一种基于引导策略的自适应粒子群优化算法

为解决粒子群优化算法前期搜索盲目,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群优化算法(improvedparticleswarmoptimizationalgorithm,IPSO)。该算法在种群中引入四种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率。为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对四个标准测试...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 12; pp. 3599 - 3602
Main Author 姜凤利;张宇;王永刚
Format Journal Article
LanguageChinese
Published 沈阳农业大学信息与电气工程学院,沈阳,110866 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.12.018

Cover

Loading…
Abstract 为解决粒子群优化算法前期搜索盲目,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群优化算法(improvedparticleswarmoptimizationalgorithm,IPSO)。该算法在种群中引入四种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率。为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对四个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于其他两种粒子群优化算法。
AbstractList TP301.6; 为解决粒子群优化算法前期搜索盲目,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群优化算法(improved particle swarm optimization algorithm,IPSO).该算法在种群中引入四种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率.为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性.对四个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于其他两种粒子群优化算法.
为解决粒子群优化算法前期搜索盲目,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群优化算法(improvedparticleswarmoptimizationalgorithm,IPSO)。该算法在种群中引入四种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率。为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对四个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于其他两种粒子群优化算法。
Abstract_FL In order to solve the problems of blind search in the early stage and slow search speed as well as easily trapped in the local optimum in the later period,this paper proposed an adaptive particle swarm optimization algorithm based on guiding strategy(IPSO) by improving the particle updating way and inertia weight.The algorithm introduced four kinds of panicles in the population,which were the main panicles,double center particles,cooperative particles and chaos particles.The algorithm decreased the randomness and improved the search efficiency through guiding particle position updating.Moreover,the new algorithm introduced the focusing distance changing rate which adjusted the inertia weight dynamically by the size of the focusing distance changing rate to improve the convergence speed and accuracy.The combination of the both modes improved the effectiveness of the search for the global optimal solution greatly.The simulation experiments tested on the four benchmark functions.The resultsshow that IPSO has obviously higher convergence rate,convergence accuracy and success rate than the other two algorithms.
Author 姜凤利;张宇;王永刚
AuthorAffiliation 沈阳农业大学信息与电气工程学院,沈阳110866
AuthorAffiliation_xml – name: 沈阳农业大学信息与电气工程学院,沈阳,110866
Author_FL Wang Yonggang
Zhang Yu
Jiang Fengli
Author_FL_xml – sequence: 1
  fullname: Jiang Fengli
– sequence: 2
  fullname: Zhang Yu
– sequence: 3
  fullname: Wang Yonggang
Author_xml – sequence: 1
  fullname: 姜凤利;张宇;王永刚
BookMark eNo9j81Kw0AAhPdQwbb6EuLBS-L-ZDfZoxT_oOCl97K7zdYE3WiDSG5FBC8qIqaKFy-KIFRBL1KKT9O4-hZGKl5mYPiYYWqgYhITArCIoEs448uxG6WpcRGEyCGMUxdD5LsIuxAFFVD9z2dBLU1jCD2MOKwCPnnv28ez4m40GZ0X47x4GdvhwOYP9vb46-Tpu39UjK7s62UxvLAf95PxTXE6sM_Xn2_5HJjRYicN5_-8Dlprq63GhtPcWt9srDQdxWDgMCJpxyee7mgdSsIFlYijkPuSqpB4IeaCESWxptSD1OeqNKElxdoTmihF6mBpWnsojBam246Tg54pB9txGmdZFv_-RKUEJbowRdV2Yrr7UQnv9aJd0cvazCcBxpAh8gN39m0B
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.12.018
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Adaptive particle swarm optimization algorithm based on guiding strategy
EndPage 3602
ExternalDocumentID jsjyyyj201712018
673822061
GrantInformation_xml – fundername: 辽宁省博士启动基金资助项目; 国家自然科学基金资助项目; 辽宁省教育厅科研项目
  funderid: (201601106); (F030112); (L2013260)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c608-63b5d734fdffeb39a5b191e97b5ce34e29a63cb2f5540579c540afb52f4af3cc3
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:56:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords hybrid particles
混合粒子
panicle swarm optimization (PSO)
粒子群优化算法
inertia weight
惯性权重
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c608-63b5d734fdffeb39a5b191e97b5ce34e29a63cb2f5540579c540afb52f4af3cc3
Notes 51-1196/TP
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201712018
chongqing_primary_673822061
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 沈阳农业大学信息与电气工程学院,沈阳,110866
Publisher_xml – name: 沈阳农业大学信息与电气工程学院,沈阳,110866
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0616236
Snippet ...
TP301.6; 为解决粒子群优化算法前期搜索盲目,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群优化算法(improved particle swarm optimization...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3599
SubjectTerms 惯性权重
混合粒子
粒子群优化算法
Title 一种基于引导策略的自适应粒子群优化算法
URI http://lib.cqvip.com/qk/93231X/201712/673822061.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201712018
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNCwtiBe_xVqVFZrj1tnJxyTHzHaWIuipQm_LZnampYdtte2hPRURvKiI2CpevCiCUAW9SFk8-0O6jv4L38uk2ylKUS_Z8PKS9-a92byXTPIeIVPScmXBzDV6iuNnxtA2LFjCRg9c7UyEQc7dh_Zbt-XsHX5zXszXat8qp5bW1-x0uvnHeyX_o1WAgV7xluw_aHY0KACgDvqFEjQM5V_pmCacxgoPKyQRNRFVMzQRVLdpbFyToSpBSNyiWmDFtLGOyDNUS6wA3AhXAWROExgNWqG7xmFV6LobqjnixCHVDoLdHdE4oYY7WkBCYZNq-ZFNQnVEE0ljRssMlwdOMFKBVtM8gqZbju0KOSiNcjiBhxhN49FWomMkwn5INnKMQEUhFov9c0NXREsQAYERikTFjq8AhVd20aa6_VHe8_RzNZ4GY9I_gZ_M_c6of2nDytTMRJmJyZt5Jt1N799MCNNSOxOCNKZHNPAQYOQ2jr25OBqkG3OnhmGA6_DxEBYsYCLGTTwTtw9dU_DkqqEKQ4wCdLgUxDj-sjL3YnJBMCajuVc0WSRcpoLSy-DQWEba8AyeIFOe-xvH8Y4hRBaX-wt3wTFy99T6ebe_UHGp5s6QU34tVDfli32W1DYXz5HTB3lG6t7snCd6_8tW8e7x8PXe_t6T4WB7-HFQ7O4U22-LVw9-PHz_c-v-cO958enZcPdp8fXN_uDl8NFO8eHF98_bF8hcO5lrzTZ8yo9GKgPVkMyKXsR43svzzDLdFRZkkOnIijRjPAt1V7LUhrlwCw2dwk83tyLMeTdnacoukrH-cj-7ROo2j6TMeS9Lg67DbWZ5asF_RpgM7ASZHAmis1JGdumM1DhBrnvRdPz_fbWztLq0sbGxhMJsQqEuHzvCJDmJmOVu3RUytnZvPbsK_uuaveZfjV-5bXh3
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%BC%95%E5%AF%BC%E7%AD%96%E7%95%A5%E7%9A%84%E8%87%AA%E9%80%82%E5%BA%94%E7%B2%92%E5%AD%90%E7%BE%A4%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%A7%9C%E5%87%A4%E5%88%A9%3B%E5%BC%A0%E5%AE%87%3B%E7%8E%8B%E6%B0%B8%E5%88%9A&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=12&rft.spage=3599&rft.epage=3602&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.12.018&rft.externalDocID=673822061
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg