Proximal femur fracture detection on plain radiography via feature pyramid networks
Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Fe...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 12046 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.05.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures. |
---|---|
AbstractList | Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures. Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures.Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6-14% sensitivity and 1-9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures. Abstract Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are predominantly diagnosed by radiologist review of radiographs. In this study, we developed a deep learning model by extending the VarifocalNet Feature Pyramid Network (FPN) for detection and localization of proximal femur fractures from plain radiography with clinically relevant metrics. We used a dataset of 823 hip radiographs of 150 subjects with proximal femur fractures and 362 controls to develop and evaluate the deep learning model. Our model attained 0.94 specificity and 0.95 sensitivity in fracture detection over the diverse imaging dataset. We compared the performance of our model against five benchmark FPN models, demonstrating 6–14% sensitivity and 1–9% accuracy improvement. In addition, we demonstrated that our model outperforms a state-of-the-art transformer model based on DINO network by 17% sensitivity and 5% accuracy, while taking half the time on average to process a radiograph. The developed model can aid radiologists and support on-premise integration with hospital cloud services to enable automatic, opportunistic screening for hip fractures. |
ArticleNumber | 12046 |
Author | Nazarian, Ara Yeritsyan, Diana Putman, Melissa Vaziri, Ashkan Kheir, Nadim Vaziri, Aidin Rodriguez, Edward K. Wu, Jim Yıldız Potter, İlkay Mahar, Sarah |
Author_xml | – sequence: 1 givenname: İlkay surname: Yıldız Potter fullname: Yıldız Potter, İlkay email: ilkay.yildiz@biosensics.com organization: BioSensics, LLC – sequence: 2 givenname: Diana surname: Yeritsyan fullname: Yeritsyan, Diana organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 3 givenname: Sarah surname: Mahar fullname: Mahar, Sarah organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 4 givenname: Nadim surname: Kheir fullname: Kheir, Nadim organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 5 givenname: Aidin surname: Vaziri fullname: Vaziri, Aidin organization: BioSensics, LLC – sequence: 6 givenname: Melissa surname: Putman fullname: Putman, Melissa organization: Division of Endocrinology, Massachusetts General Hospital and Harvard Medical School – sequence: 7 givenname: Edward K. surname: Rodriguez fullname: Rodriguez, Edward K. organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 8 givenname: Jim surname: Wu fullname: Wu, Jim organization: Department of Radiology, Massachusetts General Brigham (MGB) and Harvard Medical School – sequence: 9 givenname: Ara surname: Nazarian fullname: Nazarian, Ara organization: Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Orthopaedic Surgery, Yerevan State University – sequence: 10 givenname: Ashkan surname: Vaziri fullname: Vaziri, Ashkan organization: BioSensics, LLC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38802519$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1vFCEUhompsXXtH_DCTOKNN6Mcvoa5Mqbxo0kTTdRrwgCzZZ2FEWZa99_L7rTa9qKEBALP--aFc56joxCDQ-gl4LeAqXyXGfBW1piwWlCMoSZP0AnBjNeEEnJ0Z3-MTnPe4DI4aRm0z9AxlRITDu0J-v4txT9-q4eqd9s5VX3SZpqTq6ybnJl8DFWZ46B9qJK2Pq6THi931ZXXRaEP6LhLeuttFdx0HdOv_AI97fWQ3enNukI_P338cfalvvj6-fzsw0VtBG6mumcGGGFSttSwjnOCrRAYdO_axlEtDdAeC0t4x6zoMG8dlU7SMjkIC4Ku0Pnia6PeqDGVZ6Sditqrw0FMa6XT5M3gFOa0EcQJDdoyYkC2gnZa2qa3pO0ZFK_3i9c4d1tnjQtT0sM90_s3wV-qdbxSAEAxsH2aNzcOKf6eXZ7U1mfjhkEHF-esKBYFbaBUb4VeP0A3cU6h_NWewoIBZrRQr-5G-pfltngFkAtgUsw5uV4ZP-l9zUpCPyjAat8qamkVVVpFHVpFkSIlD6S37o-K6CLKBQ5rl_7HfkT1F2Y1z5E |
CitedBy_id | crossref_primary_10_1007_s10278_024_01373_7 crossref_primary_10_1038_s41598_025_93505_4 crossref_primary_10_1177_08953996241312594 crossref_primary_10_3390_diagnostics15030271 crossref_primary_10_1007_s11604_024_01702_4 |
Cites_doi | 10.1016/j.media.2022.102652 10.1038/nrrheum.2009.260 10.1016/8756-3282(93)90341-7 10.1109/TPAMI.2019.2956516 10.3389/fbioe.2022.927926 10.1109/ACCESS.2021.3079215 10.1038/s41598-022-06018-9 10.1038/s41597-023-02432-4 10.1186/s13018-021-02821-8 10.1186/s13018-019-1226-6 10.1155/2022/7897669 10.2106/00004623-199903000-00007 10.1038/s41467-021-21311-3 10.1007/s001980050050 10.1016/j.arthro.2009.01.011 10.1016/j.patrec.2005.10.010 10.1007/s001980200000 10.1097/00006231-199608000-00012 10.1016/S2589-7500(22)00004-8 10.1038/s41598-023-37560-9 10.1007/s10278-020-00364-8 10.1016/j.cviu.2021.103345 10.1136/tsaco-2021-000705 10.1111/1754-9485.12828 10.34747/f06m-m978 10.1197/j.aem.2004.10.024 10.1016/j.jemermed.2007.12.039 10.5435/00124635-200712000-00005 10.2105/AJPH.74.12.1374 10.1016/j.jbiomech.2010.02.032 10.2214/AJR.09.3295 10.1007/s11548-020-02150-x 10.1148/radiology.143.1.7063747 10.1155/2013/213234 10.1007/bf00298740 10.1016/j.cdtm.2015.02.006 10.3928/0147-7447-20031201-07 10.1038/s41598-020-70660-4 10.3390/bioengineering10060735 10.1007/s10278-021-00499-2 10.1016/j.patrec.2019.06.015 10.1385/JCD:3:1:057 10.1016/j.crad.2020.05.021 10.1007/s00198-015-3154-6 10.1007/s002239900679 10.1016/j.isci.2023.107350 10.1109/JPROC.2021.3054390 10.1016/j.ejrad.2020.109139 10.1016/j.injury.2022.04.013 10.1002/9780470479216.corpsy0524 10.1109/ICSPCC52875.2021.9564613 10.1109/CVPR.2019.00075 10.1109/ic-ETITE47903.2020.235 10.1109/SYNASC.2018.00041 10.1109/FG52635.2021.9667072 10.1109/ICCV.2017.89 10.1007/978-3-319-76681-2_1 10.1007/978-3-030-58592-1_15 10.1007/978-3-030-32226-7_77 10.1109/CVPR.2009.5206848 10.1007/978-3-030-59722-1_42 10.1109/CVPR.2017.690 10.1109/CICT48419.2019.9066263 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2017.634 10.1007/978-3-319-67389-9_9 10.1109/ICCV.2019.00972 10.1186/s13018-021-02689-8 10.1016/j.media.2023.102802 10.1109/CVPR46437.2021.00841 10.1109/ICCV.2017.324 10.1109/ICECTA48151.2019.8959770 10.1109/ICCV48922.2021.00986 10.1109/CVPR.2017.106 10.1007/978-3-030-87589-3_51 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-63001-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41 PMC11130146 38802519 10_1038_s41598_024_63001_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R44AG081031 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIH HHS grantid: R44AG081031 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c607t-f4c14248893c4b5520d6601afe97e3a8c13f06d25b4d6b059e38e83e83516d163 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Thu Aug 21 18:33:49 EDT 2025 Fri Jul 11 07:35:35 EDT 2025 Wed Aug 13 06:05:41 EDT 2025 Wed Feb 19 02:07:10 EST 2025 Tue Jul 01 01:01:43 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Plain radiography Fracture Proximal femur Hip |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-f4c14248893c4b5520d6601afe97e3a8c13f06d25b4d6b059e38e83e83516d163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/053762e6a1ad42c18963ba8d7fd29f41 |
PMID | 38802519 |
PQID | 3060641043 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11130146 proquest_miscellaneous_3061137110 proquest_journals_3060641043 pubmed_primary_38802519 crossref_citationtrail_10_1038_s41598_024_63001_2 crossref_primary_10_1038_s41598_024_63001_2 springer_journals_10_1038_s41598_024_63001_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-27 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Tu (CR12) 2018; 43 Ji, Yu (CR13) 2015; 1 Cannon, Silvestri, Munro (CR16) 2009; 37 Salari (CR5) 2021; 16 Faulkner, Genant, McClung (CR88) 1995; 56 Melton (CR1) 1993; 14 CR39 CR38 CR37 Chen, Zhou, Onozuka, Kubo (CR7) 2013; 213 Pierre, Zurakowski, Nazarian, Hauser-Kara, Snyder (CR85) 2010; 43 Rao, Reddy, Rao (CR86) 2000; 3 CR78 CR77 Lu, Wang, Wang (CR61) 2022; 1 CR76 Liu, Sangineto, Bi, Sebe, Lepri, Nadai (CR84) 2021; 34 CR30 CR73 CR70 Dominguez, Liu, Roberts, Mandell, Richman (CR2) 2005; 12 Cheng (CR90) 2021 Tanzi, Audisio, Cirrincione, Aprato, Vezzetti (CR36) 2022; 53 Cai, Vasconcelos (CR75) 2019; 43 Kibriya, Amin, Alshehri, Masood, Alshamrani, Alshehri (CR63) 2022; 1 Ren, He, Girshick, Sun (CR74) 2015; 28 Yang, Yin, Cao, Feng, Fan, He (CR19) 2020; 75 CR8 Kitamura (CR21) 2020; 130 Mutasa, Varada, Goel, Wong, Rasiej (CR33) 2020; 33 Abedeen, Rahman, Prottyasha, Ahmed, Chowdhury, Shatabda (CR52) 2023; 10 Kim, Moon, Goh, Jung (CR82) 2023; 13 CR9 CR49 Harvey, Dennison, Cooper (CR14) 2010; 6 Cha, Kim, Park, Kim, Lee, Yoo (CR18) 2022; 17 CR42 CR41 Oden, McCloskey, Kanis, Harvey, Johansson (CR11) 2015; 26 CR40 Zhou, Greenspan, Davatzikos, Duncan, Van Ginneken, Madabhushi, Prince, Rueckert, Summers (CR48) 2021; 109 CR83 Choi, Hui, Spain, Su, Cheng, Liao (CR22) 2021; 6 CR81 Oakden-Rayner, Gale, Bonham, Lungren, Carneiro, Bradley, Palmer (CR31) 2022; 4 CR80 Kirby, Spritzer (CR15) 2010; 194 Lee, Jang, Lee, Kim, Jo, Kim (CR28) 2020; 10 Farmer, White, Brody, Bailey (CR53) 1984; 74 Guan, Yao, Zhang, Wang (CR45) 2019; 125 Murphy, Ehrhardt, Gregson, von Arx, Hartley, Whitehouse, Thomas, Stenhouse, Chesser, Budd, Gill (CR34) 2022; 12 Droll, Broekhuyse, O'Brien (CR89) 2007; 15 Ouyang, Chen, Tee, Lin, Kuo, Liao, Cheng, Liao (CR23) 2023; 10 Matsuda (CR55) 2009; 25 Kannus, Natri, Paakkala, Jarvinen (CR4) 1999; 81 CR59 Gao, Soh, Liu, Lim, Ting, Cheng, Wong, Liew, Oh, Tan, Venkataraman (CR32) 2023; 26 CR58 CR57 Liu, Lu, Chen, Huo, Xue, Wang, Fang, Xie, Xie, Ye (CR44) 2022; 10 CR56 CR51 CR50 CR94 Han, Wang, Liu (CR91) 2021; 9 CR93 Gao, Hong, Li, Zhang, Wu, Wang, Zhang, Gong, Zheng, Meng, Li (CR92) 2023; 83 Karanam, Srinivas, Chakravarty (CR60) 2022; 1 Beyaz, Açıcı, Sümer (CR27) 2020; 31 Guan, Yao, Wang, Zhang, Zhang, Wang, Wang (CR47) 2022; 216 Jiménez-Sánchez, Kazi, Albarqouni, Kirchhoff, Biberthaler, Navab, Kirchhoff, Mateus (CR35) 2020; 15 Adams, Chen, Holcdorf, McCusker, Howe, Gaillard (CR26) 2019; 63 Bae, Yu, Oh, Kim, Chung, Byun, Yoon, Ahn, Lee (CR29) 2021; 34 CR25 CR69 Guzon-Illescas (CR10) 2019; 14 CR24 CR68 Hanley, McNeil (CR72) 1982; 143 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (CR79) 2017; 30 CR67 CR66 CR65 Melton, Therneau, Larson (CR3) 1998; 8 CR20 CR64 CR62 Cheng, Wang, Chen, Hsiao, Yeh, Hsieh, Miao, Xiao, Liao, Lu (CR43) 2021; 12 Fawcett (CR71) 2006; 27 Parkkari, Kannus, Palvanen, Natri, Vainio, Aho, Vuori, Järvinen (CR54) 1999; 65 Shabat (CR17) 2003; 26 Turner (CR6) 2002; 13 Yang, Chieng, Tsai, Liu (CR87) 1996; 17 Wang, Yao, Zhang, Guan, Wang, Zhang (CR46) 2021; 1 63001_CR67 H Kibriya (63001_CR63) 2022; 1 63001_CR66 Y Liu (63001_CR84) 2021; 34 63001_CR9 63001_CR65 63001_CR8 63001_CR20 63001_CR64 S Beyaz (63001_CR27) 2020; 31 S Ren (63001_CR74) 2015; 28 63001_CR25 63001_CR69 Y Cha (63001_CR18) 2022; 17 63001_CR24 63001_CR68 ME Farmer (63001_CR53) 1984; 74 S Dominguez (63001_CR2) 2005; 12 J Choi (63001_CR22) 2021; 6 63001_CR62 M-X Ji (63001_CR13) 2015; 1 L Tanzi (63001_CR36) 2022; 53 Z Cai (63001_CR75) 2019; 43 L Melton (63001_CR1) 1993; 14 63001_CR56 JA Hanley (63001_CR72) 1982; 143 DK Matsuda (63001_CR55) 2009; 25 63001_CR59 A Vaswani (63001_CR79) 2017; 30 63001_CR58 B Guan (63001_CR45) 2019; 125 63001_CR57 RS Yang (63001_CR87) 1996; 17 J Parkkari (63001_CR54) 1999; 65 S Mutasa (63001_CR33) 2020; 33 63001_CR51 63001_CR50 63001_CR94 63001_CR93 CT Cheng (63001_CR43) 2021; 12 T Kim (63001_CR82) 2023; 13 P Liu (63001_CR44) 2022; 10 Z Gao (63001_CR92) 2023; 83 N Harvey (63001_CR14) 2010; 6 CH Turner (63001_CR6) 2002; 13 CH Ouyang (63001_CR23) 2023; 10 S Shabat (63001_CR17) 2003; 26 KN Tu (63001_CR12) 2018; 43 EA Murphy (63001_CR34) 2022; 12 AD Rao (63001_CR86) 2000; 3 CT Cheng (63001_CR90) 2021 63001_CR42 63001_CR49 SK Zhou (63001_CR48) 2021; 109 MA Pierre (63001_CR85) 2010; 43 KG Faulkner (63001_CR88) 1995; 56 63001_CR81 S Lu (63001_CR61) 2022; 1 63001_CR80 63001_CR41 63001_CR40 LJ Melton III (63001_CR3) 1998; 8 N Salari (63001_CR5) 2021; 16 63001_CR83 O Guzon-Illescas (63001_CR10) 2019; 14 G Kitamura (63001_CR21) 2020; 130 M Wang (63001_CR46) 2021; 1 J Han (63001_CR91) 2021; 9 B Guan (63001_CR47) 2022; 216 H Chen (63001_CR7) 2013; 213 63001_CR39 KP Droll (63001_CR89) 2007; 15 MW Kirby (63001_CR15) 2010; 194 63001_CR78 63001_CR77 SR Karanam (63001_CR60) 2022; 1 63001_CR76 63001_CR38 C Lee (63001_CR28) 2020; 10 63001_CR37 63001_CR70 L Oakden-Rayner (63001_CR31) 2022; 4 63001_CR30 63001_CR73 M Adams (63001_CR26) 2019; 63 P Kannus (63001_CR4) 1999; 81 J Cannon (63001_CR16) 2009; 37 T Fawcett (63001_CR71) 2006; 27 S Yang (63001_CR19) 2020; 75 A Jiménez-Sánchez (63001_CR35) 2020; 15 A Oden (63001_CR11) 2015; 26 Y Gao (63001_CR32) 2023; 26 I Abedeen (63001_CR52) 2023; 10 J Bae (63001_CR29) 2021; 34 |
References_xml | – volume: 43 start-page: 92 issue: 2 year: 2018 end-page: 104 ident: CR12 article-title: Osteoporosis: A review of treatment options publication-title: P&T Peer-Rev. J. Formul. Manag. – ident: CR70 – ident: CR49 – ident: CR68 – ident: CR93 – ident: CR39 – volume: 83 year: 2023 ident: CR92 article-title: A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102652 – ident: CR51 – volume: 1 start-page: 1 year: 2022 end-page: 12 ident: CR60 article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery publication-title: Int. J. Healthc. Manag. – volume: 34 start-page: 23818 year: 2021 end-page: 23830 ident: CR84 article-title: Efficient training of visual transformers with small datasets publication-title: Adv. Neural Inf. Process. Syst. – volume: 6 start-page: 99 issue: 2 year: 2010 end-page: 105 ident: CR14 article-title: Osteoporosis: Impact on health and economics publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2009.260 – volume: 14 start-page: 51 year: 1993 end-page: 58 ident: CR1 article-title: Hip fracture: A worldwide problem today and tomorrow publication-title: Bone doi: 10.1016/8756-3282(93)90341-7 – volume: 43 start-page: 1483 issue: 5 year: 2019 end-page: 1498 ident: CR75 article-title: Cascade R-CNN: High quality object detection and instance segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – ident: CR80 – ident: CR77 – ident: CR8 – volume: 10 year: 2022 ident: CR44 article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.927926 – ident: CR58 – volume: 30 start-page: 1 year: 2017 ident: CR79 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 71954 year: 2021 end-page: 71967 ident: CR91 article-title: Contextual prior constrained deep networks for mitosis detection with point annotations publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079215 – volume: 12 start-page: 2058 issue: 1 year: 2022 ident: CR34 article-title: Machine learning outperforms clinical experts in classification of hip fractures publication-title: Sci. Rep. doi: 10.1038/s41598-022-06018-9 – ident: CR25 – volume: 10 start-page: 521 issue: 1 year: 2023 ident: CR52 article-title: FracAtlas: A dataset for fracture classification, localization and segmentation of musculoskeletal radiographs publication-title: Sci. Data doi: 10.1038/s41597-023-02432-4 – ident: CR42 – volume: 16 start-page: 669 issue: 1 year: 2021 ident: CR5 article-title: Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-021-02821-8 – volume: 14 start-page: 203 issue: 1 year: 2019 ident: CR10 article-title: Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-019-1226-6 – volume: 1 start-page: 1 year: 2022 ident: CR63 article-title: A novel and effective brain tumor classification model using deep feature fusion and famous machine learning classifiers publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/7897669 – volume: 81 start-page: 355 issue: 3 year: 1999 end-page: 363 ident: CR4 article-title: An outcome study of chronic patellofemoral pain syndrome: Seven-year follow-up of patients in a randomized, controlled trial publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-199903000-00007 – volume: 31 start-page: 175 issue: 2 year: 2020 ident: CR27 article-title: Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches publication-title: Joint Dis. Relat. Surg. – volume: 12 start-page: 1066 issue: 1 year: 2021 ident: CR43 article-title: A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs publication-title: Nat. Commun. doi: 10.1038/s41467-021-21311-3 – volume: 8 start-page: 68 year: 1998 end-page: 74 ident: CR3 article-title: Long-term trends in hip fracture prevalence: The influence of hip fracture incidence and survival publication-title: Osteoporos. Int. doi: 10.1007/s001980050050 – ident: CR67 – volume: 17 start-page: 1 issue: 1 year: 2022 end-page: 13 ident: CR18 article-title: Artificial intelligence and machine learning on diagnosis and classification of hip fracture: Systematic review publication-title: J. Orthoped. Surg. Res. – volume: 25 start-page: 408 issue: 4 year: 2009 end-page: 412 ident: CR55 article-title: A rare fracture, an even rarer treatment: The arthroscopic reduction and internal fixation of an isolated femoral head fracture publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2009.01.011 – ident: CR50 – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 ident: CR71 article-title: An introduction to ROC analysis publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 13 start-page: 97 issue: 2 year: 2002 end-page: 104 ident: CR6 article-title: Biomechanics of bone: Determinants of skeletal fragility and bone quality publication-title: Osteoporosis Int. doi: 10.1007/s001980200000 – ident: CR9 – ident: CR57 – volume: 17 start-page: 711 issue: 8 year: 1996 end-page: 6 ident: CR87 article-title: Symmetry of bone mineral density in the hips is not affected by age publication-title: Nucl. Med. Commun. doi: 10.1097/00006231-199608000-00012 – ident: CR78 – volume: 28 start-page: 1 year: 2015 ident: CR74 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: CR81 – ident: CR64 – volume: 4 start-page: e351 issue: 5 year: 2022 end-page: e358 ident: CR31 article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: A diagnostic accuracy study publication-title: Lancet Digi. Health doi: 10.1016/S2589-7500(22)00004-8 – volume: 1 start-page: 1 year: 2021 end-page: 10 ident: CR46 article-title: ParallelNet: Multiple backbone network for detection tasks on thigh bone fracture publication-title: Multimed. Syst. – ident: CR66 – volume: 13 start-page: 10415 issue: 1 year: 2023 ident: CR82 article-title: Detection of incomplete atypical femoral fracture on anteroposterior radiographs via explainable artificial intelligence publication-title: Sci. Rep. doi: 10.1038/s41598-023-37560-9 – volume: 33 start-page: 1209 year: 2020 end-page: 1217 ident: CR33 article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification publication-title: J. Digit. Imaging doi: 10.1007/s10278-020-00364-8 – ident: CR37 – volume: 216 year: 2022 ident: CR47 article-title: Automatic detection and localization of thighbone fractures in X-ray based on improved deep learning method publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2021.103345 – volume: 6 issue: 1 year: 2021 ident: CR22 article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: A bi-institutional study publication-title: Trauma Surg. Acute Care Open doi: 10.1136/tsaco-2021-000705 – volume: 63 start-page: 27 issue: 1 year: 2019 end-page: 32 ident: CR26 article-title: Computer vs. human: Deep learning versus perceptual training for the detection of neck of femur fractures publication-title: J. Med. Imaging Rad. Oncol. doi: 10.1111/1754-9485.12828 – ident: CR30 – year: 2021 ident: CR90 article-title: A scalable physician-level deep learning algorithm of universal trauma finding detection of pelvic radiographs, PelvixNet dataset publication-title: Gigantum. doi: 10.34747/f06m-m978 – volume: 12 start-page: 366 issue: 4 year: 2005 end-page: 369 ident: CR2 article-title: Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs—a study of emergency department patients publication-title: Acad. Emerg. Med. doi: 10.1197/j.aem.2004.10.024 – volume: 37 start-page: 144 year: 2009 end-page: 152 ident: CR16 article-title: Imaging choices in occult hip fracture publication-title: J. Emerg. Med. doi: 10.1016/j.jemermed.2007.12.039 – volume: 15 start-page: 716 issue: 12 year: 2007 end-page: 727 ident: CR89 article-title: Fracture of the femoral head publication-title: JAAOS-J. Am. Acad. Orthoped. Surg. doi: 10.5435/00124635-200712000-00005 – ident: CR56 – volume: 74 start-page: 1374 issue: 12 year: 1984 end-page: 1380 ident: CR53 article-title: Race and sex differences in hip fracture incidence publication-title: Am. J. Public Health doi: 10.2105/AJPH.74.12.1374 – ident: CR40 – volume: 43 start-page: 2228 issue: 11 year: 2010 end-page: 36 ident: CR85 article-title: Assessment of the bilateral asymmetry of human femurs based on physical, densitometric, and structural rigidity characteristics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.02.032 – volume: 194 start-page: 1054 issue: 4 year: 2010 end-page: 1060 ident: CR15 article-title: Radiographic detection of hip and pelvic fractures in the emergency department publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.09.3295 – volume: 15 start-page: 847 year: 2020 end-page: 857 ident: CR35 article-title: Precise proximal femur fracture classification for interactive training and surgical planning publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02150-x – ident: CR69 – ident: CR94 – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 ident: CR72 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 213 start-page: 234 year: 2013 ident: CR7 article-title: Age-related changes in trabecular and cortical bone microstructure publication-title: Int. J. Endocrinol. doi: 10.1155/2013/213234 – ident: CR73 – ident: CR65 – volume: 56 start-page: 26 issue: 1 year: 1995 end-page: 31 ident: CR88 article-title: Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans publication-title: Calcif. Tissue Int. doi: 10.1007/bf00298740 – volume: 1 start-page: 9 issue: 1 year: 2015 end-page: 13 ident: CR13 article-title: Primary osteoporosis in postmenopausal women publication-title: Chronic Dis. Transl. Med. doi: 10.1016/j.cdtm.2015.02.006 – ident: CR38 – volume: 26 start-page: 1197 year: 2003 end-page: 1199 ident: CR17 article-title: Economic consequences of operative delay for hip fractures in a non-profit institution publication-title: Orthopedics doi: 10.3928/0147-7447-20031201-07 – volume: 10 start-page: 13694 issue: 1 year: 2020 ident: CR28 article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network publication-title: Sci. Rep. doi: 10.1038/s41598-020-70660-4 – volume: 10 start-page: 735 issue: 6 year: 2023 ident: CR23 article-title: The application of design thinking in developing a deep learning algorithm for hip fracture detection publication-title: Bioengineering doi: 10.3390/bioengineering10060735 – volume: 34 start-page: 1099 issue: 5 year: 2021 end-page: 1109 ident: CR29 article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray publication-title: J. Digit. Imaging doi: 10.1007/s10278-021-00499-2 – volume: 125 start-page: 521 year: 2019 end-page: 526 ident: CR45 article-title: Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.06.015 – volume: 3 start-page: 57 issue: 1 year: 2000 end-page: 61 ident: CR86 article-title: Is there a difference between right and left femoral bone density? publication-title: J. Clin. Densitom. doi: 10.1385/JCD:3:1:057 – volume: 75 start-page: 713 issue: 9 year: 2020 end-page: e17 ident: CR19 article-title: Diagnostic accuracy of deep learning in orthopedic fractures: A systematic review and meta-analysis publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.05.021 – volume: 26 start-page: 2243 issue: 9 year: 2015 end-page: 2248 ident: CR11 article-title: Burden of high fracture probability worldwide: Secular increases 2010–2040 publication-title: Osteoporosis Int. J. Estab. Res. Cooper. Between Eur. Found. Osteopor. Natl. Osteopor. Found. USA doi: 10.1007/s00198-015-3154-6 – volume: 65 start-page: 183 year: 1999 end-page: 187 ident: CR54 article-title: Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: A prospective controlled hip fracture study with 206 consecutive patients publication-title: Calcified Tissue Int. doi: 10.1007/s002239900679 – volume: 26 start-page: 1 issue: 8 year: 2023 ident: CR32 article-title: Application of a deep learning algorithm in the detection of hip fractures publication-title: Iscience doi: 10.1016/j.isci.2023.107350 – ident: CR59 – ident: CR76 – ident: CR83 – volume: 109 start-page: 820 issue: 5 year: 2021 end-page: 838 ident: CR48 article-title: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3054390 – ident: CR41 – volume: 1 start-page: 1 year: 2022 end-page: 17 ident: CR61 article-title: Automated universal fractures detection in X-ray images based on deep learning approach publication-title: Multimed. Tools Appl. – ident: CR62 – volume: 130 year: 2020 ident: CR21 article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109139 – volume: 53 start-page: 2625 issue: 7 year: 2022 end-page: 2634 ident: CR36 article-title: Vision transformer for femur fracture classification publication-title: Injury doi: 10.1016/j.injury.2022.04.013 – ident: CR24 – ident: CR20 – volume: 10 year: 2022 ident: 63001_CR44 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.927926 – ident: 63001_CR41 – volume: 1 start-page: 1 year: 2022 ident: 63001_CR61 publication-title: Multimed. Tools Appl. – ident: 63001_CR73 doi: 10.1002/9780470479216.corpsy0524 – volume: 4 start-page: e351 issue: 5 year: 2022 ident: 63001_CR31 publication-title: Lancet Digi. Health doi: 10.1016/S2589-7500(22)00004-8 – volume: 25 start-page: 408 issue: 4 year: 2009 ident: 63001_CR55 publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2009.01.011 – ident: 63001_CR68 – volume: 10 start-page: 735 issue: 6 year: 2023 ident: 63001_CR23 publication-title: Bioengineering doi: 10.3390/bioengineering10060735 – volume: 26 start-page: 1 issue: 8 year: 2023 ident: 63001_CR32 publication-title: Iscience doi: 10.1016/j.isci.2023.107350 – volume: 34 start-page: 1099 issue: 5 year: 2021 ident: 63001_CR29 publication-title: J. Digit. Imaging doi: 10.1007/s10278-021-00499-2 – volume: 26 start-page: 2243 issue: 9 year: 2015 ident: 63001_CR11 publication-title: Osteoporosis Int. J. Estab. Res. Cooper. Between Eur. Found. Osteopor. Natl. Osteopor. Found. USA doi: 10.1007/s00198-015-3154-6 – ident: 63001_CR39 doi: 10.1109/ICSPCC52875.2021.9564613 – volume: 56 start-page: 26 issue: 1 year: 1995 ident: 63001_CR88 publication-title: Calcif. Tissue Int. doi: 10.1007/bf00298740 – volume: 6 issue: 1 year: 2021 ident: 63001_CR22 publication-title: Trauma Surg. Acute Care Open doi: 10.1136/tsaco-2021-000705 – ident: 63001_CR70 doi: 10.1109/CVPR.2019.00075 – volume: 1 start-page: 1 year: 2022 ident: 63001_CR63 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/7897669 – ident: 63001_CR64 doi: 10.1109/ic-ETITE47903.2020.235 – ident: 63001_CR40 doi: 10.1109/SYNASC.2018.00041 – ident: 63001_CR38 doi: 10.1109/FG52635.2021.9667072 – ident: 63001_CR59 doi: 10.1109/ICCV.2017.89 – ident: 63001_CR9 doi: 10.1007/978-3-319-76681-2_1 – volume: 53 start-page: 2625 issue: 7 year: 2022 ident: 63001_CR36 publication-title: Injury doi: 10.1016/j.injury.2022.04.013 – volume: 130 year: 2020 ident: 63001_CR21 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109139 – volume: 1 start-page: 1 year: 2022 ident: 63001_CR60 publication-title: Int. J. Healthc. Manag. – volume: 6 start-page: 99 issue: 2 year: 2010 ident: 63001_CR14 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2009.260 – volume: 216 year: 2022 ident: 63001_CR47 publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2021.103345 – volume: 1 start-page: 9 issue: 1 year: 2015 ident: 63001_CR13 publication-title: Chronic Dis. Transl. Med. doi: 10.1016/j.cdtm.2015.02.006 – ident: 63001_CR37 doi: 10.1007/978-3-030-58592-1_15 – volume: 81 start-page: 355 issue: 3 year: 1999 ident: 63001_CR4 publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-199903000-00007 – volume: 3 start-page: 57 issue: 1 year: 2000 ident: 63001_CR86 publication-title: J. Clin. Densitom. doi: 10.1385/JCD:3:1:057 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 63001_CR71 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: 63001_CR25 doi: 10.1007/978-3-030-32226-7_77 – ident: 63001_CR83 doi: 10.1109/CVPR.2009.5206848 – volume: 83 year: 2023 ident: 63001_CR92 publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102652 – ident: 63001_CR93 doi: 10.1007/978-3-030-59722-1_42 – ident: 63001_CR51 – volume: 14 start-page: 51 year: 1993 ident: 63001_CR1 publication-title: Bone doi: 10.1016/8756-3282(93)90341-7 – volume: 34 start-page: 23818 year: 2021 ident: 63001_CR84 publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 2228 issue: 11 year: 2010 ident: 63001_CR85 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.02.032 – volume: 63 start-page: 27 issue: 1 year: 2019 ident: 63001_CR26 publication-title: J. Med. Imaging Rad. Oncol. doi: 10.1111/1754-9485.12828 – volume: 8 start-page: 68 year: 1998 ident: 63001_CR3 publication-title: Osteoporos. Int. doi: 10.1007/s001980050050 – volume: 28 start-page: 1 year: 2015 ident: 63001_CR74 publication-title: Adv. Neural Inf. Process. Syst. – volume: 74 start-page: 1374 issue: 12 year: 1984 ident: 63001_CR53 publication-title: Am. J. Public Health doi: 10.2105/AJPH.74.12.1374 – volume: 31 start-page: 175 issue: 2 year: 2020 ident: 63001_CR27 publication-title: Joint Dis. Relat. Surg. – volume: 12 start-page: 1066 issue: 1 year: 2021 ident: 63001_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21311-3 – ident: 63001_CR69 doi: 10.1109/CVPR.2017.690 – volume: 194 start-page: 1054 issue: 4 year: 2010 ident: 63001_CR15 publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.09.3295 – volume: 13 start-page: 10415 issue: 1 year: 2023 ident: 63001_CR82 publication-title: Sci. Rep. doi: 10.1038/s41598-023-37560-9 – volume: 17 start-page: 711 issue: 8 year: 1996 ident: 63001_CR87 publication-title: Nucl. Med. Commun. doi: 10.1097/00006231-199608000-00012 – volume: 33 start-page: 1209 year: 2020 ident: 63001_CR33 publication-title: J. Digit. Imaging doi: 10.1007/s10278-020-00364-8 – volume: 9 start-page: 71954 year: 2021 ident: 63001_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079215 – ident: 63001_CR62 doi: 10.1109/CICT48419.2019.9066263 – ident: 63001_CR66 – volume: 75 start-page: 713 issue: 9 year: 2020 ident: 63001_CR19 publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.05.021 – volume: 30 start-page: 1 year: 2017 ident: 63001_CR79 publication-title: Adv. Neural Inf. Process. Syst. – ident: 63001_CR65 doi: 10.1007/978-3-319-10602-1_48 – ident: 63001_CR24 – volume: 1 start-page: 1 year: 2021 ident: 63001_CR46 publication-title: Multimed. Syst. – ident: 63001_CR20 – year: 2021 ident: 63001_CR90 publication-title: Gigantum. doi: 10.34747/f06m-m978 – volume: 37 start-page: 144 year: 2009 ident: 63001_CR16 publication-title: J. Emerg. Med. doi: 10.1016/j.jemermed.2007.12.039 – ident: 63001_CR58 doi: 10.1109/CVPR.2017.634 – ident: 63001_CR42 doi: 10.1007/978-3-319-67389-9_9 – ident: 63001_CR77 doi: 10.1109/ICCV.2019.00972 – ident: 63001_CR8 – volume: 17 start-page: 1 issue: 1 year: 2022 ident: 63001_CR18 publication-title: J. Orthoped. Surg. Res. doi: 10.1186/s13018-021-02689-8 – ident: 63001_CR56 – ident: 63001_CR81 – volume: 12 start-page: 366 issue: 4 year: 2005 ident: 63001_CR2 publication-title: Acad. Emerg. Med. doi: 10.1197/j.aem.2004.10.024 – ident: 63001_CR49 doi: 10.1016/j.media.2023.102802 – ident: 63001_CR50 doi: 10.1109/CVPR46437.2021.00841 – volume: 10 start-page: 521 issue: 1 year: 2023 ident: 63001_CR52 publication-title: Sci. Data doi: 10.1038/s41597-023-02432-4 – volume: 16 start-page: 669 issue: 1 year: 2021 ident: 63001_CR5 publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-021-02821-8 – ident: 63001_CR76 doi: 10.1109/ICCV.2017.324 – ident: 63001_CR30 doi: 10.1109/ICECTA48151.2019.8959770 – volume: 10 start-page: 13694 issue: 1 year: 2020 ident: 63001_CR28 publication-title: Sci. Rep. doi: 10.1038/s41598-020-70660-4 – volume: 26 start-page: 1197 year: 2003 ident: 63001_CR17 publication-title: Orthopedics doi: 10.3928/0147-7447-20031201-07 – ident: 63001_CR67 – ident: 63001_CR78 doi: 10.1109/ICCV48922.2021.00986 – volume: 13 start-page: 97 issue: 2 year: 2002 ident: 63001_CR6 publication-title: Osteoporosis Int. doi: 10.1007/s001980200000 – volume: 125 start-page: 521 year: 2019 ident: 63001_CR45 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.06.015 – volume: 15 start-page: 716 issue: 12 year: 2007 ident: 63001_CR89 publication-title: JAAOS-J. Am. Acad. Orthoped. Surg. doi: 10.5435/00124635-200712000-00005 – volume: 43 start-page: 92 issue: 2 year: 2018 ident: 63001_CR12 publication-title: P&T Peer-Rev. J. Formul. Manag. – volume: 15 start-page: 847 year: 2020 ident: 63001_CR35 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02150-x – volume: 65 start-page: 183 year: 1999 ident: 63001_CR54 publication-title: Calcified Tissue Int. doi: 10.1007/s002239900679 – volume: 43 start-page: 1483 issue: 5 year: 2019 ident: 63001_CR75 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2956516 – volume: 14 start-page: 203 issue: 1 year: 2019 ident: 63001_CR10 publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-019-1226-6 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 63001_CR72 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 109 start-page: 820 issue: 5 year: 2021 ident: 63001_CR48 publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3054390 – volume: 213 start-page: 234 year: 2013 ident: 63001_CR7 publication-title: Int. J. Endocrinol. doi: 10.1155/2013/213234 – ident: 63001_CR57 doi: 10.1109/CVPR.2017.106 – volume: 12 start-page: 2058 issue: 1 year: 2022 ident: 63001_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-022-06018-9 – ident: 63001_CR80 – ident: 63001_CR94 doi: 10.1007/978-3-030-87589-3_51 |
SSID | ssj0000529419 |
Score | 2.4518685 |
Snippet | Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip fractures are... Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240-310% by 2050. Hip fractures are... Abstract Hip fractures exceed 250,000 cases annually in the United States, with the worldwide incidence projected to increase by 240–310% by 2050. Hip... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12046 |
SubjectTerms | 692/308/53/2423 692/698/1671/63 692/700/1421/1770 Aged Aged, 80 and over Deep Learning Female Femoral Fractures - diagnostic imaging Femur Fracture Fractures Hip Hip Fractures - diagnostic imaging Hip joint Humanities and Social Sciences Humans Localization Male Middle Aged multidisciplinary Neural Networks, Computer Plain radiography Proximal Femoral Fractures Proximal femur Radiography Radiography - methods Science Science (multidisciplinary) Sensitivity and Specificity |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lAq-abjmo2n6JCoeh6AIerBvIWlSLdy2a3dXvP_emTTbY_046FObQDqZZH7JzPyGkBfS8RY0iVOvgqBSe01dqVtaVqGWHv1Wkaf74yd1eiY_LMpFunBbp7DK3Z4YN2o_NHhHfgzQFqwnHB7E69UPilWj0LuaSmhcJzeQugxDuqpFNd-xoBdLsjrlyhRCH6_BXmFOGZcUuaYY5Xv2KNL2_wtr_h0y-YffNJqjkzvkdsKR-Ztp4u-Sa6G_R25OlSUv7pMvn8fhV7eEFm1Ybse8xWSo7RhyHzYx-KrP4Vmd267PR-u7RFyd_-ws9Ihkn_nqYrTLzuf9FCm-fkDOTt5_fXdKU_0E2qii2tBWNpjHpgGSNNKVJS-8gvOXbUNdBWF1w0RbKM9LJ71ygLOC0EELeEqmPAC1h-SgH_pwSHIVGttoJypfOAmgoRbMhsCUqrwredAZYTspmiaRi2ONi3MTndxCm0nyBiRvouQNz8jLuc9qota4svVbnJy5JdJixxfD-M2kVWYiOQ0PyjLrJW-Yhu3FWe2r1vO6lSwjR7upNWmtrs2lZmXk-fwZVhm6Tmwfhm1sw5ioACtl5NGkCfNIkE4H838zovd0ZG-o-1_67ntk8gZDg0dalZFXO3W6HNf_ZfH46t94Qm5x1PACsw2PyMFm3IanAJ027llcH78BU6IUgA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB-OE8EXOc-vnucRwTetNh9N0wcRFY9DOBF04d5C0qRa2O2u3V25_e-dpO3K6uqTkKd2AmEyk_kNyfwG4KmwrEZLYqmTnqdCOZXaXNVpXvhSuHBvFXm6Lz_Ki4n4cJVfHcDY7mhQ4HJvahf6SU266Yvr75vX6PCv-pJx9XKJQSgUijGRBgIpmuKRfAMjUxEc9XKA-z3XNysFLYfamf1Td-JTpPHfhz3_fEL52z1qDE_nR3B7wJXkTW8Id-DAt8dws-80ubkLnz918-tmhhK1n607UofiqHXnifOr-BirJTgWU9O0pDOuGYisyY_G4IxI_kkWm87MGkfa_uX48h5Mzt9_eXeRDv0U0kpmxSqtRRXq2hRClErYPGeZk5iPmdqXhedGVZTXmXQst8JJi7jLc-UVx5FT6RC43YfDdt76h0Ckr0ylLC9cZgWCiJJT4z2VsnA2Z14lQEct6mogGw89L6Y6XnpzpXvNa9S8jprXLIFn2zmLnmrjn9Jvw-ZsJQNNdvww777qwet0JKthXhpqnGAVVXjcWKNcUTtW1oImcDpurR5NT2MShTgN01SewJPtb_S6cJViWj9fRxlKeYHYKYEHvSVsVxLodUI9cAJqx0Z2lrr7p22-RWZvDDwhxZUJPB_N6de6_q6Lk_-hi0dwiwU_yEKN4ikcrrq1f4yAa2XPohf9BIKDJKA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OE8EX8duep0TwTYvNR9P00Vs8DkER9ODeQtIkWrjtLt1d8f57J-nHsXoKQp-aCUwnk-SXzswvAK-EZQE9ieVOep4L5VRuSxXysvK1cDFulXi6P36SZ-fiw0V5cQBsqoVJSfuJ0jIt01N22NsNbjSxGIyJPJJE0RyX3VuRuj169UIu5v8qMXIlaD3WxxRc3dB1bw9KVP034cs_0yR_i5WmLej0HtwdsSN5N2h7Hw589wBuD7dJXj2EL5_71c92iRLBL3c9CbEACj-ROL9NCVcdwWd9adqO9Ma1I1k1-dEa7JGsQdZXvVm2jnRDdvjmEZyfvv-6OMvHOxPyRhbVNg-iibVrCmFII2xZssJJPHOZ4OvKc6MaykMhHSutcNIitvJcecXxKal0CM4ew2G36vxTINI3plGWV66wAoFCzanxnkpZOVsyrzKgkxV1MxKKx3stLnUKbHOlB8trtLxOltcsg9dzn_VAp_FP6ZM4OLNkpMJOL1b9Nz26hk6ENMxLQ40TrKEKlxRrlKuCY3UQNIPjaWj1OD83Gg9KiMXwKMozeDk348yK4RLT-dUuyVDKK8RHGTwZPGHWJFLoxJrfDNSej-yput_Std8TezduLvEYKzN4M7nTtV5_t8XR_4k_gzssenwRKw6P4XDb7_xzhE9b-yLNl1-qsxJY priority: 102 providerName: Springer Nature |
Title | Proximal femur fracture detection on plain radiography via feature pyramid networks |
URI | https://link.springer.com/article/10.1038/s41598-024-63001-2 https://www.ncbi.nlm.nih.gov/pubmed/38802519 https://www.proquest.com/docview/3060641043 https://www.proquest.com/docview/3061137110 https://pubmed.ncbi.nlm.nih.gov/PMC11130146 https://doaj.org/article/053762e6a1ad42c18963ba8d7fd29f41 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFexrqvuu2CB3vbTK0Py_JjGlpKoKWsK-RNSJbMDI0TnGS0_31PspM1W7e9DIQN-gBxuuN-h3S_A_jEDa1Qk2hihWMJl1YmJpNVkuWu4NbfWwWe7vMLcXbNx5Ns8qDUl38T1tEDd4I7Cnwj1AlNtOW0JBI1xmhp88rSogop6xR93oNgqmP1pgUnRZ8lkzJ5tEBP5bPJKE88yxRJ6JYnCoT9j6HM3x9L_nJjGhzR6St42SPIeNjtfBeeuOY1PO9qSt69gavLdnZbT3FG5aarNq58GtSqdbF1y_DsqomxzW903cSttnVPWR3_qDWuCDSf8fyu1dPaxk33RnzxFq5PT76NzpK-ckJSijRfJhUvfQabRDBScpNlNLUCIy9duSJ3TMuSsCoVlmaGW2EQYTkmnWTYMiIsQrR3sNPMGrcHsXClLqVhuU0NR7hQMKKdI0Lk1mTUyQjIWoqq7GnFfXWLGxWut5lUneQVSl4FySsawefNmnlHqvHX2cf-cDYzPSF26EA1Ub2aqH-pSQSH66NVvZUuFIZLiMgwIGURfNwMo335SxPduNkqzCGE5YiSInjfacJmJ55Ix2f-RiC3dGRrq9sjTf09cHiji_HBrIjgy1qdfu7rz7LY_x-yOIAX1NtB6rMRD2Fn2a7cB4RWSzOAp_kkH8Cz4XB8Ncb_8cnF5VfsHYnRIFgYfs-5vAcFtyKZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBgQJniBa_BHHfUCIwaaObdUEm7Q348TOFmlNS9oC_af4Gzk7SafysbdJeYrtyDnf-c6-u98BvOQZLZCTaGSEZRGXRkZZIosoSW2fG-e38jjdB0MxOOafTpKTNfjV5cK4sMpuT_QbtRnn7o58E01b1J54eGDvJt8iVzXKeVe7EhoNW-zZxQ88sk3f7n7E9X1F6c720YdB1FYViHIRp7Oo4LnL7pKoqHOeJQmNjcBTiS5sP7VMy5ywIhaGJhk3IkPrwzJpJcMnIcKg-YLfvQbrnOGgHqxvbQ8PPy9vdZzfjJN-m50TM7k5RQ3pstgojxy6FYnoigb0hQL-Zd3-HaT5h6fWK8Cd23CrtVzD9w2r3YE1W92F600ty8U9-HJYj3-WI-xR2NG8DguXfjWvbWjszId7VSE-k3NdVmGtTdlCZYffS40jPLxoOFnUelSasGpi06f34fhKaPsAetW4so8gFDbXucxYauKMo5nSZ0RbS4RITZZQKwMgHRVV3sKZu6oa58q71ZlUDeUVUl55yisawOvlmEkD5nFp7y23OMueDojbvxjXp6qVa-XhcKgVmmjDaU4kbmiZliYtDO0XnASw0S2taneHqbrg5QBeLJtRrp2zRld2PPd9CGEpWmcBPGw4YTkTB-DjMo4DkCs8sjLV1ZaqPPPY4aja3CFaBPCmY6eLef2fFo8v_43ncGNwdLCv9neHe0_gJnXcHrtcxw3ozeq5fYqG2yx71kpLCF-vWkB_A0ZWURU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaKNH3GcA0JAWbUUqkpQaW_GiR2I1E2W7C6wf41fx9hJtloevVXyJYkdOeMZzzgz8w3AE57TEjmJRkZYFnFpZJQnsoyS1GbcOL-Vx-n-cCj2jvm7STLZgl9DLowLqxz2RL9Rm6Zw_8hHaNqi9sTDAxuVfVjE0e745exb5CpIOU_rUE6jY5EDu_qBx7f5i_1dXOunlI7ffnqzF_UVBqJCxOkiKnnhMr0kKu2C50lCYyPwhKJLm6WWaVkQVsbC0CTnRuRoiVgmrWTYEiIMmjL43gtwMcVLJ2PpJF3_33EeNE6yPk8nZnI0R13p8tkojxzOFYnohi70JQP-Zef-Ha75h8_Wq8LxNbja27Dhq47prsOWrW_Apa6q5eomfDxqm5_VFHuUdrpsw9IlYi1bGxq78IFfdYhtdqKrOmy1qXrQ7PB7pXGEBxoNZ6tWTysT1l2U-vwWHJ8LZW_Ddt3U9i6Ewha6kDlLTZxzNFgyRrS1RIjU5Am1MgAyUFEVPbC5q69xoryDnUnVUV4h5ZWnvKIBPFuPmXWwHmf2fu0WZ93TQXL7G037RfUSrjwwDrVCE204LYjErS3X0qSloVnJSQA7w9Kqfp-Yq1OuDuDx-jFKuHPb6No2S9-HEJainRbAnY4T1jNxUD4u9zgAucEjG1PdfFJXXz2KOCo5d5wWATwf2Ol0Xv-nxb2zP-MRXEaxVO_3Dw_uwxXqmD12SY87sL1ol_YBWnCL_KEXlRA-n7ds_gZn_lPl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+femur+fracture+detection+on+plain+radiography+via+feature+pyramid+networks&rft.jtitle=Scientific+reports&rft.au=%C4%B0lkay+Y%C4%B1ld%C4%B1z+Potter&rft.au=Diana+Yeritsyan&rft.au=Sarah+Mahar&rft.au=Nadim+Kheir&rft.date=2024-05-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-63001-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_053762e6a1ad42c18963ba8d7fd29f41 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |