基于耦合模拟退火优化最小二乘支持向量机的车轮踏面磨耗量预测
针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车...
Saved in:
Published in | 计算机应用研究 Vol. 32; no. 2; pp. 397 - 402 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
华东交通大学 电气与电子工程学院,南昌,330013
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2015.02.018 |
Cover
Abstract | 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。 |
---|---|
AbstractList | 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LSSVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。 TP391.9; 针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LS-SVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。 |
Abstract_FL | This paper proposed an improved coupled simulated annealing(CSA)algorithm to optimize the hyper-parameters of least squares support vector machine(LS-SVM).First,the CSA algorithm handled multiple independent parallel simulated an-nealing (SA ) optimization process,which improved the optimization efficiency for hyper-parameters of LS-SVM model. Second,the acceptance temperature controlled the variance of the acceptance temperature which reduced the influence of the CSA algorithm to initialization parameters.Finally,it established CSA LS-SVM regression model to predict wheel tread wear based on the field data.The simulation results show that the proposed CSA LS-SVM regression model can trade off the model fit versus the model complexity,and the proposed model is effective for the wheel tread wear prediction. |
Author | 衷路生 陈立勇 龚锦红 祝振敏 肖乾 |
AuthorAffiliation | 华东交通大学电气与电子工程学院,南昌330013 |
AuthorAffiliation_xml | – name: 华东交通大学 电气与电子工程学院,南昌,330013 |
Author_FL | CHEN Li-yong ZHONG Lu-sheng ZHU Zhen-min GONG Jin-hong XIAO Qian |
Author_FL_xml | – sequence: 1 fullname: ZHONG Lu-sheng – sequence: 2 fullname: CHEN Li-yong – sequence: 3 fullname: GONG Jin-hong – sequence: 4 fullname: ZHU Zhen-min – sequence: 5 fullname: XIAO Qian |
Author_xml | – sequence: 1 fullname: 衷路生 陈立勇 龚锦红 祝振敏 肖乾 |
BookMark | eNo9kMtKw0AUhmdRwbb6EuLCTeJMJplkllK8QcFNwWXJbWqDptogkl0KBYUWW0G0SKVYoRQEdSNosG-TTJO3MFJxc374_o9z4BRAzm24NgDrCIqYErrpiHXPc0UEIRIwoYooQaSIUBIh0nIg_8-XQcHzHAhlCVGYB4fxKIzC6ySYxP0rPn3inVEaBPPWS_Q9iLt3fBjE770o7EZfA377xrutuH-TXvb4MJw_tJPZJJm9Jp-99HE8f54mwX1WpeM2_-isgCWmH3v26l8WQWVnu1LaE8oHu_ulrbJgEqgJGqamaSAZq0TXkQwVRlULWcSQTFvSDGSzDNpMZrbNNKzqFlIp1ixqMKJYyKC4CDYWay90l-lureo0zptudrDqeI7v-87vF2A2tExdW6jmUcOtndUz-bRZP9GbfpUQrMiqoiL8A6IsgU8 |
ClassificationCodes | TP391.9 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2015.02.018 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Prediction of wheel tread wear volume based on least squares support vector machine optimized by coupled simulated annealing |
DocumentTitle_FL | Prediction of wheel tread wear volume based on least squares support vector machine optimized by coupled simulated annealing |
EndPage | 402 |
ExternalDocumentID | jsjyyyj201502018 663547571 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 江西省青年科学基金资助项目; 江西省教育厅资助项目; 国家留学基金 funderid: (60904049,61263010,51005075); (20114BAB211014,20122BAB216026); (GJJ12316,GJJ14399); 国家留学基金 |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c608-839ccb14376aa1405f97d1d6b2ce28b1ef140ef4feef837ad17938d9bf65d1b93 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:50 EDT 2025 Wed Feb 14 10:36:20 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | coupled simulated annealing tread wear 最小二乘支持向量机 踏面磨耗 耦合模拟退火 超参数优化 least squares support vector machine hyper-parameters optimization |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c608-839ccb14376aa1405f97d1d6b2ce28b1ef140ef4feef837ad17938d9bf65d1b93 |
Notes | 51-1196/TP ZHONG Lu-sheng, CHEN Li-yong, GONG Jin-hong, ZHU Zhen-min, XIAO Qian (School of Electrical & Electronic Engineering, East China Jiaotong University, Nanehang 330013, China) coupled simulated annealing; least squares support vector machine; hyper-parameters optimization; tread wear This paper proposed an improved coupled simulated annealing(CSA) algorithm to optimize the hyper-parameters of least squares support vector machine (LS-SVM). First, the CSA algorithm handled multiple independent parallel simulated annealing (SA) optimization process, which improved the optimization efficiency for hyper-parameters of LS-SVM model. Second, the acceptance temperature controUed the variance of the acceptance temperature which reduced the influence of the CSA algorithm to initialization parameters. Finally, it established CSA LS-SVM regression model to predict wheel tread wear based on the field data. The simulation results show that the proposed CSA LS-SVM regression model can trade off the model fit versus the |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jsjyyyj201502018 chongqing_primary_663547571 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2015 |
Publisher | 华东交通大学 电气与电子工程学院,南昌,330013 |
Publisher_xml | – name: 华东交通大学 电气与电子工程学院,南昌,330013 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 1.9800047 |
Snippet | ... TP391.9;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 397 |
SubjectTerms | 最小二乘支持向量机 耦合模拟退火 超参数优化 踏面磨耗 |
Title | 基于耦合模拟退火优化最小二乘支持向量机的车轮踏面磨耗量预测 |
URI | http://lib.cqvip.com/qk/93231X/201502/663547571.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201502018 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEF9qC-KL32KtSgXzVK7efmSTPG6uexRBX6zYt-P2q6UPV7XXh_bpCgWFFltBtEilWKEUBPVF0MP-N3fbu__CmWS7XVGKCkcYkl8mk8ndzUxIJoZx26SxwEi5lJSjsOTUbVriVlAHKrIjHgRhGON953v33cmHzt1pOj1w6kHh1NJiMxgPl_94r-R_VhXqYF3xluw_rGzOFCqAhvWFElYYyr9aY-JTIqpEesR3sOQ-8TmeXfBc1VQmnBPfJR4nnokEl4j3BWLg4zNwJIknVfcKERx7cSBcBIuKwlAiAVw9GqKiCKHAgHGIV1WcK8hKDypMNQRTvRQflJARAd0dlFBOKAk1oWSWXIGBLdRYCPZsFFtPR7ACQ4EA5OMSCdLKonuNeGCIk2VIYMdcAIolCIySOIo5YMpZjSeIzDcpFRuTSKZEY2qKqpOojikhhVIsQ9WBSlFpQDDVJn2cJ4IcNUmGo3rWmIJTnJ_WllabgK7IE6ZpKbUr3Uq_uBmjL6JmlgPPptmufjH0yLQcb93mEb62E7Y-lJy5HI66dP6bNbOFK5Q1wwHG8wHwPCJViWYzy_VrvnB0IR1GMa_CkMWYSQeNIU9OyOqxlwxOZTFrooUJiY6jUnxSwC2YAXznEOxabgaoaQN79Aq1w-NAo076kQl4Gv4CtPR3TpIds5nMzjdmnoCPpq7MNZJ6Y6bg3U2dN85mYdmop39jF4yB5dmLxrmjJ09GMwt4yXjU3Wl32i96rb3u5vN0_326ttNvtQ5XPnZ-bHXXX6fbre6XjU57vfN9K331OV1f6W6-7D_bSLfbh29Xewd7vYNPvW8b_Xe7hx_2e6030NTfXU2_rl02pqr-VGWylL1NUgrdMi9BWBGGAcQazK3XTQh6EsEiM3IDK4wtHphxApVx4iRxnHCb1SO0gzwSQeLSyAyEfcUYbMw34qvGKJjYCGKI0IpF7KAuA4uGDr4NR-OIlu1hYyRXU-2xTkFTyxd52LiVKa6W_TEt1OYW5paWluZQ1RAMmvzaiRxGjDOI1NuK143B5tPF-AY42s3gZvbF-QkadKjj |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%80%A6%E5%90%88%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB%E4%BC%98%E5%8C%96%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E7%9A%84%E8%BD%A6%E8%BD%AE%E8%B8%8F%E9%9D%A2%E7%A3%A8%E8%80%97%E9%87%8F%E9%A2%84%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%A1%B7%E8%B7%AF%E7%94%9F+%E9%99%88%E7%AB%8B%E5%8B%87+%E9%BE%9A%E9%94%A6%E7%BA%A2+%E7%A5%9D%E6%8C%AF%E6%95%8F+%E8%82%96%E4%B9%BE&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=2&rft.spage=397&rft.epage=402&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.02.018&rft.externalDocID=663547571 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |