An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study

Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membr...

Full description

Saved in:
Bibliographic Details
Published inEJNMMI research Vol. 14; no. 1; pp. 86 - 12
Main Authors Benčurová, Katarína, Tran, Loan, Friske, Joachim, Bevc, Kajetana, Helbich, Thomas H., Hacker, Marcus, Bergmann, Michael, Zeitlinger, Markus, Haug, Alexander, Mitterhauser, Markus, Egger, Gerda, Balber, Theresa
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 27.09.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. Results The main liver metastasis of the CRC patient exhibited high 2-[ 18 F]FDG uptake and moderate and focal [ 68 Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[ 18 F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [ 68 Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [ 68 Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. Conclusions We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [ 68 Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[ 18 F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Graphical Abstract
AbstractList Abstract Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. Results The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. Conclusions We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Graphical Abstract
BackgroundPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.ResultsThe main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.ConclusionsWe successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient – in vitro PDOs – in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. Results The main liver metastasis of the CRC patient exhibited high 2-[ 18 F]FDG uptake and moderate and focal [ 68 Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[ 18 F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient’s liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient’s sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [ 68 Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [ 68 Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. Conclusions We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient’s tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [ 68 Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[ 18 F]FDG was avidly taken up in the patient’s liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients. Graphical Abstract
Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. The main liver metastasis of the CRC patient exhibited high 2-[ F]FDG uptake and moderate and focal [ Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[ F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [ Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [ Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [ Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[ F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.BACKGROUNDPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns.The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.RESULTSThe main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking.We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.CONCLUSIONSWe successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
ArticleNumber 86
Author Tran, Loan
Friske, Joachim
Egger, Gerda
Bergmann, Michael
Hacker, Marcus
Haug, Alexander
Mitterhauser, Markus
Zeitlinger, Markus
Bevc, Kajetana
Helbich, Thomas H.
Balber, Theresa
Benčurová, Katarína
Author_xml – sequence: 1
  givenname: Katarína
  surname: Benčurová
  fullname: Benčurová, Katarína
  organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics
– sequence: 2
  givenname: Loan
  surname: Tran
  fullname: Tran, Loan
  organization: Ludwig Boltzmann Institute Applied Diagnostics, Department of Pathology, Medical University of Vienna
– sequence: 3
  givenname: Joachim
  surname: Friske
  fullname: Friske, Joachim
  organization: Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
– sequence: 4
  givenname: Kajetana
  surname: Bevc
  fullname: Bevc, Kajetana
  organization: Ludwig Boltzmann Institute Applied Diagnostics
– sequence: 5
  givenname: Thomas H.
  surname: Helbich
  fullname: Helbich, Thomas H.
  organization: Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
– sequence: 6
  givenname: Marcus
  surname: Hacker
  fullname: Hacker, Marcus
  organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
– sequence: 7
  givenname: Michael
  surname: Bergmann
  fullname: Bergmann, Michael
  organization: Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna
– sequence: 8
  givenname: Markus
  surname: Zeitlinger
  fullname: Zeitlinger, Markus
  organization: Department of Clinical Pharmacology, Medical University of Vienna
– sequence: 9
  givenname: Alexander
  surname: Haug
  fullname: Haug, Alexander
  organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Christian Doppler Laboratory Applied Metabolomics
– sequence: 10
  givenname: Markus
  orcidid: 0000-0003-3173-5272
  surname: Mitterhauser
  fullname: Mitterhauser, Markus
  email: markus.mitterhauser@univie.ac.at
  organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics, Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna
– sequence: 11
  givenname: Gerda
  surname: Egger
  fullname: Egger, Gerda
  organization: Ludwig Boltzmann Institute Applied Diagnostics, Department of Pathology, Medical University of Vienna, Comprehensive Cancer Center, Medical University of Vienna
– sequence: 12
  givenname: Theresa
  surname: Balber
  fullname: Balber, Theresa
  organization: Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Ludwig Boltzmann Institute Applied Diagnostics, Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39331331$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfdAfYIEssWETsGMncdigqqJQqRIbkNhZjn0z42liD7Yz0nwOf8qdmVLaLmpZfp5zfO_1OS2OfPBQFG8Y_cCYbD4mxuualrQSJWWsZiV9UZxUrGMlDr-OHqyPi_OUVhRbzeqOy1fFMe84Z9hPij8XnjhPNm4TSJ6nMEcS4kL74CyZgoWR9DqBJcGTvARils7cEpj6uA3eGdyH6IIeR-1zwP20u9IeyOQmZxK5hS1idNQmQ3Qp787CsJda6-zAZ5JdSjN8IpqsYwhDid0Eb2CdScqz3b4uXg56THB-N58VP6--_Lj8Vt58_3p9eXFTmobKXDKcbN-3Ha-o1LKngktOG22F0WC7TjKoBe8rI3tpZdXw3soB2l5za5hsK35WXB90bdArtY5u0nGrgnZqf4BVUTpiAiMoIYeqFq1kwlBRUaxm30ngQnZDB207oNbng9Z67iewBvOMenwk-vjGu6VahI1iTPCmphwV3t8pxPB7hpTV5JKBXaEhzElxxqigUrQCoe-eQFf4jR5rtUfVouMNQ9TbhyHdx_LPCgioDgATQ0oRhnsIo2pnOXWwnELLqb3lFEWSfEIyLuPHhl1abnyeyg_UhO_4BcT_YT_D-gtxN-yk
CitedBy_id crossref_primary_10_3390_biomedicines12122835
crossref_primary_10_1007_s11307_025_01983_9
crossref_primary_10_1186_s41181_024_00323_6
Cites_doi 10.1158/1078-0432.CCR-04-1195
10.1016/j.mvr.2020.104026
10.1038/s41698-021-00168-1
10.1002/CAM4.441
10.3390/cancers13164007
10.1016/j.bbcan.2022.188790
10.3390/cells10061274
10.1038/s41467-021-26081-6
10.1007/s11307-012-0550-6
10.3389/fphys.2022.818463
10.1038/s44303-023-00001-3
10.1007/978-1-4613-4169-7_5
10.2967/jnumed.112.117150
10.1021/acsabm.3c00237
10.1016/S0171-2985(11)80211-1
10.1093/GASTRO/GOY040
10.3382/ps.0680805
10.1016/j.cell.2011.02.013
10.1038/s41563-019-0287-6
10.1016/j.remn.2013.07.002
10.1016/j.nucmedbio.2014.10.010
10.1126/scitranslmed.aad8278
10.1038/s41568-018-0007-6
10.1016/j.stem.2023.04.011
10.1021/acs.jmedchem.7b01245
10.1186/s41181-024-00271-1
10.3390/organoids1010005
10.1200/JCO.2005.07.078
10.3390/cancers14225549
10.1038/nprot.2015.088
10.1016/j.yexcr.2021.112510
10.1007/s00418-008-0536-2
10.1016/j.stem.2018.09.016
10.1016/j.biomaterials.2018.11.033
10.1038/s41598-020-75660-y
10.3322/caac.21660
10.3390/cancers12051248
10.1001/jama.1911.02560100033015
10.3390/cancers14163870
10.1007/s00441-021-03510-y
10.7150/thno.48620
10.1126/science.aao2774
10.3389/fbioe.2019.00039
10.1007/s11307-019-01337-2
10.3390/cancers15041126
10.3389/fmed.2022.1003914
10.1038/s41598-019-52204-7
10.1038/nature07935
10.3390/cancers15010191
10.1016/j.yexcr.2014.06.010
10.1016/j.mod.2016.05.003
10.1016/j.mvr.2021.104304
10.1016/J.JCMGH.2023.02.014
10.1016/j.tranon.2021.101174
10.3791/60995
10.5694/j.1326-5377.1960.tb73127.x
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
M0S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13550-024-01151-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2191-219X
EndPage 12
ExternalDocumentID oai_doaj_org_article_48f2547814c0420393b98e3489f9e77f
PMC11436503
39331331
10_1186_s13550_024_01151_0
Genre Journal Article
GrantInformation_xml – fundername: University of Vienna
GroupedDBID -A0
0R~
3V.
40G
53G
5VS
7X7
8AO
8FE
8FG
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABUWG
ACACY
ACGFS
ACIHN
ACUHS
ACULB
ADBBV
ADINQ
AEAQA
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BCNDV
BENPR
BFQNJ
BGLVJ
BPHCQ
BVXVI
C24
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
M48
M~E
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RSV
SMD
SOJ
U2A
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c608t-1c60dbb793208a8b0438306ad4caed9981e543b2c8b8d8263bd8fe7ba3dc18723
IEDL.DBID 7X7
ISSN 2191-219X
IngestDate Wed Aug 27 01:31:49 EDT 2025
Thu Aug 21 18:31:14 EDT 2025
Fri Jul 11 15:28:00 EDT 2025
Fri Jul 25 22:29:42 EDT 2025
Mon Jul 21 05:56:43 EDT 2025
Thu Apr 24 22:52:49 EDT 2025
Tue Jul 01 03:28:25 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Patient-derived organoids
Ga]Ga-Pentixafor
PET/MRI
PDX
CRC
F]FDG
[
2-
In ovo
CAM
[68Ga]Ga-Pentixafor
2-[18F]FDG
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-1c60dbb793208a8b0438306ad4caed9981e543b2c8b8d8263bd8fe7ba3dc18723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3173-5272
OpenAccessLink https://www.proquest.com/docview/3110549361?pq-origsite=%requestingapplication%
PMID 39331331
PQID 3110549361
PQPubID 2034773
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_48f2547814c0420393b98e3489f9e77f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436503
proquest_miscellaneous_3110408474
proquest_journals_3110549361
pubmed_primary_39331331
crossref_primary_10_1186_s13550_024_01151_0
crossref_citationtrail_10_1186_s13550_024_01151_0
springer_journals_10_1186_s13550_024_01151_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle EJNMMI research
PublicationTitleAbbrev EJNMMI Res
PublicationTitleAlternate EJNMMI Res
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Vandana, Manrique, Lacko, Chen (CR8) 2023; 30
Rosenbruch (CR28) 1997; 14
Dekkers, Berkers, Kruisselbrink, Vonk, De Jonge, Janssens (CR13) 2016; 8
Haller, Ametamey, Schibli, Müller (CR37) 2015; 42
Zierke, Rangger, Samadikhah, Panzer, Dichtl, Hörmann (CR55) 2024; 9
Benčurová, Friske, Anderla, Mayrhofer, Wanek, Nics (CR42) 2022; 14
Ribatti (CR25) 2021; 400
Hanahan, Weinberg (CR50) 2011; 144
Yan, Siu, Law, Ho, Yue, Tsui (CR7) 2018; 23
Khan, Ho Shin, Ferri, Cheng, Noel, Kuo (CR54) 2021; 12
CR33
Zahmatkesh, Ghanian, Zarkesh, Farzaneh, Halvaei, Heydari (CR19) 2021; 10
CR32
Löffler, Hamp, Scheidhauer, Di Carlo, Solbach, Abaei (CR40) 2021; 13
Ribatti, Annese, Tamma (CR24) 2020; 131
Carter, Kesner, Pratt, Sanders, Massicano, Cutler (CR57) 2019; 22
Winter, Koch, Löffler, Lindén, Solbach, Abaei (CR39) 2020; 12
Wörsdörfer, Dalda, Kern, Krüger, Wagner, Kwok (CR14) 2019; 9
Xi, Xu (CR2) 2021; 14
Grebenyuk, Ranga (CR15) 2019; 7
Ribatti (CR23) 2014; 328
Schimanski, Schwald, Simiantonaki, Jayasinghe, Gönner, Wilsberg (CR4) 2005; 11
Drost, Clevers (CR6) 2018; 18
Atanasova, de Jesus Cardona, Hejret, Tiefenbacher, Mair, Tran (CR48) 2023; 15
Zlatopolskiy, Zischler, Schäfer, Urusova, Guliyev, Bannykh (CR38) 2018; 61
Würbach, Heidrich, Opfermann, Gebhardt, Saluz (CR34) 2012; 14
Ribatti (CR9) 2022; 140
Schmidt, Alt, Deoghare, Krüger, Kern, Rockel (CR21) 2022; 1
Fujii, Matano, Nanki, Sato (CR47) 2015; 10
Wensink, Elias, Mullenders, Koopman, Boj, Kranenburg (CR11) 2021; 5
Warnock, Turtoi, Blomme, Bretin, Bahri, Lemaire (CR36) 2013; 54
Janse, Jeurissen (CR30) 1991; 182
Schulze, Librizzi, Bender, Jedelská, Yousefi, Schaefer (CR45) 2023; 6
Smith, Greenwood, Tyrrell, Edwards, De Santis, Baark (CR44) 2023; 1
Varzideh, Pahlavan, Ansari, Halvaei, Kostin, Feiz (CR17) 2019; 192
CR18
Mayerhoefer, Raderer, Lamm, Pichler, Pfaff, Weber (CR46) 2021; 11
Weber, Mausner, Benedict (CR29) 1977
Hilbrig, Löffler, Fischer, Scheidhauer, Solbach, Huber-Lang (CR43) 2023; 15
Sato, Vries, Snippert, Van De Wetering, Barker, Stange (CR5) 2009; 459
Kleibeuker, ten Hooven, Castricum, Honeywell, Griffioen, Verheul (CR52) 2015; 4
Vlachogiannis, Hedayat, Vatsiou, Jamin, Fernández-Mateos, Khan (CR12) 2018; 359
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (CR1) 2021; 71
Garreta, Prado, Tarantino, Oria, Fanlo, Martí (CR16) 2019; 18
Rous, Murphy (CR22) 1911; 56
Moeinvaziri, Shojaei, Haghparast, Yakhkeshi, Nemati, Hassani (CR20) 2021; 386
Ribatti (CR27) 2016; 141
Fischer, Fluegen, Garcia, Ghaffari-Tabrizi-Wizsy, Gribaldo, Huang (CR31) 2023; 15
Deryugina, Quigley (CR26) 2008; 130
Kim, Takeuchi, Lam, Turner, Wang, Kuo (CR3) 2005; 23
Charbonneau, Harper, Brochu-Gaudreau, Perreault, McDonald, Ekindi-Ndongo (CR53) 2022; 9
Löffler, Herrmann, Scheidhauer, Wirth, Wasserloos, Solbach (CR41) 2022; 14
Burke, Sharp (CR49) 1989; 68
Nengroo, Khan, Verma, Datta (CR56) 2022; 1877
Kertész, Beyer, Panin, Jentzen, Cal-Gonzalez, Berger (CR58) 2022; 13
Eckrich, Kugler, Buhr, Ernst, Mendler, Baumgart (CR51) 2020; 10
Yang, Sun, Liu, Mao (CR10) 2018; 6
Gebhardt, Würbach, Heidrich, Heinrich, Walther, Opfermann (CR35) 2013; 32
LM Smith (1151_CR44) 2023; 1
G Winter (1151_CR39) 2020; 12
EA Kleibeuker (1151_CR52) 2015; 4
G Vlachogiannis (1151_CR12) 2018; 359
J Drost (1151_CR6) 2018; 18
M Fujii (1151_CR47) 2015; 10
J Löffler (1151_CR41) 2022; 14
H Kertész (1151_CR58) 2022; 13
D Ribatti (1151_CR23) 2014; 328
S Grebenyuk (1151_CR15) 2019; 7
D Ribatti (1151_CR27) 2016; 141
J Eckrich (1151_CR51) 2020; 10
Y Xi (1151_CR2) 2021; 14
1151_CR18
M Charbonneau (1151_CR53) 2022; 9
J Schulze (1151_CR45) 2023; 6
D Ribatti (1151_CR24) 2020; 131
G Warnock (1151_CR36) 2013; 54
P Rous (1151_CR22) 1911; 56
S Haller (1151_CR37) 2015; 42
WH Burke (1151_CR49) 1989; 68
L Würbach (1151_CR34) 2012; 14
D Hanahan (1151_CR50) 2011; 144
H Sung (1151_CR1) 2021; 71
JJ Vandana (1151_CR8) 2023; 30
C Hilbrig (1151_CR43) 2023; 15
LM Carter (1151_CR57) 2019; 22
H Yang (1151_CR10) 2018; 6
GE Wensink (1151_CR11) 2021; 5
P Wörsdörfer (1151_CR14) 2019; 9
S Schmidt (1151_CR21) 2022; 1
BD Zlatopolskiy (1151_CR38) 2018; 61
F Moeinvaziri (1151_CR20) 2021; 386
MA Zierke (1151_CR55) 2024; 9
F Varzideh (1151_CR17) 2019; 192
ME Mayerhoefer (1151_CR46) 2021; 11
E Zahmatkesh (1151_CR19) 2021; 10
P Gebhardt (1151_CR35) 2013; 32
D Fischer (1151_CR31) 2023; 15
1151_CR32
1151_CR33
WT Weber (1151_CR29) 1977
CC Schimanski (1151_CR4) 2005; 11
MA Nengroo (1151_CR56) 2022; 1877
M Rosenbruch (1151_CR28) 1997; 14
S Khan (1151_CR54) 2021; 12
T Sato (1151_CR5) 2009; 459
JF Dekkers (1151_CR13) 2016; 8
EM Janse (1151_CR30) 1991; 182
EI Deryugina (1151_CR26) 2008; 130
D Ribatti (1151_CR9) 2022; 140
J Löffler (1151_CR40) 2021; 13
K Benčurová (1151_CR42) 2022; 14
E Garreta (1151_CR16) 2019; 18
J Kim (1151_CR3) 2005; 23
HHN Yan (1151_CR7) 2018; 23
VS Atanasova (1151_CR48) 2023; 15
D Ribatti (1151_CR25) 2021; 400
References_xml – volume: 11
  start-page: 1743
  year: 2005
  end-page: 50
  ident: CR4
  article-title: Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-1195
– volume: 131
  start-page: 104026
  year: 2020
  ident: CR24
  article-title: The use of the chick embryo CAM assay in the study of angiogenic activity of biomaterials
  publication-title: Microvasc Res
  doi: 10.1016/j.mvr.2020.104026
– volume: 5
  start-page: 30
  year: 2021
  ident: CR11
  article-title: Patient-derived organoids as a predictive biomarker for treatment response in cancer patients
  publication-title: NPJ Precis Oncol
  doi: 10.1038/s41698-021-00168-1
– volume: 4
  start-page: 1003
  year: 2015
  end-page: 15
  ident: CR52
  article-title: Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction
  publication-title: Cancer Med
  doi: 10.1002/CAM4.441
– volume: 13
  start-page: 4007
  year: 2021
  ident: CR40
  article-title: Comparison of quantification of target-specific accumulation of [ F]F-siPSMA-14 in the HET-CAM model and in mice using PET/MRI
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13164007
– volume: 1877
  start-page: 188790
  year: 2022
  ident: CR56
  article-title: Demystifying the CXCR4 conundrum in cancer biology: beyond the surface signaling paradigm
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2022.188790
– volume: 10
  start-page: 1274
  year: 2021
  ident: CR19
  article-title: Tissue-specific microparticles improve organoid microenvironment for efficient maturation of pluripotent stem-cell-derived hepatocytes
  publication-title: Cells
  doi: 10.3390/cells10061274
– volume: 12
  start-page: 5883
  year: 2021
  ident: CR54
  article-title: High-resolution positron emission microscopy of patient-derived tumor organoids
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26081-6
– volume: 14
  start-page: 688
  year: 2012
  end-page: 98
  ident: CR34
  article-title: Insights into bone metabolism of avian embryos in ovo via 3D and 4D F-fluoride positron emission tomography
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-012-0550-6
– volume: 13
  start-page: 818463
  year: 2022
  ident: CR58
  article-title: Implementation of a spatially-variant and tissue-dependent positron range correction for PET/CT imaging
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.818463
– volume: 1
  start-page: 1
  year: 2023
  end-page: 12
  ident: CR44
  article-title: The chicken chorioallantoic membrane as a low-cost, high-throughput model for cancer imaging
  publication-title: Npj Imaging
  doi: 10.1038/s44303-023-00001-3
– start-page: 47
  year: 1977
  end-page: 59
  ident: CR29
  article-title: Migration patterns of avian embryonic bone marrow cells and their differentiation to functional T and B cells
  publication-title: Avian immunology
  doi: 10.1007/978-1-4613-4169-7_5
– volume: 54
  start-page: 1782
  year: 2013
  end-page: 8
  ident: CR36
  article-title: In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.112.117150
– volume: 6
  start-page: 2435
  year: 2023
  end-page: 45
  ident: CR45
  article-title: How to xenograft cancer cells on the chorioallantoic membrane of a fertilized hen’s egg and its visualization by PET/CT and MRI
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.3c00237
– volume: 14
  start-page: 111
  year: 1997
  end-page: 3
  ident: CR28
  article-title: The sensitivity of chicken embryos in incubated eggs
  publication-title: Altex
– volume: 182
  start-page: 472
  year: 1991
  end-page: 81
  ident: CR30
  article-title: Ontogeny and function of two non-lymphoid cell populations in the chicken embryo
  publication-title: Immunobiology
  doi: 10.1016/S0171-2985(11)80211-1
– volume: 6
  start-page: 243
  year: 2018
  end-page: 5
  ident: CR10
  article-title: Patient-derived organoids: a promising model for personalized cancer treatment
  publication-title: Gastroenterol Rep
  doi: 10.1093/GASTRO/GOY040
– volume: 68
  start-page: 805
  year: 1989
  end-page: 10
  ident: CR49
  article-title: Sex differences in body weight of chicken embryos
  publication-title: Poult Sci
  doi: 10.3382/ps.0680805
– volume: 144
  start-page: 646
  year: 2011
  end-page: 74
  ident: CR50
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 18
  start-page: 397
  year: 2019
  end-page: 405
  ident: CR16
  article-title: Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0287-6
– volume: 32
  start-page: 371
  year: 2013
  end-page: 7
  ident: CR35
  article-title: Dynamic behaviour of selected PET tracers in embryonated chicken eggs
  publication-title: Rev Esp Med Nucl Imagen Mol
  doi: 10.1016/j.remn.2013.07.002
– volume: 42
  start-page: 226
  year: 2015
  end-page: 33
  ident: CR37
  article-title: Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals
  publication-title: Nucl Med Biol
  doi: 10.1016/j.nucmedbio.2014.10.010
– volume: 8
  start-page: 344ra84
  year: 2016
  ident: CR13
  article-title: Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aad8278
– volume: 18
  start-page: 407
  year: 2018
  end-page: 18
  ident: CR6
  article-title: Organoids in cancer research
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0007-6
– volume: 30
  start-page: 571
  year: 2023
  end-page: 91
  ident: CR8
  article-title: Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2023.04.011
– volume: 61
  start-page: 189
  year: 2018
  end-page: 206
  ident: CR38
  article-title: Discovery of 7-[ F]fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01245
– ident: CR32
– volume: 9
  start-page: 41
  year: 2024
  ident: CR55
  article-title: [ Ga]Ga-NODAGA-TriGalactan, a low molecular weight tracer for the non-invasive imaging of the functional liver reserve
  publication-title: EJNMMI Radiopharm Chem
  doi: 10.1186/s41181-024-00271-1
– volume: 1
  start-page: 41
  year: 2022
  end-page: 53
  ident: CR21
  article-title: A blood vessel organoid model recapitulating aspects of vasculogenesis, angiogenesis and vessel wall maturation
  publication-title: Organoids
  doi: 10.3390/organoids1010005
– volume: 23
  start-page: 2744
  year: 2005
  end-page: 53
  ident: CR3
  article-title: Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.07.078
– volume: 14
  start-page: 5549
  year: 2022
  ident: CR42
  article-title: CAM-xenograft model provides preclinical evidence for the applicability of [ Ga]Ga-Pentixafor in CRC imaging
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14225549
– volume: 10
  start-page: 1474
  year: 2015
  end-page: 85
  ident: CR47
  article-title: Efficient genetic engineering of human intestinal organoids using electroporation
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.088
– ident: CR18
– volume: 400
  start-page: 112510
  year: 2021
  ident: CR25
  article-title: The CAM assay in the study of the metastatic process
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2021.112510
– volume: 130
  start-page: 1119
  year: 2008
  end-page: 30
  ident: CR26
  article-title: Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-008-0536-2
– volume: 23
  start-page: 882
  year: 2018
  end-page: 97.e11
  ident: CR7
  article-title: A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.09.016
– volume: 192
  start-page: 537
  year: 2019
  end-page: 50
  ident: CR17
  article-title: Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.11.033
– volume: 10
  start-page: 18585
  year: 2020
  ident: CR51
  article-title: Monitoring of tumor growth and vascularization with repetitive ultrasonography in the chicken chorioallantoic-membrane-assay
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75660-y
– volume: 71
  start-page: 209
  year: 2021
  end-page: 49
  ident: CR1
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 12
  start-page: 1248
  year: 2020
  ident: CR39
  article-title: Multi-modal PET and MR imaging in the hen’s egg test-chorioallantoic membrane (HET-CAM) model for initial in vivo testing of target-specific radioligands
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers12051248
– ident: CR33
– volume: 56
  start-page: 741
  year: 1911
  end-page: 2
  ident: CR22
  article-title: Tumor implantations in the developing embryo
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1911.02560100033015
– volume: 14
  start-page: 3870
  year: 2022
  ident: CR41
  article-title: Blocking studies to evaluate receptor-specific radioligand binding in the CAM model by PET and MR imaging
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14163870
– volume: 386
  start-page: 321
  year: 2021
  end-page: 33
  ident: CR20
  article-title: Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-021-03510-y
– volume: 11
  start-page: 567
  year: 2021
  end-page: 78
  ident: CR46
  article-title: CXCR4 PET imaging of mantle cell lymphoma using [ Ga]Pentixafor: comparison with [ F]FDG-PET
  publication-title: Theranostics
  doi: 10.7150/thno.48620
– volume: 359
  start-page: 920
  year: 2018
  end-page: 6
  ident: CR12
  article-title: Patient-derived organoids model treatment response of metastatic gastrointestinal cancers
  publication-title: Science
  doi: 10.1126/science.aao2774
– volume: 7
  start-page: 39
  year: 2019
  ident: CR15
  article-title: Engineering organoid vascularization
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00039
– volume: 22
  start-page: 73
  year: 2019
  end-page: 84
  ident: CR57
  article-title: The impact of positron range on PET resolution, evaluated with phantoms and PHITS Monte Carlo simulations for conventional and non-conventional radionuclides
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-019-01337-2
– volume: 15
  start-page: 1126
  year: 2023
  ident: CR43
  article-title: Evaluation of the EPR effect in the CAM-model by molecular imaging with MRI and PET using Zr-labeled HSA
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers15041126
– volume: 9
  start-page: 1003914
  year: 2022
  ident: CR53
  article-title: Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2022.1003914
– volume: 9
  start-page: 15663
  year: 2019
  ident: CR14
  article-title: Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52204-7
– volume: 459
  start-page: 262
  year: 2009
  end-page: 5
  ident: CR5
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 15
  start-page: 191
  year: 2023
  ident: CR31
  article-title: The CAM model—Q&A with experts
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers15010191
– volume: 328
  start-page: 314
  year: 2014
  end-page: 24
  ident: CR23
  article-title: The chick embryo chorioallantoic membrane as a model for tumor biology
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2014.06.010
– volume: 141
  start-page: 70
  year: 2016
  end-page: 7
  ident: CR27
  article-title: The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model
  publication-title: Mech Dev
  doi: 10.1016/j.mod.2016.05.003
– volume: 140
  start-page: 104304
  year: 2022
  ident: CR9
  article-title: Two new applications in the study of angiogenesis the CAM assay: Acellular scaffolds and organoids
  publication-title: Microvasc Res
  doi: 10.1016/j.mvr.2021.104304
– volume: 15
  start-page: 1391
  year: 2023
  end-page: 419
  ident: CR48
  article-title: Mimicking tumor cell heterogeneity of colorectal cancer in a patient-derived organoid-fibroblast model
  publication-title: Cell Mol Gastroenterol Hepatol
  doi: 10.1016/J.JCMGH.2023.02.014
– volume: 14
  start-page: 101174
  year: 2021
  ident: CR2
  article-title: Global colorectal cancer burden in 2020 and projections to 2040
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2021.101174
– volume: 10
  start-page: 1474
  year: 2015
  ident: 1151_CR47
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.088
– volume: 15
  start-page: 1391
  year: 2023
  ident: 1151_CR48
  publication-title: Cell Mol Gastroenterol Hepatol
  doi: 10.1016/J.JCMGH.2023.02.014
– volume: 23
  start-page: 882
  year: 2018
  ident: 1151_CR7
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.09.016
– volume: 359
  start-page: 920
  year: 2018
  ident: 1151_CR12
  publication-title: Science
  doi: 10.1126/science.aao2774
– volume: 5
  start-page: 30
  year: 2021
  ident: 1151_CR11
  publication-title: NPJ Precis Oncol
  doi: 10.1038/s41698-021-00168-1
– volume: 386
  start-page: 321
  year: 2021
  ident: 1151_CR20
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-021-03510-y
– volume: 42
  start-page: 226
  year: 2015
  ident: 1151_CR37
  publication-title: Nucl Med Biol
  doi: 10.1016/j.nucmedbio.2014.10.010
– volume: 14
  start-page: 111
  year: 1997
  ident: 1151_CR28
  publication-title: Altex
– volume: 10
  start-page: 1274
  year: 2021
  ident: 1151_CR19
  publication-title: Cells
  doi: 10.3390/cells10061274
– volume: 14
  start-page: 688
  year: 2012
  ident: 1151_CR34
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-012-0550-6
– volume: 9
  start-page: 15663
  year: 2019
  ident: 1151_CR14
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52204-7
– volume: 8
  start-page: 344ra84
  year: 2016
  ident: 1151_CR13
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aad8278
– volume: 459
  start-page: 262
  year: 2009
  ident: 1151_CR5
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 13
  start-page: 818463
  year: 2022
  ident: 1151_CR58
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.818463
– volume: 400
  start-page: 112510
  year: 2021
  ident: 1151_CR25
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2021.112510
– volume: 10
  start-page: 18585
  year: 2020
  ident: 1151_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75660-y
– volume: 11
  start-page: 567
  year: 2021
  ident: 1151_CR46
  publication-title: Theranostics
  doi: 10.7150/thno.48620
– volume: 18
  start-page: 407
  year: 2018
  ident: 1151_CR6
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0007-6
– volume: 14
  start-page: 101174
  year: 2021
  ident: 1151_CR2
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2021.101174
– volume: 1
  start-page: 41
  year: 2022
  ident: 1151_CR21
  publication-title: Organoids
  doi: 10.3390/organoids1010005
– volume: 61
  start-page: 189
  year: 2018
  ident: 1151_CR38
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01245
– volume: 14
  start-page: 3870
  year: 2022
  ident: 1151_CR41
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14163870
– volume: 9
  start-page: 1003914
  year: 2022
  ident: 1151_CR53
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2022.1003914
– ident: 1151_CR18
  doi: 10.3791/60995
– volume: 6
  start-page: 2435
  year: 2023
  ident: 1151_CR45
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.3c00237
– volume: 18
  start-page: 397
  year: 2019
  ident: 1151_CR16
  publication-title: Nat Mater
  doi: 10.1038/s41563-019-0287-6
– volume: 12
  start-page: 1248
  year: 2020
  ident: 1151_CR39
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers12051248
– volume: 144
  start-page: 646
  year: 2011
  ident: 1151_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 4
  start-page: 1003
  year: 2015
  ident: 1151_CR52
  publication-title: Cancer Med
  doi: 10.1002/CAM4.441
– volume: 1
  start-page: 1
  year: 2023
  ident: 1151_CR44
  publication-title: Npj Imaging
  doi: 10.1038/s44303-023-00001-3
– volume: 130
  start-page: 1119
  year: 2008
  ident: 1151_CR26
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-008-0536-2
– volume: 23
  start-page: 2744
  year: 2005
  ident: 1151_CR3
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.07.078
– volume: 56
  start-page: 741
  year: 1911
  ident: 1151_CR22
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1911.02560100033015
– ident: 1151_CR33
– volume: 15
  start-page: 191
  year: 2023
  ident: 1151_CR31
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers15010191
– volume: 1877
  start-page: 188790
  year: 2022
  ident: 1151_CR56
  publication-title: Biochim Biophys Acta Rev Cancer
  doi: 10.1016/j.bbcan.2022.188790
– volume: 32
  start-page: 371
  year: 2013
  ident: 1151_CR35
  publication-title: Rev Esp Med Nucl Imagen Mol
  doi: 10.1016/j.remn.2013.07.002
– volume: 141
  start-page: 70
  year: 2016
  ident: 1151_CR27
  publication-title: Mech Dev
  doi: 10.1016/j.mod.2016.05.003
– ident: 1151_CR32
  doi: 10.5694/j.1326-5377.1960.tb73127.x
– start-page: 47
  volume-title: Avian immunology
  year: 1977
  ident: 1151_CR29
  doi: 10.1007/978-1-4613-4169-7_5
– volume: 14
  start-page: 5549
  year: 2022
  ident: 1151_CR42
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14225549
– volume: 192
  start-page: 537
  year: 2019
  ident: 1151_CR17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.11.033
– volume: 182
  start-page: 472
  year: 1991
  ident: 1151_CR30
  publication-title: Immunobiology
  doi: 10.1016/S0171-2985(11)80211-1
– volume: 68
  start-page: 805
  year: 1989
  ident: 1151_CR49
  publication-title: Poult Sci
  doi: 10.3382/ps.0680805
– volume: 9
  start-page: 41
  year: 2024
  ident: 1151_CR55
  publication-title: EJNMMI Radiopharm Chem
  doi: 10.1186/s41181-024-00271-1
– volume: 54
  start-page: 1782
  year: 2013
  ident: 1151_CR36
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.112.117150
– volume: 13
  start-page: 4007
  year: 2021
  ident: 1151_CR40
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13164007
– volume: 15
  start-page: 1126
  year: 2023
  ident: 1151_CR43
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers15041126
– volume: 71
  start-page: 209
  year: 2021
  ident: 1151_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 12
  start-page: 5883
  year: 2021
  ident: 1151_CR54
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26081-6
– volume: 6
  start-page: 243
  year: 2018
  ident: 1151_CR10
  publication-title: Gastroenterol Rep
  doi: 10.1093/GASTRO/GOY040
– volume: 11
  start-page: 1743
  year: 2005
  ident: 1151_CR4
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-1195
– volume: 7
  start-page: 39
  year: 2019
  ident: 1151_CR15
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00039
– volume: 131
  start-page: 104026
  year: 2020
  ident: 1151_CR24
  publication-title: Microvasc Res
  doi: 10.1016/j.mvr.2020.104026
– volume: 22
  start-page: 73
  year: 2019
  ident: 1151_CR57
  publication-title: Mol Imaging Biol
  doi: 10.1007/s11307-019-01337-2
– volume: 328
  start-page: 314
  year: 2014
  ident: 1151_CR23
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2014.06.010
– volume: 140
  start-page: 104304
  year: 2022
  ident: 1151_CR9
  publication-title: Microvasc Res
  doi: 10.1016/j.mvr.2021.104304
– volume: 30
  start-page: 571
  year: 2023
  ident: 1151_CR8
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2023.04.011
SSID ssj0000515938
Score 2.3386374
Snippet Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this...
Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming,...
BackgroundPatient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this...
Abstract Background Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms 2-[18F]FDG
[68Ga]Ga-Pentixafor
CAM
Cardiac Imaging
Chemokine receptors
Colorectal cancer
Imaging
In ovo
In vivo methods and tests
Liver
Medicine
Medicine & Public Health
Membranes
Metastasis
Nuclear Medicine
Oncology
Original Research
Orthopedics
Patient-derived organoids
PDX
Radioactive tracers
Radiology
Tumors
Xenotransplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXxJvAggaJG1gbx04y4bYgViuk5cRKe7PiR0QEjVGbrsTP4Z8ydtKy4XlBilSldlvHM9P5vjj-hrHnjfDYigq5U8YRQWktx1ZZbpQ12JWyMWkj7dn76vRcvbsoL66U-orPhE3ywNPEHSnsiqg5JZQl_4o7SU2DXipsusbXdRf_fSnnXSFTs6p32Ujc7ZLB6mgjKLPmnFISjyiIOPQiEyXB_t-hzF8flvxpxTQlopNb7OaMIOF4Gvltds0Pd9j1s3mN_C77djxAP8Blfxlg3BKzX0Mq3RR6B6nuDcTM5SAMQOAPYi2UT-BXZv01quTSeVj3Id5eH8ZA56vY1A4eVv2qtxugoAe7VHmG0KWvmjVaYUzGfAUt0HWGjtNhp92RkNRs77Hzk7cf3pzyuRADt1WOIxf04oyhUC5ybNEkfdO8ap2yrXdE2IQvlTSFRYOO-Io0Djtfm1Y6K7Au5H12MITBP2QgG0Uh7_Oy8-QShTd1Z-NiLBKSMEXRZEzsjKLtrFIei2V81omtYKUnQ2oypE6G1HnGXuw_82XS6Phr79fR1vueUV87vUG20LPX6X95XcYOd56i56DfaElQiui2rETGnu2bKVzjGgwZKmynPionSKAy9mByrP1I6FekoCNjuHC5xVCXLUP_MUmCE6uVhLVlxl7uvPPHuP48F4_-x1w8ZjeKFFYNL-pDdjCut_4JIbXRPE1B-R03Hjjy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA7nCeKL-Nuep4zgm0abJm1TQeQUj0NYn1y4t9CkKZa7bbTbPe7-HP9TJ2m7Ul0PCks36W7amcl832bzDSEvC2ZlyTJJK6ErJCilobIUhmphtKxTXuiwkXbxNTtZii-n6ekemcodjQ9wvZPa-XpSy-78zeXPqw8Y8O9DwMvs7Zph0owpZhvqAQ7S4xvkJmam3AfqYoT7o9Z3WnA57Z3ZeeksPwUZ_13Y89-_UP61jhrS0_FdcmfElXA0OMI9smfb--TWYlw5f0B-HbXQtHDRXDjoN8j3OwgFnVxTQaiGAz6fVeBaQEgIvkLKGdiV7q68di6eu65x_kf3tnd4vvJNZWth1awaswacCsDMtZ_B1eGjRuVW6IOJ30EJeJ-upniYYc8kBI3bh2R5_PnbpxM6lmegJotlTxm-VFpjgCexLKUOqqdxVlbClLZCGsdsKrhOjNSyQhbDdSVrm-uSV4bJPOGPyH7rWvuEAC8ETgQ2TmuLjpJYndfGL9FKtKJOkiIibDKKMqN2uS-hca4Ch5GZGgyp0JAqGFLFEXm1vebHoNxxbe-P3tbbnl51O7yBtlBjECsh68TrnzFhcK7zu5p1IS0XsqgLm-d1RA4nT1GTJyuOAAtJOM9YRF5smzGI_coMGspthj4iRqAgIvJ4cKztSPBbOMMjInLmcrOhzlva5nsQCkeuyxGB84i8nrzzz7j-_ywOrr-Np-R2EgKmoEl-SPb7bmOfITLr9fMQbr8B-Bk1DA
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvhy-G31lBF802DTpG3q293hcQjnkwf3FpqPYtFtZLd7cH-O_6mTNN2jegpCYekm7aY7M535dTq_IeRNw5xsWSWpFdoiQGkNla0wVAujZVfyRsdC2rPP1em5-HRRXqSisM38tvuckox36mjWsnq_Yegac4o-hYYwBkHwbXKnROwe9Po41TgkRu-y4XKukLnx0IUXimT9N0WYf74o-Vu2NDqhk_tkP0WPcDiJ-wG55YaH5O5Zyo8_Ij8PB-gHuOwvPYxbRPVriG2bfG8h9ryB4LUs-AEw8IPQB-UbuJVeXwWGXNz3696HR-vD6HF_FYbawcGqX_VmA2jwYJYMz-C7eKrEzwpjFOQHaAGv03cUNzNVRkJksn1Mzk8-fjk-pakJAzVVLkfK8MNqjWZc5LKVOnKb5lVrhWmdRbDGXCm4LozU0iJW4drKztW65dYwWRf8Cdkb_OCeEeCNQHN3edk5VIfC6bozIRErMYrQRdFkhM1CUSYxlIdGGd9VRCqyUpMgFQpSRUGqPCNvd8f8mPg5_jn7KMh6NzNwa8cvUBYqmaoSsisCyxkTBu9ooXZZN9JxIZuucXXdZeRg1hSVDH6jOIZRCLV5xTLyejeMphryLygov53miBzDAZGRp5Ni7VaCv8IZbhmRC5VbLHU5MvRfIx04IlqOcTbPyLtZO6_X9ff_4vn_TX9B7hXRgBpa1Adkb1xv3UuMx0b9KprfL_i9LpU
  priority: 102
  providerName: Springer Nature
Title An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study
URI https://link.springer.com/article/10.1186/s13550-024-01151-0
https://www.ncbi.nlm.nih.gov/pubmed/39331331
https://www.proquest.com/docview/3110549361
https://www.proquest.com/docview/3110408474
https://pubmed.ncbi.nlm.nih.gov/PMC11436503
https://doaj.org/article/48f2547814c0420393b98e3489f9e77f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9swEBdrC2Nfxt7z1gUN9m0TtSXFPu_LSEKzMkgZZYGwL8Z6mJotdpc4hf05-093kh8lexSMEllyLOXudHd6_I6QN2lkIY9iYEYqgw5KrhnkUjMltYJiLFLlD9IuzuOzpfy0Gq-6Cbdtt62yHxP9QG1q7ebITwTqKfRlRBx9uPrBXNQot7rahdA4IEcOusxt6UpWyTDH4uKXpAL6szIQn2wj1K8hQ8XEnC2EnvSePvKw_f-yNf_eMvnHuqlXR_MH5H5nR9JJS_iH5I6tHpG7i26l_DH5NaloWdHr8rqmzQ79-w31AZzq0lAf_YY6_WVoXVE0AamLiPKN2rXa_HRYuZjHvtdukr1qasyvXVFeWbou16XeUhR9qvexnmld-J_qkFpp40n6nuYU-1kXDC_dnpGkHtP2CVnOT7_MzlgXjoHpOISGRfhhlEKB5iHkoDzKaRjnRurcGnTbIjuWQnENCgx6LUIZKGyicmF0BAkXT8lhVVf2OaEilSj4NhwXFhmDW5UU2i3JAtoTivM0IFFPlEx3WOUuZMb3zPssEGctITMkZOYJmYUBeTs8c9Uiddxae-poPdR0KNv-BtIi64Q2k1Bwh3cWSY1jmzvFrFKwQkJapDZJioAc95ySdaK_zW4YNSCvh2IUWrcSg4Sqd20dGaJhIAPyrGWsoSX4FhHhFRDYY7m9pu6XVOWlBwZH31agxS0C8q7nzpt2_f-_eHF7N16Se9wLTMp4ckwOm83OvkJLrFEjciDDjyMvdJjCHL8fTU_PP19gbsalS-PZyM9zYLqQgOnF9CumSz75DUAbOqc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgEviJuUAoMET2A1ib2Jg4RQOaot7faplfbNxEdERJOUbraoP4c_wG9k7CRbhaNvlSKtsvZmncztyXxDyIsssiKPEkENVwYDlFxTkXNNFddKFBOWKV9IOztIpkf883wyXyO_hloY91rloBO9ojaNdnvkWwztFMYyLInenXynrmuUy64OLTQ6ttiz5z8wZFu83f2I9H0ZxzufDj9Mad9VgOokFC2N8MMohXwZhyIXyoN1hkluuM6twegjshPOVKyFEgadb6aMKGyqcmZ0JFIHdIAq_xoa3tBJVDpPV3s6rl9KxsRQmyOSrUWE9jykaAip870wch_ZP98m4F--7d-vaP6Rp_Xmb-c2udX7rbDdMdodsmbru-T6rM_M3yM_t2soazgrzxpolxVOB98wqikN-G474OylgaYGdDnBdWD5BrZSp-cOmxfP8Vk3blO_bhs8r9xQXluoyqrUC0BVA3qMLQ1N4S_VI8NC61noDeSA99kUFA_d1WSCx9C9T46uhFAPyHrd1PYRAZZxVDQ2nBQWGTG2Ki20SwEL9F9UHGcBiQaiSN1jo7sWHcfSx0gikR0hJRJSekLKMCCvVr856ZBBLp393tF6NdOhevsvkBayVxKSiyJ2-GoR16hLXdW0yoRlXGRFZtO0CMjmwCmyVzULeSEYAXm-GkYl4TI_SKhm2c3hIToiPCAPO8ZarQT_hUV4BESMWG601PFIXX71QOQYSzP08FlAXg_cebGu_z-Ljctv4xm5MT2c7cv93YO9x-Rm7IUno3G6Sdbb06V9gl5gq5560QPy5apl_TcfaG7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIU28IMY1MOAgwRNYjWM3cZAQGoxqY2zigUl9M_ElIoIm25oO7efwN_h1HDtJp3LZ26RIUWondXLuPvZ3CHmWMycLlkpqhbYYoBSGykIYqoXRshzzXIeNtAeH6e6R-DAdT9fIr2EvjF9WOejEoKhtY_wc-YijncJYhqdsVPbLIj7tTN4cn1BfQcpnWodyGh2L7LvzHxi-zV_v7SCtnyfJ5P3nd7u0rzBATRrLljI8Wa2RR5NYFlIH4M44LawwhbMYiTA3FlwnRmpp0RHn2srSZbrg1jCZedADVP_XMj5mXsayabac3_G1U3Iuh306Mh3NGdr2mKJRpN4Pwyh-xRaGkgH_8nP_Xq75R842mMLJTXKj92Fhu2O6TbLm6ltk46DP0t8mP7drqGo4q84aaBcz7A6heFRTWQiVd8DbTgtNDeh-gq_G8g3cTJ-ee5xevMZv3fgJ_rpt8Hrmm4rawayaVWYOqHbArOJMQ1OGR_UosdAGdnoFBeB7NiXFw3T7MyHg6d4hR1dCqLtkvW5qd58AzwUqHRePS4dMmTidlcangyX6MjpJ8oiwgSjK9DjpvlzHdxXiJZmqjpAKCakCIVUckRfLe447lJBLe7_1tF729Ajf4QekheoVhhKyTDzWGhMG9arfQa1z6biQeZm7LCsjsjVwiurVzlxdCElEni6bUWH4LBASqll0fUSMTomIyL2OsZYjwX_hDI-IyBWWWxnqaktdfQ2g5BhXc_T2eUReDtx5Ma7_f4sHl7_GE7KBUq4-7h3uPyTXkyA7OU2yLbLeni7cI3QIW_04SB6QL1ct6r8BUKpzIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+vivo+tumour+organoid+model+based+on+the+chick+embryonic+chorioallantoic+membrane+mimics+key+characteristics+of+the+patient+tissue%3A+a+proof-of-concept+study&rft.jtitle=EJNMMI+research&rft.au=Ben%C4%8Durov%C3%A1%2C+Katar%C3%ADna&rft.au=Tran%2C+Loan&rft.au=Friske%2C+Joachim&rft.au=Bevc%2C+Kajetana&rft.date=2024-09-27&rft.pub=Springer+Nature+B.V&rft.eissn=2191-219X&rft.volume=14&rft.issue=1&rft.spage=86&rft_id=info:doi/10.1186%2Fs13550-024-01151-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-219X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-219X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-219X&client=summon