Estimating infection fatality risk and ascertainment bias of COVID-19 in Osaka, Japan from February 2020 to January 2022

The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and death...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 5540 - 9
Main Authors Zhang, Tong, Nishiura, Hiroshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
AbstractList The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
Abstract The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020 to January 2022. We used two types of datasets: (i) surveillance-based datasets containing the cumulative numbers of confirmed cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial cross-sectional manner. Smoothing spline function was employed to reconstruct the age-specific cumulative incidence of infection. We found that IFR was highest during the first wave, and the second highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant emerged. We also found that ascertainment bias was relatively high during the first and second waves and, notably, RT-PCR testing capacity during these early periods was limited. Improvements in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began spreading, IFR diminished while ascertainment bias was considerably elevated.
ArticleNumber 5540
Author Nishiura, Hiroshi
Zhang, Tong
Author_xml – sequence: 1
  givenname: Tong
  surname: Zhang
  fullname: Zhang, Tong
  organization: School of Public Health, Kyoto University
– sequence: 2
  givenname: Hiroshi
  surname: Nishiura
  fullname: Nishiura, Hiroshi
  email: nishiura.hiroshi.5r@kyoto-u.ac.jp
  organization: School of Public Health, Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37016060$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUHaEiWkp_gAWyxIYFA36MZ8YrVIUWgiplA2ytOx47OJ3YwXYQ_Xtumra0XdQb29fnnPvweVkdhBhsVb1m9AOjov-YGyZVX1MuasFboWr1rDritJE1F5wf3DsfVic5ryguyVXD1IvqUHSUtbSlR9Xfs1z8GooPS-KDs6b4GIiDApMvVyT5fEkgjASysamAD2sbChk8ZBIdmS1-zj_XTCGVLDJcwnvyDTaAAimuybkd0hbSFeGUU1IivoXbO39VPXcwZXtysx9XP87Pvs--1heLL_PZ6UVtWtqV2tl25MoZGAyKjE51XLUO--06y6Vh4zi6XlrGukGKceBWtoMywimMdX0ziONqvtcdI6z0JmGz6UpH8Po6ENNSQyreTFYb3inJhegxVzMyqwY2dGAG4KbHVA61Pu21NtthbUeDo0gwPRB9-BL8L72MfzSjtONUUFR4d6OQ4u-tzUWvPU52miDYuM0aK2iZ7BvZI_TtI-gqblPAWe1QkqoGYYh6c7-ku1pufxgBfA8wKeacrLuDMKp3TtJ7J2l0kr52klZI6h-RjC-wswa25aenqWJPzZgnLG36X_YTrH-1CttY
CitedBy_id crossref_primary_10_1016_j_jvacx_2024_100547
crossref_primary_10_1038_s41598_024_57238_0
crossref_primary_10_1186_s44263_024_00069_y
crossref_primary_10_1007_s11538_024_01298_w
crossref_primary_10_1093_ofid_ofae685
Cites_doi 10.2188/jea.JE20210324
10.1038/s41541-021-00396-3
10.1016/S0140-6736(21)02867-1
10.54034/mic.e1256
10.1016/j.puhe.2021.11.023
10.1007/s10654-020-00698-1
10.1038/s41467-020-19509-y
10.1155/2018/3407306
10.1001/jamanetworkopen.2021.37257
10.3390/jcm9020419
10.3201/eid2702.204088
10.1016/S0140-6736(22)00484-6
10.1016/S0140-6736(22)00462-7
10.1093/aje/kws314
10.1016/S0140-6736(22)00172-6
10.1136/bmj.m4509
10.31662/jmaj.2020-0094
10.1002/rmv.2162
10.1038/s41586-020-2918-0
10.2471/BLT.20.265892
10.1128/Spectrum.00341-21
10.2807/1560-7917.ES.2020.25.12.2000256
10.1016/S1473-3099(20)30769-6
10.1038/s43856-022-00106-7
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-32639-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
CrossRef
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_c27952338bc04d1e9b1b7acba2c85c1f
PMC10072030
37016060
10_1038_s41598_023_32639_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
Osaka Japan
GeographicLocations_xml – name: Japan
– name: Osaka Japan
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  grantid: JP20fk0108140; JP20fk0108535; JP21fk0108612
  funderid: http://dx.doi.org/10.13039/100009619
– fundername: Strategic International Collaborative Research Program
  grantid: JPMJSC20U3; JPMJSC2105
  funderid: http://dx.doi.org/10.13039/501100009036
– fundername: Japan Society for the Promotion of Science
  grantid: 21H03198
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Ministry of Health, Labour and Welfare
  grantid: 20CA2024; 20HA2007; 21HB1002; 21HA2016
  funderid: http://dx.doi.org/10.13039/501100003478
– fundername: ;
  grantid: JP20fk0108140; JP20fk0108535; JP21fk0108612
– fundername: ;
  grantid: JPMJSC20U3; JPMJSC2105
– fundername: ;
  grantid: 20CA2024; 20HA2007; 21HB1002; 21HA2016
– fundername: ;
  grantid: 21H03198
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c607t-fe6d29fcabc020df97296f63977e25c1dddf85e117b53db2e56b9c3f95e1784b3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:41 EDT 2025
Thu Aug 21 18:38:51 EDT 2025
Fri Jul 11 05:55:12 EDT 2025
Wed Aug 13 05:11:33 EDT 2025
Thu Jan 02 22:52:15 EST 2025
Tue Jul 01 04:24:27 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Fri Feb 21 02:37:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-fe6d29fcabc020df97296f63977e25c1dddf85e117b53db2e56b9c3f95e1784b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-32639-9
PMID 37016060
PQID 2795094845
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_c27952338bc04d1e9b1b7acba2c85c1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10072030
proquest_miscellaneous_2796158458
proquest_journals_2795094845
pubmed_primary_37016060
crossref_primary_10_1038_s41598_023_32639_9
crossref_citationtrail_10_1038_s41598_023_32639_9
springer_journals_10_1038_s41598_023_32639_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-04
PublicationDateYYYYMMDD 2023-04-04
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References NybergTComparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort studyLancet2022399130313121:CAS:528:DC%2BB38XnslSjsrw%3D10.1016/S0140-6736(22)00462-7353052968926413
Osaka Prefectural Government. Incidence of New Coronavirus Infection. https://www.pref.osaka.lg.jp/iryo/osakakansensho/happyo.html (Accessed 20 April 2022).
YoshiyamaTPrevalence of SARS-CoV-2-specific antibodies, Japan, June 2020Emerg. Infect. Dis.2021276286311:CAS:528:DC%2BB3MXhtVKqurzO10.3201/eid2702.204088334962357853542
Japan Broadcasting Corporation. Graph of First Wave to Seventh Epidemic Wave. https://www3.nhk.or.jp/news/special/coronavirus/entire/ (Accessed 25 July 2022).
O'DriscollMAge-specific mortality and immunity patterns of SARS-CoV-2Nature20215901401452021Natur.590..140O1:CAS:528:DC%2BB3cXisFCgtLvI10.1038/s41586-020-2918-033137809
National Institute of Infectious Diseases. Seroepidemiological Study on New Coronavirus Infection in 2021. https://www.niid.go.jp/niid/images/epi/corona/79/covid19-79.pdf (Accessed 15 April 2022).
LevinATAssessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implicationsEur. J. Epidemiol.202035112311381:CAS:528:DC%2BB3cXis1ShtrrK10.1007/s10654-020-00698-1332899007721859
BollykyTJPandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021Lancet20223991489151210.1016/S0140-6736(22)00172-6
Ministry of Health, Labour and Welfare. List of Information for Local Governments and Medical Institutions (Contact) (New Model Coronavirus Infection) 2020. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00212.html (Accessed 20 May 2022).
Prime Minister’s Office of Japan. New Corona Vaccine. https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html (Accessed 10 April 2022).
IoannidisJPAInfection fatality rate of COVID-19 inferred from seroprevalence dataBull. World Health Organ.2021991910.2471/BLT.20.26589233716331
Pecho-SilvaSSARS-CoV-2 mutations and variants: What do we know so far?Microbes Infect. Chemother.20211125610.54034/mic.e1256
WheelerSEDifferential antibody response to mRNA COVID-19 vaccines in healthy subjectsMicrobiol. Spectr.20219e003412110.1128/Spectrum.00341-2134346750
Pastor-BarriusoRInfection fatality risk for SARS-CoV-2 in community dwelling population of Spain: Nationwide seroepidemiological studyBMJ2020371m450910.1136/bmj.m450933246972
National Institute of Infectious Diseases. Coronavirus Disease (COVID-19). https://www.niid.go.jp/niid/en/ (Accessed 25 April 2022).
Imperial College London. Real-Time Assessment of Community Transmission (REACT) Study. https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/ (Accessed 15 July 2022).
WongJYInfection fatality risk of the pandemic A(H1N1)2009 virus in Hong KongAm. J. Epidemiol.201317783484010.1093/aje/kws314234599503658096
NomuraSExcess deaths from COVID-19 in Japan and 47 prefectures from January through June 2021Public Health202220315181:STN:280:DC%2BB2M%2FmvVemsA%3D%3D10.1016/j.puhe.2021.11.02335016070
FurukawaKSeroepidemiological survey of the antibody for severe acute respiratory syndrome coronavirus 2 with neutralizing activity at hospitals: A cross-sectional study in Hyogo Prefecture, JapanJMA J.20214414910.31662/jmaj.2020-0094335755027872787
BrazeauNFEstimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modellingCommun. Med.202225410.1038/s43856-022-00106-7356032709120146
NishiuraHThe rate of underascertainment of novel coronavirus (2019-nCoV) infection: Estimation using Japanese passengers data on evacuation flightsJ. Clin. Med.2020902041910.3390/jcm9020419
MaQGlobal percentage of asymptomatic SARS-CoV-2 infections among the tested population and individuals with confirmed COVID-19 diagnosis: A systematic review and meta-analysisJAMA Netw. Open20214e213725710.1001/jamanetworkopen.2021.37257349050088672238
SorensenRJDVariation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysisLancet2022399146914881:CAS:528:DC%2BB38Xls12ms7w%3D10.1016/S0140-6736(21)02867-1
AssisRDistinct SARS-CoV-2 antibody reactivity patterns elicited by natural infection and mRNA vaccinationNPJ Vaccines202161321:CAS:528:DC%2BB3MXisVGksrbJ10.1038/s41541-021-00396-3347373188568980
BarberRMIEstimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: A statistical analysisLancet2021399235110.1016/S0140-6736(22)00484-6
Ministry of Health, Labour and Welfare. Fifth Council of Ministers on the Progress of New Coronavirus Infection Control. https://www.kantei.go.jp/jp/singi/novel_coronavirus/taisaku_shinchoku/dai5/siryou.pdf (Accessed 20 May 2022).
Japanese Society for Infectious Diseases. Covid-19 Vaccine Recommendations (4th Edition). https://www.kansensho.or.jp/uploads/files/guidelines/2112_covid-19_4.pdf (Accessed 20 April 2022).
SanadaTSerologic survey of IgG against SARS-CoV-2 among hospital visitors without a history of SARS-CoV-2 infection in Tokyo, 2020–2021J. Epidemiol.20223210511110.2188/jea.JE20210324347764998761565
StreeckHInfection fatality rate of SARS-CoV2 in a super-spreading event in GermanyNat. Commun.20201158292020NatCo..11.5829S1:CAS:528:DC%2BB3cXitl2ns73J10.1038/s41467-020-19509-y332038877672059
Osaka Prefectural Government. Estimated Population of Osaka Prefecture Every Month. https://www.pref.osaka.lg.jp/toukei/jinkou/jinkou-xlslist.html (Accessed 10 May 2022).
CsigeIThe impact of obesity on the cardiovascular systemJ. Diabetes Res.2018201834073061:CAS:528:DC%2BC1MXitVCjtr3K10.1155/2018/3407306305250526247580
World Health Organization. Weekly Epidemiological Update on COVID-19—25 January 2023. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2023 (Accessed 28 January 2023).
YangWEstimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: A model-based analysisLancet Infect. Dis.2021212032121:CAS:528:DC%2BB3cXitFyqtLnF10.1016/S1473-3099(20)30769-633091374
MurchuEOImmune response following infection with SARS-CoV-2 and other coronaviruses: A rapid reviewRev. Med. Virol.202131e21621:CAS:528:DC%2BB3MXnt1aqu70%3D10.1002/rmv.2162
European Centre for Disease Prevention and Control. Variants of Concern. https://www.ecdc.europa.eu/en/covid-19/variants-concern (Accessed 20 June 2022).
RussellTWEstimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020Eurosurveillance20202520025610.2807/1560-7917.ES.2020.25.12.2000256
Osaka Medical Center. Summary of Infection and Medical Conditions from First Wave to Fifth Wave. https://www.pref.osaka.lg.jp/attach/38215/00410045/1-2_1~5kansen1021.pdf (Accessed 25 May 2022).
32639_CR4
32639_CR2
Q Ma (32639_CR6) 2021; 4
32639_CR19
S Nomura (32639_CR29) 2022; 203
I Csige (32639_CR30) 2018; 2018
32639_CR1
H Nishiura (32639_CR18) 2020; 9
T Sanada (32639_CR34) 2022; 32
JPA Ioannidis (32639_CR12) 2021; 99
32639_CR5
T Nyberg (32639_CR26) 2022; 399
32639_CR35
EO Murchu (32639_CR37) 2021; 31
TW Russell (32639_CR9) 2020; 25
K Furukawa (32639_CR33) 2021; 4
SE Wheeler (32639_CR20) 2021; 9
AT Levin (32639_CR22) 2020; 35
32639_CR36
T Yoshiyama (32639_CR32) 2021; 27
32639_CR31
H Streeck (32639_CR13) 2020; 11
TJ Bollyky (32639_CR16) 2022; 399
S Pecho-Silva (32639_CR3) 2021; 1
R Pastor-Barriuso (32639_CR10) 2020; 371
RMI Barber (32639_CR7) 2021; 399
NF Brazeau (32639_CR17) 2022; 2
32639_CR24
32639_CR23
M O'Driscoll (32639_CR14) 2021; 590
32639_CR28
32639_CR27
32639_CR25
W Yang (32639_CR11) 2021; 21
JY Wong (32639_CR8) 2013; 177
RJD Sorensen (32639_CR15) 2022; 399
R Assis (32639_CR21) 2021; 6
References_xml – reference: Pecho-SilvaSSARS-CoV-2 mutations and variants: What do we know so far?Microbes Infect. Chemother.20211125610.54034/mic.e1256
– reference: Osaka Prefectural Government. Estimated Population of Osaka Prefecture Every Month. https://www.pref.osaka.lg.jp/toukei/jinkou/jinkou-xlslist.html (Accessed 10 May 2022).
– reference: YangWEstimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: A model-based analysisLancet Infect. Dis.2021212032121:CAS:528:DC%2BB3cXitFyqtLnF10.1016/S1473-3099(20)30769-633091374
– reference: Imperial College London. Real-Time Assessment of Community Transmission (REACT) Study. https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/ (Accessed 15 July 2022).
– reference: National Institute of Infectious Diseases. Seroepidemiological Study on New Coronavirus Infection in 2021. https://www.niid.go.jp/niid/images/epi/corona/79/covid19-79.pdf (Accessed 15 April 2022).
– reference: BarberRMIEstimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: A statistical analysisLancet2021399235110.1016/S0140-6736(22)00484-6
– reference: O'DriscollMAge-specific mortality and immunity patterns of SARS-CoV-2Nature20215901401452021Natur.590..140O1:CAS:528:DC%2BB3cXisFCgtLvI10.1038/s41586-020-2918-033137809
– reference: Osaka Medical Center. Summary of Infection and Medical Conditions from First Wave to Fifth Wave. https://www.pref.osaka.lg.jp/attach/38215/00410045/1-2_1~5kansen1021.pdf (Accessed 25 May 2022).
– reference: StreeckHInfection fatality rate of SARS-CoV2 in a super-spreading event in GermanyNat. Commun.20201158292020NatCo..11.5829S1:CAS:528:DC%2BB3cXitl2ns73J10.1038/s41467-020-19509-y332038877672059
– reference: SorensenRJDVariation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysisLancet2022399146914881:CAS:528:DC%2BB38Xls12ms7w%3D10.1016/S0140-6736(21)02867-1
– reference: NishiuraHThe rate of underascertainment of novel coronavirus (2019-nCoV) infection: Estimation using Japanese passengers data on evacuation flightsJ. Clin. Med.2020902041910.3390/jcm9020419
– reference: AssisRDistinct SARS-CoV-2 antibody reactivity patterns elicited by natural infection and mRNA vaccinationNPJ Vaccines202161321:CAS:528:DC%2BB3MXisVGksrbJ10.1038/s41541-021-00396-3347373188568980
– reference: LevinATAssessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implicationsEur. J. Epidemiol.202035112311381:CAS:528:DC%2BB3cXis1ShtrrK10.1007/s10654-020-00698-1332899007721859
– reference: CsigeIThe impact of obesity on the cardiovascular systemJ. Diabetes Res.2018201834073061:CAS:528:DC%2BC1MXitVCjtr3K10.1155/2018/3407306305250526247580
– reference: National Institute of Infectious Diseases. Coronavirus Disease (COVID-19). https://www.niid.go.jp/niid/en/ (Accessed 25 April 2022).
– reference: MurchuEOImmune response following infection with SARS-CoV-2 and other coronaviruses: A rapid reviewRev. Med. Virol.202131e21621:CAS:528:DC%2BB3MXnt1aqu70%3D10.1002/rmv.2162
– reference: SanadaTSerologic survey of IgG against SARS-CoV-2 among hospital visitors without a history of SARS-CoV-2 infection in Tokyo, 2020–2021J. Epidemiol.20223210511110.2188/jea.JE20210324347764998761565
– reference: RussellTWEstimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020Eurosurveillance20202520025610.2807/1560-7917.ES.2020.25.12.2000256
– reference: WongJYInfection fatality risk of the pandemic A(H1N1)2009 virus in Hong KongAm. J. Epidemiol.201317783484010.1093/aje/kws314234599503658096
– reference: WheelerSEDifferential antibody response to mRNA COVID-19 vaccines in healthy subjectsMicrobiol. Spectr.20219e003412110.1128/Spectrum.00341-2134346750
– reference: Japanese Society for Infectious Diseases. Covid-19 Vaccine Recommendations (4th Edition). https://www.kansensho.or.jp/uploads/files/guidelines/2112_covid-19_4.pdf (Accessed 20 April 2022).
– reference: Osaka Prefectural Government. Incidence of New Coronavirus Infection. https://www.pref.osaka.lg.jp/iryo/osakakansensho/happyo.html (Accessed 20 April 2022).
– reference: Japan Broadcasting Corporation. Graph of First Wave to Seventh Epidemic Wave. https://www3.nhk.or.jp/news/special/coronavirus/entire/ (Accessed 25 July 2022).
– reference: FurukawaKSeroepidemiological survey of the antibody for severe acute respiratory syndrome coronavirus 2 with neutralizing activity at hospitals: A cross-sectional study in Hyogo Prefecture, JapanJMA J.20214414910.31662/jmaj.2020-0094335755027872787
– reference: BollykyTJPandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021Lancet20223991489151210.1016/S0140-6736(22)00172-6
– reference: Ministry of Health, Labour and Welfare. Fifth Council of Ministers on the Progress of New Coronavirus Infection Control. https://www.kantei.go.jp/jp/singi/novel_coronavirus/taisaku_shinchoku/dai5/siryou.pdf (Accessed 20 May 2022).
– reference: Ministry of Health, Labour and Welfare. List of Information for Local Governments and Medical Institutions (Contact) (New Model Coronavirus Infection) 2020. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00212.html (Accessed 20 May 2022).
– reference: MaQGlobal percentage of asymptomatic SARS-CoV-2 infections among the tested population and individuals with confirmed COVID-19 diagnosis: A systematic review and meta-analysisJAMA Netw. Open20214e213725710.1001/jamanetworkopen.2021.37257349050088672238
– reference: World Health Organization. Weekly Epidemiological Update on COVID-19—25 January 2023. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2023 (Accessed 28 January 2023).
– reference: NomuraSExcess deaths from COVID-19 in Japan and 47 prefectures from January through June 2021Public Health202220315181:STN:280:DC%2BB2M%2FmvVemsA%3D%3D10.1016/j.puhe.2021.11.02335016070
– reference: NybergTComparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort studyLancet2022399130313121:CAS:528:DC%2BB38XnslSjsrw%3D10.1016/S0140-6736(22)00462-7353052968926413
– reference: IoannidisJPAInfection fatality rate of COVID-19 inferred from seroprevalence dataBull. World Health Organ.2021991910.2471/BLT.20.26589233716331
– reference: Pastor-BarriusoRInfection fatality risk for SARS-CoV-2 in community dwelling population of Spain: Nationwide seroepidemiological studyBMJ2020371m450910.1136/bmj.m450933246972
– reference: Prime Minister’s Office of Japan. New Corona Vaccine. https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html (Accessed 10 April 2022).
– reference: BrazeauNFEstimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modellingCommun. Med.202225410.1038/s43856-022-00106-7356032709120146
– reference: European Centre for Disease Prevention and Control. Variants of Concern. https://www.ecdc.europa.eu/en/covid-19/variants-concern (Accessed 20 June 2022).
– reference: YoshiyamaTPrevalence of SARS-CoV-2-specific antibodies, Japan, June 2020Emerg. Infect. Dis.2021276286311:CAS:528:DC%2BB3MXhtVKqurzO10.3201/eid2702.204088334962357853542
– ident: 32639_CR1
– volume: 32
  start-page: 105
  year: 2022
  ident: 32639_CR34
  publication-title: J. Epidemiol.
  doi: 10.2188/jea.JE20210324
– ident: 32639_CR19
– ident: 32639_CR5
– volume: 6
  start-page: 132
  year: 2021
  ident: 32639_CR21
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-021-00396-3
– ident: 32639_CR23
– volume: 399
  start-page: 1469
  year: 2022
  ident: 32639_CR15
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02867-1
– ident: 32639_CR25
– volume: 1
  start-page: 1256
  year: 2021
  ident: 32639_CR3
  publication-title: Microbes Infect. Chemother.
  doi: 10.54034/mic.e1256
– volume: 203
  start-page: 15
  year: 2022
  ident: 32639_CR29
  publication-title: Public Health
  doi: 10.1016/j.puhe.2021.11.023
– volume: 35
  start-page: 1123
  year: 2020
  ident: 32639_CR22
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-020-00698-1
– ident: 32639_CR27
– volume: 11
  start-page: 5829
  year: 2020
  ident: 32639_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19509-y
– volume: 2018
  start-page: 3407306
  year: 2018
  ident: 32639_CR30
  publication-title: J. Diabetes Res.
  doi: 10.1155/2018/3407306
– volume: 4
  start-page: e2137257
  year: 2021
  ident: 32639_CR6
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2021.37257
– ident: 32639_CR36
– volume: 9
  start-page: 020419
  year: 2020
  ident: 32639_CR18
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9020419
– volume: 27
  start-page: 628
  year: 2021
  ident: 32639_CR32
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2702.204088
– volume: 399
  start-page: 2351
  year: 2021
  ident: 32639_CR7
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00484-6
– volume: 399
  start-page: 1303
  year: 2022
  ident: 32639_CR26
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00462-7
– volume: 177
  start-page: 834
  year: 2013
  ident: 32639_CR8
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kws314
– volume: 399
  start-page: 1489
  year: 2022
  ident: 32639_CR16
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00172-6
– volume: 371
  start-page: m4509
  year: 2020
  ident: 32639_CR10
  publication-title: BMJ
  doi: 10.1136/bmj.m4509
– volume: 4
  start-page: 41
  year: 2021
  ident: 32639_CR33
  publication-title: JMA J.
  doi: 10.31662/jmaj.2020-0094
– volume: 31
  start-page: e2162
  year: 2021
  ident: 32639_CR37
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.2162
– ident: 32639_CR2
– volume: 590
  start-page: 140
  year: 2021
  ident: 32639_CR14
  publication-title: Nature
  doi: 10.1038/s41586-020-2918-0
– ident: 32639_CR4
– ident: 32639_CR24
– volume: 99
  start-page: 19
  year: 2021
  ident: 32639_CR12
  publication-title: Bull. World Health Organ.
  doi: 10.2471/BLT.20.265892
– ident: 32639_CR28
– volume: 9
  start-page: e0034121
  year: 2021
  ident: 32639_CR20
  publication-title: Microbiol. Spectr.
  doi: 10.1128/Spectrum.00341-21
– volume: 25
  start-page: 200256
  year: 2020
  ident: 32639_CR9
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.12.2000256
– ident: 32639_CR31
– volume: 21
  start-page: 203
  year: 2021
  ident: 32639_CR11
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30769-6
– ident: 32639_CR35
– volume: 2
  start-page: 54
  year: 2022
  ident: 32639_CR17
  publication-title: Commun. Med.
  doi: 10.1038/s43856-022-00106-7
SSID ssj0000529419
Score 2.4288175
Snippet The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from February 2020...
Abstract The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of SARS-CoV-2 for six epidemic waves in Japan from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5540
SubjectTerms 631/114
692/308/174
692/700
692/700/459
692/700/478
Adult
COVID-19
COVID-19 - epidemiology
Cross-Sectional Studies
Datasets
Epidemics
Fatalities
Health risks
Humanities and Social Sciences
Humans
Infections
Japan - epidemiology
multidisciplinary
SARS-CoV-2
Science
Science (multidisciplinary)
Seroepidemiology
Severe acute respiratory syndrome coronavirus 2
Vaccination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQJSQuiJ1AWxmJG7Ua23FiH-nyVHqgF4p6s7xCRXFQ8yrRf8_YSV77WC8cE9vRaBbPN_F4BqHXQnIaIegizAkIUGQbiWmtJ8FIz5SVtrYlQfZ9e3TaHJ-Js1utvnJO2FgeeGTcrmOdgmCJS-vqxtOgLLWdcdYwJ4WjMe--4PNuBVNjVW-mGqqmWzI1l7sDeKp8m4xxAoiFK6LWPFEp2P87lPlrsuRPJ6bFES0eoPsTgsRvR8ofojshPUJ3x56S14_R90Mw2gxD0yc8Z1olHPNfGgDcOKeSY5M8NoO7yQbA9twMuI94_-TjuwNCFSzFJ4P5YnbwMbhT-MBl_xUvIIAGlbrGDOAfXvYwluZn9gSdLg4_7B-Rqb0CcW3dLUkMLYgjOgOcZbWPCnB2G_NBXxcYsNZ7H6UIlHZWcG9ZEK1VjkcF7zrZWP4UbaQ-hecIR9gHGgjsbGxZExSVMQqAYs54bjtAoBWiM6u1m2qP5xYYF7qcgXOpR_FoEI8u4tGqQm9Wa76NlTf-OnsvS3A1M1fNLi9Al_SkS_pfulShzVn-ejLlQec1EAPLRlTo1WoYjDCfrJgU-qsyB5AhTJEVejaqy4oS3uUifm1dIbmmSGukro-k88-l0HfOYGGwC1doZ9a5G7r-zIsX_4MXL9E9lo2l5Cltoo3l5VXYAvy1tNvF1H4AgHIppw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxo1Y3dhLbJwSlq9IDvVC0N8vPUgFJ2Wwl-u-ZcZJdLY8eN7ZXdmbG_sbzZYaQ17USZQKni3Ffg4OimsRs4wKLVgWunXIzlwmyn5qj0-p4US_GC7d-pFVOe2LeqEPn8Y58n0uNud5UVb-9-MmwahRGV8cSGjfJLUxdhpQuuZDrOxaMYlWlHr-VmQm138N5hd-UccEAtwjN9NZ5lNP2_wtr_k2Z_CNumo-j-T1yd8SR9N0g-PvkRmwfkNtDZcmrh-TXIZgugtH2jE58q5YmvKsB2E2RUE5tG6jt_YYTQN257WmX6MHJl48fWKlhKD3p7Te7R4_hUIU_WHY_6BzcaFCsK8oBBNJVB23t9Js_Iqfzw88HR2wsssB8M5MrlmIDQkneOg-DQtKAtpuE4T4Zee3LEEJSdSxL6WoRHI9147QXScMzqSonHpOdtmvjU0IT7AYVuHcuNbyKulQp1QDIvA3CScChBSmnV238mIEcC2F8NzkSLpQZxGNAPCaLx-iCvFmPuRjyb1zb-z1KcN0Tc2fnB93yzIymaDyqEgfXHFZchTJqVzppvbPcK1hwKsjuJH8zGnRvNupXkFfrZjBFjK_YNnaXuQ_gQ-iiCvJkUJf1TITEVH7NrCBqS5G2prrd0p5_zem-kcfCYS8uyN6kc5t5_f9dPLt-Gc_JHY5mkHlIu2RntbyMLwBfrdzLbES_AXNUIII
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEjUas7cSxj7B0VXqgF4p6s_wsFZCgzVai_56x86gWChLH2DOR45mxv8mMxwCvaslpRKerZK5GB0WKWBphfRmM9ExZaRc2J8h-FIcn1dFpfboDbDoLk5P2c0nLvExP2WFvetxo0mEwxksEHFyV6gbcTKXbk1YvxXL-r5IiVxVV4_mYBZfXsG7tQblU_3X48s80yd9ipXkLWt2FOyN2JG-H0d6DndDeh1vDbZKXD-DnAZprAqDtGZlyrFoS0_8ZhNokJZET03pieneVB0DsuelJF8ny-POH9yVVyEqOe_PV7JMj3EjxBevuO1mh64zKdEkYAj-y6bCvnZ7ZQzhZHXxaHpbjxQqlE4tmU8YgUBDRGeuQyUeFCFvEFOJrAqsd9d5HWQdKG1tzb1mohVWOR4VtjawsfwS7bdeGJ0AirgAVunQ2ClYFRWWMNYIwZzy3DWLPAug01dqNVcfT5RffdI5-c6kH8WgUj87i0aqA1zPPj6Hmxj-p3yUJzpSpXnZu6NZnetQf7Vij0OXmEr-48jQoS21jnDXMSfzgWMDeJH89GnGvEw96v7KqC3g5d6P5pZiKaUN3kWkQEyKJLODxoC7zSHiTyveJRQFyS5G2hrrd055_ySW-U-4Kw_W3gP1J567G9fe5ePp_5M_gNktmkXOR9mB3s74IzxFjbeyLbFS_AHt8Hkw
  priority: 102
  providerName: Springer Nature
Title Estimating infection fatality risk and ascertainment bias of COVID-19 in Osaka, Japan from February 2020 to January 2022
URI https://link.springer.com/article/10.1038/s41598-023-32639-9
https://www.ncbi.nlm.nih.gov/pubmed/37016060
https://www.proquest.com/docview/2795094845
https://www.proquest.com/docview/2796158458
https://pubmed.ncbi.nlm.nih.gov/PMC10072030
https://doaj.org/article/c27952338bc04d1e9b1b7acba2c85c1f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ0i8IL4JjMpIvLFA7XzYfkCoK61GJTYEFPUtsh17TIwE2k5a_3vOTtKpUHjgKartSx3fXe538fkO4HkmEurQ6YqZydBBEbmLVa7L2CpRMqmF7usQIHuSH0_TySyb7UBX7qhdwMVW187Xk5rOL15e_Vy9QYV_3RwZF68WaIT8QTGWxAhGEhnLXdhHy8S9or5v4X6T65vJlMr27Mx20g37FNL4b8Oef4ZQ_raPGszT-DbcanElGTSCcAd2bHUXbjSVJlf34GqEquzBaXVGuvirijj_7QZhOPEB5kRVJVELcx0jQPS5WpDakeHpl3dvYyqRlJwu1Dd1SCZoZPEG8_o7GaNbjYK2IgxBIVnW2Fd1v9l9mI5Hn4fHcVt0ITZ5ny9jZ3NkkjNKGyQqnUT0nTu__cctywwty9KJzFLKdZaUmtks19IkTmIbF6lOHsBeVVf2ERCHb4cU3T3tcpZaSYVzGQI0o8pEc8SlEdBuqQvTZiT3hTEuirAznoiiYU-B7CkCewoZwYs1zY8mH8c_Rx95Dq5H-lzaoaGenxWtahaGcYnueCLwidOSWqmp5spoxYzAB3YRHHT8Lzr5LDwNesYizSJ4tu5G1fT7Laqy9WUYg3gRh4gIHjbisp5Jwn1qv7wfgdgQpI2pbvZU519D-m8f18Lw3RzBYSdz1_P6-1o8_v9_egI3mVeRELN0AHvL-aV9ilhsqXuwy2e8B_uDweTTBK9Ho5MPH7F1mA974ftGL6jgL-SBNT8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYwETzTqxs5hPyBE213ttmWLUIv6lvosFZCUZivYP8VvZJxjV8vRtz4mdiLbc_gbz3gG4GXCWeTQ6AqpTtBA4akLZapMaCU3VCiu-qoOkJ2ko8N45yg5WoFf3V0YH1bZ6cRaUZtS-zPyDZoJn-uNx8nbs--hrxrlvatdCY2GLXbt7AeabNWb8TbS9xWlw8HB1ihsqwqEOu1n09DZFEfhtFQaoZJxAuFl6rx_K7M00ZExxvHERlGmEmYUtUmqhGZO4LuMx4rhf6_BaszQlOnB6uZg8uHj_FTH-83iSLS3c_qMb1S4Q_pbbJSFiJSYCMXSDlgXCvgXuv07SPMPT229AQ5vw60WuZJ3DavdgRVb3IXrTS3L2T34OUBl4eFvcUK6CK-COH86hECf-BB2IgtDZKUXUQhEncqKlI5s7X8ab4eRwE_JfiW_yHWyg9s4_uC8_EaGaLgjK88IxbUk0xLbiu6Z3ofDKyHAA-gVZWEfAXGof2I0KJVLaWxFxJ1LEAJqaZjKEPkGEHVLnes257kvvfE1r33vjOcNeXIkT16TJxcBvJ5_c9Zk_Li096an4Lynz9ZdvyjPT_JW-HPtmZcyxnHGsYmsUJHKpFaSao4TdgGsdfTPWxVS5QuGD-DFvBmF33t0ZGHLi7oPIlLswgN42LDLfCQs88kD034AfImRloa63FKcfq4TjPvIGYraP4D1jucW4_r_Wjy-fBrP4cbo4P1evjee7D6Bm9SLRB0FtQa96fmFfYrobqqetSJF4Piqpfg3WIVf4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgRKNd20lsHxCCblfdFrUcKOrN9bNUQFI2W8H-NX4d4zx2tTx66zGxE9meh7_xjGcQepELRgIYXSm1ORgoogipLoxLvRaOSiPM0DQBsvvFzmG2e5QfraFf_V2YGFbZ68RGUbvKxjPyAeUy5noTWT4IXVjEh9H4zdn3NFaQip7WvpxGyyJ7fv4DzLf69WQEtH5J6Xj749ZO2lUYSG0x5LM0-AJGFKw2FmCTCxKgZhGir4t7mlvinAsi94RwkzNnqM8LIy0LEt5xkRkG_72CrnKWkyhj_IgvzneiBy0jsrunM2RiUMNeGe-zUZYCZmIylSt7YVMy4F849-9wzT98ts1WOL6FbnYYFr9tme42WvPlHXStrWo5v4t-boPaiEC4PMF9rFeJQzwnAsiPYzA71qXDurbLeARsTnWNq4C3Dj5NRimR8Ck-qPUXvYl3YUOHH0yrb3gMJjww9RxTWEk8q6Ct7J_pPXR4Kct_H62XVekfIhxAE2VgWppQ0MxLIkLIAQxa7ZjhgIETRPqlVrbLfh6LcHxVjReeCdWSRwF5VEMeJRP0avHNWZv748Le7yIFFz1j3u7mRTU9UZ0aUDayMWVMwIwzR7w0xHBtjaZWwIRDgjZ6-qtOmdRqyfoJer5oBjUQfTu69NV50wewKXQRCXrQsstiJIzHNILFMEFihZFWhrraUp5-blKNxxgaCvtAgjZ7nluO6_9r8ejiaTxD10F21fvJ_t5jdINGiWjCoTbQ-mx67p8AzJuZp408YXR82QL8G-S2YrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+infection+fatality+risk+and+ascertainment+bias+of+COVID-19+in+Osaka%2C+Japan+from+February+2020+to+January+2022&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Tong&rft.au=Nishiura%2C+Hiroshi&rft.date=2023-04-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-32639-9&rft.externalDocID=PMC10072030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon