The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey
• Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosys...
Saved in:
Published in | The New phytologist Vol. 229; no. 5; pp. 2625 - 2636 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.03.2021
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems.
• To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments.
• Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively.
• We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. |
---|---|
AbstractList | Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems.
To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments.
Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively.
We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems.To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments.Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively.We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. • Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. • To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. • Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. • We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. Summary Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems. To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral-attenuation-filter treatments. Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled-up to the whole forest ecosystem, this translates to 13% loss of leaf-litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV-B) radiation, respectively. We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening. |
Author | Kurokawa, Hiroko Wang, Qing-Wei Robson, Thomas Matthew Kenta, Tanaka Liu, Chenggang Pieristè, Marta |
AuthorAffiliation | 4 UNIROUEN INRAE ECODIV Normandie University Rouen 76000 France 3 Organismal and Evolutionary Biology Viikki Plant Science Centre (ViPS) University of Helsinki PO Box 65 Helsinki 00014 Finland 7 Sugadaira Research Station Mountain Science Centre University of Tsukuba Sugadaira Kogen Ueda, Nagano 1278294 Japan 1 CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China 6 Centre for Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Xishuangbanna 666303 China 5 CAS Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun 666303 China 2 Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 3058687 Japan |
AuthorAffiliation_xml | – name: 3 Organismal and Evolutionary Biology Viikki Plant Science Centre (ViPS) University of Helsinki PO Box 65 Helsinki 00014 Finland – name: 4 UNIROUEN INRAE ECODIV Normandie University Rouen 76000 France – name: 6 Centre for Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Xishuangbanna 666303 China – name: 7 Sugadaira Research Station Mountain Science Centre University of Tsukuba Sugadaira Kogen Ueda, Nagano 1278294 Japan – name: 2 Forestry and Forest Products Research Institute 1 Matsunosato Tsukuba Ibaraki 3058687 Japan – name: 1 CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China – name: 5 CAS Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun 666303 China |
Author_xml | – sequence: 1 givenname: Qing-Wei surname: Wang fullname: Wang, Qing-Wei – sequence: 2 givenname: Marta surname: Pieristè fullname: Pieristè, Marta – sequence: 3 givenname: Chenggang surname: Liu fullname: Liu, Chenggang – sequence: 4 givenname: Tanaka surname: Kenta fullname: Kenta, Tanaka – sequence: 5 givenname: Thomas Matthew surname: Robson fullname: Robson, Thomas Matthew – sequence: 6 givenname: Hiroko surname: Kurokawa fullname: Kurokawa, Hiroko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33098087$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Hb1wQ-gBHzRh2nzP5mXghS1QlEfKvgWMjOZ3SwzyZhklP32ZnfbRQuKeQnc_M7h3px7Bk588BaA5xid43Iu_LQ-xxIR8ggsMBN1pTCVJ2CBEFGVYOLbKThLaYMQqrkgT8AppahWSMkF6G_XFrbB5-iaObvgYejhtA45dHYVTWf2tRzg4HK2EXa2DeMUktvXnYcGZjtONppsYR-iTRmuzASN7-DsOxtTLsXtU_C4N0Oyz-7uJfj6_t3t1XV18_nDx6u3N1UrkCJV3VNEMGJ1Rw1WnBtRY8NZT2nLrGxQbYwldcOFEphJLrlomppZKhnhiCJBl-Dy4DvNzWi71pbBzKCn6EYTtzoYp_988W6tV-GHlqpWgvFi8PrOIIbvc5lGjy61dhiMt2FOmvDy4Uoo-R8o4wxjQUsYS_DqAboJc_TlJwqlOEMYyV3zL39v_tj1fVoFeHMA2hhSirY_Ihjp3Sbosgl6vwmFvXjAti7v0yxzu-Ffip9usNu_W-tPX67vFS8Ois0u5aOCSIQwZZL-AkB5zeo |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105640 crossref_primary_10_3389_fpls_2023_1200155 crossref_primary_10_1088_1755_1315_1421_1_012017 crossref_primary_10_1111_nph_18253 crossref_primary_10_1007_s43630_023_00376_7 crossref_primary_10_1016_j_apsoil_2024_105742 crossref_primary_10_1016_j_scitotenv_2024_176332 crossref_primary_10_1186_s13595_024_01224_z crossref_primary_10_1007_s11676_024_01811_w crossref_primary_10_1016_j_scitotenv_2023_162789 crossref_primary_10_1016_j_geoderma_2022_116010 crossref_primary_10_2139_ssrn_4141915 crossref_primary_10_1016_j_jhazmat_2021_127806 crossref_primary_10_3390_jof8090900 crossref_primary_10_1016_j_catena_2024_107972 crossref_primary_10_1007_s11104_022_05596_x crossref_primary_10_1029_2021JG006345 crossref_primary_10_1111_rec_13987 crossref_primary_10_3390_f13122015 crossref_primary_10_1111_1365_2745_14174 crossref_primary_10_1016_j_ijbiomac_2025_141113 crossref_primary_10_1007_s10342_022_01521_0 crossref_primary_10_1016_j_catena_2024_108485 crossref_primary_10_1002_ldr_5096 crossref_primary_10_1016_j_agee_2022_107908 crossref_primary_10_1007_s43630_022_00176_5 crossref_primary_10_1038_s41559_022_01779_y crossref_primary_10_1111_nph_20105 crossref_primary_10_3390_f15101784 crossref_primary_10_1002_ece3_70918 crossref_primary_10_1016_j_jenvman_2024_120574 crossref_primary_10_1111_1365_2745_13939 crossref_primary_10_1016_j_gca_2025_03_010 crossref_primary_10_1016_j_scitotenv_2024_172122 crossref_primary_10_3390_microorganisms12081535 crossref_primary_10_3390_f13081201 crossref_primary_10_1007_s11104_023_05994_9 crossref_primary_10_1016_j_scitotenv_2022_153185 crossref_primary_10_3390_f14040673 crossref_primary_10_3390_rs14020370 crossref_primary_10_1016_j_catena_2024_108239 crossref_primary_10_1186_s13717_024_00528_2 crossref_primary_10_1016_j_soilbio_2022_108588 crossref_primary_10_3390_f15060962 crossref_primary_10_3390_soilsystems7010006 crossref_primary_10_1002_ldr_5360 crossref_primary_10_1007_s13157_023_01727_x crossref_primary_10_1111_1365_2435_14544 |
Cites_doi | 10.1016/j.soilbio.2009.03.025 10.1016/j.foreco.2015.12.023 10.1007/s40333-018-0054-6 10.1029/2008JG000772 10.1111/j.1461-0248.2008.01219.x 10.1038/nature05038 10.1007/s10021-010-9353-2 10.5194/bg-12-4161-2015 10.4060/ca8753en 10.1073/pnas.1516157113 10.1002/ecs2.2370 10.1111/j.2517-6161.1995.tb02031.x 10.1007/s10533-012-9737-9 10.1016/j.cub.2020.06.005 10.1007/s004420000592 10.1002/ecs2.1770 10.1111/1365-2745.12868 10.1002/ecs2.1892 10.1525/9780520407114 10.1126/science.1134853 10.1016/j.geoderma.2017.10.059 10.1016/j.soilbio.2011.03.004 10.1016/j.agrformet.2011.04.014 10.1016/j.plaphy.2019.11.005 10.1093/biomet/87.4.954 10.1073/pnas.0909396107 10.1002/ecs2.1300 10.1007/s00442-019-04478-x 10.1046/j.1440-1703.2001.00426.x 10.1021/jf010449r 10.1016/j.scitotenv.2017.09.239 10.1021/jf00062a013 10.2307/3546903 10.1007/s11104-020-04557-6 10.1093/obo/9780199830060-0111 10.1016/j.scitotenv.2020.136601 10.3389/fpls.2015.00140 10.1046/j.1365-2486.2003.00667.x 10.1111/1365-2745.13384 10.1002/ece3.4496 |
ContentType | Journal Article |
Copyright | 2020 The Authors © 2020 New Phytologist Foundation 2020 The Authors New Phytologist © 2020 New Phytologist Foundation 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Foundation – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.17022 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2636 |
ExternalDocumentID | PMC7898645 33098087 10_1111_nph_17022 NPH17022 27001347 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Environment Research and Technology Development Fund funderid: JPMEERF16S11506 – fundername: KAKENHI funderid: 17F17403; 17H03736 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2019388 – fundername: Academy of Finland decisions funderid: 304519; 324555 – fundername: the Region "Haute‐Normandie" through the GRR‐TERA SCALE (UFOSE Project) – fundername: the Yunnan Fundamental Research Projects of China funderid: 2018FB042 – fundername: The CAS Young Talents Program – fundername: National Natural Science Foundation of China funderid: 41971148 – fundername: Academy of Finland decisions grantid: 304519; 324555 – fundername: ; grantid: 2019388 – fundername: ; grantid: 41971148 – fundername: the Yunnan Fundamental Research Projects of China grantid: 2018FB042 – fundername: Environment Research and Technology Development Fund grantid: JPMEERF16S11506 – fundername: KAKENHI grantid: 17F17403; 17H03736 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6082-9f3021049d3a1855a691a54f33c4e7b09aae29b56861475756bb94e3742503063 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 14:08:44 EDT 2025 Fri Jul 11 18:31:37 EDT 2025 Fri Jul 11 15:25:35 EDT 2025 Fri Jul 25 10:44:29 EDT 2025 Thu Apr 03 07:09:33 EDT 2025 Tue Jul 01 02:28:36 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Wed Jan 22 16:32:05 EST 2025 Thu Jul 03 21:35:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ultraviolet radiation model simulation biogeochemical cycle functional traits mesic ecosystems |
Language | English |
License | Attribution 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6082-9f3021049d3a1855a691a54f33c4e7b09aae29b56861475756bb94e3742503063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8631-796X 0000-0002-5169-9881 0000-0002-4366-1429 0000-0001-8778-8045 0000-0002-6234-1017 0000-0001-6515-0833 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17022 |
PMID | 33098087 |
PQID | 2485401076 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7898645 proquest_miscellaneous_2511186875 proquest_miscellaneous_2454116381 proquest_journals_2485401076 pubmed_primary_33098087 crossref_primary_10_1111_nph_17022 crossref_citationtrail_10_1111_nph_17022 wiley_primary_10_1111_nph_17022_NPH17022 jstor_primary_27001347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 12 2017; 8 2009; 41 2015; 6 2019; 191 1950; 25 2010; 13 2010; 107 2018; 106 1995; 57 2000; 87 2016; 363 1994 2008; 11 2001; 49 2020; 146 2011; 151 2009; 114 2020; 108 1979 2001; 127 2018; 9 2016; 7 2018; 8 2012; 111 2007; 315 2018; 315 2020; 30 2020; 451 2020 1997; 79 2003; 9 2016; 113 2019 2011; 43 2018; 615 2001; 16 2013 1985; 33 2018; 10 2006; 442 2020; 715 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Swift MJ (e_1_2_8_42_1) 1979 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 Day TA (e_1_2_8_15_1) 2019 e_1_2_8_16_1 e_1_2_8_37_1 Seifter S (e_1_2_8_41_1) 1950; 25 Waterman PG (e_1_2_8_44_1) 1994 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 13 start-page: 765 year: 2010 end-page: 781 article-title: The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient publication-title: Ecosystems – volume: 9 year: 2018 article-title: Photodegradation accelerates ecosystem N cycling in a simulated California grassland publication-title: Ecosphere – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 146 start-page: 42 year: 2020 end-page: 54 article-title: Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland publication-title: Plant Physiology and Biochemistry – volume: 315 start-page: 104 year: 2018 end-page: 110 article-title: Photo‐exposure affects subsequent peat litter decomposition publication-title: Geoderma – volume: 715 start-page: 136601 year: 2020 article-title: Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil publication-title: Science of the Total Environment – volume: 615 start-page: 838 year: 2018 end-page: 848 article-title: Short‐term facilitation of microbial litter decomposition by ultraviolet radiation publication-title: Science of the Total Environment – volume: 10 start-page: 416 year: 2018 end-page: 428 article-title: Effects of ultraviolet (UV) radiation and litter layer thickness on litter decomposition of two tree species in a semi‐arid site of northeast China publication-title: Journal of Arid Land – volume: 127 start-page: 1 year: 2001 end-page: 10 article-title: A meta analysis of plant field studies simulating stratospheric ozone depletion publication-title: Oecologia – volume: 7 start-page: 1 year: 2016 end-page: 22 article-title: Simulation of the effects of photodecay on long‐term litter decay using DayCent publication-title: Ecosphere – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 363 start-page: 169 year: 2016 end-page: 178 article-title: Frequent severe natural disturbances and non‐equilibrium landscape dynamics shaped the mountain spruce forest in central Europe publication-title: Forest Ecology and Management – volume: 8 start-page: 10206 year: 2018 end-page: 10218 article-title: Assessing scale‐wise similarity of curves with a thick pen: as illustrated through comparisons of spectral irradiance publication-title: Ecology and Evolution – volume: 442 start-page: 555 year: 2006 end-page: 558 article-title: Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation publication-title: Nature – volume: 107 start-page: 4618 year: 2010 end-page: 4622 article-title: Dual role of lignin in plant litter decomposition in terrestrial ecosystems publication-title: Proceedings of the National Academy of Sciences, USA – volume: 113 start-page: 4392 year: 2016 end-page: 4397 article-title: Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems publication-title: Proceedings of the National Academy of Sciences, USA – volume: 33 start-page: 213 year: 1985 end-page: 217 article-title: Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics publication-title: Journal of Agricultural and Food Chemistry – volume: 30 start-page: 1 year: 2020 end-page: 9 article-title: Sunlight doubles aboveground carbon loss in a seasonally dry woodland in Patagonia publication-title: Current Biology – volume: 43 start-page: 1383 year: 2011 end-page: 1386 article-title: Modelling photodegradation in the global carbon cycle publication-title: Soil Biology and Biochemistry – volume: 151 start-page: 1226 year: 2011 end-page: 1232 article-title: Spatial variability of photosynthetically active radiation in European beech and Norway spruce publication-title: Agricultural and Forest Meteorology – volume: 106 start-page: 218 year: 2018 end-page: 229 article-title: Specific leaf area predicts dryland litter decomposition via two mechanisms publication-title: Journal of Ecology – volume: 9 start-page: 1465 year: 2003 end-page: 1474 article-title: Solar UV‐B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community publication-title: Global Change Biology – year: 1979 – year: 1994 – volume: 87 start-page: 954 year: 2000 end-page: 959 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika – volume: 49 start-page: 3133 year: 2001 end-page: 3139 article-title: Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method publication-title: Journal of Agricultural and Food Chemistry – volume: 16 start-page: 649 year: 2001 end-page: 670 article-title: Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3‐year decomposition processes in a cool temperate deciduous forest in Japan publication-title: Ecological Research – volume: 79 start-page: 592 year: 1997 end-page: 602 article-title: Direct effects of elevated UV‐B radiation on the decomposition of leaf litter publication-title: Oikos – volume: 12 start-page: 4161 year: 2015 end-page: 4174 article-title: The role of photo‐ and thermal degradation for CO and CO fluxes in an arid ecosystem publication-title: Biogeosciences – volume: 111 start-page: 57 year: 2012 end-page: 81 article-title: Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation publication-title: Biogeochemistry – volume: 315 start-page: 361 year: 2007 end-page: 364 article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition publication-title: Science – year: 2020 – volume: 6 start-page: 140 year: 2015 article-title: Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability publication-title: Frontiers in Plant Science – volume: 451 start-page: 515 year: 2020 end-page: 530 article-title: Spectral composition of sunlight affects the microbial functional structure of beech leaf litter during the initial phase of decomposition publication-title: Plant and Soil – volume: 25 start-page: 191 year: 1950 end-page: 200 article-title: The estimation of glycogen with the anthrone reagent publication-title: Archives of Biochemistry – volume: 8 year: 2017 article-title: Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems publication-title: Ecosphere – volume: 191 start-page: 191 year: 2019 end-page: 203 article-title: Solar UV‐A radiation and blue light enhance tree leaf litter decomposition in a temperate forest publication-title: Oecologia – volume: 108 start-page: 1923 year: 2020 end-page: 1940 article-title: Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance publication-title: Journal of Ecology – year: 2019 – volume: 41 start-page: 1433 year: 2009 end-page: 1441 article-title: Photoacceleration of plant litter decomposition in an arid environment publication-title: Soil Biology and Biochemistry – volume: 8 year: 2017 article-title: Effects of light intensity on litter decomposition in a subtropical region publication-title: Ecosphere – volume: 114 start-page: 1 year: 2009 end-page: 13 article-title: Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems publication-title: Journal of Geophysical Research: Biogeosciences – start-page: 1 year: 2019 end-page: 18 article-title: Solar photochemical emission of CO from leaf litter: sources and significance to C loss publication-title: Ecosystems – year: 2013 – ident: e_1_2_8_21_1 doi: 10.1016/j.soilbio.2009.03.025 – ident: e_1_2_8_12_1 doi: 10.1016/j.foreco.2015.12.023 – ident: e_1_2_8_30_1 doi: 10.1007/s40333-018-0054-6 – ident: e_1_2_8_10_1 doi: 10.1029/2008JG000772 – ident: e_1_2_8_14_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_8_7_1 doi: 10.1038/nature05038 – ident: e_1_2_8_11_1 doi: 10.1007/s10021-010-9353-2 – ident: e_1_2_8_4_1 doi: 10.5194/bg-12-4161-2015 – ident: e_1_2_8_16_1 doi: 10.4060/ca8753en – ident: e_1_2_8_6_1 doi: 10.1073/pnas.1516157113 – volume-title: Analysis of phenolic plant metabolites year: 1994 ident: e_1_2_8_44_1 – ident: e_1_2_8_3_1 doi: 10.1002/ecs2.2370 – ident: e_1_2_8_8_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_8_25_1 doi: 10.1007/s10533-012-9737-9 – ident: e_1_2_8_9_1 doi: 10.1016/j.cub.2020.06.005 – ident: e_1_2_8_40_1 doi: 10.1007/s004420000592 – ident: e_1_2_8_29_1 doi: 10.1002/ecs2.1770 – ident: e_1_2_8_28_1 doi: 10.1111/1365-2745.12868 – ident: e_1_2_8_2_1 doi: 10.1002/ecs2.1892 – volume-title: Decomposition in terrestrial ecosystems year: 1979 ident: e_1_2_8_42_1 doi: 10.1525/9780520407114 – ident: e_1_2_8_35_1 doi: 10.1126/science.1134853 – ident: e_1_2_8_18_1 doi: 10.1016/j.geoderma.2017.10.059 – ident: e_1_2_8_17_1 doi: 10.1016/j.soilbio.2011.03.004 – ident: e_1_2_8_26_1 doi: 10.1016/j.agrformet.2011.04.014 – ident: e_1_2_8_38_1 doi: 10.1016/j.plaphy.2019.11.005 – ident: e_1_2_8_45_1 doi: 10.1093/biomet/87.4.954 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.0909396107 – ident: e_1_2_8_13_1 doi: 10.1002/ecs2.1300 – ident: e_1_2_8_36_1 doi: 10.1007/s00442-019-04478-x – volume: 25 start-page: 191 year: 1950 ident: e_1_2_8_41_1 article-title: The estimation of glycogen with the anthrone reagent publication-title: Archives of Biochemistry – ident: e_1_2_8_33_1 doi: 10.1046/j.1440-1703.2001.00426.x – ident: e_1_2_8_19_1 – ident: e_1_2_8_20_1 doi: 10.1021/jf010449r – ident: e_1_2_8_27_1 doi: 10.1016/j.scitotenv.2017.09.239 – ident: e_1_2_8_24_1 doi: 10.1021/jf00062a013 – ident: e_1_2_8_32_1 doi: 10.2307/3546903 – ident: e_1_2_8_37_1 doi: 10.1007/s11104-020-04557-6 – ident: e_1_2_8_39_1 doi: 10.1093/obo/9780199830060-0111 – ident: e_1_2_8_31_1 doi: 10.1016/j.scitotenv.2020.136601 – ident: e_1_2_8_22_1 doi: 10.3389/fpls.2015.00140 – ident: e_1_2_8_34_1 doi: 10.1046/j.1365-2486.2003.00667.x – ident: e_1_2_8_43_1 doi: 10.1111/1365-2745.13384 – ident: e_1_2_8_23_1 doi: 10.1002/ece3.4496 – start-page: 1 year: 2019 ident: e_1_2_8_15_1 article-title: Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss publication-title: Ecosystems |
SSID | ssj0009562 |
Score | 2.5457532 |
Snippet | • Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for... Summary Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable... Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2625 |
SubjectTerms | Arid regions Attenuation biogeochemical cycle biogeochemical cycles Biogeochemistry blue light Canopies Canopy gaps carbon Decay Decay rate Deciduous forests Deciduous trees Decomposition deterioration Ecosystem Ecosystems energy Factorial experiments Forest ecosystems Forests functional traits Leaf litter Lignin Litter mass mesic ecosystems model simulation Nutrient cycles Photodegradation Photolysis Plant cover Plant Leaves plant litter shrubs Spectral composition Sunlight Temperate forests Terrestrial ecosystems Trees Ultraviolet radiation understory |
Title | The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey |
URI | https://www.jstor.org/stable/27001347 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17022 https://www.ncbi.nlm.nih.gov/pubmed/33098087 https://www.proquest.com/docview/2485401076 https://www.proquest.com/docview/2454116381 https://www.proquest.com/docview/2511186875 https://pubmed.ncbi.nlm.nih.gov/PMC7898645 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VigMX3oVAqQzi0EtWSfyKxQkQ1QqJqkJU2gNSZG9stgIlK5o9lF_PjPPQLhSEuEXJJIrtmfib-PM3AC-lzVRpskC5CYlqF3VqSmvSsgg-5ALnME4bhT-cqvm5eL-Qiz14Ne6F6fUhph9uFBnxe00Bbt3lVpA369Us1zgF4feXuFoEiD4WW4K7qhgVmJVQi0FViFg80507c1FPR7wOaP7Ol9zGsXEiOrkDn8cm9PyTr7NN52bLH7-oO_5nG-_C7QGgste9R92DPd_ch5tvWgSRVw8goFuxSG8f6mSxNrD1qu3amlQn-gJNrGsZonscMVZ74qwPxDB20TDLSAyLlJw9Q7yMHcC-2DWzTc02_T4bPHn1EM5P3n16O0-HUg3pUiGISE3glDwKU3OLCEBaZXIrReB8Kbx2mbHWF8ZJVSIc0AgRlXNGeI6JuaSshR_AftM2_jGwPJShti53tbIiYDZUSi2cD7Y2XCLCSOB4HLRqOeiYUzmNb9WYz2CvVbHXEngxma578Y7rjA7iyE8WcSmeC53A4egK1RDYlxUpwGFKmmmVwPPpMoYkrbPYxrcbspEiJ5yb_8UGgS5VKtAygUe9d00vwHlmyqzEF9A7fjcZkCT47pXmYhWlwXVJcvv4zOPoVn9udXV6No8HT_7d9CncKojRExl4h7Dffd_4ZwjJOncENwpxdhQj8CcpkjK6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSX8iwNFDCIQy9ZJfEjscSFV7VAu0KolfaCImdjd6tWyarNHsqvZ8Z5aBcKQtyiZBLF9kz8jfP5G4DX0kQq05Gj3IREtZMy1JnRYZY462KBcxinjcKHEzU-Fp-ncroBb_q9MK0-xLDgRpHhv9cU4LQgvRLl1WI-ilOcg27ATaroTcr5H74lK5K7Kuk1mJVQ005XiHg8w61rs1FLSLwOav7OmFxFsn4q2r8L3_tGtAyUs9GyKUazH7_oO_5vK-_BVodR2dvWqe7Dhq0ewK13NeLIq4fg0LOYZ7h3pbJY7dhiXjd1ScITbY0m1tQMAT4OGist0dY7bhg7rZhhpIdFYs6WIWTGHmAnZsFMVbJlu9UGT149guP9j0fvx2FXrSGcKcQRoXac8kehS24QBEijdGykcJzPhE2LSBtjE11IlSEiSBElqqLQwnLMzSUlLnwbNqu6sjvAYpe50hRxUSojHCZEmUxFYZ0pNZcIMgLY60ctn3VS5lRR4zzvUxrstdz3WgCvBtNFq99xndG2H_rBwv-N5yINYLf3hbyL7cucROAwK41SFcDL4TJGJf1qMZWtl2QjRUxQN_6LDWJdKlaQygAet-41vADnkc6iDF8gXXO8wYBUwdevVKdzrw6eZqS4j8_c837151bnk69jf_Dk301fwO3x0eFBfvBp8uUp3EmI4OMJebuw2Vws7TNEaE3x3AfiT_fnNf8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VghAXVB4FQwsL4tCLke19ecWJFqLwinKgUm7WOt5tKiHbapND_z0z64cSURA3yx5ba4_H8433228A3kmbqNwknmoTEtXOqtjk1sR55p1PBeYwTguFf8zU9Fx8XcjFHnwY1sJ0-hDjDzeKjPC9pgBvK78V5HW7ep9qTEF34C5N9hGfKxPzLcVdlQ0SzEqoRS8rRDSe8dSdZNTxEW9Dmn8SJreBbMhEkwN42ENI9rHz-SPYc_VjuHfaIMy7eQIeHc8CAb3vZMUaz9pVs24q0oXoWiixdcMQf-MzZZUjVnlP3WKXNbOM5KpIa9kxRLQ4QnZhW2brim26lTC48-YpnE8-_zybxn0zhXipMM3HxnMq74SpuMUcLa0yqZXCc74UTpeJsdZlppQqx4StEcSpsjTCcSydJdUV_BD266Z2z4GlPveVLdOyUlZ4rFdyqUXpvK0Ml4gBIjgZnmqx7JXGqeHFr2KoONABRXBABG9H07aT17jN6DC4ZrQIk-Vc6AiOBl8VfehdF6TRhkVjolUEb8bDGDQ0E2Jr12zIRoqUkGj6DxuEotRLQMsInnXuHwfAeWLyJMcB6J0XYzQg0e7dI_XlKoh365wE8fGaJ-EV-vtdF7P5NGy8-H_T13B__mlSfP8y-_YSHmREvwl0uSPYX19t3DHip3X5KsTJb0t5FHo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+contribution+of+photodegradation+to+litter+decomposition+in+a+temperate+forest+gap+and+understorey&rft.jtitle=The+New+phytologist&rft.au=Qing%E2%80%90Wei+Wang&rft.au=Pierist%C3%A8%2C+Marta&rft.au=Liu%2C+Chenggang&rft.au=Tanaka+Kenta&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=229&rft.issue=5&rft.spage=2625&rft.epage=2636&rft_id=info:doi/10.1111%2Fnph.17022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |