基于耦合模拟退火优化最小二乘支持向量机的车轮踏面磨耗量预测

针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 2; pp. 397 - 402
Main Author 衷路生 陈立勇 龚锦红 祝振敏 肖乾
Format Journal Article
LanguageChinese
Published 华东交通大学 电气与电子工程学院,南昌,330013 2015
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.02.018

Cover

Abstract 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。
AbstractList 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。
TP391.9; 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LS-SVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。
Abstract_FL This paper proposed an improved coupled simulated annealing(CSA)algorithm to optimize the hyper-parameters of least squares support vector machine(LS-SVM).First,the CSA algorithm handled multiple independent parallel simulated an-nealing (SA ) optimization process,which improved the optimization efficiency for hyper-parameters of LS-SVM model. Second,the acceptance temperature controlled the variance of the acceptance temperature which reduced the influence of the CSA algorithm to initialization parameters.Finally,it established CSA LS-SVM regression model to predict wheel tread wear based on the field data.The simulation results show that the proposed CSA LS-SVM regression model can trade off the model fit versus the model complexity,and the proposed model is effective for the wheel tread wear prediction.
Author 衷路生 陈立勇 龚锦红 祝振敏 肖乾
AuthorAffiliation 华东交通大学电气与电子工程学院,南昌330013
AuthorAffiliation_xml – name: 华东交通大学 电气与电子工程学院,南昌,330013
Author_FL CHEN Li-yong
ZHONG Lu-sheng
ZHU Zhen-min
GONG Jin-hong
XIAO Qian
Author_FL_xml – sequence: 1
  fullname: ZHONG Lu-sheng
– sequence: 2
  fullname: CHEN Li-yong
– sequence: 3
  fullname: GONG Jin-hong
– sequence: 4
  fullname: ZHU Zhen-min
– sequence: 5
  fullname: XIAO Qian
Author_xml – sequence: 1
  fullname: 衷路生 陈立勇 龚锦红 祝振敏 肖乾
BookMark eNo9kMtKw0AUhmdRwbb6EuLCTeJMJplkllK8QcFNwWXJbWqDptogkl0KBYUWW0G0SKVYoRQEdSNosG-TTJO3MFJxc374_o9z4BRAzm24NgDrCIqYErrpiHXPc0UEIRIwoYooQaSIUBIh0nIg_8-XQcHzHAhlCVGYB4fxKIzC6ySYxP0rPn3inVEaBPPWS_Q9iLt3fBjE770o7EZfA377xrutuH-TXvb4MJw_tJPZJJm9Jp-99HE8f54mwX1WpeM2_-isgCWmH3v26l8WQWVnu1LaE8oHu_ulrbJgEqgJGqamaSAZq0TXkQwVRlULWcSQTFvSDGSzDNpMZrbNNKzqFlIp1ixqMKJYyKC4CDYWay90l-lureo0zptudrDqeI7v-87vF2A2tExdW6jmUcOtndUz-bRZP9GbfpUQrMiqoiL8A6IsgU8
ClassificationCodes TP391.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.02.018
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Prediction of wheel tread wear volume based on least squares support vector machine optimized by coupled simulated annealing
DocumentTitle_FL Prediction of wheel tread wear volume based on least squares support vector machine optimized by coupled simulated annealing
EndPage 402
ExternalDocumentID jsjyyyj201502018
663547571
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 江西省青年科学基金资助项目; 江西省教育厅资助项目; 国家留学基金
  funderid: (60904049,61263010,51005075); (20114BAB211014,20122BAB216026); (GJJ12316,GJJ14399); 国家留学基金
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c608-839ccb14376aa1405f97d1d6b2ce28b1ef140ef4feef837ad17938d9bf65d1b93
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:36:20 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords coupled simulated annealing
tread wear
最小二乘支持向量机
踏面磨耗
耦合模拟退火
超参数优化
least squares support vector machine
hyper-parameters optimization
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c608-839ccb14376aa1405f97d1d6b2ce28b1ef140ef4feef837ad17938d9bf65d1b93
Notes 51-1196/TP
ZHONG Lu-sheng, CHEN Li-yong, GONG Jin-hong, ZHU Zhen-min, XIAO Qian (School of Electrical & Electronic Engineering, East China Jiaotong University, Nanehang 330013, China)
coupled simulated annealing; least squares support vector machine; hyper-parameters optimization; tread wear
This paper proposed an improved coupled simulated annealing(CSA) algorithm to optimize the hyper-parameters of least squares support vector machine (LS-SVM). First, the CSA algorithm handled multiple independent parallel simulated annealing (SA) optimization process, which improved the optimization efficiency for hyper-parameters of LS-SVM model. Second, the acceptance temperature controUed the variance of the acceptance temperature which reduced the influence of the CSA algorithm to initialization parameters. Finally, it established CSA LS-SVM regression model to predict wheel tread wear based on the field data. The simulation results show that the proposed CSA LS-SVM regression model can trade off the model fit versus the
PageCount 6
ParticipantIDs wanfang_journals_jsjyyyj201502018
chongqing_primary_663547571
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 华东交通大学 电气与电子工程学院,南昌,330013
Publisher_xml – name: 华东交通大学 电气与电子工程学院,南昌,330013
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.9800047
Snippet ...
TP391.9;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 397
SubjectTerms 最小二乘支持向量机
耦合模拟退火
超参数优化
踏面磨耗
Title 基于耦合模拟退火优化最小二乘支持向量机的车轮踏面磨耗量预测
URI http://lib.cqvip.com/qk/93231X/201502/663547571.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201502018
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEF9qC-KL32KtSgXzVK7efmSTPG6uexRBX6zYt-P2q6UPV7XXh_bpCgWFFltBtEilWKEUBPVF0MP-N3fbu__CmWS7XVGKCkcYkl8mk8ndzUxIJoZx26SxwEi5lJSjsOTUbVriVlAHKrIjHgRhGON953v33cmHzt1pOj1w6kHh1NJiMxgPl_94r-R_VhXqYF3xluw_rGzOFCqAhvWFElYYyr9aY-JTIqpEesR3sOQ-8TmeXfBc1VQmnBPfJR4nnokEl4j3BWLg4zNwJIknVfcKERx7cSBcBIuKwlAiAVw9GqKiCKHAgHGIV1WcK8hKDypMNQRTvRQflJARAd0dlFBOKAk1oWSWXIGBLdRYCPZsFFtPR7ACQ4EA5OMSCdLKonuNeGCIk2VIYMdcAIolCIySOIo5YMpZjSeIzDcpFRuTSKZEY2qKqpOojikhhVIsQ9WBSlFpQDDVJn2cJ4IcNUmGo3rWmIJTnJ_WllabgK7IE6ZpKbUr3Uq_uBmjL6JmlgPPptmufjH0yLQcb93mEb62E7Y-lJy5HI66dP6bNbOFK5Q1wwHG8wHwPCJViWYzy_VrvnB0IR1GMa_CkMWYSQeNIU9OyOqxlwxOZTFrooUJiY6jUnxSwC2YAXznEOxabgaoaQN79Aq1w-NAo076kQl4Gv4CtPR3TpIds5nMzjdmnoCPpq7MNZJ6Y6bg3U2dN85mYdmop39jF4yB5dmLxrmjJ09GMwt4yXjU3Wl32i96rb3u5vN0_326ttNvtQ5XPnZ-bHXXX6fbre6XjU57vfN9K331OV1f6W6-7D_bSLfbh29Xewd7vYNPvW8b_Xe7hx_2e6030NTfXU2_rl02pqr-VGWylL1NUgrdMi9BWBGGAcQazK3XTQh6EsEiM3IDK4wtHphxApVx4iRxnHCb1SO0gzwSQeLSyAyEfcUYbMw34qvGKJjYCGKI0IpF7KAuA4uGDr4NR-OIlu1hYyRXU-2xTkFTyxd52LiVKa6W_TEt1OYW5paWluZQ1RAMmvzaiRxGjDOI1NuK143B5tPF-AY42s3gZvbF-QkadKjj
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%80%A6%E5%90%88%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB%E4%BC%98%E5%8C%96%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E7%9A%84%E8%BD%A6%E8%BD%AE%E8%B8%8F%E9%9D%A2%E7%A3%A8%E8%80%97%E9%87%8F%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%A1%B7%E8%B7%AF%E7%94%9F+%E9%99%88%E7%AB%8B%E5%8B%87+%E9%BE%9A%E9%94%A6%E7%BA%A2+%E7%A5%9D%E6%8C%AF%E6%95%8F+%E8%82%96%E4%B9%BE&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=2&rft.spage=397&rft.epage=402&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.02.018&rft.externalDocID=663547571
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg