The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility

F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated pro...

Full description

Saved in:
Bibliographic Details
Published inCell regeneration Vol. 13; no. 1; pp. 13 - 12
Main Authors Zhuang, Xuan, Ruan, Jun, Zhou, Canquan, Li, Zhiming
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 26.06.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
AbstractList F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
Abstract F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.
ArticleNumber 13
Author Zhou, Canquan
Zhuang, Xuan
Ruan, Jun
Li, Zhiming
Author_xml – sequence: 1
  givenname: Xuan
  surname: Zhuang
  fullname: Zhuang, Xuan
  organization: Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Department of Clinical Medicine, Fujian Medical University, Department of Urology, the First Affiliated Hospital of Xiamen University
– sequence: 2
  givenname: Jun
  surname: Ruan
  fullname: Ruan, Jun
  organization: College of Life Sciences, Central China Normal University
– sequence: 3
  givenname: Canquan
  surname: Zhou
  fullname: Zhou, Canquan
  email: zhoucanquan@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Center for Reproductive Medicine and Department of Gynecology & Obstetrics, the First Affiliated Hospital of Sun Yat-Sen University
– sequence: 4
  givenname: Zhiming
  surname: Li
  fullname: Li, Zhiming
  email: lzmleo@hust.edu.cn
  organization: Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38918264$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFPHSEUhUljU636B7poJunGzbRcBubBqmmMtiYm3djEHYGZy8jLDLzCPFP_ffGNtupCNhDudw4HuO_JXogBCfkA9DOAbL9kaFpQNWW8phRUW6s35IBRLmq1atXek_U-Oc55TcuQgkku3pH9RiqQrOUH5PrqBiucMA0-DJUJfdX7W0wZqxRHzFV01Xlt459qk-KMPuTKhypvME1mjgMGzD7vZJMZsdQcptmPfr47Im-dGTMeP8yH5Nf52dXpj_ry5_eL02-XdddSOddgKaAE4aTlDTjR04aupO2AKYkCKQqJlEmrnLWtQNY5C8I26PqVaQveHJKLxbePZq03yU8m3elovN5txDRoUyJ1I2pqBChJOahGcMFRctPxcjAztDemccXr6-K12doJ-w7DnMz4zPR5JfgbPcRbDQBK8ZYWh5MHhxR_bzHPevK5w3E0AeM263I5xhTjkhX00wt0HbcplLfaUbR8nRSF-vg00r8sjz9YALkAXYo5J3S687OZfbxP6EcNVN_3i176RZd-0bt-0apI2Qvpo_uromYR5QKHAdP_2K-o_gIlZNJl
CitedBy_id crossref_primary_10_1016_j_biopha_2024_117147
Cites_doi 10.1126/sciadv.abn4466
10.1038/nrm3582
10.1038/s42003-022-03060-1
10.3389/fcell.2022.914053
10.3390/cells11061058
10.1016/j.mod.2014.10.001
10.1038/35107009
10.1093/nar/gkac978
10.1016/j.molcel.2013.02.003
10.1007/s12272-023-01455-0
10.1038/ncb2731
10.1111/cge.14069
10.1093/nar/gkz992
10.1074/jbc.M113.521625
10.1098/rsob.200319
10.1074/jbc.M111.273508
10.4161/cc.21884
10.1016/S0960-9822(00)80020-2
10.1128/MCB.01191-12
10.1038/bjc.2014.259
10.1074/jbc.M112.341040
10.1242/dev.158485
10.1038/s41586-021-03197-9
10.1016/j.celrep.2021.108929
10.1038/12013
10.1152/physrev.00013.2015
10.1152/physrev.1972.52.1.198
10.1016/j.chembiol.2021.04.008
10.1080/19491034.2018.1498707
10.18632/oncotarget.22469
10.1038/nature00890
10.1038/nsmb.1499
10.3389/fphys.2019.01278
10.1016/j.isci.2022.104008
10.1091/mbc.e07-03-0243
10.1016/j.celrep.2017.06.033
10.1242/jcs.206904
10.1093/emboj/19.9.2069
10.1101/2023.11.10.566635
10.1016/s1534-5807(04)00131-5
10.1093/nar/gkac533
10.1128/MCB.05746-11
10.7554/eLife.91666
10.1002/path.4571
10.1172/JCI68642
10.1007/978-3-319-05026-3_4
10.1371/journal.pbio.0050251
10.1016/j.molcel.2013.01.016
10.1016/s1534-5807(03)00154-0
10.1186/1747-1028-1-4
10.1038/nature04112
10.1074/jbc.M304157200
10.1002/cbin.11277
10.1073/pnas.1401837111
10.1038/nature09140
10.1016/j.celrep.2021.109418
10.1095/biolreprod.115.135988
10.1007/s12013-023-01160-1
10.1128/MCB.00343-15
10.1016/j.mcn.2011.01.001
10.15430/JCP.2021.26.3.174
10.1016/j.fertnstert.2019.01.007
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13619-024-00196-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-9769
EndPage 12
ExternalDocumentID oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f
PMC11199460
38918264
10_1186_s13619_024_00196_9
Genre Journal Article
Review
GroupedDBID -A0
0R~
0SF
5VS
6I.
7X7
8FI
8FJ
AACTN
AAFTH
AAKKN
AALRI
ABEEZ
ABUWG
ACACY
ACIHN
ACPRK
ACULB
ADBBV
ADINQ
ADRAZ
AEAQA
AEXQZ
AFGXO
AFKRA
AFTJW
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
C24
C6C
CCPQU
DIK
EBS
EMOBN
FDB
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
IHW
ITC
KQ8
M7P
M~E
OK1
PIMPY
RBZ
RNS
RPM
RSV
SBL
SOJ
SSZ
UKHRP
AAYXX
CITATION
PHGZM
PHGZT
NPM
3V.
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
K9.
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c608t-1b01e815f8b431f5d03078bc1298e5e0e58e028b9fbb65e2cfb15b3efd7a6f5d3
IEDL.DBID DOA
ISSN 2045-9769
IngestDate Wed Aug 27 01:17:26 EDT 2025
Thu Aug 21 18:33:06 EDT 2025
Fri Jul 11 05:22:42 EDT 2025
Fri Jul 25 10:54:38 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Tue Jul 01 00:59:52 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Fri Feb 21 02:40:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords F-box proteins
Spermatogenesis
Ubiquitylation
Male infertility
Male germ cells
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-1b01e815f8b431f5d03078bc1298e5e0e58e028b9fbb65e2cfb15b3efd7a6f5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/0a5198041935454e84ac4f8b2a0daa3f
PMID 38918264
PQID 3072097685
PQPubID 2040152
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11199460
proquest_miscellaneous_3072292482
proquest_journals_3072097685
pubmed_primary_38918264
crossref_citationtrail_10_1186_s13619_024_00196_9
crossref_primary_10_1186_s13619_024_00196_9
springer_journals_10_1186_s13619_024_00196_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-26
PublicationDateYYYYMMDD 2024-06-26
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-26
  day: 26
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: China
– name: London
PublicationTitle Cell regeneration
PublicationTitleAbbrev Cell Regen
PublicationTitleAlternate Cell Regen
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Guo J, North BJ, Tron AE, Inuzuka H, Wei W. The role of FBXO subfamily of F-box proteins in tumorigenesis. SCF and APC E3 ubiquitin ligases in tumorigenesis. Cham: Springer International Publishing; 2014. p. 73–87. https://doi.org/10.1007/978-3-319-05026-3_4.
Takeishi S, Nakayama KI. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 2014;111(6):1054–9. https://doi.org/10.1038/bjc.2014.259.
Ma Y, Xie N, Xie D, Sun L, Li S, Li P, et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111(5):909-17 e1. https://doi.org/10.1016/j.fertnstert.2019.01.007.
Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19(9):2069–81. https://doi.org/10.1093/emboj/19.9.2069.
Shen J, Spruck C. F-box proteins in epigenetic regulation of cancer. Oncotarget. 2017;8(66):110650–5. https://doi.org/10.18632/oncotarget.22469.
Tan MK, Lim HJ, Harper JW. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31(18):3687–99. https://doi.org/10.1128/MCB.05746-11.
Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, et al. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res. 2019;47(22):11755–70. https://doi.org/10.1093/nar/gkz992.
Vacik T, Ladinovic D, Raska I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9(1):431–41. https://doi.org/10.1080/19491034.2018.1498707.
Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M. Identification of a family of human F-box proteins. Curr Biol. 1999;9(20):1177–9. https://doi.org/10.1016/S0960-9822(00)80020-2.
Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 2015;135:31–42. https://doi.org/10.1016/j.mod.2014.10.001.
Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest. 2013;123(12):5231–46. https://doi.org/10.1172/JCI68642.
Xiong Y, Yu C, Zhang Q. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 2022;11(6):1058. https://doi.org/10.3390/cells11061058.
Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol. 2013;33(6):1139–48. https://doi.org/10.1128/MCB.01191-12.
Fukuda T, Tokunaga A, Sakamoto R, Yoshida N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24. https://doi.org/10.1016/j.mcn.2011.01.001.
Lai Y, Li J, Li X, Zou C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF(Fbxl17)-recognized acetyldegron. J Cell Sci. 2017;130(20):3578–87. https://doi.org/10.1242/jcs.206904.
Randle SJ, Nelson DE, Patel SP, Laman H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol. 2015;237(2):263–72. https://doi.org/10.1002/path.4571.
Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development. 2017;144(22):4137–47. https://doi.org/10.1242/dev.158485.
Zhou Z, Tan C, Chau MHK, Jiang X, Ke Z, Chen X, et al. TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms. Nucleic Acids Res. 2023;51(D1):D1168–78. https://doi.org/10.1093/nar/gkac978.
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 2023;46(7):573–97. https://doi.org/10.1007/s12272-023-01455-0.
Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812. https://doi.org/10.1016/s1534-5807(03)00154-0.
Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, et al. A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet. 2022;101(1):55–64. https://doi.org/10.1111/cge.14069.
Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int. 2020;44(3):721–34. https://doi.org/10.1002/cbin.11277.
Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, et al. Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. Sci Adv. 2022;8(42):eabn4466. https://doi.org/10.1126/sciadv.abn4466.
Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111(24):8826–31. https://doi.org/10.1073/pnas.1401837111.
Mason B, Laman H. The FBXL family of F-box proteins: variations on a theme. Open Biol. 2020;10(11): 200319. https://doi.org/10.1098/rsob.200319.
Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, et al. A conserved requirement for Fbxo7 during male germ cell cytoplasmic remodeling. Front Physiol. 2019;10: 1278. https://doi.org/10.3389/fphys.2019.01278.
Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klugel M, et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3–E3 super-assembly. Nature. 2021;590(7847):671–6. https://doi.org/10.1038/s41586-021-03197-9.
Yatskevich S, Kroonen JS, Alfieri C, Tischer T, Howes AC, Clijsters L, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep. 2021;34(13): 108929. https://doi.org/10.1016/j.celrep.2021.108929.
Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016;94(4):92. https://doi.org/10.1095/biolreprod.115.135988.
Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–8. https://doi.org/10.1038/nature04112.
Van Rechem C, Black JC, Abbas T, Allen A, Rinehart CA, Yuan GC, et al. The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem. 2011;286(35):30462–70. https://doi.org/10.1074/jbc.M111.273508.
Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, et al. FBXO38 ubiquitin ligase controls sertoli cell maturation. Front Cell Dev Biol. 2022;10: 914053. https://doi.org/10.3389/fcell.2022.914053.
Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, et al. Inhibitors targeting the F-BOX proteins. Cell Biochem Biophys. 2023;81(4):577–97. https://doi.org/10.1007/s12013-023-01160-1.
Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW, et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 2014;289(11):7483–96. https://doi.org/10.1074/jbc.M113.521625.
Janzer A, Stamm K, Becker A, Zimmer A, Buettner R, Kirfel J. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. J Biol Chem. 2012;287(37):30984–92. https://doi.org/10.1074/jbc.M112.341040.
Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6(5):661–72. https://doi.org/10.1016/s1534-5807(04)00131-5.
He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15(11):1169–75. https://doi.org/10.1038/nsmb.1499.
Tanno N, Takemoto K, Takada-Horisawa Y, Shimada R, Fujimura S, Tani N, et al. FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience. 2022;25(4):104008. https://doi.org/10.1016/j.isci.2022.104008.
Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36(3): 109418. https://doi.org/10.1016/j.celrep.2021.109418.
Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. Elife. 2024;12:RP91666. https://doi.org/10.7554/eLife.91666.
Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278(44):43877–84. https://doi.org/10.1074/jbc.M304157200.
Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11(19):3599–610. https://doi.org/10.4161/cc.21884.
Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L, et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80. https://doi.org/10.1038/ncb2731.
Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, et al. FBXO24 ensures male fertility by preventing abnormal accumulation of membraneless granules in sperm flagella. bioRxiv. 2023.
196_CR51
196_CR52
196_CR8
196_CR53
196_CR9
196_CR10
196_CR54
196_CR50
196_CR2
196_CR3
196_CR1
196_CR6
196_CR7
196_CR4
196_CR5
196_CR48
196_CR49
196_CR44
196_CR45
196_CR46
196_CR47
196_CR62
196_CR20
196_CR21
196_CR60
196_CR61
196_CR19
196_CR15
196_CR59
196_CR16
196_CR17
196_CR18
196_CR11
196_CR55
196_CR12
196_CR56
196_CR13
196_CR57
196_CR14
196_CR58
196_CR30
196_CR31
196_CR32
196_CR26
196_CR27
196_CR28
196_CR29
196_CR22
196_CR23
196_CR24
196_CR25
196_CR40
196_CR41
196_CR42
196_CR43
196_CR37
196_CR38
196_CR39
196_CR33
196_CR34
196_CR35
196_CR36
References_xml – reference: Randle SJ, Nelson DE, Patel SP, Laman H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J Pathol. 2015;237(2):263–72. https://doi.org/10.1002/path.4571.
– reference: Horn-Ghetko D, Krist DT, Prabu JR, Baek K, Mulder MPC, Klugel M, et al. Ubiquitin ligation to F-box protein targets by SCF-RBR E3–E3 super-assembly. Nature. 2021;590(7847):671–6. https://doi.org/10.1038/s41586-021-03197-9.
– reference: Sharma A, Trivedi AK. Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int. 2020;44(3):721–34. https://doi.org/10.1002/cbin.11277.
– reference: Xiong Y, Yu C, Zhang Q. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 2022;11(6):1058. https://doi.org/10.3390/cells11061058.
– reference: Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, et al. Emi2 is essential for mouse spermatogenesis. Cell Rep. 2017;20(3):697–708. https://doi.org/10.1016/j.celrep.2017.06.033.
– reference: Vacik T, Ladinovic D, Raska I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9(1):431–41. https://doi.org/10.1080/19491034.2018.1498707.
– reference: Naseem Y, Zhang C, Zhou X, Dong J, Xie J, Zhang H, et al. Inhibitors targeting the F-BOX proteins. Cell Biochem Biophys. 2023;81(4):577–97. https://doi.org/10.1007/s12013-023-01160-1.
– reference: Lai Y, Li J, Li X, Zou C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF(Fbxl17)-recognized acetyldegron. J Cell Sci. 2017;130(20):3578–87. https://doi.org/10.1242/jcs.206904.
– reference: Jantsch V, Tang L, Pasierbek P, Penkner A, Nayak S, Baudrimont A, et al. Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. Mol Biol Cell. 2007;18(12):4911–20. https://doi.org/10.1091/mbc.e07-03-0243.
– reference: Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem. 2003;278(44):43877–84. https://doi.org/10.1074/jbc.M304157200.
– reference: Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–9. https://doi.org/10.1038/12013.
– reference: Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, et al. A conserved requirement for Fbxo7 during male germ cell cytoplasmic remodeling. Front Physiol. 2019;10: 1278. https://doi.org/10.3389/fphys.2019.01278.
– reference: Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, et al. FBXO24 ensures male fertility by preventing abnormal accumulation of membraneless granules in sperm flagella. bioRxiv. 2023. https://doi.org/10.1101/2023.11.10.566635.
– reference: Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, et al. FBXO38 ubiquitin ligase controls sertoli cell maturation. Front Cell Dev Biol. 2022;10: 914053. https://doi.org/10.3389/fcell.2022.914053.
– reference: Nakagawa T, Araki T, Nakagawa M, Hirao A, Unno M, Nakayama K. S6 Kinase- and beta-TrCP2-dependent degradation of p19Arf is required for cell proliferation. Mol Cell Biol. 2015;35(20):3517–27. https://doi.org/10.1128/MCB.00343-15.
– reference: Takeishi S, Nakayama KI. Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 2014;111(6):1054–9. https://doi.org/10.1038/bjc.2014.259.
– reference: Yatskevich S, Kroonen JS, Alfieri C, Tischer T, Howes AC, Clijsters L, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Rep. 2021;34(13): 108929. https://doi.org/10.1016/j.celrep.2021.108929.
– reference: Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, et al. Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development. 2017;144(22):4137–47. https://doi.org/10.1242/dev.158485.
– reference: Guo J, North BJ, Tron AE, Inuzuka H, Wei W. The role of FBXO subfamily of F-box proteins in tumorigenesis. SCF and APC E3 ubiquitin ligases in tumorigenesis. Cham: Springer International Publishing; 2014. p. 73–87. https://doi.org/10.1007/978-3-319-05026-3_4.
– reference: Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 2023;46(7):573–97. https://doi.org/10.1007/s12272-023-01455-0.
– reference: Zhou Z, Tan C, Chau MHK, Jiang X, Ke Z, Chen X, et al. TEDD: a database of temporal gene expression patterns during multiple developmental periods in human and model organisms. Nucleic Acids Res. 2023;51(D1):D1168–78. https://doi.org/10.1093/nar/gkac978.
– reference: Skaar JR, Pagan JK, Pagano M. Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol. 2013;14(6):369–81. https://doi.org/10.1038/nrm3582.
– reference: Tanno N, Takemoto K, Takada-Horisawa Y, Shimada R, Fujimura S, Tani N, et al. FBXO47 is essential for preventing the synaptonemal complex from premature disassembly in mouse male meiosis. iScience. 2022;25(4):104008. https://doi.org/10.1016/j.isci.2022.104008.
– reference: Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle. 2012;11(19):3599–610. https://doi.org/10.4161/cc.21884.
– reference: Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T. Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A. 2014;111(24):8826–31. https://doi.org/10.1073/pnas.1401837111.
– reference: Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol. 2021;28(7):918–33. https://doi.org/10.1016/j.chembiol.2021.04.008.
– reference: Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 2015;135:31–42. https://doi.org/10.1016/j.mod.2014.10.001.
– reference: D’Angiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature. 2010;466(7302):138–42. https://doi.org/10.1038/nature09140.
– reference: Kuchay S, Duan S, Schenkein E, Peschiaroli A, Saraf A, Florens L, et al. FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade. Nat Cell Biol. 2013;15(5):472–80. https://doi.org/10.1038/ncb2731.
– reference: Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW, et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem. 2014;289(11):7483–96. https://doi.org/10.1074/jbc.M113.521625.
– reference: Tan MK, Lim HJ, Harper JW. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31(18):3687–99. https://doi.org/10.1128/MCB.05746-11.
– reference: Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36(3): 109418. https://doi.org/10.1016/j.celrep.2021.109418.
– reference: Mason B, Laman H. The FBXL family of F-box proteins: variations on a theme. Open Biol. 2020;10(11): 200319. https://doi.org/10.1098/rsob.200319.
– reference: Abbas T, Mueller AC, Shibata E, Keaton M, Rossi M, Dutta A. CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol Cell. 2013;49(6):1147–58. https://doi.org/10.1016/j.molcel.2013.02.003.
– reference: Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 2003;4(6):799–812. https://doi.org/10.1016/s1534-5807(03)00154-0.
– reference: Wang Z, Orosa-Puente B, Nomoto M, Grey H, Potuschak T, Matsuura T, et al. Proteasome-associated ubiquitin ligase relays target plant hormone-specific transcriptional activators. Sci Adv. 2022;8(42):eabn4466. https://doi.org/10.1126/sciadv.abn4466.
– reference: Arama E, Bader M, Rieckhof GE, Steller H. A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol. 2007;5(10):e251. https://doi.org/10.1371/journal.pbio.0050251.
– reference: Van Rechem C, Black JC, Abbas T, Allen A, Rinehart CA, Yuan GC, et al. The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem. 2011;286(35):30462–70. https://doi.org/10.1074/jbc.M111.273508.
– reference: Lee CJ, Lee GE, An HJ, Cho ES, Chen W, Lee JY, et al. F-box protein betaTrCP1 Is a substrate of extracellular signal-regulated kinase 2. J Cancer Prev. 2021;26(3):174–82. https://doi.org/10.15430/JCP.2021.26.3.174.
– reference: Li Z, Zhang X, Xie S, Liu X, Fei C, Huang X, et al. H3K36me2 methyltransferase NSD2 orchestrates epigenetic reprogramming during spermatogenesis. Nucleic Acids Res. 2022;50(12):6786–800. https://doi.org/10.1093/nar/gkac533.
– reference: Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016;94(4):92. https://doi.org/10.1095/biolreprod.115.135988.
– reference: Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6(5):661–72. https://doi.org/10.1016/s1534-5807(04)00131-5.
– reference: Wu X, Johansen JV, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell. 2013;49(6):1134–46. https://doi.org/10.1016/j.molcel.2013.01.016.
– reference: He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15(11):1169–75. https://doi.org/10.1038/nsmb.1499.
– reference: Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. Elife. 2024;12:RP91666. https://doi.org/10.7554/eLife.91666.
– reference: Ma Y, Xie N, Xie D, Sun L, Li S, Li P, et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family. Fertil Steril. 2019;111(5):909-17 e1. https://doi.org/10.1016/j.fertnstert.2019.01.007.
– reference: Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, et al. A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet. 2022;101(1):55–64. https://doi.org/10.1111/cge.14069.
– reference: Liao Y, Sumara I, Pangou E. Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol. 2022;5(1):114. https://doi.org/10.1038/s42003-022-03060-1.
– reference: Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52(1):198–236. https://doi.org/10.1152/physrev.1972.52.1.198.
– reference: Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature. 2005;438(7066):374–8. https://doi.org/10.1038/nature04112.
– reference: Fotovati A, Nakayama K, Nakayama KI. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice. Cell Div. 2006;1: 4. https://doi.org/10.1186/1747-1028-1-4.
– reference: Shen J, Spruck C. F-box proteins in epigenetic regulation of cancer. Oncotarget. 2017;8(66):110650–5. https://doi.org/10.18632/oncotarget.22469.
– reference: Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M. Identification of a family of human F-box proteins. Curr Biol. 1999;9(20):1177–9. https://doi.org/10.1016/S0960-9822(00)80020-2.
– reference: Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, et al. E3 ubiquitin ligase that recognizes sugar chains. Nature. 2002;418(6896):438–42. https://doi.org/10.1038/nature00890.
– reference: Janzer A, Stamm K, Becker A, Zimmer A, Buettner R, Kirfel J. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. J Biol Chem. 2012;287(37):30984–92. https://doi.org/10.1074/jbc.M112.341040.
– reference: Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 2000;19(9):2069–81. https://doi.org/10.1093/emboj/19.9.2069.
– reference: Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol. 2013;33(6):1139–48. https://doi.org/10.1128/MCB.01191-12.
– reference: Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, et al. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res. 2019;47(22):11755–70. https://doi.org/10.1093/nar/gkz992.
– reference: Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016;96(1):1–17. https://doi.org/10.1152/physrev.00013.2015.
– reference: Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature. 2001;414(6863):514–21. https://doi.org/10.1038/35107009.
– reference: Fukuda T, Tokunaga A, Sakamoto R, Yoshida N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci. 2011;46(3):614–24. https://doi.org/10.1016/j.mcn.2011.01.001.
– reference: Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest. 2013;123(12):5231–46. https://doi.org/10.1172/JCI68642.
– ident: 196_CR55
  doi: 10.1126/sciadv.abn4466
– ident: 196_CR48
  doi: 10.1038/nrm3582
– ident: 196_CR34
  doi: 10.1038/s42003-022-03060-1
– ident: 196_CR10
  doi: 10.3389/fcell.2022.914053
– ident: 196_CR58
  doi: 10.3390/cells11061058
– ident: 196_CR26
  doi: 10.1016/j.mod.2014.10.001
– ident: 196_CR42
  doi: 10.1038/35107009
– ident: 196_CR62
  doi: 10.1093/nar/gkac978
– ident: 196_CR1
  doi: 10.1016/j.molcel.2013.02.003
– ident: 196_CR27
  doi: 10.1007/s12272-023-01455-0
– ident: 196_CR28
  doi: 10.1038/ncb2731
– ident: 196_CR57
  doi: 10.1111/cge.14069
– ident: 196_CR21
  doi: 10.1093/nar/gkz992
– ident: 196_CR9
  doi: 10.1074/jbc.M113.521625
– ident: 196_CR36
  doi: 10.1098/rsob.200319
– ident: 196_CR53
  doi: 10.1074/jbc.M111.273508
– ident: 196_CR3
  doi: 10.4161/cc.21884
– ident: 196_CR5
  doi: 10.1016/S0960-9822(00)80020-2
– ident: 196_CR6
  doi: 10.1128/MCB.01191-12
– ident: 196_CR49
  doi: 10.1038/bjc.2014.259
– ident: 196_CR23
  doi: 10.1074/jbc.M112.341040
– ident: 196_CR38
  doi: 10.1242/dev.158485
– ident: 196_CR20
  doi: 10.1038/s41586-021-03197-9
– ident: 196_CR59
  doi: 10.1016/j.celrep.2021.108929
– ident: 196_CR4
  doi: 10.1038/12013
– ident: 196_CR15
  doi: 10.1152/physrev.00013.2015
– ident: 196_CR7
  doi: 10.1152/physrev.1972.52.1.198
– ident: 196_CR11
  doi: 10.1016/j.chembiol.2021.04.008
– ident: 196_CR52
  doi: 10.1080/19491034.2018.1498707
– ident: 196_CR47
  doi: 10.18632/oncotarget.22469
– ident: 196_CR60
  doi: 10.1038/nature00890
– ident: 196_CR19
  doi: 10.1038/nsmb.1499
– ident: 196_CR45
  doi: 10.3389/fphys.2019.01278
– ident: 196_CR51
  doi: 10.1016/j.isci.2022.104008
– ident: 196_CR22
  doi: 10.1091/mbc.e07-03-0243
– ident: 196_CR14
  doi: 10.1016/j.celrep.2017.06.033
– ident: 196_CR29
  doi: 10.1242/jcs.206904
– ident: 196_CR39
  doi: 10.1093/emboj/19.9.2069
– ident: 196_CR25
  doi: 10.1101/2023.11.10.566635
– ident: 196_CR40
  doi: 10.1016/s1534-5807(04)00131-5
– ident: 196_CR33
  doi: 10.1093/nar/gkac533
– ident: 196_CR50
  doi: 10.1128/MCB.05746-11
– ident: 196_CR32
  doi: 10.7554/eLife.91666
– ident: 196_CR44
  doi: 10.1002/path.4571
– ident: 196_CR54
  doi: 10.1172/JCI68642
– ident: 196_CR17
  doi: 10.1007/978-3-319-05026-3_4
– ident: 196_CR2
  doi: 10.1371/journal.pbio.0050251
– ident: 196_CR56
  doi: 10.1016/j.molcel.2013.01.016
– ident: 196_CR16
  doi: 10.1016/s1534-5807(03)00154-0
– ident: 196_CR12
  doi: 10.1186/1747-1028-1-4
– ident: 196_CR18
  doi: 10.1038/nature04112
– ident: 196_CR61
  doi: 10.1074/jbc.M304157200
– ident: 196_CR46
  doi: 10.1002/cbin.11277
– ident: 196_CR24
  doi: 10.1073/pnas.1401837111
– ident: 196_CR8
  doi: 10.1038/nature09140
– ident: 196_CR30
  doi: 10.1016/j.celrep.2021.109418
– ident: 196_CR43
  doi: 10.1095/biolreprod.115.135988
– ident: 196_CR41
  doi: 10.1007/s12013-023-01160-1
– ident: 196_CR37
  doi: 10.1128/MCB.00343-15
– ident: 196_CR13
  doi: 10.1016/j.mcn.2011.01.001
– ident: 196_CR31
  doi: 10.15430/JCP.2021.26.3.174
– ident: 196_CR35
  doi: 10.1016/j.fertnstert.2019.01.007
SSID ssj0000852845
Score 2.285718
SecondaryResourceType review_article
Snippet F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They...
Abstract F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell division
CRISPR
Cullin
Enzymes
F-box protein
F-box proteins
Fertility
Germ cells
Infertility
Life Sciences
Male germ cells
Male infertility
Mutation
Phosphorylation
Physiology
Proteins
Proteolysis
Review
Sperm
Spermatogenesis
Stem Cells
T cell receptors
Ubiquitin-protein ligase
Ubiquitylation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB5BERKXirIGWmQkbmA1i-04JwSIpwoJTlR6N8uO7fIkSNrmVYJ_z4yzVI-l18RWnFk8n-3xNwCvihi9kHXDPeqbC1-gzxVtzm3rfa0VLhAcXRT-_EWdnIpPa7meNtyGKa1ynhPTRO37lvbIj9EWyxxjp5Zvzy84VY2i09WphMZtuEPUZZTSVa_rZY8F4QTOvnK-K6PV8VBUim7tlIInZhje7MSjRNv_L6z5d8rkH-emKRyt7sP-hCPZu1HxB3ArdA_g7lhZ8tdDWKP6Gd39pRpEzHae-ZSAERilEw6sj2zFXf-TJZ6GTTewTceINBwBbH9G899mSN1-YABhlLGFHyLE_ghOVx-_fjjhUxEF3qpcb3nh8iLoQkbtECtE6cmrtWsxzusgQx6kDogxXBOdUzKUbXSFdFWIvrYKm1ePYa_ru_AUmHM2lhbXtERBY7VHbYjo6TNKtsr5DIpZlKadGMap0MV3k1YaWplR_AbFb5L4TZPB66XP-civcWPr96ShpSVxY6cH_eWZmVzN5BZRKdEqNRXCQxG0sK3A3y9t7q2tYgaHs37N5LCDuTavDF4ur9HV6PzEdqG_GtuUuF7VZQZPRnNYRkLHvbhSExnoHUPZGerum27zLdF5Y7RpGqHyDN7MNnU9rv_L4tnNv_Ec7pXJzBUv1SHsbS-vwhHip617kZzkN0lsF9M
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERKXqjybtiAjcQOLOLG9zhEqVhUSnKi0N8uO7bIIEtRsJfj3nXGSRQsFiWtiK848PN_IM58BXoiUglSLhgfUN5dBoM-JtuSuDWFhNCYInhqFP3zUZ-fy_UqtpqawYa52n48k806d3dro14OoNTXcVJJnUhfe3IY7CnN3suvTqcfhy1h5hXuumjtkbpy6E4UyWf9NCPPPQsnfTktzEFoewP6EHtmbUd334VbsHsDd8T7Jnw9hhUpn1PFLNw8x1wUWctlFZFREOLA-sSX3_Q-W2RnW3cDWHSOqcISt_QXteushT_uGYYNRnRZ-iHD6Izhfvvt0esanqxN4q0uz4cKXIhqhkvGIEJIK5MvGtxjdTVSxjMpERBa-Sd5rFas2eaF8HVNYOI3D68ew1_VdPATmvUuVw0yWiGecCYhfZAr0Ga1a7UMBYhalbSdecbre4qvN-YXRdhS_RfHbLH7bFPByO-f7yKrxz9FvSUPbkcSInR_0lxd2cjBbOsSiRKbU1AgKZTTStRJ_v3JlcK5OBZzM-rWTmw4WhVKV-ENGFfB8-xodjE5NXBf7q3FMhVmqqQp4MprDdiV0yIv5mSzA7BjKzlJ333Trz5nEG2NM00hdFvBqtqlf6_q7LI7-b_gx3Kuy2Wte6RPY21xexaeIojb-WXaaa4FHFI0
  priority: 102
  providerName: Springer Nature
Title The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility
URI https://link.springer.com/article/10.1186/s13619-024-00196-9
https://www.ncbi.nlm.nih.gov/pubmed/38918264
https://www.proquest.com/docview/3072097685
https://www.proquest.com/docview/3072292482
https://pubmed.ncbi.nlm.nih.gov/PMC11199460
https://doaj.org/article/0a5198041935454e84ac4f8b2a0daa3f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0RPDl8NvquUTwTcP1I0nTR2-55RA8RDzYt5A0ie6hrVz3QP97Z9Lueuvniy-FNgkNk5nMb8jkNwDPixi9kHXDPa43F75AmyvanNvW-1orDBAcXRR-c6pOzsTrpVxeKfVFOWEjPfAouMPcIsYgkpymQmcvgha2FVG70ube2irS7os-70owdT5mX-G-Kze3ZLQ6HIpK0X2dUvDECcObHU-UCPt_hzJ_TZb86cQ0OaLFbdifECR7Nc78DlwL3V24OdaU_HYPlrjwjG79UvUhZjvPfEq9CIwSCQfWR7bgrv_KEkPDqhvYqmNEF47Qtf9AO99qSMM-o-tglKuFPyKsfh_OFsfv5yd8Kp_AW5XrNS9cXgRdSBQWooQoPdmzdi16eB1kyIPUAdGFa6JzSoayja6QrgrR11Zh9-oB7HV9Fx4Bc87G0mI0S-QzVnvEMCJ6-o2SrXI-g2IjStNO3OJU4uKTSTGGVmYUv0HxmyR-02TwYjvmy8is8dfeR7RC257Eip0-oK6YSVfMv3Qlg4PN-prJVAeDQkEFwqhLZvBs24xGRicntgv95dinxEhVlxk8HNVhOxM66MUYTWSgdxRlZ6q7Ld3qYyLyRj_TNELlGbzc6NSPef1ZFo__hyyewK0yGYPipTqAvfXFZXiK-GrtZnC9XtYzuHF0fPr2Hb7NS0FPNZ8lI_sOEiYkDg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOI7XOSBEoastbVcItdLejB3bZSVISrMV9E_xGxk7j2p59Nbrxtk4M9-84nkAPE-dMywfF7FBfsfMpChzaZnEqjRmLDgGCNoXCu_P-PSQfZjn8zX41dfC-LTKXicGRW3q0n8j30Qs0gRtp8jfHH-P_dQof7raj9BoYbFrz35gyNa83nmP_H1B6WT74N007qYKxCVPxDJOdZJakeZOaDSeLjce5kKXaPiEzW1ic2HR6OrCac1zS0un01xn1pmx4rg8w_-9Aussw1BmBOtb27OPn4avOujAoL7P--ocwTebNOO-ToiyOPSiiYsVCxgGBfzLu_07SfOPk9pgACc34UbnuZK3LdRuwZqtbsPVdpbl2R2YI-CIrzb2U4-IqgwxIeXDEp_A2JDakUms658kdIZYVA1ZVMS3KUeXuT7yGnfRhNu-ockiPkcMH-RjhLtweCkEvgejqq7sAyBaK0cVRtG-6Y0SBvnPnPGP4XnJtYkg7Ukpy66nuR-t8VWG2EZw2ZJfIvllIL8sIng53HPcdvS4cPWW59Cw0nfjDj_UJ0eyE26ZKPSDfSOnIkOHlFnBVMnw9alKjFKZi2Cj56_sVEQjzwEdwbPhMgq3P7FRla1P2zUUI2RBI7jfwmHYiT9gxtiQRSBWgLKy1dUr1eJLaCCO9q0oGE8ieNVj6nxf_6fFw4tf4ylcmx7s78m9ndnuI7hOA-R5TPkGjJYnp_Yxem9L_aQTGQKfL1tKfwNkg1b2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNYmTuw4B4SAsmopVByotDdjx3ZZqU1KsxX0r_HrmHGSrZZHb70mTuKMv3nZ8yDkWRaCK0RZMQfrzQqXAc9ldcpM7VypJDgIFhOFP-3Krb3iw0zM1sivMRcGwypHmRgFtWtr3COfABZ5CrpTiUkYwiI-b05fH31n2EEKT1rHdho9RHb86Q9w37pX25uw1s85n77_8m6LDR0GWC1TtWCZTTOvMhGUBUUahEPIK1uDElRe-NQL5UEB2ypYK4XndbCZsLkPrjQShufw3kvkcpmLDHmsnJXL_R0wZUDyizFPR8lJl-USM4Z4wWJVGlat6MLYMuBfdu7f4Zp_nNlGVTi9Qa4PNix904PuJlnzzS1ype9qeXqbzAB6FPOOsf8RNY2jLgZ_eIqhjB1tA50y2_6ksUbEvOnovKFYsByM53YfZe-8i48dgvKiGC0GH0Jv4Q7ZuxDy3iXrTdv4-4RaawI34E9j-RujHCChCA4_I0UtrUtINpJS10N1c2yycaCjl6Ok7smvgfw6kl9XCXmxfOaor-1x7ui3uELLkViXO15oj_f1wOY6NWARY0mnKgfTtPCqMHUBv89N6ozJQ0I2xvXVg7Do9Bm0E_J0eRvYHM9uTOPbk34MB19Z8YTc6-GwnAkeNYOXWCRErQBlZaqrd5r5t1hKHDRdVRUyTcjLEVNn8_o_LR6c_xtPyFXgTf1xe3fnIbnGI-Il43KDrC-OT_wjMOMW9nHkF0q-XjSD_gaO1FnG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+and+diverse+roles+of+F-box+proteins+in+spermatogenesis+and+male+infertility&rft.jtitle=Cell+regeneration&rft.au=Xuan+Zhuang&rft.au=Jun+Ruan&rft.au=Canquan+Zhou&rft.au=Zhiming+Li&rft.date=2024-06-26&rft.pub=SpringerOpen&rft.eissn=2045-9769&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1186%2Fs13619-024-00196-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0a5198041935454e84ac4f8b2a0daa3f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-9769&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-9769&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-9769&client=summon