Proximal femur fracture detection on plain radiography via feature pyramid networks

Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Fe...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 12046 - 14
Main Authors Yıldız Potter, İlkay, Yeritsyan, Diana, Mahar, Sarah, Kheir, Nadim, Vaziri, Aidin, Putman, Melissa, Rodriguez, Edward K., Wu, Jim, Nazarian, Ara, Vaziri, Ashkan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.
AbstractList Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.
Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.
Abstract Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.
ArticleNumber 12046
Author Nazarian, Ara
Yeritsyan, Diana
Putman, Melissa
Vaziri, Ashkan
Kheir, Nadim
Vaziri, Aidin
Rodriguez, Edward K.
Wu, Jim
Yıldız Potter, İlkay
Mahar, Sarah
Author_xml – sequence: 1
  givenname: İlkay
  surname: Yıldız Potter
  fullname: Yıldız Potter, İlkay
  email: ilkay.yildiz@biosensics.com
  organization: BioSensics, LLC
– sequence: 2
  givenname: Diana
  surname: Yeritsyan
  fullname: Yeritsyan, Diana
  organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School
– sequence: 3
  givenname: Sarah
  surname: Mahar
  fullname: Mahar, Sarah
  organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School
– sequence: 4
  givenname: Nadim
  surname: Kheir
  fullname: Kheir, Nadim
  organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School
– sequence: 5
  givenname: Aidin
  surname: Vaziri
  fullname: Vaziri, Aidin
  organization: BioSensics, LLC
– sequence: 6
  givenname: Melissa
  surname: Putman
  fullname: Putman, Melissa
  organization: Division of Endocrinology, Massachusetts General Hospital and Harvard Medical School
– sequence: 7
  givenname: Edward K.
  surname: Rodriguez
  fullname: Rodriguez, Edward K.
  organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School
– sequence: 8
  givenname: Jim
  surname: Wu
  fullname: Wu, Jim
  organization: Department of Radiology, Massachusetts General Brigham (MGB) and Harvard Medical School
– sequence: 9
  givenname: Ara
  surname: Nazarian
  fullname: Nazarian, Ara
  organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Orthopaedic Surgery, Yerevan State University
– sequence: 10
  givenname: Ashkan
  surname: Vaziri
  fullname: Vaziri, Ashkan
  organization: BioSensics, LLC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38802519$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1vFCEUhompsXXtH_DCTOKNN6Mcvoa5Mqbxo0kTTdRrwgCzZZ2FEWZa99_L7rTa9qKEBALP--aFc56joxCDQ-gl4LeAqXyXGfBW1piwWlCMoSZP0AnBjNeEEnJ0Z3-MTnPe4DI4aRm0z9AxlRITDu0J-v4txT9-q4eqd9s5VX3SZpqTq6ybnJl8DFWZ46B9qJK2Pq6THi931ZXXRaEP6LhLeuttFdx0HdOv_AI97fWQ3enNukI_P338cfalvvj6-fzsw0VtBG6mumcGGGFSttSwjnOCrRAYdO_axlEtDdAeC0t4x6zoMG8dlU7SMjkIC4Ku0Pnia6PeqDGVZ6Sditqrw0FMa6XT5M3gFOa0EcQJDdoyYkC2gnZa2qa3pO0ZFK_3i9c4d1tnjQtT0sM90_s3wV-qdbxSAEAxsH2aNzcOKf6eXZ7U1mfjhkEHF-esKBYFbaBUb4VeP0A3cU6h_NWewoIBZrRQr-5G-pfltngFkAtgUsw5uV4ZP-l9zUpCPyjAat8qamkVVVpFHVpFkSIlD6S37o-K6CLKBQ5rl_7HfkT1F2Y1z5E
CitedBy_id crossref_primary_10_1007_s10278_024_01373_7
crossref_primary_10_1038_s41598_025_93505_4
crossref_primary_10_1177_08953996241312594
crossref_primary_10_3390_diagnostics15030271
crossref_primary_10_1007_s11604_024_01702_4
Cites_doi 10.1016/j.media.2022.102652
10.1038/nrrheum.2009.260
10.1016/8756-3282(93)90341-7
10.1109/TPAMI.2019.2956516
10.3389/fbioe.2022.927926
10.1109/ACCESS.2021.3079215
10.1038/s41598-022-06018-9
10.1038/s41597-023-02432-4
10.1186/s13018-021-02821-8
10.1186/s13018-019-1226-6
10.1155/2022/7897669
10.2106/00004623-199903000-00007
10.1038/s41467-021-21311-3
10.1007/s001980050050
10.1016/j.arthro.2009.01.011
10.1016/j.patrec.2005.10.010
10.1007/s001980200000
10.1097/00006231-199608000-00012
10.1016/S2589-7500(22)00004-8
10.1038/s41598-023-37560-9
10.1007/s10278-020-00364-8
10.1016/j.cviu.2021.103345
10.1136/tsaco-2021-000705
10.1111/1754-9485.12828
10.34747/f06m-m978
10.1197/j.aem.2004.10.024
10.1016/j.jemermed.2007.12.039
10.5435/00124635-200712000-00005
10.2105/AJPH.74.12.1374
10.1016/j.jbiomech.2010.02.032
10.2214/AJR.09.3295
10.1007/s11548-020-02150-x
10.1148/radiology.143.1.7063747
10.1155/2013/213234
10.1007/bf00298740
10.1016/j.cdtm.2015.02.006
10.3928/0147-7447-20031201-07
10.1038/s41598-020-70660-4
10.3390/bioengineering10060735
10.1007/s10278-021-00499-2
10.1016/j.patrec.2019.06.015
10.1385/JCD:3:1:057
10.1016/j.crad.2020.05.021
10.1007/s00198-015-3154-6
10.1007/s002239900679
10.1016/j.isci.2023.107350
10.1109/JPROC.2021.3054390
10.1016/j.ejrad.2020.109139
10.1016/j.injury.2022.04.013
10.1002/9780470479216.corpsy0524
10.1109/ICSPCC52875.2021.9564613
10.1109/CVPR.2019.00075
10.1109/ic-ETITE47903.2020.235
10.1109/SYNASC.2018.00041
10.1109/FG52635.2021.9667072
10.1109/ICCV.2017.89
10.1007/978-3-319-76681-2_1
10.1007/978-3-030-58592-1_15
10.1007/978-3-030-32226-7_77
10.1109/CVPR.2009.5206848
10.1007/978-3-030-59722-1_42
10.1109/CVPR.2017.690
10.1109/CICT48419.2019.9066263
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.634
10.1007/978-3-319-67389-9_9
10.1109/ICCV.2019.00972
10.1186/s13018-021-02689-8
10.1016/j.media.2023.102802
10.1109/CVPR46437.2021.00841
10.1109/ICCV.2017.324
10.1109/ICECTA48151.2019.8959770
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2017.106
10.1007/978-3-030-87589-3_51
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-63001-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41
PMC11130146
38802519
10_1038_s41598_024_63001_2
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R44AG081031
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIH HHS
  grantid: R44AG081031
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c607t-f4c14248893c4b5520d6601afe97e3a8c13f06d25b4d6b059e38e83e83516d163
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:07 EDT 2025
Thu Aug 21 18:33:49 EDT 2025
Fri Jul 11 07:35:35 EDT 2025
Wed Aug 13 06:05:41 EDT 2025
Wed Feb 19 02:07:10 EST 2025
Tue Jul 01 01:01:43 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Plain radiography
Fracture
Proximal femur
Hip
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-f4c14248893c4b5520d6601afe97e3a8c13f06d25b4d6b059e38e83e83516d163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/053762e6a1ad42c18963ba8d7fd29f41
PMID 38802519
PQID 3060641043
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11130146
proquest_miscellaneous_3061137110
proquest_journals_3060641043
pubmed_primary_38802519
crossref_citationtrail_10_1038_s41598_024_63001_2
crossref_primary_10_1038_s41598_024_63001_2
springer_journals_10_1038_s41598_024_63001_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Tu (CR12) 2018; 43
Ji, Yu (CR13) 2015; 1
Cannon, Silvestri, Munro (CR16) 2009; 37
Salari (CR5) 2021; 16
Faulkner, Genant, McClung (CR88) 1995; 56
Melton (CR1) 1993; 14
CR39
CR38
CR37
Chen, Zhou, Onozuka, Kubo (CR7) 2013; 213
Pierre, Zurakowski, Nazarian, Hauser-Kara, Snyder (CR85) 2010; 43
Rao, Reddy, Rao (CR86) 2000; 3
CR78
CR77
Lu, Wang, Wang (CR61) 2022; 1
CR76
Liu, Sangineto, Bi, Sebe, Lepri, Nadai (CR84) 2021; 34
CR30
CR73
CR70
Dominguez, Liu, Roberts, Mandell, Richman (CR2) 2005; 12
Cheng (CR90) 2021
Tanzi, Audisio, Cirrincione, Aprato, Vezzetti (CR36) 2022; 53
Cai, Vasconcelos (CR75) 2019; 43
Kibriya, Amin, Alshehri, Masood, Alshamrani, Alshehri (CR63) 2022; 1
Ren, He, Girshick, Sun (CR74) 2015; 28
Yang, Yin, Cao, Feng, Fan, He (CR19) 2020; 75
CR8
Kitamura (CR21) 2020; 130
Mutasa, Varada, Goel, Wong, Rasiej (CR33) 2020; 33
Abedeen, Rahman, Prottyasha, Ahmed, Chowdhury, Shatabda (CR52) 2023; 10
Kim, Moon, Goh, Jung (CR82) 2023; 13
CR9
CR49
Harvey, Dennison, Cooper (CR14) 2010; 6
Cha, Kim, Park, Kim, Lee, Yoo (CR18) 2022; 17
CR42
CR41
Oden, McCloskey, Kanis, Harvey, Johansson (CR11) 2015; 26
CR40
Zhou, Greenspan, Davatzikos, Duncan, Van Ginneken, Madabhushi, Prince, Rueckert, Summers (CR48) 2021; 109
CR83
Choi, Hui, Spain, Su, Cheng, Liao (CR22) 2021; 6
CR81
Oakden-Rayner, Gale, Bonham, Lungren, Carneiro, Bradley, Palmer (CR31) 2022; 4
CR80
Kirby, Spritzer (CR15) 2010; 194
Lee, Jang, Lee, Kim, Jo, Kim (CR28) 2020; 10
Farmer, White, Brody, Bailey (CR53) 1984; 74
Guan, Yao, Zhang, Wang (CR45) 2019; 125
Murphy, Ehrhardt, Gregson, von Arx, Hartley, Whitehouse, Thomas, Stenhouse, Chesser, Budd, Gill (CR34) 2022; 12
Droll, Broekhuyse, O'Brien (CR89) 2007; 15
Ouyang, Chen, Tee, Lin, Kuo, Liao, Cheng, Liao (CR23) 2023; 10
Matsuda (CR55) 2009; 25
Kannus, Natri, Paakkala, Jarvinen (CR4) 1999; 81
CR59
Gao, Soh, Liu, Lim, Ting, Cheng, Wong, Liew, Oh, Tan, Venkataraman (CR32) 2023; 26
CR58
CR57
Liu, Lu, Chen, Huo, Xue, Wang, Fang, Xie, Xie, Ye (CR44) 2022; 10
CR56
CR51
CR50
CR94
Han, Wang, Liu (CR91) 2021; 9
CR93
Gao, Hong, Li, Zhang, Wu, Wang, Zhang, Gong, Zheng, Meng, Li (CR92) 2023; 83
Karanam, Srinivas, Chakravarty (CR60) 2022; 1
Beyaz, Açıcı, Sümer (CR27) 2020; 31
Guan, Yao, Wang, Zhang, Zhang, Wang, Wang (CR47) 2022; 216
Jiménez-Sánchez, Kazi, Albarqouni, Kirchhoff, Biberthaler, Navab, Kirchhoff, Mateus (CR35) 2020; 15
Adams, Chen, Holcdorf, McCusker, Howe, Gaillard (CR26) 2019; 63
Bae, Yu, Oh, Kim, Chung, Byun, Yoon, Ahn, Lee (CR29) 2021; 34
CR25
CR69
Guzon-Illescas (CR10) 2019; 14
CR24
CR68
Hanley, McNeil (CR72) 1982; 143
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (CR79) 2017; 30
CR67
CR66
CR65
Melton, Therneau, Larson (CR3) 1998; 8
CR20
CR64
CR62
Cheng, Wang, Chen, Hsiao, Yeh, Hsieh, Miao, Xiao, Liao, Lu (CR43) 2021; 12
Fawcett (CR71) 2006; 27
Parkkari, Kannus, Palvanen, Natri, Vainio, Aho, Vuori, Järvinen (CR54) 1999; 65
Shabat (CR17) 2003; 26
Turner (CR6) 2002; 13
Yang, Chieng, Tsai, Liu (CR87) 1996; 17
Wang, Yao, Zhang, Guan, Wang, Zhang (CR46) 2021; 1
63001_CR67
H Kibriya (63001_CR63) 2022; 1
63001_CR66
Y Liu (63001_CR84) 2021; 34
63001_CR9
63001_CR65
63001_CR8
63001_CR20
63001_CR64
S Beyaz (63001_CR27) 2020; 31
S Ren (63001_CR74) 2015; 28
63001_CR25
63001_CR69
Y Cha (63001_CR18) 2022; 17
63001_CR24
63001_CR68
ME Farmer (63001_CR53) 1984; 74
S Dominguez (63001_CR2) 2005; 12
J Choi (63001_CR22) 2021; 6
63001_CR62
M-X Ji (63001_CR13) 2015; 1
L Tanzi (63001_CR36) 2022; 53
Z Cai (63001_CR75) 2019; 43
L Melton (63001_CR1) 1993; 14
63001_CR56
JA Hanley (63001_CR72) 1982; 143
DK Matsuda (63001_CR55) 2009; 25
63001_CR59
A Vaswani (63001_CR79) 2017; 30
63001_CR58
B Guan (63001_CR45) 2019; 125
63001_CR57
RS Yang (63001_CR87) 1996; 17
J Parkkari (63001_CR54) 1999; 65
S Mutasa (63001_CR33) 2020; 33
63001_CR51
63001_CR50
63001_CR94
63001_CR93
CT Cheng (63001_CR43) 2021; 12
T Kim (63001_CR82) 2023; 13
P Liu (63001_CR44) 2022; 10
Z Gao (63001_CR92) 2023; 83
N Harvey (63001_CR14) 2010; 6
CH Turner (63001_CR6) 2002; 13
CH Ouyang (63001_CR23) 2023; 10
S Shabat (63001_CR17) 2003; 26
KN Tu (63001_CR12) 2018; 43
EA Murphy (63001_CR34) 2022; 12
AD Rao (63001_CR86) 2000; 3
CT Cheng (63001_CR90) 2021
63001_CR42
63001_CR49
SK Zhou (63001_CR48) 2021; 109
MA Pierre (63001_CR85) 2010; 43
KG Faulkner (63001_CR88) 1995; 56
63001_CR81
S Lu (63001_CR61) 2022; 1
63001_CR80
63001_CR41
63001_CR40
LJ Melton III (63001_CR3) 1998; 8
N Salari (63001_CR5) 2021; 16
63001_CR83
O Guzon-Illescas (63001_CR10) 2019; 14
G Kitamura (63001_CR21) 2020; 130
M Wang (63001_CR46) 2021; 1
J Han (63001_CR91) 2021; 9
B Guan (63001_CR47) 2022; 216
H Chen (63001_CR7) 2013; 213
63001_CR39
KP Droll (63001_CR89) 2007; 15
MW Kirby (63001_CR15) 2010; 194
63001_CR78
63001_CR77
SR Karanam (63001_CR60) 2022; 1
63001_CR76
63001_CR38
C Lee (63001_CR28) 2020; 10
63001_CR37
63001_CR70
L Oakden-Rayner (63001_CR31) 2022; 4
63001_CR30
63001_CR73
M Adams (63001_CR26) 2019; 63
P Kannus (63001_CR4) 1999; 81
J Cannon (63001_CR16) 2009; 37
T Fawcett (63001_CR71) 2006; 27
S Yang (63001_CR19) 2020; 75
A Jiménez-Sánchez (63001_CR35) 2020; 15
A Oden (63001_CR11) 2015; 26
Y Gao (63001_CR32) 2023; 26
I Abedeen (63001_CR52) 2023; 10
J Bae (63001_CR29) 2021; 34
References_xml – volume: 43
  start-page: 92
  issue: 2
  year: 2018
  end-page: 104
  ident: CR12
  article-title: Osteoporosis: A review of treatment options
  publication-title: P&T Peer-Rev. J. Formul. Manag.
– ident: CR70
– ident: CR49
– ident: CR68
– ident: CR93
– ident: CR39
– volume: 83
  year: 2023
  ident: CR92
  article-title: A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102652
– ident: CR51
– volume: 1
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR60
  article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery
  publication-title: Int. J. Healthc. Manag.
– volume: 34
  start-page: 23818
  year: 2021
  end-page: 23830
  ident: CR84
  article-title: Efficient training of visual transformers with small datasets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 99
  issue: 2
  year: 2010
  end-page: 105
  ident: CR14
  article-title: Osteoporosis: Impact on health and economics
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2009.260
– volume: 14
  start-page: 51
  year: 1993
  end-page: 58
  ident: CR1
  article-title: Hip fracture: A worldwide problem today and tomorrow
  publication-title: Bone
  doi: 10.1016/8756-3282(93)90341-7
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  end-page: 1498
  ident: CR75
  article-title: Cascade R-CNN: High quality object detection and instance segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 10
  year: 2022
  ident: CR44
  article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.927926
– ident: CR58
– volume: 30
  start-page: 1
  year: 2017
  ident: CR79
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 71954
  year: 2021
  end-page: 71967
  ident: CR91
  article-title: Contextual prior constrained deep networks for mitosis detection with point annotations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079215
– volume: 12
  start-page: 2058
  issue: 1
  year: 2022
  ident: CR34
  article-title: Machine learning outperforms clinical experts in classification of hip fractures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06018-9
– ident: CR25
– volume: 10
  start-page: 521
  issue: 1
  year: 2023
  ident: CR52
  article-title: FracAtlas: A dataset for fracture classification, localization and segmentation of musculoskeletal radiographs
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02432-4
– ident: CR42
– volume: 16
  start-page: 669
  issue: 1
  year: 2021
  ident: CR5
  article-title: Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-021-02821-8
– volume: 14
  start-page: 203
  issue: 1
  year: 2019
  ident: CR10
  article-title: Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-019-1226-6
– volume: 1
  start-page: 1
  year: 2022
  ident: CR63
  article-title: A novel and effective brain tumor classification model using deep feature fusion and famous machine learning classifiers
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/7897669
– volume: 81
  start-page: 355
  issue: 3
  year: 1999
  end-page: 363
  ident: CR4
  article-title: An outcome study of chronic patellofemoral pain syndrome: Seven-year follow-up of patients in a randomized, controlled trial
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-199903000-00007
– volume: 31
  start-page: 175
  issue: 2
  year: 2020
  ident: CR27
  article-title: Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches
  publication-title: Joint Dis. Relat. Surg.
– volume: 12
  start-page: 1066
  issue: 1
  year: 2021
  ident: CR43
  article-title: A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21311-3
– volume: 8
  start-page: 68
  year: 1998
  end-page: 74
  ident: CR3
  article-title: Long-term trends in hip fracture prevalence: The influence of hip fracture incidence and survival
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050050
– ident: CR67
– volume: 17
  start-page: 1
  issue: 1
  year: 2022
  end-page: 13
  ident: CR18
  article-title: Artificial intelligence and machine learning on diagnosis and classification of hip fracture: Systematic review
  publication-title: J. Orthoped. Surg. Res.
– volume: 25
  start-page: 408
  issue: 4
  year: 2009
  end-page: 412
  ident: CR55
  article-title: A rare fracture, an even rarer treatment: The arthroscopic reduction and internal fixation of an isolated femoral head fracture
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2009.01.011
– ident: CR50
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  ident: CR71
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 13
  start-page: 97
  issue: 2
  year: 2002
  end-page: 104
  ident: CR6
  article-title: Biomechanics of bone: Determinants of skeletal fragility and bone quality
  publication-title: Osteoporosis Int.
  doi: 10.1007/s001980200000
– ident: CR9
– ident: CR57
– volume: 17
  start-page: 711
  issue: 8
  year: 1996
  end-page: 6
  ident: CR87
  article-title: Symmetry of bone mineral density in the hips is not affected by age
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/00006231-199608000-00012
– ident: CR78
– volume: 28
  start-page: 1
  year: 2015
  ident: CR74
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR81
– ident: CR64
– volume: 4
  start-page: e351
  issue: 5
  year: 2022
  end-page: e358
  ident: CR31
  article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: A diagnostic accuracy study
  publication-title: Lancet Digi. Health
  doi: 10.1016/S2589-7500(22)00004-8
– volume: 1
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR46
  article-title: ParallelNet: Multiple backbone network for detection tasks on thigh bone fracture
  publication-title: Multimed. Syst.
– ident: CR66
– volume: 13
  start-page: 10415
  issue: 1
  year: 2023
  ident: CR82
  article-title: Detection of incomplete atypical femoral fracture on anteroposterior radiographs via explainable artificial intelligence
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37560-9
– volume: 33
  start-page: 1209
  year: 2020
  end-page: 1217
  ident: CR33
  article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-020-00364-8
– ident: CR37
– volume: 216
  year: 2022
  ident: CR47
  article-title: Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2021.103345
– volume: 6
  issue: 1
  year: 2021
  ident: CR22
  article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: A bi-institutional study
  publication-title: Trauma Surg. Acute Care Open
  doi: 10.1136/tsaco-2021-000705
– volume: 63
  start-page: 27
  issue: 1
  year: 2019
  end-page: 32
  ident: CR26
  article-title: Computer vs. human: Deep learning versus perceptual training for the detection of neck of femur fractures
  publication-title: J. Med. Imaging Rad. Oncol.
  doi: 10.1111/1754-9485.12828
– ident: CR30
– year: 2021
  ident: CR90
  article-title: A scalable physician-level deep learning algorithm of universal trauma finding detection of pelvic radiographs, PelvixNet dataset
  publication-title: Gigantum.
  doi: 10.34747/f06m-m978
– volume: 12
  start-page: 366
  issue: 4
  year: 2005
  end-page: 369
  ident: CR2
  article-title: Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs—a study of emergency department patients
  publication-title: Acad. Emerg. Med.
  doi: 10.1197/j.aem.2004.10.024
– volume: 37
  start-page: 144
  year: 2009
  end-page: 152
  ident: CR16
  article-title: Imaging choices in occult hip fracture
  publication-title: J. Emerg. Med.
  doi: 10.1016/j.jemermed.2007.12.039
– volume: 15
  start-page: 716
  issue: 12
  year: 2007
  end-page: 727
  ident: CR89
  article-title: Fracture of the femoral head
  publication-title: JAAOS-J. Am. Acad. Orthoped. Surg.
  doi: 10.5435/00124635-200712000-00005
– ident: CR56
– volume: 74
  start-page: 1374
  issue: 12
  year: 1984
  end-page: 1380
  ident: CR53
  article-title: Race and sex differences in hip fracture incidence
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.74.12.1374
– ident: CR40
– volume: 43
  start-page: 2228
  issue: 11
  year: 2010
  end-page: 36
  ident: CR85
  article-title: Assessment of the bilateral asymmetry of human femurs based on physical, densitometric, and structural rigidity characteristics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.02.032
– volume: 194
  start-page: 1054
  issue: 4
  year: 2010
  end-page: 1060
  ident: CR15
  article-title: Radiographic detection of hip and pelvic fractures in the emergency department
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.09.3295
– volume: 15
  start-page: 847
  year: 2020
  end-page: 857
  ident: CR35
  article-title: Precise proximal femur fracture classification for interactive training and surgical planning
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02150-x
– ident: CR69
– ident: CR94
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  ident: CR72
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 213
  start-page: 234
  year: 2013
  ident: CR7
  article-title: Age-related changes in trabecular and cortical bone microstructure
  publication-title: Int. J. Endocrinol.
  doi: 10.1155/2013/213234
– ident: CR73
– ident: CR65
– volume: 56
  start-page: 26
  issue: 1
  year: 1995
  end-page: 31
  ident: CR88
  article-title: Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/bf00298740
– volume: 1
  start-page: 9
  issue: 1
  year: 2015
  end-page: 13
  ident: CR13
  article-title: Primary osteoporosis in postmenopausal women
  publication-title: Chronic Dis. Transl. Med.
  doi: 10.1016/j.cdtm.2015.02.006
– ident: CR38
– volume: 26
  start-page: 1197
  year: 2003
  end-page: 1199
  ident: CR17
  article-title: Economic consequences of operative delay for hip fractures in a non-profit institution
  publication-title: Orthopedics
  doi: 10.3928/0147-7447-20031201-07
– volume: 10
  start-page: 13694
  issue: 1
  year: 2020
  ident: CR28
  article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70660-4
– volume: 10
  start-page: 735
  issue: 6
  year: 2023
  ident: CR23
  article-title: The application of design thinking in developing a deep learning algorithm for hip fracture detection
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10060735
– volume: 34
  start-page: 1099
  issue: 5
  year: 2021
  end-page: 1109
  ident: CR29
  article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-021-00499-2
– volume: 125
  start-page: 521
  year: 2019
  end-page: 526
  ident: CR45
  article-title: Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.06.015
– volume: 3
  start-page: 57
  issue: 1
  year: 2000
  end-page: 61
  ident: CR86
  article-title: Is there a difference between right and left femoral bone density?
  publication-title: J. Clin. Densitom.
  doi: 10.1385/JCD:3:1:057
– volume: 75
  start-page: 713
  issue: 9
  year: 2020
  end-page: e17
  ident: CR19
  article-title: Diagnostic accuracy of deep learning in orthopedic fractures: A systematic review and meta-analysis
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.05.021
– volume: 26
  start-page: 2243
  issue: 9
  year: 2015
  end-page: 2248
  ident: CR11
  article-title: Burden of high fracture probability worldwide: Secular increases 2010–2040
  publication-title: Osteoporosis Int. J. Estab. Res. Cooper. Between Eur. Found. Osteopor. Natl. Osteopor. Found. USA
  doi: 10.1007/s00198-015-3154-6
– volume: 65
  start-page: 183
  year: 1999
  end-page: 187
  ident: CR54
  article-title: Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: A prospective controlled hip fracture study with 206 consecutive patients
  publication-title: Calcified Tissue Int.
  doi: 10.1007/s002239900679
– volume: 26
  start-page: 1
  issue: 8
  year: 2023
  ident: CR32
  article-title: Application of a deep learning algorithm in the detection of hip fractures
  publication-title: Iscience
  doi: 10.1016/j.isci.2023.107350
– ident: CR59
– ident: CR76
– ident: CR83
– volume: 109
  start-page: 820
  issue: 5
  year: 2021
  end-page: 838
  ident: CR48
  article-title: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3054390
– ident: CR41
– volume: 1
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR61
  article-title: Automated universal fractures detection in X-ray images based on deep learning approach
  publication-title: Multimed. Tools Appl.
– ident: CR62
– volume: 130
  year: 2020
  ident: CR21
  article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109139
– volume: 53
  start-page: 2625
  issue: 7
  year: 2022
  end-page: 2634
  ident: CR36
  article-title: Vision transformer for femur fracture classification
  publication-title: Injury
  doi: 10.1016/j.injury.2022.04.013
– ident: CR24
– ident: CR20
– volume: 10
  year: 2022
  ident: 63001_CR44
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.927926
– ident: 63001_CR41
– volume: 1
  start-page: 1
  year: 2022
  ident: 63001_CR61
  publication-title: Multimed. Tools Appl.
– ident: 63001_CR73
  doi: 10.1002/9780470479216.corpsy0524
– volume: 4
  start-page: e351
  issue: 5
  year: 2022
  ident: 63001_CR31
  publication-title: Lancet Digi. Health
  doi: 10.1016/S2589-7500(22)00004-8
– volume: 25
  start-page: 408
  issue: 4
  year: 2009
  ident: 63001_CR55
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2009.01.011
– ident: 63001_CR68
– volume: 10
  start-page: 735
  issue: 6
  year: 2023
  ident: 63001_CR23
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10060735
– volume: 26
  start-page: 1
  issue: 8
  year: 2023
  ident: 63001_CR32
  publication-title: Iscience
  doi: 10.1016/j.isci.2023.107350
– volume: 34
  start-page: 1099
  issue: 5
  year: 2021
  ident: 63001_CR29
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-021-00499-2
– volume: 26
  start-page: 2243
  issue: 9
  year: 2015
  ident: 63001_CR11
  publication-title: Osteoporosis Int. J. Estab. Res. Cooper. Between Eur. Found. Osteopor. Natl. Osteopor. Found. USA
  doi: 10.1007/s00198-015-3154-6
– ident: 63001_CR39
  doi: 10.1109/ICSPCC52875.2021.9564613
– volume: 56
  start-page: 26
  issue: 1
  year: 1995
  ident: 63001_CR88
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/bf00298740
– volume: 6
  issue: 1
  year: 2021
  ident: 63001_CR22
  publication-title: Trauma Surg. Acute Care Open
  doi: 10.1136/tsaco-2021-000705
– ident: 63001_CR70
  doi: 10.1109/CVPR.2019.00075
– volume: 1
  start-page: 1
  year: 2022
  ident: 63001_CR63
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/7897669
– ident: 63001_CR64
  doi: 10.1109/ic-ETITE47903.2020.235
– ident: 63001_CR40
  doi: 10.1109/SYNASC.2018.00041
– ident: 63001_CR38
  doi: 10.1109/FG52635.2021.9667072
– ident: 63001_CR59
  doi: 10.1109/ICCV.2017.89
– ident: 63001_CR9
  doi: 10.1007/978-3-319-76681-2_1
– volume: 53
  start-page: 2625
  issue: 7
  year: 2022
  ident: 63001_CR36
  publication-title: Injury
  doi: 10.1016/j.injury.2022.04.013
– volume: 130
  year: 2020
  ident: 63001_CR21
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109139
– volume: 1
  start-page: 1
  year: 2022
  ident: 63001_CR60
  publication-title: Int. J. Healthc. Manag.
– volume: 6
  start-page: 99
  issue: 2
  year: 2010
  ident: 63001_CR14
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2009.260
– volume: 216
  year: 2022
  ident: 63001_CR47
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2021.103345
– volume: 1
  start-page: 9
  issue: 1
  year: 2015
  ident: 63001_CR13
  publication-title: Chronic Dis. Transl. Med.
  doi: 10.1016/j.cdtm.2015.02.006
– ident: 63001_CR37
  doi: 10.1007/978-3-030-58592-1_15
– volume: 81
  start-page: 355
  issue: 3
  year: 1999
  ident: 63001_CR4
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-199903000-00007
– volume: 3
  start-page: 57
  issue: 1
  year: 2000
  ident: 63001_CR86
  publication-title: J. Clin. Densitom.
  doi: 10.1385/JCD:3:1:057
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 63001_CR71
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: 63001_CR25
  doi: 10.1007/978-3-030-32226-7_77
– ident: 63001_CR83
  doi: 10.1109/CVPR.2009.5206848
– volume: 83
  year: 2023
  ident: 63001_CR92
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102652
– ident: 63001_CR93
  doi: 10.1007/978-3-030-59722-1_42
– ident: 63001_CR51
– volume: 14
  start-page: 51
  year: 1993
  ident: 63001_CR1
  publication-title: Bone
  doi: 10.1016/8756-3282(93)90341-7
– volume: 34
  start-page: 23818
  year: 2021
  ident: 63001_CR84
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 2228
  issue: 11
  year: 2010
  ident: 63001_CR85
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.02.032
– volume: 63
  start-page: 27
  issue: 1
  year: 2019
  ident: 63001_CR26
  publication-title: J. Med. Imaging Rad. Oncol.
  doi: 10.1111/1754-9485.12828
– volume: 8
  start-page: 68
  year: 1998
  ident: 63001_CR3
  publication-title: Osteoporos. Int.
  doi: 10.1007/s001980050050
– volume: 28
  start-page: 1
  year: 2015
  ident: 63001_CR74
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 74
  start-page: 1374
  issue: 12
  year: 1984
  ident: 63001_CR53
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.74.12.1374
– volume: 31
  start-page: 175
  issue: 2
  year: 2020
  ident: 63001_CR27
  publication-title: Joint Dis. Relat. Surg.
– volume: 12
  start-page: 1066
  issue: 1
  year: 2021
  ident: 63001_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21311-3
– ident: 63001_CR69
  doi: 10.1109/CVPR.2017.690
– volume: 194
  start-page: 1054
  issue: 4
  year: 2010
  ident: 63001_CR15
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.09.3295
– volume: 13
  start-page: 10415
  issue: 1
  year: 2023
  ident: 63001_CR82
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37560-9
– volume: 17
  start-page: 711
  issue: 8
  year: 1996
  ident: 63001_CR87
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/00006231-199608000-00012
– volume: 33
  start-page: 1209
  year: 2020
  ident: 63001_CR33
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-020-00364-8
– volume: 9
  start-page: 71954
  year: 2021
  ident: 63001_CR91
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079215
– ident: 63001_CR62
  doi: 10.1109/CICT48419.2019.9066263
– ident: 63001_CR66
– volume: 75
  start-page: 713
  issue: 9
  year: 2020
  ident: 63001_CR19
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.05.021
– volume: 30
  start-page: 1
  year: 2017
  ident: 63001_CR79
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 63001_CR65
  doi: 10.1007/978-3-319-10602-1_48
– ident: 63001_CR24
– volume: 1
  start-page: 1
  year: 2021
  ident: 63001_CR46
  publication-title: Multimed. Syst.
– ident: 63001_CR20
– year: 2021
  ident: 63001_CR90
  publication-title: Gigantum.
  doi: 10.34747/f06m-m978
– volume: 37
  start-page: 144
  year: 2009
  ident: 63001_CR16
  publication-title: J. Emerg. Med.
  doi: 10.1016/j.jemermed.2007.12.039
– ident: 63001_CR58
  doi: 10.1109/CVPR.2017.634
– ident: 63001_CR42
  doi: 10.1007/978-3-319-67389-9_9
– ident: 63001_CR77
  doi: 10.1109/ICCV.2019.00972
– ident: 63001_CR8
– volume: 17
  start-page: 1
  issue: 1
  year: 2022
  ident: 63001_CR18
  publication-title: J. Orthoped. Surg. Res.
  doi: 10.1186/s13018-021-02689-8
– ident: 63001_CR56
– ident: 63001_CR81
– volume: 12
  start-page: 366
  issue: 4
  year: 2005
  ident: 63001_CR2
  publication-title: Acad. Emerg. Med.
  doi: 10.1197/j.aem.2004.10.024
– ident: 63001_CR49
  doi: 10.1016/j.media.2023.102802
– ident: 63001_CR50
  doi: 10.1109/CVPR46437.2021.00841
– volume: 10
  start-page: 521
  issue: 1
  year: 2023
  ident: 63001_CR52
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02432-4
– volume: 16
  start-page: 669
  issue: 1
  year: 2021
  ident: 63001_CR5
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-021-02821-8
– ident: 63001_CR76
  doi: 10.1109/ICCV.2017.324
– ident: 63001_CR30
  doi: 10.1109/ICECTA48151.2019.8959770
– volume: 10
  start-page: 13694
  issue: 1
  year: 2020
  ident: 63001_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70660-4
– volume: 26
  start-page: 1197
  year: 2003
  ident: 63001_CR17
  publication-title: Orthopedics
  doi: 10.3928/0147-7447-20031201-07
– ident: 63001_CR67
– ident: 63001_CR78
  doi: 10.1109/ICCV48922.2021.00986
– volume: 13
  start-page: 97
  issue: 2
  year: 2002
  ident: 63001_CR6
  publication-title: Osteoporosis Int.
  doi: 10.1007/s001980200000
– volume: 125
  start-page: 521
  year: 2019
  ident: 63001_CR45
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.06.015
– volume: 15
  start-page: 716
  issue: 12
  year: 2007
  ident: 63001_CR89
  publication-title: JAAOS-J. Am. Acad. Orthoped. Surg.
  doi: 10.5435/00124635-200712000-00005
– volume: 43
  start-page: 92
  issue: 2
  year: 2018
  ident: 63001_CR12
  publication-title: P&T Peer-Rev. J. Formul. Manag.
– volume: 15
  start-page: 847
  year: 2020
  ident: 63001_CR35
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02150-x
– volume: 65
  start-page: 183
  year: 1999
  ident: 63001_CR54
  publication-title: Calcified Tissue Int.
  doi: 10.1007/s002239900679
– volume: 43
  start-page: 1483
  issue: 5
  year: 2019
  ident: 63001_CR75
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2956516
– volume: 14
  start-page: 203
  issue: 1
  year: 2019
  ident: 63001_CR10
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-019-1226-6
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 63001_CR72
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 109
  start-page: 820
  issue: 5
  year: 2021
  ident: 63001_CR48
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3054390
– volume: 213
  start-page: 234
  year: 2013
  ident: 63001_CR7
  publication-title: Int. J. Endocrinol.
  doi: 10.1155/2013/213234
– ident: 63001_CR57
  doi: 10.1109/CVPR.2017.106
– volume: 12
  start-page: 2058
  issue: 1
  year: 2022
  ident: 63001_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06018-9
– ident: 63001_CR80
– ident: 63001_CR94
  doi: 10.1007/978-3-030-87589-3_51
SSID ssj0000529419
Score 2.4518685
Snippet Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are...
Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are...
Abstract Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12046
SubjectTerms 692/308/53/2423
692/698/1671/63
692/700/1421/1770
Aged
Aged, 80 and over
Deep Learning
Female
Femoral Fractures - diagnostic imaging
Femur
Fracture
Fractures
Hip
Hip Fractures - diagnostic imaging
Hip joint
Humanities and Social Sciences
Humans
Localization
Male
Middle Aged
multidisciplinary
Neural Networks, Computer
Plain radiography
Proximal Femoral Fractures
Proximal femur
Radiography
Radiography - methods
Science
Science (multidisciplinary)
Sensitivity and Specificity
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lAq-abjmo2n6JCoeh6AIerBvIWlSLdy2a3dXvP_emTTbY_046FObQDqZZH7JzPyGkBfS8RY0iVOvgqBSe01dqVtaVqGWHv1Wkaf74yd1eiY_LMpFunBbp7DK3Z4YN2o_NHhHfgzQFqwnHB7E69UPilWj0LuaSmhcJzeQugxDuqpFNd-xoBdLsjrlyhRCH6_BXmFOGZcUuaYY5Xv2KNL2_wtr_h0y-YffNJqjkzvkdsKR-Ztp4u-Sa6G_R25OlSUv7pMvn8fhV7eEFm1Ybse8xWSo7RhyHzYx-KrP4Vmd267PR-u7RFyd_-ws9Ihkn_nqYrTLzuf9FCm-fkDOTt5_fXdKU_0E2qii2tBWNpjHpgGSNNKVJS-8gvOXbUNdBWF1w0RbKM9LJ71ygLOC0EELeEqmPAC1h-SgH_pwSHIVGttoJypfOAmgoRbMhsCUqrwredAZYTspmiaRi2ONi3MTndxCm0nyBiRvouQNz8jLuc9qota4svVbnJy5JdJixxfD-M2kVWYiOQ0PyjLrJW-Yhu3FWe2r1vO6lSwjR7upNWmtrs2lZmXk-fwZVhm6Tmwfhm1sw5ioACtl5NGkCfNIkE4H838zovd0ZG-o-1_67ntk8gZDg0dalZFXO3W6HNf_ZfH46t94Qm5x1PACsw2PyMFm3IanAJ027llcH78BU6IUgA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB-OE8EXOc-vnucRwTetNh9N0wcRFY9DOBF04d5C0qRa2O2u3V25_e-dpO3K6uqTkKd2AmEyk_kNyfwG4KmwrEZLYqmTnqdCOZXaXNVpXvhSuHBvFXm6Lz_Ki4n4cJVfHcDY7mhQ4HJvahf6SU266Yvr75vX6PCv-pJx9XKJQSgUijGRBgIpmuKRfAMjUxEc9XKA-z3XNysFLYfamf1Td-JTpPHfhz3_fEL52z1qDE_nR3B7wJXkTW8Id-DAt8dws-80ubkLnz918-tmhhK1n607UofiqHXnifOr-BirJTgWU9O0pDOuGYisyY_G4IxI_kkWm87MGkfa_uX48h5Mzt9_eXeRDv0U0kpmxSqtRRXq2hRClErYPGeZk5iPmdqXhedGVZTXmXQst8JJi7jLc-UVx5FT6RC43YfDdt76h0Ckr0ylLC9cZgWCiJJT4z2VsnA2Z14lQEct6mogGw89L6Y6XnpzpXvNa9S8jprXLIFn2zmLnmrjn9Jvw-ZsJQNNdvww777qwet0JKthXhpqnGAVVXjcWKNcUTtW1oImcDpurR5NT2MShTgN01SewJPtb_S6cJViWj9fRxlKeYHYKYEHvSVsVxLodUI9cAJqx0Z2lrr7p22-RWZvDDwhxZUJPB_N6de6_q6Lk_-hi0dwiwU_yEKN4ikcrrq1f4yAa2XPohf9BIKDJKA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OE8EX8duep0TwTYvNR9P00Vs8DkER9ODeQtIkWrjtLt1d8f57J-nHsXoKQp-aCUwnk-SXzswvAK-EZQE9ieVOep4L5VRuSxXysvK1cDFulXi6P36SZ-fiw0V5cQBsqoVJSfuJ0jIt01N22NsNbjSxGIyJPJJE0RyX3VuRuj169UIu5v8qMXIlaD3WxxRc3dB1bw9KVP034cs_0yR_i5WmLej0HtwdsSN5N2h7Hw589wBuD7dJXj2EL5_71c92iRLBL3c9CbEACj-ROL9NCVcdwWd9adqO9Ma1I1k1-dEa7JGsQdZXvVm2jnRDdvjmEZyfvv-6OMvHOxPyRhbVNg-iibVrCmFII2xZssJJPHOZ4OvKc6MaykMhHSutcNIitvJcecXxKal0CM4ew2G36vxTINI3plGWV66wAoFCzanxnkpZOVsyrzKgkxV1MxKKx3stLnUKbHOlB8trtLxOltcsg9dzn_VAp_FP6ZM4OLNkpMJOL1b9Nz26hk6ENMxLQ40TrKEKlxRrlKuCY3UQNIPjaWj1OD83Gg9KiMXwKMozeDk348yK4RLT-dUuyVDKK8RHGTwZPGHWJFLoxJrfDNSej-yput_Std8TezduLvEYKzN4M7nTtV5_t8XR_4k_gzssenwRKw6P4XDb7_xzhE9b-yLNl1-qsxJY
  priority: 102
  providerName: Springer Nature
Title Proximal femur fracture detection on plain radiography via feature pyramid networks
URI https://link.springer.com/article/10.1038/s41598-024-63001-2
https://www.ncbi.nlm.nih.gov/pubmed/38802519
https://www.proquest.com/docview/3060641043
https://www.proquest.com/docview/3061137110
https://pubmed.ncbi.nlm.nih.gov/PMC11130146
https://doaj.org/article/053762e6a1ad42c18963ba8d7fd29f41
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFexrqvuu2CB3vbTK0Py_JjGlpKoKWsK-RNSJbMDI0TnGS0_31PspM1W7e9DIQN-gBxuuN-h3S_A_jEDa1Qk2hihWMJl1YmJpNVkuWu4NbfWwWe7vMLcXbNx5Ns8qDUl38T1tEDd4I7Cnwj1AlNtOW0JBI1xmhp88rSogop6xR93oNgqmP1pgUnRZ8lkzJ5tEBP5bPJKE88yxRJ6JYnCoT9j6HM3x9L_nJjGhzR6St42SPIeNjtfBeeuOY1PO9qSt69gavLdnZbT3FG5aarNq58GtSqdbF1y_DsqomxzW903cSttnVPWR3_qDWuCDSf8fyu1dPaxk33RnzxFq5PT76NzpK-ckJSijRfJhUvfQabRDBScpNlNLUCIy9duSJ3TMuSsCoVlmaGW2EQYTkmnWTYMiIsQrR3sNPMGrcHsXClLqVhuU0NR7hQMKKdI0Lk1mTUyQjIWoqq7GnFfXWLGxWut5lUneQVSl4FySsawefNmnlHqvHX2cf-cDYzPSF26EA1Ub2aqH-pSQSH66NVvZUuFIZLiMgwIGURfNwMo335SxPduNkqzCGE5YiSInjfacJmJ55Ix2f-RiC3dGRrq9sjTf09cHiji_HBrIjgy1qdfu7rz7LY_x-yOIAX1NtB6rMRD2Fn2a7cB4RWSzOAp_kkH8Cz4XB8Ncb_8cnF5VfsHYnRIFgYfs-5vAcFtyKZ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBgQJniBa_BHHfUCIwaaObdUEm7Q348TOFmlNS9oC_af4Gzk7SafysbdJeYrtyDnf-c6-u98BvOQZLZCTaGSEZRGXRkZZIosoSW2fG-e38jjdB0MxOOafTpKTNfjV5cK4sMpuT_QbtRnn7o58E01b1J54eGDvJt8iVzXKeVe7EhoNW-zZxQ88sk3f7n7E9X1F6c720YdB1FYViHIRp7Oo4LnL7pKoqHOeJQmNjcBTiS5sP7VMy5ywIhaGJhk3IkPrwzJpJcMnIcKg-YLfvQbrnOGgHqxvbQ8PPy9vdZzfjJN-m50TM7k5RQ3pstgojxy6FYnoigb0hQL-Zd3-HaT5h6fWK8Cd23CrtVzD9w2r3YE1W92F600ty8U9-HJYj3-WI-xR2NG8DguXfjWvbWjszId7VSE-k3NdVmGtTdlCZYffS40jPLxoOFnUelSasGpi06f34fhKaPsAetW4so8gFDbXucxYauKMo5nSZ0RbS4RITZZQKwMgHRVV3sKZu6oa58q71ZlUDeUVUl55yisawOvlmEkD5nFp7y23OMueDojbvxjXp6qVa-XhcKgVmmjDaU4kbmiZliYtDO0XnASw0S2taneHqbrg5QBeLJtRrp2zRld2PPd9CGEpWmcBPGw4YTkTB-DjMo4DkCs8sjLV1ZaqPPPY4aja3CFaBPCmY6eLef2fFo8v_43ncGNwdLCv9neHe0_gJnXcHrtcxw3ozeq5fYqG2yx71kpLCF-vWkB_A0ZWURU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaKNH3GcA0JAWbUUqkpQaW_GiR2I1E2W7C6wf41fx9hJtloevVXyJYkdOeMZzzgz8w3AE57TEjmJRkZYFnFpZJQnsoyS1GbcOL-Vx-n-cCj2jvm7STLZgl9DLowLqxz2RL9Rm6Zw_8hHaNqi9sTDAxuVfVjE0e745exb5CpIOU_rUE6jY5EDu_qBx7f5i_1dXOunlI7ffnqzF_UVBqJCxOkiKnnhMr0kKu2C50lCYyPwhKJLm6WWaVkQVsbC0CTnRuRoiVgmrWTYEiIMmjL43gtwMcVLJ2PpJF3_33EeNE6yPk8nZnI0R13p8tkojxzOFYnohi70JQP-Zef-Ha75h8_Wq8LxNbja27Dhq47prsOWrW_Apa6q5eomfDxqm5_VFHuUdrpsw9IlYi1bGxq78IFfdYhtdqKrOmy1qXrQ7PB7pXGEBxoNZ6tWTysT1l2U-vwWHJ8LZW_Ddt3U9i6Ewha6kDlLTZxzNFgyRrS1RIjU5Am1MgAyUFEVPbC5q69xoryDnUnVUV4h5ZWnvKIBPFuPmXWwHmf2fu0WZ93TQXL7G037RfUSrjwwDrVCE204LYjErS3X0qSloVnJSQA7w9Kqfp-Yq1OuDuDx-jFKuHPb6No2S9-HEJainRbAnY4T1jNxUD4u9zgAucEjG1PdfFJXXz2KOCo5d5wWATwf2Ol0Xv-nxb2zP-MRXEaxVO_3Dw_uwxXqmD12SY87sL1ol_YBWnCL_KEXlRA-n7ds_gZn_lPl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+femur+fracture+detection+on+plain+radiography+via+feature+pyramid+networks&rft.jtitle=Scientific+reports&rft.au=%C4%B0lkay+Y%C4%B1ld%C4%B1z+Potter&rft.au=Diana+Yeritsyan&rft.au=Sarah+Mahar&rft.au=Nadim+Kheir&rft.date=2024-05-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-63001-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon