMqN2uS-hca4Ch5GZGgyp0JAqGFLFEXm1vebHoNxxbe-P3tbbnl51O7yBtlBjECsh68TrnzFhcK7zu5p1IS0XsqgLm-d1RA4nT1GTJyuOAAtJOM9YRF5smzGI_coMGspthj4iRqAgIvJ4cKztSPBbOMMjInLmcrOhzlva5nsQCkeuyxGB84i8nrzzz7j-_ywOrr-Np-R2EgKmoEl-SPb7bmOfITLr9fMQbr8B-Bk1DA priority: 102 providerName: Scholars Portal – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvhy-G31lBF802DTpG3q293hcQjnkwf3FpqPYtFtZLd7cH-O_6mTNN2jegpCYekm7aY7M535dTq_IeRNw5xsWSWpFdoiQGkNla0wVAujZVfyRsdC2rPP1em5-HRRXqSisM38tvuckox36mjWsnq_Yegac4o-hYYwBkHwbXKnROwe9Po41TgkRu-y4XKukLnx0IUXimT9N0WYf74o-Vu2NDqhk_tkP0WPcDiJ-wG55YaH5O5Zyo8_Ij8PB-gHuOwvPYxbRPVriG2bfG8h9ryB4LUs-AEw8IPQB-UbuJVeXwWGXNz3696HR-vD6HF_FYbawcGqX_VmA2jwYJYMz-C7eKrEzwpjFOQHaAGv03cUNzNVRkJksn1Mzk8-fjk-pakJAzVVLkfK8MNqjWZc5LKVOnKb5lVrhWmdRbDGXCm4LozU0iJW4drKztW65dYwWRf8Cdkb_OCeEeCNQHN3edk5VIfC6bozIRErMYrQRdFkhM1CUSYxlIdGGd9VRCqyUpMgFQpSRUGqPCNvd8f8mPg5_jn7KMh6NzNwa8cvUBYqmaoSsisCyxkTBu9ooXZZN9JxIZuucXXdZeRg1hSVDH6jOIZRCLV5xTLyejeMphryLygov53miBzDAZGRp5Ni7VaCv8IZbhmRC5VbLHU5MvRfIx04IlqOcTbPyLtZO6_X9ff_4vn_TX9B7hXRgBpa1Adkb1xv3UuMx0b9KprfL_i9LpU priority: 102 providerName: Springer Nature |
Title | An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study |
URI | https://link.springer.com/article/10.1186/s13550-024-01151-0 https://www.ncbi.nlm.nih.gov/pubmed/39331331 https://www.proquest.com/docview/3110549361 https://www.proquest.com/docview/3110408474 https://pubmed.ncbi.nlm.nih.gov/PMC11436503 https://doaj.org/article/48f2547814c0420393b98e3489f9e77f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdrC2Nfxt7z1gUN9m0TtSXFPu_LSEKzMkgZZYGwL8Z6mJotdpc4hf05-093kh8lexSMEllyLOXudHd6_I6QN2lkIY9iYEYqgw5KrhnkUjMltYJiLFLlD9IuzuOzpfy0Gq-6Cbdtt62yHxP9QG1q7ebITwTqKfRlRBx9uPrBXNQot7rahdA4IEcOusxt6UpWyTDH4uKXpAL6szIQn2wj1K8hQ8XEnC2EnvSePvKw_f-yNf_eMvnHuqlXR_MH5H5nR9JJS_iH5I6tHpG7i26l_DH5NaloWdHr8rqmzQ79-w31AZzq0lAf_YY6_WVoXVE0AamLiPKN2rXa_HRYuZjHvtdukr1qasyvXVFeWbou16XeUhR9qvexnmld-J_qkFpp40n6nuYU-1kXDC_dnpGkHtP2CVnOT7_MzlgXjoHpOISGRfhhlEKB5iHkoDzKaRjnRurcGnTbIjuWQnENCgx6LUIZKGyicmF0BAkXT8lhVVf2OaEilSj4NhwXFhmDW5UU2i3JAtoTivM0IFFPlEx3WOUuZMb3zPssEGctITMkZOYJmYUBeTs8c9Uiddxae-poPdR0KNv-BtIi64Q2k1Bwh3cWSY1jmzvFrFKwQkJapDZJioAc95ySdaK_zW4YNSCvh2IUWrcSg4Sqd20dGaJhIAPyrGWsoSX4FhHhFRDYY7m9pu6XVOWlBwZH31agxS0C8q7nzpt2_f-_eHF7N16Se9wLTMp4ckwOm83OvkJLrFEjciDDjyMvdJjCHL8fTU_PP19gbsalS-PZyM9zYLqQgOnF9CumSz75DUAbOqc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgEviJuUAoMET2A1ib2Jg4RQOaot7faplfbNxEdERJOUbraoP4c_wG9k7CRbhaNvlSKtsvZmncztyXxDyIsssiKPEkENVwYDlFxTkXNNFddKFBOWKV9IOztIpkf883wyXyO_hloY91rloBO9ojaNdnvkWwztFMYyLInenXynrmuUy64OLTQ6ttiz5z8wZFu83f2I9H0ZxzufDj9Mad9VgOokFC2N8MMohXwZhyIXyoN1hkluuM6twegjshPOVKyFEgadb6aMKGyqcmZ0JFIHdIAq_xoa3tBJVDpPV3s6rl9KxsRQmyOSrUWE9jykaAip870wch_ZP98m4F--7d-vaP6Rp_Xmb-c2udX7rbDdMdodsmbru-T6rM_M3yM_t2soazgrzxpolxVOB98wqikN-G474OylgaYGdDnBdWD5BrZSp-cOmxfP8Vk3blO_bhs8r9xQXluoyqrUC0BVA3qMLQ1N4S_VI8NC61noDeSA99kUFA_d1WSCx9C9T46uhFAPyHrd1PYRAZZxVDQ2nBQWGTG2Ki20SwEL9F9UHGcBiQaiSN1jo7sWHcfSx0gikR0hJRJSekLKMCCvVr856ZBBLp393tF6NdOhevsvkBayVxKSiyJ2-GoR16hLXdW0yoRlXGRFZtO0CMjmwCmyVzULeSEYAXm-GkYl4TI_SKhm2c3hIToiPCAPO8ZarQT_hUV4BESMWG601PFIXX71QOQYSzP08FlAXg_cebGu_z-Ljctv4xm5MT2c7cv93YO9x-Rm7IUno3G6Sdbb06V9gl5gq5560QPy5apl_TcfaG7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IMY1MOAgwRNYjWM3cZAQGoxqY2zigUl9M_ElIoIm25oO7efwN_h1HDtJp3LZ26RIUWondXLuPvZ3CHmWMycLlkpqhbYYoBSGykIYqoXRshzzXIeNtAeH6e6R-DAdT9fIr2EvjF9WOejEoKhtY_wc-YijncJYhqdsVPbLIj7tTN4cn1BfQcpnWodyGh2L7LvzHxi-zV_v7SCtnyfJ5P3nd7u0rzBATRrLljI8Wa2RR5NYFlIH4M44LawwhbMYiTA3FlwnRmpp0RHn2srSZbrg1jCZedADVP_XMj5mXsayabac3_G1U3Iuh306Mh3NGdr2mKJRpN4Pwyh-xRaGkgH_8nP_Xq75R842mMLJTXKj92Fhu2O6TbLm6ltk46DP0t8mP7drqGo4q84aaBcz7A6heFRTWQiVd8DbTgtNDeh-gq_G8g3cTJ-ee5xevMZv3fgJ_rpt8Hrmm4rawayaVWYOqHbArOJMQ1OGR_UosdAGdnoFBeB7NiXFw3T7MyHg6d4hR1dCqLtkvW5qd58AzwUqHRePS4dMmTidlcangyX6MjpJ8oiwgSjK9DjpvlzHdxXiJZmqjpAKCakCIVUckRfLe447lJBLe7_1tF729Ajf4QekheoVhhKyTDzWGhMG9arfQa1z6biQeZm7LCsjsjVwiurVzlxdCElEni6bUWH4LBASqll0fUSMTomIyL2OsZYjwX_hDI-IyBWWWxnqaktdfQ2g5BhXc_T2eUReDtx5Ma7_f4sHl7_GE7KBUq4-7h3uPyTXkyA7OU2yLbLeni7cI3QIW_04SB6QL1ct6r8BUKpzIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+vivo+tumour+organoid+model+based+on+the+chick+embryonic+chorioallantoic+membrane+mimics+key+characteristics+of+the+patient+tissue%3A+a+proof-of-concept+study&rft.jtitle=EJNMMI+research&rft.au=Ben%C4%8Durov%C3%A1%2C+Katar%C3%ADna&rft.au=Tran%2C+Loan&rft.au=Friske%2C+Joachim&rft.au=Bevc%2C+Kajetana&rft.date=2024-09-27&rft.pub=Springer+Nature+B.V&rft.eissn=2191-219X&rft.volume=14&rft.issue=1&rft.spage=86&rft_id=info:doi/10.1186%2Fs13550-024-01151-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-219X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-219X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-219X&client=summon |