The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey

• Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosys...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 229; no. 5; pp. 2625 - 2636
Main Authors Wang, Qing-Wei, Pieristè, Marta, Liu, Chenggang, Kenta, Tanaka, Robson, Thomas Matthew, Kurokawa, Hiroko
Format Journal Article
LanguageEnglish
Published England Wiley 01.03.2021
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. • To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. • Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. • We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
AbstractList Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems.To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments.Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively.We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
• Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. • To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. • Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. • We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
Summary Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.
Author Kurokawa, Hiroko
Wang, Qing-Wei
Robson, Thomas Matthew
Kenta, Tanaka
Liu, Chenggang
Pieristè, Marta
AuthorAffiliation 4 UNIROUEN INRAE ECODIV Normandie University Rouen 76000 France
3 Organismal and Evolutionary Biology Viikki Plant Science Centre (ViPS) University of Helsinki PO Box 65 Helsinki 00014 Finland
7 Sugadaira Research Station Mountain Science Centre University of Tsukuba Sugadaira Kogen Ueda, Nagano 1278294 Japan
1 CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
6 Centre for Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Xishuangbanna 666303 China
5 CAS Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun 666303 China
2 Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 3058687 Japan
AuthorAffiliation_xml – name: 3 Organismal and Evolutionary Biology Viikki Plant Science Centre (ViPS) University of Helsinki PO Box 65 Helsinki 00014 Finland
– name: 4 UNIROUEN INRAE ECODIV Normandie University Rouen 76000 France
– name: 6 Centre for Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Xishuangbanna 666303 China
– name: 7 Sugadaira Research Station Mountain Science Centre University of Tsukuba Sugadaira Kogen Ueda, Nagano 1278294 Japan
– name: 2 Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 3058687 Japan
– name: 1 CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
– name: 5 CAS Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun 666303 China
Author_xml – sequence: 1
  givenname: Qing-Wei
  surname: Wang
  fullname: Wang, Qing-Wei
– sequence: 2
  givenname: Marta
  surname: Pieristè
  fullname: Pieristè, Marta
– sequence: 3
  givenname: Chenggang
  surname: Liu
  fullname: Liu, Chenggang
– sequence: 4
  givenname: Tanaka
  surname: Kenta
  fullname: Kenta, Tanaka
– sequence: 5
  givenname: Thomas Matthew
  surname: Robson
  fullname: Robson, Thomas Matthew
– sequence: 6
  givenname: Hiroko
  surname: Kurokawa
  fullname: Kurokawa, Hiroko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33098087$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Hb1wQ-gBHzRh2nzP5mXghS1QlEfKvgWMjOZ3SwzyZhklP32ZnfbRQuKeQnc_M7h3px7Bk588BaA5xid43Iu_LQ-xxIR8ggsMBN1pTCVJ2CBEFGVYOLbKThLaYMQqrkgT8AppahWSMkF6G_XFrbB5-iaObvgYejhtA45dHYVTWf2tRzg4HK2EXa2DeMUktvXnYcGZjtONppsYR-iTRmuzASN7-DsOxtTLsXtU_C4N0Oyz-7uJfj6_t3t1XV18_nDx6u3N1UrkCJV3VNEMGJ1Rw1WnBtRY8NZT2nLrGxQbYwldcOFEphJLrlomppZKhnhiCJBl-Dy4DvNzWi71pbBzKCn6EYTtzoYp_988W6tV-GHlqpWgvFi8PrOIIbvc5lGjy61dhiMt2FOmvDy4Uoo-R8o4wxjQUsYS_DqAboJc_TlJwqlOEMYyV3zL39v_tj1fVoFeHMA2hhSirY_Ihjp3Sbosgl6vwmFvXjAti7v0yxzu-Ffip9usNu_W-tPX67vFS8Ois0u5aOCSIQwZZL-AkB5zeo
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105640
crossref_primary_10_3389_fpls_2023_1200155
crossref_primary_10_1088_1755_1315_1421_1_012017
crossref_primary_10_1111_nph_18253
crossref_primary_10_1007_s43630_023_00376_7
crossref_primary_10_1016_j_apsoil_2024_105742
crossref_primary_10_1016_j_scitotenv_2024_176332
crossref_primary_10_1186_s13595_024_01224_z
crossref_primary_10_1007_s11676_024_01811_w
crossref_primary_10_1016_j_scitotenv_2023_162789
crossref_primary_10_1016_j_geoderma_2022_116010
crossref_primary_10_2139_ssrn_4141915
crossref_primary_10_1016_j_jhazmat_2021_127806
crossref_primary_10_3390_jof8090900
crossref_primary_10_1016_j_catena_2024_107972
crossref_primary_10_1007_s11104_022_05596_x
crossref_primary_10_1029_2021JG006345
crossref_primary_10_1111_rec_13987
crossref_primary_10_3390_f13122015
crossref_primary_10_1111_1365_2745_14174
crossref_primary_10_1016_j_ijbiomac_2025_141113
crossref_primary_10_1007_s10342_022_01521_0
crossref_primary_10_1016_j_catena_2024_108485
crossref_primary_10_1002_ldr_5096
crossref_primary_10_1016_j_agee_2022_107908
crossref_primary_10_1007_s43630_022_00176_5
crossref_primary_10_1038_s41559_022_01779_y
crossref_primary_10_1111_nph_20105
crossref_primary_10_3390_f15101784
crossref_primary_10_1002_ece3_70918
crossref_primary_10_1016_j_jenvman_2024_120574
crossref_primary_10_1111_1365_2745_13939
crossref_primary_10_1016_j_gca_2025_03_010
crossref_primary_10_1016_j_scitotenv_2024_172122
crossref_primary_10_3390_microorganisms12081535
crossref_primary_10_3390_f13081201
crossref_primary_10_1007_s11104_023_05994_9
crossref_primary_10_1016_j_scitotenv_2022_153185
crossref_primary_10_3390_f14040673
crossref_primary_10_3390_rs14020370
crossref_primary_10_1016_j_catena_2024_108239
crossref_primary_10_1186_s13717_024_00528_2
crossref_primary_10_1016_j_soilbio_2022_108588
crossref_primary_10_3390_f15060962
crossref_primary_10_3390_soilsystems7010006
crossref_primary_10_1002_ldr_5360
crossref_primary_10_1007_s13157_023_01727_x
crossref_primary_10_1111_1365_2435_14544
Cites_doi 10.1016/j.soilbio.2009.03.025
10.1016/j.foreco.2015.12.023
10.1007/s40333-018-0054-6
10.1029/2008JG000772
10.1111/j.1461-0248.2008.01219.x
10.1038/nature05038
10.1007/s10021-010-9353-2
10.5194/bg-12-4161-2015
10.4060/ca8753en
10.1073/pnas.1516157113
10.1002/ecs2.2370
10.1111/j.2517-6161.1995.tb02031.x
10.1007/s10533-012-9737-9
10.1016/j.cub.2020.06.005
10.1007/s004420000592
10.1002/ecs2.1770
10.1111/1365-2745.12868
10.1002/ecs2.1892
10.1525/9780520407114
10.1126/science.1134853
10.1016/j.geoderma.2017.10.059
10.1016/j.soilbio.2011.03.004
10.1016/j.agrformet.2011.04.014
10.1016/j.plaphy.2019.11.005
10.1093/biomet/87.4.954
10.1073/pnas.0909396107
10.1002/ecs2.1300
10.1007/s00442-019-04478-x
10.1046/j.1440-1703.2001.00426.x
10.1021/jf010449r
10.1016/j.scitotenv.2017.09.239
10.1021/jf00062a013
10.2307/3546903
10.1007/s11104-020-04557-6
10.1093/obo/9780199830060-0111
10.1016/j.scitotenv.2020.136601
10.3389/fpls.2015.00140
10.1046/j.1365-2486.2003.00667.x
10.1111/1365-2745.13384
10.1002/ece3.4496
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.17022
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional


CrossRef
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 2636
ExternalDocumentID PMC7898645
33098087
10_1111_nph_17022
NPH17022
27001347
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Environment Research and Technology Development Fund
  funderid: JPMEERF16S11506
– fundername: KAKENHI
  funderid: 17F17403; 17H03736
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2019388
– fundername: Academy of Finland decisions
  funderid: 304519; 324555
– fundername: the Region "Haute‐Normandie" through the GRR‐TERA SCALE (UFOSE Project)
– fundername: the Yunnan Fundamental Research Projects of China
  funderid: 2018FB042
– fundername: The CAS Young Talents Program
– fundername: National Natural Science Foundation of China
  funderid: 41971148
– fundername: Academy of Finland decisions
  grantid: 304519; 324555
– fundername: ;
  grantid: 2019388
– fundername: ;
  grantid: 41971148
– fundername: the Yunnan Fundamental Research Projects of China
  grantid: 2018FB042
– fundername: Environment Research and Technology Development Fund
  grantid: JPMEERF16S11506
– fundername: KAKENHI
  grantid: 17F17403; 17H03736
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6082-9f3021049d3a1855a691a54f33c4e7b09aae29b56861475756bb94e3742503063
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 14:08:44 EDT 2025
Fri Jul 11 18:31:37 EDT 2025
Fri Jul 11 15:25:35 EDT 2025
Fri Jul 25 10:44:29 EDT 2025
Thu Apr 03 07:09:33 EDT 2025
Tue Jul 01 02:28:36 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Wed Jan 22 16:32:05 EST 2025
Thu Jul 03 21:35:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ultraviolet radiation
model simulation
biogeochemical cycle
functional traits
mesic ecosystems
Language English
License Attribution
2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6082-9f3021049d3a1855a691a54f33c4e7b09aae29b56861475756bb94e3742503063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8631-796X
0000-0002-5169-9881
0000-0002-4366-1429
0000-0001-8778-8045
0000-0002-6234-1017
0000-0001-6515-0833
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17022
PMID 33098087
PQID 2485401076
PQPubID 2026848
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898645
proquest_miscellaneous_2511186875
proquest_miscellaneous_2454116381
proquest_journals_2485401076
pubmed_primary_33098087
crossref_primary_10_1111_nph_17022
crossref_citationtrail_10_1111_nph_17022
wiley_primary_10_1111_nph_17022_NPH17022
jstor_primary_27001347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 12
2017; 8
2009; 41
2015; 6
2019; 191
1950; 25
2010; 13
2010; 107
2018; 106
1995; 57
2000; 87
2016; 363
1994
2008; 11
2001; 49
2020; 146
2011; 151
2009; 114
2020; 108
1979
2001; 127
2018; 9
2016; 7
2018; 8
2012; 111
2007; 315
2018; 315
2020; 30
2020; 451
2020
1997; 79
2003; 9
2016; 113
2019
2011; 43
2018; 615
2001; 16
2013
1985; 33
2018; 10
2006; 442
2020; 715
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Swift MJ (e_1_2_8_42_1) 1979
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
Day TA (e_1_2_8_15_1) 2019
e_1_2_8_16_1
e_1_2_8_37_1
Seifter S (e_1_2_8_41_1) 1950; 25
Waterman PG (e_1_2_8_44_1) 1994
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 13
  start-page: 765
  year: 2010
  end-page: 781
  article-title: The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient
  publication-title: Ecosystems
– volume: 9
  year: 2018
  article-title: Photodegradation accelerates ecosystem N cycling in a simulated California grassland
  publication-title: Ecosphere
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 146
  start-page: 42
  year: 2020
  end-page: 54
  article-title: Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland
  publication-title: Plant Physiology and Biochemistry
– volume: 315
  start-page: 104
  year: 2018
  end-page: 110
  article-title: Photo‐exposure affects subsequent peat litter decomposition
  publication-title: Geoderma
– volume: 715
  start-page: 136601
  year: 2020
  article-title: Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil
  publication-title: Science of the Total Environment
– volume: 615
  start-page: 838
  year: 2018
  end-page: 848
  article-title: Short‐term facilitation of microbial litter decomposition by ultraviolet radiation
  publication-title: Science of the Total Environment
– volume: 10
  start-page: 416
  year: 2018
  end-page: 428
  article-title: Effects of ultraviolet (UV) radiation and litter layer thickness on litter decomposition of two tree species in a semi‐arid site of northeast China
  publication-title: Journal of Arid Land
– volume: 127
  start-page: 1
  year: 2001
  end-page: 10
  article-title: A meta analysis of plant field studies simulating stratospheric ozone depletion
  publication-title: Oecologia
– volume: 7
  start-page: 1
  year: 2016
  end-page: 22
  article-title: Simulation of the effects of photodecay on long‐term litter decay using DayCent
  publication-title: Ecosphere
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 363
  start-page: 169
  year: 2016
  end-page: 178
  article-title: Frequent severe natural disturbances and non‐equilibrium landscape dynamics shaped the mountain spruce forest in central Europe
  publication-title: Forest Ecology and Management
– volume: 8
  start-page: 10206
  year: 2018
  end-page: 10218
  article-title: Assessing scale‐wise similarity of curves with a thick pen: as illustrated through comparisons of spectral irradiance
  publication-title: Ecology and Evolution
– volume: 442
  start-page: 555
  year: 2006
  end-page: 558
  article-title: Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation
  publication-title: Nature
– volume: 107
  start-page: 4618
  year: 2010
  end-page: 4622
  article-title: Dual role of lignin in plant litter decomposition in terrestrial ecosystems
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 113
  start-page: 4392
  year: 2016
  end-page: 4397
  article-title: Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 33
  start-page: 213
  year: 1985
  end-page: 217
  article-title: Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 30
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia
  publication-title: Current Biology
– volume: 43
  start-page: 1383
  year: 2011
  end-page: 1386
  article-title: Modelling photodegradation in the global carbon cycle
  publication-title: Soil Biology and Biochemistry
– volume: 151
  start-page: 1226
  year: 2011
  end-page: 1232
  article-title: Spatial variability of photosynthetically active radiation in European beech and Norway spruce
  publication-title: Agricultural and Forest Meteorology
– volume: 106
  start-page: 218
  year: 2018
  end-page: 229
  article-title: Specific leaf area predicts dryland litter decomposition via two mechanisms
  publication-title: Journal of Ecology
– volume: 9
  start-page: 1465
  year: 2003
  end-page: 1474
  article-title: Solar UV‐B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community
  publication-title: Global Change Biology
– year: 1979
– year: 1994
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
– volume: 49
  start-page: 3133
  year: 2001
  end-page: 3139
  article-title: Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 16
  start-page: 649
  year: 2001
  end-page: 670
  article-title: Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3‐year decomposition processes in a cool temperate deciduous forest in Japan
  publication-title: Ecological Research
– volume: 79
  start-page: 592
  year: 1997
  end-page: 602
  article-title: Direct effects of elevated UV‐B radiation on the decomposition of leaf litter
  publication-title: Oikos
– volume: 12
  start-page: 4161
  year: 2015
  end-page: 4174
  article-title: The role of photo‐ and thermal degradation for CO and CO fluxes in an arid ecosystem
  publication-title: Biogeosciences
– volume: 111
  start-page: 57
  year: 2012
  end-page: 81
  article-title: Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation
  publication-title: Biogeochemistry
– volume: 315
  start-page: 361
  year: 2007
  end-page: 364
  article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition
  publication-title: Science
– year: 2020
– volume: 6
  start-page: 140
  year: 2015
  article-title: Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability
  publication-title: Frontiers in Plant Science
– volume: 451
  start-page: 515
  year: 2020
  end-page: 530
  article-title: Spectral composition of sunlight affects the microbial functional structure of beech leaf litter during the initial phase of decomposition
  publication-title: Plant and Soil
– volume: 25
  start-page: 191
  year: 1950
  end-page: 200
  article-title: The estimation of glycogen with the anthrone reagent
  publication-title: Archives of Biochemistry
– volume: 8
  year: 2017
  article-title: Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems
  publication-title: Ecosphere
– volume: 191
  start-page: 191
  year: 2019
  end-page: 203
  article-title: Solar UV‐A radiation and blue light enhance tree leaf litter decomposition in a temperate forest
  publication-title: Oecologia
– volume: 108
  start-page: 1923
  year: 2020
  end-page: 1940
  article-title: Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance
  publication-title: Journal of Ecology
– year: 2019
– volume: 41
  start-page: 1433
  year: 2009
  end-page: 1441
  article-title: Photoacceleration of plant litter decomposition in an arid environment
  publication-title: Soil Biology and Biochemistry
– volume: 8
  year: 2017
  article-title: Effects of light intensity on litter decomposition in a subtropical region
  publication-title: Ecosphere
– volume: 114
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems
  publication-title: Journal of Geophysical Research: Biogeosciences
– start-page: 1
  year: 2019
  end-page: 18
  article-title: Solar photochemical emission of CO from leaf litter: sources and significance to C loss
  publication-title: Ecosystems
– year: 2013
– ident: e_1_2_8_21_1
  doi: 10.1016/j.soilbio.2009.03.025
– ident: e_1_2_8_12_1
  doi: 10.1016/j.foreco.2015.12.023
– ident: e_1_2_8_30_1
  doi: 10.1007/s40333-018-0054-6
– ident: e_1_2_8_10_1
  doi: 10.1029/2008JG000772
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_8_7_1
  doi: 10.1038/nature05038
– ident: e_1_2_8_11_1
  doi: 10.1007/s10021-010-9353-2
– ident: e_1_2_8_4_1
  doi: 10.5194/bg-12-4161-2015
– ident: e_1_2_8_16_1
  doi: 10.4060/ca8753en
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.1516157113
– volume-title: Analysis of phenolic plant metabolites
  year: 1994
  ident: e_1_2_8_44_1
– ident: e_1_2_8_3_1
  doi: 10.1002/ecs2.2370
– ident: e_1_2_8_8_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_8_25_1
  doi: 10.1007/s10533-012-9737-9
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cub.2020.06.005
– ident: e_1_2_8_40_1
  doi: 10.1007/s004420000592
– ident: e_1_2_8_29_1
  doi: 10.1002/ecs2.1770
– ident: e_1_2_8_28_1
  doi: 10.1111/1365-2745.12868
– ident: e_1_2_8_2_1
  doi: 10.1002/ecs2.1892
– volume-title: Decomposition in terrestrial ecosystems
  year: 1979
  ident: e_1_2_8_42_1
  doi: 10.1525/9780520407114
– ident: e_1_2_8_35_1
  doi: 10.1126/science.1134853
– ident: e_1_2_8_18_1
  doi: 10.1016/j.geoderma.2017.10.059
– ident: e_1_2_8_17_1
  doi: 10.1016/j.soilbio.2011.03.004
– ident: e_1_2_8_26_1
  doi: 10.1016/j.agrformet.2011.04.014
– ident: e_1_2_8_38_1
  doi: 10.1016/j.plaphy.2019.11.005
– ident: e_1_2_8_45_1
  doi: 10.1093/biomet/87.4.954
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.0909396107
– ident: e_1_2_8_13_1
  doi: 10.1002/ecs2.1300
– ident: e_1_2_8_36_1
  doi: 10.1007/s00442-019-04478-x
– volume: 25
  start-page: 191
  year: 1950
  ident: e_1_2_8_41_1
  article-title: The estimation of glycogen with the anthrone reagent
  publication-title: Archives of Biochemistry
– ident: e_1_2_8_33_1
  doi: 10.1046/j.1440-1703.2001.00426.x
– ident: e_1_2_8_19_1
– ident: e_1_2_8_20_1
  doi: 10.1021/jf010449r
– ident: e_1_2_8_27_1
  doi: 10.1016/j.scitotenv.2017.09.239
– ident: e_1_2_8_24_1
  doi: 10.1021/jf00062a013
– ident: e_1_2_8_32_1
  doi: 10.2307/3546903
– ident: e_1_2_8_37_1
  doi: 10.1007/s11104-020-04557-6
– ident: e_1_2_8_39_1
  doi: 10.1093/obo/9780199830060-0111
– ident: e_1_2_8_31_1
  doi: 10.1016/j.scitotenv.2020.136601
– ident: e_1_2_8_22_1
  doi: 10.3389/fpls.2015.00140
– ident: e_1_2_8_34_1
  doi: 10.1046/j.1365-2486.2003.00667.x
– ident: e_1_2_8_43_1
  doi: 10.1111/1365-2745.13384
– ident: e_1_2_8_23_1
  doi: 10.1002/ece3.4496
– start-page: 1
  year: 2019
  ident: e_1_2_8_15_1
  article-title: Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss
  publication-title: Ecosystems
SSID ssj0009562
Score 2.5457532
Snippet • Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for...
Summary Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable...
Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2625
SubjectTerms Arid regions
Attenuation
biogeochemical cycle
biogeochemical cycles
Biogeochemistry
blue light
Canopies
Canopy gaps
carbon
Decay
Decay rate
Deciduous forests
Deciduous trees
Decomposition
deterioration
Ecosystem
Ecosystems
energy
Factorial experiments
Forest ecosystems
Forests
functional traits
Leaf litter
Lignin
Litter
mass
mesic ecosystems
model simulation
Nutrient cycles
Photodegradation
Photolysis
Plant cover
Plant Leaves
plant litter
shrubs
Spectral composition
Sunlight
Temperate forests
Terrestrial ecosystems
Trees
Ultraviolet radiation
understory
Title The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey
URI https://www.jstor.org/stable/27001347
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17022
https://www.ncbi.nlm.nih.gov/pubmed/33098087
https://www.proquest.com/docview/2485401076
https://www.proquest.com/docview/2454116381
https://www.proquest.com/docview/2511186875
https://pubmed.ncbi.nlm.nih.gov/PMC7898645
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VigMX3oVAqQzi0EtWSfyKxQkQ1QqJqkJU2gNSZG9stgIlK5o9lF_PjPPQLhSEuEXJJIrtmfib-PM3AC-lzVRpskC5CYlqF3VqSmvSsgg-5ALnME4bhT-cqvm5eL-Qiz14Ne6F6fUhph9uFBnxe00Bbt3lVpA369Us1zgF4feXuFoEiD4WW4K7qhgVmJVQi0FViFg80507c1FPR7wOaP7Ol9zGsXEiOrkDn8cm9PyTr7NN52bLH7-oO_5nG-_C7QGgste9R92DPd_ch5tvWgSRVw8goFuxSG8f6mSxNrD1qu3amlQn-gJNrGsZonscMVZ74qwPxDB20TDLSAyLlJw9Q7yMHcC-2DWzTc02_T4bPHn1EM5P3n16O0-HUg3pUiGISE3glDwKU3OLCEBaZXIrReB8Kbx2mbHWF8ZJVSIc0AgRlXNGeI6JuaSshR_AftM2_jGwPJShti53tbIiYDZUSi2cD7Y2XCLCSOB4HLRqOeiYUzmNb9WYz2CvVbHXEngxma578Y7rjA7iyE8WcSmeC53A4egK1RDYlxUpwGFKmmmVwPPpMoYkrbPYxrcbspEiJ5yb_8UGgS5VKtAygUe9d00vwHlmyqzEF9A7fjcZkCT47pXmYhWlwXVJcvv4zOPoVn9udXV6No8HT_7d9CncKojRExl4h7Dffd_4ZwjJOncENwpxdhQj8CcpkjK6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSX8iwNFDCIQy9ZJfEjscSFV7VAu0KolfaCImdjd6tWyarNHsqvZ8Z5aBcKQtyiZBLF9kz8jfP5G4DX0kQq05Gj3IREtZMy1JnRYZY462KBcxinjcKHEzU-Fp-ncroBb_q9MK0-xLDgRpHhv9cU4LQgvRLl1WI-ilOcg27ATaroTcr5H74lK5K7Kuk1mJVQ005XiHg8w61rs1FLSLwOav7OmFxFsn4q2r8L3_tGtAyUs9GyKUazH7_oO_5vK-_BVodR2dvWqe7Dhq0ewK13NeLIq4fg0LOYZ7h3pbJY7dhiXjd1ScITbY0m1tQMAT4OGist0dY7bhg7rZhhpIdFYs6WIWTGHmAnZsFMVbJlu9UGT149guP9j0fvx2FXrSGcKcQRoXac8kehS24QBEijdGykcJzPhE2LSBtjE11IlSEiSBElqqLQwnLMzSUlLnwbNqu6sjvAYpe50hRxUSojHCZEmUxFYZ0pNZcIMgLY60ctn3VS5lRR4zzvUxrstdz3WgCvBtNFq99xndG2H_rBwv-N5yINYLf3hbyL7cucROAwK41SFcDL4TJGJf1qMZWtl2QjRUxQN_6LDWJdKlaQygAet-41vADnkc6iDF8gXXO8wYBUwdevVKdzrw6eZqS4j8_c837151bnk69jf_Dk301fwO3x0eFBfvBp8uUp3EmI4OMJebuw2Vws7TNEaE3x3AfiT_fnNf8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VghAXVB4FQwsL4tCLke19ecWJFqLwinKgUm7WOt5tKiHbapND_z0z64cSURA3yx5ba4_H8433228A3kmbqNwknmoTEtXOqtjk1sR55p1PBeYwTguFf8zU9Fx8XcjFHnwY1sJ0-hDjDzeKjPC9pgBvK78V5HW7ep9qTEF34C5N9hGfKxPzLcVdlQ0SzEqoRS8rRDSe8dSdZNTxEW9Dmn8SJreBbMhEkwN42ENI9rHz-SPYc_VjuHfaIMy7eQIeHc8CAb3vZMUaz9pVs24q0oXoWiixdcMQf-MzZZUjVnlP3WKXNbOM5KpIa9kxRLQ4QnZhW2brim26lTC48-YpnE8-_zybxn0zhXipMM3HxnMq74SpuMUcLa0yqZXCc74UTpeJsdZlppQqx4StEcSpsjTCcSydJdUV_BD266Z2z4GlPveVLdOyUlZ4rFdyqUXpvK0Ml4gBIjgZnmqx7JXGqeHFr2KoONABRXBABG9H07aT17jN6DC4ZrQIk-Vc6AiOBl8VfehdF6TRhkVjolUEb8bDGDQ0E2Jr12zIRoqUkGj6DxuEotRLQMsInnXuHwfAeWLyJMcB6J0XYzQg0e7dI_XlKoh365wE8fGaJ-EV-vtdF7P5NGy8-H_T13B__mlSfP8y-_YSHmREvwl0uSPYX19t3DHip3X5KsTJb0t5FHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+contribution+of+photodegradation+to+litter+decomposition+in+a+temperate+forest+gap+and+understorey&rft.jtitle=The+New+phytologist&rft.au=Qing%E2%80%90Wei+Wang&rft.au=Pierist%C3%A8%2C+Marta&rft.au=Liu%2C+Chenggang&rft.au=Tanaka+Kenta&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=229&rft.issue=5&rft.spage=2625&rft.epage=2636&rft_id=info:doi/10.1111%2Fnph.17022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon