The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility
F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated pro...
Saved in:
Published in | Cell regeneration Vol. 13; no. 1; pp. 13 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
26.06.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive. |
---|---|
AbstractList | F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive. F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive. Abstract F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive. F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive. |
ArticleNumber | 13 |
Author | Zhou, Canquan Zhuang, Xuan Ruan, Jun Li, Zhiming |
Author_xml | – sequence: 1 givenname: Xuan surname: Zhuang fullname: Zhuang, Xuan organization: Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Department of Clinical Medicine, Fujian Medical University, Department of Urology, the First Affiliated Hospital of Xiamen University – sequence: 2 givenname: Jun surname: Ruan fullname: Ruan, Jun organization: College of Life Sciences, Central China Normal University – sequence: 3 givenname: Canquan surname: Zhou fullname: Zhou, Canquan email: zhoucanquan@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital of Sun Yat-Sen University – sequence: 4 givenname: Zhiming surname: Li fullname: Li, Zhiming email: lzmleo@hust.edu.cn organization: Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38918264$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFPHSEUhUljU636B7poJunGzbRcBubBqmmMtiYm3djEHYGZy8jLDLzCPFP_ffGNtupCNhDudw4HuO_JXogBCfkA9DOAbL9kaFpQNWW8phRUW6s35IBRLmq1atXek_U-Oc55TcuQgkku3pH9RiqQrOUH5PrqBiucMA0-DJUJfdX7W0wZqxRHzFV01Xlt459qk-KMPuTKhypvME1mjgMGzD7vZJMZsdQcptmPfr47Im-dGTMeP8yH5Nf52dXpj_ry5_eL02-XdddSOddgKaAE4aTlDTjR04aupO2AKYkCKQqJlEmrnLWtQNY5C8I26PqVaQveHJKLxbePZq03yU8m3elovN5txDRoUyJ1I2pqBChJOahGcMFRctPxcjAztDemccXr6-K12doJ-w7DnMz4zPR5JfgbPcRbDQBK8ZYWh5MHhxR_bzHPevK5w3E0AeM263I5xhTjkhX00wt0HbcplLfaUbR8nRSF-vg00r8sjz9YALkAXYo5J3S687OZfbxP6EcNVN_3i176RZd-0bt-0apI2Qvpo_uromYR5QKHAdP_2K-o_gIlZNJl |
CitedBy_id | crossref_primary_10_1016_j_biopha_2024_117147 |
Cites_doi | 10.1126/sciadv.abn4466 10.1038/nrm3582 10.1038/s42003-022-03060-1 10.3389/fcell.2022.914053 10.3390/cells11061058 10.1016/j.mod.2014.10.001 10.1038/35107009 10.1093/nar/gkac978 10.1016/j.molcel.2013.02.003 10.1007/s12272-023-01455-0 10.1038/ncb2731 10.1111/cge.14069 10.1093/nar/gkz992 10.1074/jbc.M113.521625 10.1098/rsob.200319 10.1074/jbc.M111.273508 10.4161/cc.21884 10.1016/S0960-9822(00)80020-2 10.1128/MCB.01191-12 10.1038/bjc.2014.259 10.1074/jbc.M112.341040 10.1242/dev.158485 10.1038/s41586-021-03197-9 10.1016/j.celrep.2021.108929 10.1038/12013 10.1152/physrev.00013.2015 10.1152/physrev.1972.52.1.198 10.1016/j.chembiol.2021.04.008 10.1080/19491034.2018.1498707 10.18632/oncotarget.22469 10.1038/nature00890 10.1038/nsmb.1499 10.3389/fphys.2019.01278 10.1016/j.isci.2022.104008 10.1091/mbc.e07-03-0243 10.1016/j.celrep.2017.06.033 10.1242/jcs.206904 10.1093/emboj/19.9.2069 10.1101/2023.11.10.566635 10.1016/s1534-5807(04)00131-5 10.1093/nar/gkac533 10.1128/MCB.05746-11 10.7554/eLife.91666 10.1002/path.4571 10.1172/JCI68642 10.1007/978-3-319-05026-3_4 10.1371/journal.pbio.0050251 10.1016/j.molcel.2013.01.016 10.1016/s1534-5807(03)00154-0 10.1186/1747-1028-1-4 10.1038/nature04112 10.1074/jbc.M304157200 10.1002/cbin.11277 10.1073/pnas.1401837111 10.1038/nature09140 10.1016/j.celrep.2021.109418 10.1095/biolreprod.115.135988 10.1007/s12013-023-01160-1 10.1128/MCB.00343-15 10.1016/j.mcn.2011.01.001 10.15430/JCP.2021.26.3.174 10.1016/j.fertnstert.2019.01.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13619-024-00196-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-9769 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f PMC11199460 38918264 10_1186_s13619_024_00196_9 |
Genre | Journal Article Review |
GroupedDBID | -A0 0R~ 0SF 5VS 6I. 7X7 8FI 8FJ AACTN AAFTH AAKKN AALRI ABEEZ ABUWG ACACY ACIHN ACPRK ACULB ADBBV ADINQ ADRAZ AEAQA AEXQZ AFGXO AFKRA AFTJW AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI C24 C6C CCPQU DIK EBS EMOBN FDB FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR IHW ITC KQ8 M7P M~E OK1 PIMPY RBZ RNS RPM RSV SBL SOJ SSZ UKHRP AAYXX CITATION PHGZM PHGZT NPM 3V. 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ K9. LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c608t-1b01e815f8b431f5d03078bc1298e5e0e58e028b9fbb65e2cfb15b3efd7a6f5d3 |
IEDL.DBID | DOA |
ISSN | 2045-9769 |
IngestDate | Wed Aug 27 01:17:26 EDT 2025 Thu Aug 21 18:33:06 EDT 2025 Fri Jul 11 05:22:42 EDT 2025 Fri Jul 25 10:54:38 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Tue Jul 01 00:59:52 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Fri Feb 21 02:40:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | F-box proteins Spermatogenesis Ubiquitylation Male infertility Male germ cells |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-1b01e815f8b431f5d03078bc1298e5e0e58e028b9fbb65e2cfb15b3efd7a6f5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/0a5198041935454e84ac4f8b2a0daa3f |
PMID | 38918264 |
PQID | 3072097685 |
PQPubID | 2040152 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199460 proquest_miscellaneous_3072292482 proquest_journals_3072097685 pubmed_primary_38918264 crossref_citationtrail_10_1186_s13619_024_00196_9 crossref_primary_10_1186_s13619_024_00196_9 springer_journals_10_1186_s13619_024_00196_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-26 |
PublicationDateYYYYMMDD | 2024-06-26 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: China – name: London |
PublicationTitle | Cell regeneration |
PublicationTitleAbbrev | Cell Regen |
PublicationTitleAlternate | Cell Regen |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Guo J, North BJ, Tron AE, Inuzuka H, Wei W. The role of FBXO subfamily of F-box proteins in tumorigenesis. SCF and APC E3 ubiquitin ligases in tumorigenesis. Cham: Springer International Publishing; 2014. p. 73–87. https://doi.org/10.1007/978-3-319-05026-3_4. Takeishi S, Nakayama KI. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 2014;111(6):1054–9. https://doi.org/10.1038/bjc.2014.259. Ma Y, Xie N, Xie D, Sun L, Li S, Li P, et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111(5):909-17 e1. https://doi.org/10.1016/j.fertnstert.2019.01.007. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19(9):2069–81. https://doi.org/10.1093/emboj/19.9.2069. Shen J, Spruck C. F-box proteins in epigenetic regulation of cancer. Oncotarget. 2017;8(66):110650–5. https://doi.org/10.18632/oncotarget.22469. Tan MK, Lim HJ, Harper JW. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31(18):3687–99. https://doi.org/10.1128/MCB.05746-11. Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, et al. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res. 2019;47(22):11755–70. https://doi.org/10.1093/nar/gkz992. Vacik T, Ladinovic D, Raska I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9(1):431–41. https://doi.org/10.1080/19491034.2018.1498707. Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M. Identification of a family of human F-box proteins. Curr Biol. 1999;9(20):1177–9. https://doi.org/10.1016/S0960-9822(00)80020-2. Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 2015;135:31–42. https://doi.org/10.1016/j.mod.2014.10.001. Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest. 2013;123(12):5231–46. https://doi.org/10.1172/JCI68642. Xiong Y, Yu C, Zhang Q. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 2022;11(6):1058. https://doi.org/10.3390/cells11061058. Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol. 2013;33(6):1139–48. https://doi.org/10.1128/MCB.01191-12. Fukuda T, Tokunaga A, Sakamoto R, Yoshida N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24. https://doi.org/10.1016/j.mcn.2011.01.001. Lai Y, Li J, Li X, Zou C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF(Fbxl17)-recognized acetyldegron. J Cell Sci. 2017;130(20):3578–87. https://doi.org/10.1242/jcs.206904. Randle SJ, Nelson DE, Patel SP, Laman H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol. 2015;237(2):263–72. https://doi.org/10.1002/path.4571. Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development. 2017;144(22):4137–47. https://doi.org/10.1242/dev.158485. Zhou Z, Tan C, Chau MHK, Jiang X, Ke Z, Chen X, et al. TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms. Nucleic Acids Res. 2023;51(D1):D1168–78. https://doi.org/10.1093/nar/gkac978. Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 2023;46(7):573–97. https://doi.org/10.1007/s12272-023-01455-0. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812. https://doi.org/10.1016/s1534-5807(03)00154-0. Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, et al. A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet. 2022;101(1):55–64. https://doi.org/10.1111/cge.14069. Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int. 2020;44(3):721–34. https://doi.org/10.1002/cbin.11277. Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, et al. Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. Sci Adv. 2022;8(42):eabn4466. https://doi.org/10.1126/sciadv.abn4466. Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111(24):8826–31. https://doi.org/10.1073/pnas.1401837111. Mason B, Laman H. The FBXL family of F-box proteins: variations on a theme. Open Biol. 2020;10(11): 200319. https://doi.org/10.1098/rsob.200319. Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, et al. A conserved requirement for Fbxo7 during male germ cell cytoplasmic remodeling. Front Physiol. 2019;10: 1278. https://doi.org/10.3389/fphys.2019.01278. Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klugel M, et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3–E3 super-assembly. Nature. 2021;590(7847):671–6. https://doi.org/10.1038/s41586-021-03197-9. Yatskevich S, Kroonen JS, Alfieri C, Tischer T, Howes AC, Clijsters L, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep. 2021;34(13): 108929. https://doi.org/10.1016/j.celrep.2021.108929. Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016;94(4):92. https://doi.org/10.1095/biolreprod.115.135988. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–8. https://doi.org/10.1038/nature04112. Van Rechem C, Black JC, Abbas T, Allen A, Rinehart CA, Yuan GC, et al. The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem. 2011;286(35):30462–70. https://doi.org/10.1074/jbc.M111.273508. Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, et al. FBXO38 ubiquitin ligase controls sertoli cell maturation. Front Cell Dev Biol. 2022;10: 914053. https://doi.org/10.3389/fcell.2022.914053. Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, et al. Inhibitors targeting the F-BOX proteins. Cell Biochem Biophys. 2023;81(4):577–97. https://doi.org/10.1007/s12013-023-01160-1. Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW, et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 2014;289(11):7483–96. https://doi.org/10.1074/jbc.M113.521625. Janzer A, Stamm K, Becker A, Zimmer A, Buettner R, Kirfel J. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. J Biol Chem. 2012;287(37):30984–92. https://doi.org/10.1074/jbc.M112.341040. Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6(5):661–72. https://doi.org/10.1016/s1534-5807(04)00131-5. He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15(11):1169–75. https://doi.org/10.1038/nsmb.1499. Tanno N, Takemoto K, Takada-Horisawa Y, Shimada R, Fujimura S, Tani N, et al. FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience. 2022;25(4):104008. https://doi.org/10.1016/j.isci.2022.104008. Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36(3): 109418. https://doi.org/10.1016/j.celrep.2021.109418. Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. Elife. 2024;12:RP91666. https://doi.org/10.7554/eLife.91666. Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278(44):43877–84. https://doi.org/10.1074/jbc.M304157200. Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11(19):3599–610. https://doi.org/10.4161/cc.21884. Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L, et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80. https://doi.org/10.1038/ncb2731. Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, et al. FBXO24 ensures male fertility by preventing abnormal accumulation of membraneless granules in sperm flagella. bioRxiv. 2023. 196_CR51 196_CR52 196_CR8 196_CR53 196_CR9 196_CR10 196_CR54 196_CR50 196_CR2 196_CR3 196_CR1 196_CR6 196_CR7 196_CR4 196_CR5 196_CR48 196_CR49 196_CR44 196_CR45 196_CR46 196_CR47 196_CR62 196_CR20 196_CR21 196_CR60 196_CR61 196_CR19 196_CR15 196_CR59 196_CR16 196_CR17 196_CR18 196_CR11 196_CR55 196_CR12 196_CR56 196_CR13 196_CR57 196_CR14 196_CR58 196_CR30 196_CR31 196_CR32 196_CR26 196_CR27 196_CR28 196_CR29 196_CR22 196_CR23 196_CR24 196_CR25 196_CR40 196_CR41 196_CR42 196_CR43 196_CR37 196_CR38 196_CR39 196_CR33 196_CR34 196_CR35 196_CR36 |
References_xml | – reference: Randle SJ, Nelson DE, Patel SP, Laman H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol. 2015;237(2):263–72. https://doi.org/10.1002/path.4571. – reference: Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klugel M, et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3–E3 super-assembly. Nature. 2021;590(7847):671–6. https://doi.org/10.1038/s41586-021-03197-9. – reference: Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int. 2020;44(3):721–34. https://doi.org/10.1002/cbin.11277. – reference: Xiong Y, Yu C, Zhang Q. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 2022;11(6):1058. https://doi.org/10.3390/cells11061058. – reference: Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, et al. Emi2 is essential for mouse spermatogenesis. Cell Rep. 2017;20(3):697–708. https://doi.org/10.1016/j.celrep.2017.06.033. – reference: Vacik T, Ladinovic D, Raska I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9(1):431–41. https://doi.org/10.1080/19491034.2018.1498707. – reference: Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, et al. Inhibitors targeting the F-BOX proteins. Cell Biochem Biophys. 2023;81(4):577–97. https://doi.org/10.1007/s12013-023-01160-1. – reference: Lai Y, Li J, Li X, Zou C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF(Fbxl17)-recognized acetyldegron. J Cell Sci. 2017;130(20):3578–87. https://doi.org/10.1242/jcs.206904. – reference: Jantsch V, Tang L, Pasierbek P, Penkner A, Nayak S, Baudrimont A, et al. Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. Mol Biol Cell. 2007;18(12):4911–20. https://doi.org/10.1091/mbc.e07-03-0243. – reference: Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278(44):43877–84. https://doi.org/10.1074/jbc.M304157200. – reference: Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–9. https://doi.org/10.1038/12013. – reference: Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, et al. A conserved requirement for Fbxo7 during male germ cell cytoplasmic remodeling. Front Physiol. 2019;10: 1278. https://doi.org/10.3389/fphys.2019.01278. – reference: Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, et al. FBXO24 ensures male fertility by preventing abnormal accumulation of membraneless granules in sperm flagella. bioRxiv. 2023. https://doi.org/10.1101/2023.11.10.566635. – reference: Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, et al. FBXO38 ubiquitin ligase controls sertoli cell maturation. Front Cell Dev Biol. 2022;10: 914053. https://doi.org/10.3389/fcell.2022.914053. – reference: Nakagawa T, Araki T, Nakagawa M, Hirao A, Unno M, Nakayama K. S6 Kinase- and beta-TrCP2-dependent degradation of p19Arf is required for cell proliferation. Mol Cell Biol. 2015;35(20):3517–27. https://doi.org/10.1128/MCB.00343-15. – reference: Takeishi S, Nakayama KI. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 2014;111(6):1054–9. https://doi.org/10.1038/bjc.2014.259. – reference: Yatskevich S, Kroonen JS, Alfieri C, Tischer T, Howes AC, Clijsters L, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep. 2021;34(13): 108929. https://doi.org/10.1016/j.celrep.2021.108929. – reference: Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development. 2017;144(22):4137–47. https://doi.org/10.1242/dev.158485. – reference: Guo J, North BJ, Tron AE, Inuzuka H, Wei W. The role of FBXO subfamily of F-box proteins in tumorigenesis. SCF and APC E3 ubiquitin ligases in tumorigenesis. Cham: Springer International Publishing; 2014. p. 73–87. https://doi.org/10.1007/978-3-319-05026-3_4. – reference: Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 2023;46(7):573–97. https://doi.org/10.1007/s12272-023-01455-0. – reference: Zhou Z, Tan C, Chau MHK, Jiang X, Ke Z, Chen X, et al. TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms. Nucleic Acids Res. 2023;51(D1):D1168–78. https://doi.org/10.1093/nar/gkac978. – reference: Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14(6):369–81. https://doi.org/10.1038/nrm3582. – reference: Tanno N, Takemoto K, Takada-Horisawa Y, Shimada R, Fujimura S, Tani N, et al. FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience. 2022;25(4):104008. https://doi.org/10.1016/j.isci.2022.104008. – reference: Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11(19):3599–610. https://doi.org/10.4161/cc.21884. – reference: Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111(24):8826–31. https://doi.org/10.1073/pnas.1401837111. – reference: Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol. 2021;28(7):918–33. https://doi.org/10.1016/j.chembiol.2021.04.008. – reference: Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 2015;135:31–42. https://doi.org/10.1016/j.mod.2014.10.001. – reference: D’Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466(7302):138–42. https://doi.org/10.1038/nature09140. – reference: Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L, et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80. https://doi.org/10.1038/ncb2731. – reference: Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW, et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 2014;289(11):7483–96. https://doi.org/10.1074/jbc.M113.521625. – reference: Tan MK, Lim HJ, Harper JW. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31(18):3687–99. https://doi.org/10.1128/MCB.05746-11. – reference: Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36(3): 109418. https://doi.org/10.1016/j.celrep.2021.109418. – reference: Mason B, Laman H. The FBXL family of F-box proteins: variations on a theme. Open Biol. 2020;10(11): 200319. https://doi.org/10.1098/rsob.200319. – reference: Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A. CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013;49(6):1147–58. https://doi.org/10.1016/j.molcel.2013.02.003. – reference: Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812. https://doi.org/10.1016/s1534-5807(03)00154-0. – reference: Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, et al. Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. Sci Adv. 2022;8(42):eabn4466. https://doi.org/10.1126/sciadv.abn4466. – reference: Arama E, Bader M, Rieckhof GE, Steller H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol. 2007;5(10):e251. https://doi.org/10.1371/journal.pbio.0050251. – reference: Van Rechem C, Black JC, Abbas T, Allen A, Rinehart CA, Yuan GC, et al. The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem. 2011;286(35):30462–70. https://doi.org/10.1074/jbc.M111.273508. – reference: Lee CJ, Lee GE, An HJ, Cho ES, Chen W, Lee JY, et al. F-box protein betaTrCP1 Is a substrate of extracellular signal-regulated kinase 2. J Cancer Prev. 2021;26(3):174–82. https://doi.org/10.15430/JCP.2021.26.3.174. – reference: Li Z, Zhang X, Xie S, Liu X, Fei C, Huang X, et al. H3K36me2 methyltransferase NSD2 orchestrates epigenetic reprogramming during spermatogenesis. Nucleic Acids Res. 2022;50(12):6786–800. https://doi.org/10.1093/nar/gkac533. – reference: Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016;94(4):92. https://doi.org/10.1095/biolreprod.115.135988. – reference: Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6(5):661–72. https://doi.org/10.1016/s1534-5807(04)00131-5. – reference: Wu X, Johansen JV, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell. 2013;49(6):1134–46. https://doi.org/10.1016/j.molcel.2013.01.016. – reference: He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15(11):1169–75. https://doi.org/10.1038/nsmb.1499. – reference: Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. Elife. 2024;12:RP91666. https://doi.org/10.7554/eLife.91666. – reference: Ma Y, Xie N, Xie D, Sun L, Li S, Li P, et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111(5):909-17 e1. https://doi.org/10.1016/j.fertnstert.2019.01.007. – reference: Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, et al. A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet. 2022;101(1):55–64. https://doi.org/10.1111/cge.14069. – reference: Liao Y, Sumara I, Pangou E. Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol. 2022;5(1):114. https://doi.org/10.1038/s42003-022-03060-1. – reference: Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236. https://doi.org/10.1152/physrev.1972.52.1.198. – reference: Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–8. https://doi.org/10.1038/nature04112. – reference: Fotovati A, Nakayama K, Nakayama KI. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice. Cell Div. 2006;1: 4. https://doi.org/10.1186/1747-1028-1-4. – reference: Shen J, Spruck C. F-box proteins in epigenetic regulation of cancer. Oncotarget. 2017;8(66):110650–5. https://doi.org/10.18632/oncotarget.22469. – reference: Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M. Identification of a family of human F-box proteins. Curr Biol. 1999;9(20):1177–9. https://doi.org/10.1016/S0960-9822(00)80020-2. – reference: Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, et al. E3 ubiquitin ligase that recognizes sugar chains. Nature. 2002;418(6896):438–42. https://doi.org/10.1038/nature00890. – reference: Janzer A, Stamm K, Becker A, Zimmer A, Buettner R, Kirfel J. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. J Biol Chem. 2012;287(37):30984–92. https://doi.org/10.1074/jbc.M112.341040. – reference: Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19(9):2069–81. https://doi.org/10.1093/emboj/19.9.2069. – reference: Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol. 2013;33(6):1139–48. https://doi.org/10.1128/MCB.01191-12. – reference: Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, et al. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res. 2019;47(22):11755–70. https://doi.org/10.1093/nar/gkz992. – reference: Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016;96(1):1–17. https://doi.org/10.1152/physrev.00013.2015. – reference: Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature. 2001;414(6863):514–21. https://doi.org/10.1038/35107009. – reference: Fukuda T, Tokunaga A, Sakamoto R, Yoshida N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24. https://doi.org/10.1016/j.mcn.2011.01.001. – reference: Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest. 2013;123(12):5231–46. https://doi.org/10.1172/JCI68642. – ident: 196_CR55 doi: 10.1126/sciadv.abn4466 – ident: 196_CR48 doi: 10.1038/nrm3582 – ident: 196_CR34 doi: 10.1038/s42003-022-03060-1 – ident: 196_CR10 doi: 10.3389/fcell.2022.914053 – ident: 196_CR58 doi: 10.3390/cells11061058 – ident: 196_CR26 doi: 10.1016/j.mod.2014.10.001 – ident: 196_CR42 doi: 10.1038/35107009 – ident: 196_CR62 doi: 10.1093/nar/gkac978 – ident: 196_CR1 doi: 10.1016/j.molcel.2013.02.003 – ident: 196_CR27 doi: 10.1007/s12272-023-01455-0 – ident: 196_CR28 doi: 10.1038/ncb2731 – ident: 196_CR57 doi: 10.1111/cge.14069 – ident: 196_CR21 doi: 10.1093/nar/gkz992 – ident: 196_CR9 doi: 10.1074/jbc.M113.521625 – ident: 196_CR36 doi: 10.1098/rsob.200319 – ident: 196_CR53 doi: 10.1074/jbc.M111.273508 – ident: 196_CR3 doi: 10.4161/cc.21884 – ident: 196_CR5 doi: 10.1016/S0960-9822(00)80020-2 – ident: 196_CR6 doi: 10.1128/MCB.01191-12 – ident: 196_CR49 doi: 10.1038/bjc.2014.259 – ident: 196_CR23 doi: 10.1074/jbc.M112.341040 – ident: 196_CR38 doi: 10.1242/dev.158485 – ident: 196_CR20 doi: 10.1038/s41586-021-03197-9 – ident: 196_CR59 doi: 10.1016/j.celrep.2021.108929 – ident: 196_CR4 doi: 10.1038/12013 – ident: 196_CR15 doi: 10.1152/physrev.00013.2015 – ident: 196_CR7 doi: 10.1152/physrev.1972.52.1.198 – ident: 196_CR11 doi: 10.1016/j.chembiol.2021.04.008 – ident: 196_CR52 doi: 10.1080/19491034.2018.1498707 – ident: 196_CR47 doi: 10.18632/oncotarget.22469 – ident: 196_CR60 doi: 10.1038/nature00890 – ident: 196_CR19 doi: 10.1038/nsmb.1499 – ident: 196_CR45 doi: 10.3389/fphys.2019.01278 – ident: 196_CR51 doi: 10.1016/j.isci.2022.104008 – ident: 196_CR22 doi: 10.1091/mbc.e07-03-0243 – ident: 196_CR14 doi: 10.1016/j.celrep.2017.06.033 – ident: 196_CR29 doi: 10.1242/jcs.206904 – ident: 196_CR39 doi: 10.1093/emboj/19.9.2069 – ident: 196_CR25 doi: 10.1101/2023.11.10.566635 – ident: 196_CR40 doi: 10.1016/s1534-5807(04)00131-5 – ident: 196_CR33 doi: 10.1093/nar/gkac533 – ident: 196_CR50 doi: 10.1128/MCB.05746-11 – ident: 196_CR32 doi: 10.7554/eLife.91666 – ident: 196_CR44 doi: 10.1002/path.4571 – ident: 196_CR54 doi: 10.1172/JCI68642 – ident: 196_CR17 doi: 10.1007/978-3-319-05026-3_4 – ident: 196_CR2 doi: 10.1371/journal.pbio.0050251 – ident: 196_CR56 doi: 10.1016/j.molcel.2013.01.016 – ident: 196_CR16 doi: 10.1016/s1534-5807(03)00154-0 – ident: 196_CR12 doi: 10.1186/1747-1028-1-4 – ident: 196_CR18 doi: 10.1038/nature04112 – ident: 196_CR61 doi: 10.1074/jbc.M304157200 – ident: 196_CR46 doi: 10.1002/cbin.11277 – ident: 196_CR24 doi: 10.1073/pnas.1401837111 – ident: 196_CR8 doi: 10.1038/nature09140 – ident: 196_CR30 doi: 10.1016/j.celrep.2021.109418 – ident: 196_CR43 doi: 10.1095/biolreprod.115.135988 – ident: 196_CR41 doi: 10.1007/s12013-023-01160-1 – ident: 196_CR37 doi: 10.1128/MCB.00343-15 – ident: 196_CR13 doi: 10.1016/j.mcn.2011.01.001 – ident: 196_CR31 doi: 10.15430/JCP.2021.26.3.174 – ident: 196_CR35 doi: 10.1016/j.fertnstert.2019.01.007 |
SSID | ssj0000852845 |
Score | 2.285718 |
SecondaryResourceType | review_article |
Snippet | F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They... Abstract F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | Biomedical and Life Sciences Biomedicine Cell Biology Cell division CRISPR Cullin Enzymes F-box protein F-box proteins Fertility Germ cells Infertility Life Sciences Male germ cells Male infertility Mutation Phosphorylation Physiology Proteins Proteolysis Review Sperm Spermatogenesis Stem Cells T cell receptors Ubiquitin-protein ligase Ubiquitylation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB5BERKXirIGWmQkbmA1i-04JwSIpwoJTlR6N8uO7fIkSNrmVYJ_z4yzVI-l18RWnFk8n-3xNwCvihi9kHXDPeqbC1-gzxVtzm3rfa0VLhAcXRT-_EWdnIpPa7meNtyGKa1ynhPTRO37lvbIj9EWyxxjp5Zvzy84VY2i09WphMZtuEPUZZTSVa_rZY8F4QTOvnK-K6PV8VBUim7tlIInZhje7MSjRNv_L6z5d8rkH-emKRyt7sP-hCPZu1HxB3ArdA_g7lhZ8tdDWKP6Gd39pRpEzHae-ZSAERilEw6sj2zFXf-TJZ6GTTewTceINBwBbH9G899mSN1-YABhlLGFHyLE_ghOVx-_fjjhUxEF3qpcb3nh8iLoQkbtECtE6cmrtWsxzusgQx6kDogxXBOdUzKUbXSFdFWIvrYKm1ePYa_ru_AUmHM2lhbXtERBY7VHbYjo6TNKtsr5DIpZlKadGMap0MV3k1YaWplR_AbFb5L4TZPB66XP-civcWPr96ShpSVxY6cH_eWZmVzN5BZRKdEqNRXCQxG0sK3A3y9t7q2tYgaHs37N5LCDuTavDF4ur9HV6PzEdqG_GtuUuF7VZQZPRnNYRkLHvbhSExnoHUPZGerum27zLdF5Y7RpGqHyDN7MNnU9rv_L4tnNv_Ec7pXJzBUv1SHsbS-vwhHip617kZzkN0lsF9M priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERKXqjybtiAjcQOLOLG9zhEqVhUSnKi0N8uO7bIIEtRsJfj3nXGSRQsFiWtiK848PN_IM58BXoiUglSLhgfUN5dBoM-JtuSuDWFhNCYInhqFP3zUZ-fy_UqtpqawYa52n48k806d3dro14OoNTXcVJJnUhfe3IY7CnN3suvTqcfhy1h5hXuumjtkbpy6E4UyWf9NCPPPQsnfTktzEFoewP6EHtmbUd334VbsHsDd8T7Jnw9hhUpn1PFLNw8x1wUWctlFZFREOLA-sSX3_Q-W2RnW3cDWHSOqcISt_QXteushT_uGYYNRnRZ-iHD6Izhfvvt0esanqxN4q0uz4cKXIhqhkvGIEJIK5MvGtxjdTVSxjMpERBa-Sd5rFas2eaF8HVNYOI3D68ew1_VdPATmvUuVw0yWiGecCYhfZAr0Ga1a7UMBYhalbSdecbre4qvN-YXRdhS_RfHbLH7bFPByO-f7yKrxz9FvSUPbkcSInR_0lxd2cjBbOsSiRKbU1AgKZTTStRJ_v3JlcK5OBZzM-rWTmw4WhVKV-ENGFfB8-xodjE5NXBf7q3FMhVmqqQp4MprDdiV0yIv5mSzA7BjKzlJ333Trz5nEG2NM00hdFvBqtqlf6_q7LI7-b_gx3Kuy2Wte6RPY21xexaeIojb-WXaaa4FHFI0 priority: 102 providerName: Springer Nature |
Title | The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility |
URI | https://link.springer.com/article/10.1186/s13619-024-00196-9 https://www.ncbi.nlm.nih.gov/pubmed/38918264 https://www.proquest.com/docview/3072097685 https://www.proquest.com/docview/3072292482 https://pubmed.ncbi.nlm.nih.gov/PMC11199460 https://doaj.org/article/0a5198041935454e84ac4f8b2a0daa3f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0RPDl8NvquUTwTcP1I0nTR2-55RA8RDzYt5A0ie6hrVz3QP97Z9Lueuvniy-FNgkNk5nMb8jkNwDPixi9kHXDPa43F75AmyvanNvW-1orDBAcXRR-c6pOzsTrpVxeKfVFOWEjPfAouMPcIsYgkpymQmcvgha2FVG70ube2irS7os-70owdT5mX-G-Kze3ZLQ6HIpK0X2dUvDECcObHU-UCPt_hzJ_TZb86cQ0OaLFbdifECR7Nc78DlwL3V24OdaU_HYPlrjwjG79UvUhZjvPfEq9CIwSCQfWR7bgrv_KEkPDqhvYqmNEF47Qtf9AO99qSMM-o-tglKuFPyKsfh_OFsfv5yd8Kp_AW5XrNS9cXgRdSBQWooQoPdmzdi16eB1kyIPUAdGFa6JzSoayja6QrgrR11Zh9-oB7HV9Fx4Bc87G0mI0S-QzVnvEMCJ6-o2SrXI-g2IjStNO3OJU4uKTSTGGVmYUv0HxmyR-02TwYjvmy8is8dfeR7RC257Eip0-oK6YSVfMv3Qlg4PN-prJVAeDQkEFwqhLZvBs24xGRicntgv95dinxEhVlxk8HNVhOxM66MUYTWSgdxRlZ6q7Ld3qYyLyRj_TNELlGbzc6NSPef1ZFo__hyyewK0yGYPipTqAvfXFZXiK-GrtZnC9XtYzuHF0fPr2Hb7NS0FPNZ8lI_sOEiYkDg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOI7XOSBEoastbVcItdLejB3bZSVISrMV9E_xGxk7j2p59Nbrxtk4M9-84nkAPE-dMywfF7FBfsfMpChzaZnEqjRmLDgGCNoXCu_P-PSQfZjn8zX41dfC-LTKXicGRW3q0n8j30Qs0gRtp8jfHH-P_dQof7raj9BoYbFrz35gyNa83nmP_H1B6WT74N007qYKxCVPxDJOdZJakeZOaDSeLjce5kKXaPiEzW1ic2HR6OrCac1zS0un01xn1pmx4rg8w_-9Aussw1BmBOtb27OPn4avOujAoL7P--ocwTebNOO-ToiyOPSiiYsVCxgGBfzLu_07SfOPk9pgACc34UbnuZK3LdRuwZqtbsPVdpbl2R2YI-CIrzb2U4-IqgwxIeXDEp_A2JDakUms658kdIZYVA1ZVMS3KUeXuT7yGnfRhNu-ockiPkcMH-RjhLtweCkEvgejqq7sAyBaK0cVRtG-6Y0SBvnPnPGP4XnJtYkg7Ukpy66nuR-t8VWG2EZw2ZJfIvllIL8sIng53HPcdvS4cPWW59Cw0nfjDj_UJ0eyE26ZKPSDfSOnIkOHlFnBVMnw9alKjFKZi2Cj56_sVEQjzwEdwbPhMgq3P7FRla1P2zUUI2RBI7jfwmHYiT9gxtiQRSBWgLKy1dUr1eJLaCCO9q0oGE8ieNVj6nxf_6fFw4tf4ylcmx7s78m9ndnuI7hOA-R5TPkGjJYnp_Yxem9L_aQTGQKfL1tKfwNkg1b2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmTuw4B4SAsmopVByotDdjx3ZZqU1KsxX0r_HrmHGSrZZHb70mTuKMv3nZ8yDkWRaCK0RZMQfrzQqXAc9ldcpM7VypJDgIFhOFP-3Krb3iw0zM1sivMRcGwypHmRgFtWtr3COfABZ5CrpTiUkYwiI-b05fH31n2EEKT1rHdho9RHb86Q9w37pX25uw1s85n77_8m6LDR0GWC1TtWCZTTOvMhGUBUUahEPIK1uDElRe-NQL5UEB2ypYK4XndbCZsLkPrjQShufw3kvkcpmLDHmsnJXL_R0wZUDyizFPR8lJl-USM4Z4wWJVGlat6MLYMuBfdu7f4Zp_nNlGVTi9Qa4PNix904PuJlnzzS1ype9qeXqbzAB6FPOOsf8RNY2jLgZ_eIqhjB1tA50y2_6ksUbEvOnovKFYsByM53YfZe-8i48dgvKiGC0GH0Jv4Q7ZuxDy3iXrTdv4-4RaawI34E9j-RujHCChCA4_I0UtrUtINpJS10N1c2yycaCjl6Ok7smvgfw6kl9XCXmxfOaor-1x7ui3uELLkViXO15oj_f1wOY6NWARY0mnKgfTtPCqMHUBv89N6ozJQ0I2xvXVg7Do9Bm0E_J0eRvYHM9uTOPbk34MB19Z8YTc6-GwnAkeNYOXWCRErQBlZaqrd5r5t1hKHDRdVRUyTcjLEVNn8_o_LR6c_xtPyFXgTf1xe3fnIbnGI-Il43KDrC-OT_wjMOMW9nHkF0q-XjSD_gaO1FnG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+and+diverse+roles+of+F-box+proteins+in+spermatogenesis+and+male+infertility&rft.jtitle=Cell+regeneration&rft.au=Xuan+Zhuang&rft.au=Jun+Ruan&rft.au=Canquan+Zhou&rft.au=Zhiming+Li&rft.date=2024-06-26&rft.pub=SpringerOpen&rft.eissn=2045-9769&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs13619-024-00196-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-9769&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-9769&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-9769&client=summon |