High density lithium niobate photonic integrated circuits
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 4856 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
3
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
3
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask. |
---|---|
AbstractList | Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask. Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Abstract Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask. |
ArticleNumber | 4856 |
Author | Lihachev, Grigory Siddharth, Anat Riemensberger, Johann Churaev, Mikhail Tan, Zelin Li, Zihan Zhang, Junyin Kuznetsov, Nikolai Wang, Rui Ning Kippenberg, Tobias J. Bereyhi, Mohammad J. |
Author_xml | – sequence: 1 givenname: Zihan surname: Li fullname: Li, Zihan organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 2 givenname: Rui Ning orcidid: 0000-0002-5704-3971 surname: Wang fullname: Wang, Rui Ning organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 3 givenname: Grigory surname: Lihachev fullname: Lihachev, Grigory organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 4 givenname: Junyin orcidid: 0000-0001-7597-8941 surname: Zhang fullname: Zhang, Junyin organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 5 givenname: Zelin surname: Tan fullname: Tan, Zelin organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 6 givenname: Mikhail orcidid: 0000-0002-1864-3288 surname: Churaev fullname: Churaev, Mikhail organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 7 givenname: Nikolai orcidid: 0000-0002-5609-5331 surname: Kuznetsov fullname: Kuznetsov, Nikolai organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 8 givenname: Anat orcidid: 0000-0003-4066-7304 surname: Siddharth fullname: Siddharth, Anat organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 9 givenname: Mohammad J. orcidid: 0000-0002-7685-4868 surname: Bereyhi fullname: Bereyhi, Mohammad J. organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL), Luxtelligence SA – sequence: 10 givenname: Johann orcidid: 0000-0002-3468-6501 surname: Riemensberger fullname: Riemensberger, Johann organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) – sequence: 11 givenname: Tobias J. orcidid: 0000-0002-3408-886X surname: Kippenberg fullname: Kippenberg, Tobias J. email: tobias.kippenberg@epfl.ch organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37563149$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxIVLyvO3c0KoAlqpEhc4W47tZL3K2ovtIPXf421a-nGoL7bem5k3ep63zVGIwTXNewTnCIj8nCmiXHSASUeBAe7kq-YEA0UdEpgcPXofN2c5b6Ee0iNJ6ZvmmAjGCaL9SdNf-mnTWheyLzft7MvGL7s2-Djo4tr9JpYYvGl9KG5KtWRb45NZfMnvmtejnrM7u7tPm9_fv_26uOyuf_64uvh63RkOonQOWeMot72ViFqNzThAD4MQkmMBwI3tmSMUsGCIg2MOD5gD11wgI8Eyctpcrbo26q3aJ7_T6UZF7dVtIaZJ6VS8mZ0akSR1KOHDOFKqcS_ZCKPEmDFtET9ofVm19suwc9VYKEnPT0SfdoLfqCn-VagukxFAVeHTnUKKfxaXi9r5bNw86-DikhWWDAhQTg_DPj6DbuOSQt1VRVHJEReEVtSHx5b-e7n_ogqQK8CkmHNyozK-6OLjwaGfqzV1CIRaA6FqINRtIJSsVPyMeq_-IomspFzBYXLpwfYLrH9wh8WG |
CitedBy_id | crossref_primary_10_1002_apxr_202400096 crossref_primary_10_1080_23746149_2024_2360598 crossref_primary_10_1364_OPTICA_537730 crossref_primary_10_1016_j_sintl_2025_100326 crossref_primary_10_1364_OL_515576 crossref_primary_10_1021_acs_cgd_4c00116 crossref_primary_10_1364_OE_517313 crossref_primary_10_1016_j_optlastec_2024_110823 crossref_primary_10_1116_6_0004357 crossref_primary_10_1063_5_0235751 crossref_primary_10_1007_s00340_025_08434_x crossref_primary_10_1515_nanoph_2024_0312 crossref_primary_10_3788_LOP232676 crossref_primary_10_1002_adma_202402515 crossref_primary_10_1063_5_0220463 crossref_primary_10_1063_5_0240090 crossref_primary_10_1002_lpor_202401575 crossref_primary_10_1364_OE_535076 crossref_primary_10_1364_OME_551748 crossref_primary_10_1063_5_0227255 crossref_primary_10_3788_LOP241337 crossref_primary_10_3788_PI_2024_R05 crossref_primary_10_1063_5_0241939 crossref_primary_10_1002_adpr_202400051 crossref_primary_10_1038_s41586_024_07071_2 crossref_primary_10_1016_j_optcom_2023_130080 crossref_primary_10_1103_PhysRevLett_134_113601 crossref_primary_10_1016_j_chip_2025_100128 crossref_primary_10_1364_OPTICA_514075 crossref_primary_10_1002_pssa_202400924 crossref_primary_10_1038_s41467_024_47478_z crossref_primary_10_1515_nanoph_2024_0132 crossref_primary_10_1364_OE_535316 crossref_primary_10_1038_s41567_024_02739_y crossref_primary_10_1088_1402_4896_ad3022 crossref_primary_10_1007_s11082_024_06888_5 crossref_primary_10_1016_j_jlumin_2023_120279 crossref_primary_10_1117_1_OE_63_3_037104 crossref_primary_10_1364_OL_553705 crossref_primary_10_1038_s41598_024_55687_1 crossref_primary_10_1038_s43246_024_00558_5 crossref_primary_10_1063_5_0228408 crossref_primary_10_1002_lpor_202400663 crossref_primary_10_1002_lpor_202400224 crossref_primary_10_1364_OL_530942 crossref_primary_10_3390_ma17184453 crossref_primary_10_1016_j_ceramint_2025_02_342 crossref_primary_10_1038_s41586_024_07369_1 crossref_primary_10_1364_OE_517840 crossref_primary_10_1109_JSTQE_2024_3448914 crossref_primary_10_1002_lpor_202300893 crossref_primary_10_3390_ma17081720 crossref_primary_10_1038_s41586_024_07078_9 crossref_primary_10_1109_LPT_2024_3434542 crossref_primary_10_1016_j_measurement_2024_116583 crossref_primary_10_1016_j_jlumin_2024_121051 crossref_primary_10_1007_s44275_024_00005_0 |
Cites_doi | 10.1364/OE.24.029941 10.1364/OL.418996 10.1002/lpor.200900033 10.1038/nphoton.2009.138 10.1016/S0925-9635(02)00379-5 10.1088/0256-307X/37/8/084201 10.1002/lpor.201100035 10.1038/s41586-019-1008-7 10.1364/OPTICA.418984 10.1038/s41467-022-30911-6 10.1016/j.ijrmhm.2018.09.006 10.1038/s41566-019-0529-9 10.1364/AOP.411024 10.1016/j.tsf.2015.05.023 10.1038/s41566-019-0378-6 10.1016/S0925-9635(03)00081-5 10.1126/science.abo2631 10.1364/AO.49.004801 10.1038/s41586-022-05329-1 10.1038/s41566-022-01120-w 10.1103/PhysRevA.94.053815 10.1038/s41566-021-00761-7 10.1038/s41467-022-33101-6 10.1063/1.121801 10.1364/AO.56.008164 10.1038/s41586-021-03202-1 10.1088/2040-8978/18/7/073003 10.1063/1.1819527 10.1038/s41586-018-0551-y 10.1016/j.diamond.2009.09.008 10.1364/OL.442281 10.1038/s41586-018-0598-9 10.1063/5.0081660 10.1038/s41566-019-0358-x 10.1364/OPTICA.6.001455 10.1364/PRJ.7.001003 10.1364/OE.26.004421 10.1364/OL.44.002314 10.1364/OE.25.028167 10.1364/OE.25.006963 10.1364/OPTICA.4.001536 10.1016/S1369-7021(06)71791-6 10.1126/science.aad4811 10.1126/science.abo6213 10.1016/S0927-796X(02)00005-0 10.1126/sciadv.abi8150 10.1038/s41467-023-39047-7 10.1088/0960-1317/17/7/S12 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. Springer Nature Limited. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40502-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_f18360736bff44a2985f0f82255ad165 PMC10415301 37563149 10_1038_s41467_023_40502_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 835329 funderid: https://doi.org/10.13039/100010663 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 186364 funderid: https://doi.org/10.13039/501100001711 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 835329 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 186364 – fundername: ; grantid: 835329 – fundername: ; grantid: 186364 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c607t-e1dce46d9d814da2cfb090b778627006cd95e340275160e5e2b2606a671c80d53 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:59 EDT 2025 Thu Aug 21 18:41:01 EDT 2025 Fri Jul 11 11:13:57 EDT 2025 Wed Aug 13 11:12:19 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 02:10:30 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-e1dce46d9d814da2cfb090b778627006cd95e340275160e5e2b2606a671c80d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1864-3288 0000-0003-4066-7304 0000-0002-5704-3971 0000-0002-7685-4868 0000-0001-7597-8941 0000-0002-3408-886X 0000-0002-3468-6501 0000-0002-5609-5331 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40502-8 |
PMID | 37563149 |
PQID | 2848616734 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10415301 proquest_miscellaneous_2850304645 proquest_journals_2848616734 pubmed_primary_37563149 crossref_citationtrail_10_1038_s41467_023_40502_8 crossref_primary_10_1038_s41467_023_40502_8 springer_journals_10_1038_s41467_023_40502_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-10 |
PublicationDateYYYYMMDD | 2023-08-10 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rao (CR25) 2016; 24 Corato-Zanarella (CR48) 2023; 17 Ying (CR30) 2021; 46 Arrazola (CR49) 2021; 591 He (CR41) 2019; 44 Levy (CR12) 1998; 73 Wang (CR21) 2017; 25 CR32 Tyagi (CR33) 2019; 78 Luo (CR36) 2007; 17 Jin (CR10) 2021; 15 Zhang, Wang, Cheng, Shams-Ansari, Lončar (CR42) 2017; 4 Zhou (CR18) 2020; 37 Lu (CR24) 2021; 8 He (CR15) 2019; 13 Qureshi, Kang, Davidson, Gurbuz (CR37) 2009; 18 Wang (CR43) 2018; 562 Gaeta, Lipson, Kippenberg (CR5) 2019; 13 Bartali (CR40) 2015; 589 Siew (CR29) 2018; 26 Poberaj, Hu, Sohler, Guenter (CR27) 2012; 6 Stern, Ji, Okawachi, Gaeta, Lipson (CR3) 2018; 562 Riemensberger (CR7) 2022; 612 Thomson (CR1) 2016; 18 Roelkens (CR2) 2010; 4 Li (CR20) 2022; 13 Domenico, Schilt, Thomann (CR47) 2010; 49 Siddharth (CR9) 2022; 7 Zhang (CR16) 2019; 568 Lu (CR22) 2019; 6 Liu (CR8) 2022; 376 Wang (CR14) 2018; 562 Robertson (CR38) 2002; 37 Kondratiev (CR46) 2017; 25 He (CR44) 2019; 13 Lihachev (CR11) 2022; 13 Brasch (CR4) 2016; 351 Nehra (CR23) 2022; 377 Hirakuri, Yoshimura, Friedbacher (CR39) 2003; 12 Churaev (CR31) 2023; 14 Cai (CR26) 2019; 7 Wang, Li, Zhang, Chen (CR17) 2017; 56 Hauert (CR34) 2003; 12 Rabiei, Gunter (CR13) 2004; 85 Javerzac-Galy (CR50) 2016; 94 Ye (CR6) 2021; 7 Pohl (CR19) 2020; 14 Casiraghi, Robertson, Ferrari (CR35) 2007; 10 Zhu (CR28) 2021; 13 Del’Haye, Arcizet, Gorodetsky, Holzwarth, Kippenberg (CR45) 2009; 3 Han (CR51) 2021; 46 L He (40502_CR41) 2019; 44 AL Gaeta (40502_CR5) 2019; 13 GD Domenico (40502_CR47) 2010; 49 A Rao (40502_CR25) 2016; 24 M He (40502_CR44) 2019; 13 R Bartali (40502_CR40) 2015; 589 G Lihachev (40502_CR11) 2022; 13 M Churaev (40502_CR31) 2023; 14 C Wang (40502_CR14) 2018; 562 J Lu (40502_CR24) 2021; 8 Y Liu (40502_CR8) 2022; 376 D Zhu (40502_CR28) 2021; 13 J Lu (40502_CR22) 2019; 6 A Qureshi (40502_CR37) 2009; 18 G Roelkens (40502_CR2) 2010; 4 C Wang (40502_CR43) 2018; 562 C Casiraghi (40502_CR35) 2007; 10 J Luo (40502_CR36) 2007; 17 A Siddharth (40502_CR9) 2022; 7 H Wang (40502_CR17) 2017; 56 Y Han (40502_CR51) 2021; 46 P Del’Haye (40502_CR45) 2009; 3 J Robertson (40502_CR38) 2002; 37 J Riemensberger (40502_CR7) 2022; 612 M Zhang (40502_CR42) 2017; 4 G Poberaj (40502_CR27) 2012; 6 M He (40502_CR15) 2019; 13 P Ying (40502_CR30) 2021; 46 L Cai (40502_CR26) 2019; 7 R Nehra (40502_CR23) 2022; 377 KK Hirakuri (40502_CR39) 2003; 12 M Corato-Zanarella (40502_CR48) 2023; 17 SY Siew (40502_CR29) 2018; 26 M Levy (40502_CR12) 1998; 73 M Li (40502_CR20) 2022; 13 NM Kondratiev (40502_CR46) 2017; 25 JM Arrazola (40502_CR49) 2021; 591 C Javerzac-Galy (40502_CR50) 2016; 94 P Rabiei (40502_CR13) 2004; 85 C Wang (40502_CR21) 2017; 25 40502_CR32 M Zhang (40502_CR16) 2019; 568 D Pohl (40502_CR19) 2020; 14 A Tyagi (40502_CR33) 2019; 78 Z Ye (40502_CR6) 2021; 7 J-x Zhou (40502_CR18) 2020; 37 B Stern (40502_CR3) 2018; 562 R Hauert (40502_CR34) 2003; 12 W Jin (40502_CR10) 2021; 15 D Thomson (40502_CR1) 2016; 18 V Brasch (40502_CR4) 2016; 351 |
References_xml | – volume: 24 start-page: 29941 year: 2016 end-page: 29947 ident: CR25 article-title: Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon publication-title: Opt. Express doi: 10.1364/OE.24.029941 – volume: 46 start-page: 1478 year: 2021 end-page: 1481 ident: CR30 article-title: Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter publication-title: Opt. Lett. doi: 10.1364/OL.418996 – volume: 4 start-page: 751 year: 2010 end-page: 779 ident: CR2 article-title: Iii-v/silicon photonics for on-chip and intra-chip optical interconnects publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200900033 – volume: 3 start-page: 529 year: 2009 end-page: 533 ident: CR45 article-title: Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.138 – volume: 12 start-page: 1013 year: 2003 end-page: 1017 ident: CR39 article-title: Application of DLC films as masks for integrated circuit fabrication publication-title: Diam. Relat. Mater. doi: 10.1016/S0925-9635(02)00379-5 – volume: 37 start-page: 084201 year: 2020 ident: CR18 article-title: Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/37/8/084201 – volume: 6 start-page: 488 year: 2012 end-page: 503 ident: CR27 article-title: Lithium niobate on insulator (LNOI) for micro-photonic devices publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100035 – volume: 568 start-page: 373 year: 2019 end-page: 377 ident: CR16 article-title: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator publication-title: Nature doi: 10.1038/s41586-019-1008-7 – volume: 8 start-page: 539 year: 2021 end-page: 544 ident: CR24 article-title: Ultralow-threshold thin-film lithium niobate optical parametric oscillator publication-title: Optica doi: 10.1364/OPTICA.418984 – volume: 13 start-page: 1 year: 2022 end-page: 10 ident: CR11 article-title: Low-noise frequency-agile photonic integrated lasers for coherent ranging publication-title: Nat. Commun. doi: 10.1038/s41467-022-30911-6 – volume: 78 start-page: 107 year: 2019 end-page: 122 ident: CR33 article-title: A critical review of diamond like carbon coating for wear resistance applications publication-title: Int. J. Refract Metals Hard Mater. doi: 10.1016/j.ijrmhm.2018.09.006 – volume: 14 start-page: 24 year: 2020 end-page: 29 ident: CR19 article-title: An integrated broadband spectrometer on thin-film lithium niobate publication-title: Nat. Photonics doi: 10.1038/s41566-019-0529-9 – volume: 13 start-page: 242 year: 2021 end-page: 352 ident: CR28 article-title: Integrated photonics on thin-film lithium niobate publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.411024 – volume: 589 start-page: 376 year: 2015 end-page: 380 ident: CR40 article-title: Nano-hardness estimation by means of Ar ion etching publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.05.023 – volume: 13 start-page: 359 year: 2019 end-page: 364 ident: CR44 article-title: High-performance hybrid silicon and lithium niobate mach–zehnder modulators for 100 Gbit s and beyond publication-title: Nat. Photonics doi: 10.1038/s41566-019-0378-6 – volume: 12 start-page: 583 year: 2003 end-page: 589 ident: CR34 article-title: A review of modified DLC coatings for biological applications publication-title: Diam.Relat. Mater. doi: 10.1016/S0925-9635(03)00081-5 – volume: 376 start-page: 1309 year: 2022 end-page: 1313 ident: CR8 article-title: A photonic integrated circuit-based erbium-doped amplifier publication-title: Science doi: 10.1126/science.abo2631 – volume: 49 start-page: 4801 year: 2010 end-page: 4807 ident: CR47 article-title: Simple approach to the relation between laser frequency noise and laser line shape publication-title: Appl. Opt. doi: 10.1364/AO.49.004801 – volume: 612 start-page: 56 year: 2022 end-page: 61 ident: CR7 article-title: A photonic integrated continuous-travelling-wave parametric amplifier publication-title: Nature doi: 10.1038/s41586-022-05329-1 – ident: CR32 – volume: 17 start-page: 157 year: 2023 end-page: 164 ident: CR48 article-title: Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths publication-title: Nat. Photonics doi: 10.1038/s41566-022-01120-w – volume: 94 start-page: 053815 year: 2016 ident: CR50 article-title: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.053815 – volume: 15 start-page: 346 year: 2021 end-page: 353 ident: CR10 article-title: Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators publication-title: Nat. Photonics doi: 10.1038/s41566-021-00761-7 – volume: 13 year: 2022 ident: CR20 article-title: Integrated pockels laser publication-title: Nat. Commun. doi: 10.1038/s41467-022-33101-6 – volume: 73 start-page: 2293 year: 1998 end-page: 2295 ident: CR12 article-title: Fabrication of single-crystal lithium niobate films by crystal ion slicing publication-title: Appl. Phys. Lett. doi: 10.1063/1.121801 – volume: 56 start-page: 8164 year: 2017 end-page: 8168 ident: CR17 article-title: Broadband 2 × 2 lithium niobate electro-optic switch based on a Mach–Zehnder interferometer with counter-tapered directional couplers publication-title: Appl. Opt. doi: 10.1364/AO.56.008164 – volume: 591 start-page: 54 year: 2021 end-page: 60 ident: CR49 article-title: Quantum circuits with many photons on a programmable nanophotonic chip publication-title: Nature doi: 10.1038/s41586-021-03202-1 – volume: 18 start-page: 073003 year: 2016 ident: CR1 article-title: Roadmap on silicon photonics publication-title: J. Opt. doi: 10.1088/2040-8978/18/7/073003 – volume: 85 start-page: 4603 year: 2004 end-page: 4605 ident: CR13 article-title: Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding publication-title: Appl. Phys. Lett. doi: 10.1063/1.1819527 – volume: 562 start-page: 101 year: 2018 end-page: 104 ident: CR14 article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 562 start-page: 101 year: 2018 end-page: 104 ident: CR43 article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 18 start-page: 1401 year: 2009 end-page: 1420 ident: CR37 article-title: Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2009.09.008 – volume: 46 start-page: 5413 year: 2021 end-page: 5416 ident: CR51 article-title: Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser publication-title: Opt. Lett. doi: 10.1364/OL.442281 – volume: 562 start-page: 401 year: 2018 end-page: 405 ident: CR3 article-title: Battery-operated integrated frequency comb generator publication-title: Nature doi: 10.1038/s41586-018-0598-9 – volume: 7 start-page: 046108 year: 2022 ident: CR9 article-title: Near ultraviolet photonic integrated lasers based on silicon nitride publication-title: APL Photonics doi: 10.1063/5.0081660 – volume: 13 start-page: 158 year: 2019 end-page: 169 ident: CR5 article-title: Photonic-chip-based frequency combs publication-title: Nat. photonics doi: 10.1038/s41566-019-0358-x – volume: 6 start-page: 1455 year: 2019 end-page: 1460 ident: CR22 article-title: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w publication-title: Optica doi: 10.1364/OPTICA.6.001455 – volume: 7 start-page: 1003 year: 2019 end-page: 1013 ident: CR26 article-title: Acousto-optical modulation of thin film lithium niobate waveguide devices publication-title: Photonics Res. doi: 10.1364/PRJ.7.001003 – volume: 26 start-page: 4421 year: 2018 end-page: 4430 ident: CR29 article-title: Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening publication-title: Opt. Express doi: 10.1364/OE.26.004421 – volume: 44 start-page: 2314 year: 2019 end-page: 2317 ident: CR41 article-title: Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits publication-title: Opt. Lett. doi: 10.1364/OL.44.002314 – volume: 25 start-page: 28167 year: 2017 end-page: 28178 ident: CR46 article-title: Self-injection locking of a laser diode to a high-Q WGM microresonator publication-title: Opt. Express doi: 10.1364/OE.25.028167 – volume: 25 start-page: 6963 year: 2017 end-page: 6973 ident: CR21 article-title: Second harmonic generation in nano-structured thin-film lithium niobate waveguides publication-title: Opt. Express doi: 10.1364/OE.25.006963 – volume: 4 start-page: 1536 year: 2017 end-page: 1537 ident: CR42 article-title: Monolithic ultra-high-Q lithium niobate microring resonator publication-title: Optica doi: 10.1364/OPTICA.4.001536 – volume: 13 start-page: 359 year: 2019 end-page: 364 ident: CR15 article-title: High-performance hybrid silicon and lithium niobate mach–zehnder modulators for 100 gbit s-1 and beyond publication-title: Nat. Photonics doi: 10.1038/s41566-019-0378-6 – volume: 10 start-page: 44 year: 2007 end-page: 53 ident: CR35 article-title: Diamond-like carbon for data and beer storage publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71791-6 – volume: 351 start-page: 357 year: 2016 end-page: 360 ident: CR4 article-title: Photonic chip-based optical frequency comb using soliton cherenkov radiation publication-title: Science doi: 10.1126/science.aad4811 – volume: 377 start-page: 1333 year: 2022 end-page: 1337 ident: CR23 article-title: Few-cycle vacuum squeezing in nanophotonics publication-title: Science doi: 10.1126/science.abo6213 – volume: 37 start-page: 129 year: 2002 end-page: 281 ident: CR38 article-title: Diamond-like amorphous carbon publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/S0927-796X(02)00005-0 – volume: 7 start-page: eabi8150 year: 2021 ident: CR6 article-title: Overcoming the quantum limit of optical amplification in monolithic waveguides publication-title: Sci. Adv. doi: 10.1126/sciadv.abi8150 – volume: 14 year: 2023 ident: CR31 article-title: A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform publication-title: Nat. Commun. doi: 10.1038/s41467-023-39047-7 – volume: 17 start-page: S147 year: 2007 ident: CR36 article-title: Diamond and diamond-like carbon mems publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/7/S12 – volume: 24 start-page: 29941 year: 2016 ident: 40502_CR25 publication-title: Opt. Express doi: 10.1364/OE.24.029941 – volume: 14 year: 2023 ident: 40502_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39047-7 – volume: 25 start-page: 6963 year: 2017 ident: 40502_CR21 publication-title: Opt. Express doi: 10.1364/OE.25.006963 – volume: 612 start-page: 56 year: 2022 ident: 40502_CR7 publication-title: Nature doi: 10.1038/s41586-022-05329-1 – volume: 10 start-page: 44 year: 2007 ident: 40502_CR35 publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71791-6 – volume: 13 start-page: 242 year: 2021 ident: 40502_CR28 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.411024 – volume: 15 start-page: 346 year: 2021 ident: 40502_CR10 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00761-7 – volume: 6 start-page: 488 year: 2012 ident: 40502_CR27 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201100035 – volume: 18 start-page: 073003 year: 2016 ident: 40502_CR1 publication-title: J. Opt. doi: 10.1088/2040-8978/18/7/073003 – volume: 13 year: 2022 ident: 40502_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33101-6 – volume: 376 start-page: 1309 year: 2022 ident: 40502_CR8 publication-title: Science doi: 10.1126/science.abo2631 – volume: 85 start-page: 4603 year: 2004 ident: 40502_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1819527 – volume: 568 start-page: 373 year: 2019 ident: 40502_CR16 publication-title: Nature doi: 10.1038/s41586-019-1008-7 – volume: 7 start-page: eabi8150 year: 2021 ident: 40502_CR6 publication-title: Sci. Adv. doi: 10.1126/sciadv.abi8150 – volume: 589 start-page: 376 year: 2015 ident: 40502_CR40 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.05.023 – volume: 562 start-page: 401 year: 2018 ident: 40502_CR3 publication-title: Nature doi: 10.1038/s41586-018-0598-9 – volume: 49 start-page: 4801 year: 2010 ident: 40502_CR47 publication-title: Appl. Opt. doi: 10.1364/AO.49.004801 – volume: 562 start-page: 101 year: 2018 ident: 40502_CR43 publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 13 start-page: 359 year: 2019 ident: 40502_CR15 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0378-6 – volume: 7 start-page: 1003 year: 2019 ident: 40502_CR26 publication-title: Photonics Res. doi: 10.1364/PRJ.7.001003 – volume: 78 start-page: 107 year: 2019 ident: 40502_CR33 publication-title: Int. J. Refract Metals Hard Mater. doi: 10.1016/j.ijrmhm.2018.09.006 – volume: 17 start-page: 157 year: 2023 ident: 40502_CR48 publication-title: Nat. Photonics doi: 10.1038/s41566-022-01120-w – volume: 46 start-page: 5413 year: 2021 ident: 40502_CR51 publication-title: Opt. Lett. doi: 10.1364/OL.442281 – ident: 40502_CR32 – volume: 44 start-page: 2314 year: 2019 ident: 40502_CR41 publication-title: Opt. Lett. doi: 10.1364/OL.44.002314 – volume: 13 start-page: 1 year: 2022 ident: 40502_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30911-6 – volume: 351 start-page: 357 year: 2016 ident: 40502_CR4 publication-title: Science doi: 10.1126/science.aad4811 – volume: 18 start-page: 1401 year: 2009 ident: 40502_CR37 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2009.09.008 – volume: 12 start-page: 1013 year: 2003 ident: 40502_CR39 publication-title: Diam. Relat. Mater. doi: 10.1016/S0925-9635(02)00379-5 – volume: 7 start-page: 046108 year: 2022 ident: 40502_CR9 publication-title: APL Photonics doi: 10.1063/5.0081660 – volume: 377 start-page: 1333 year: 2022 ident: 40502_CR23 publication-title: Science doi: 10.1126/science.abo6213 – volume: 94 start-page: 053815 year: 2016 ident: 40502_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.053815 – volume: 56 start-page: 8164 year: 2017 ident: 40502_CR17 publication-title: Appl. Opt. doi: 10.1364/AO.56.008164 – volume: 4 start-page: 1536 year: 2017 ident: 40502_CR42 publication-title: Optica doi: 10.1364/OPTICA.4.001536 – volume: 8 start-page: 539 year: 2021 ident: 40502_CR24 publication-title: Optica doi: 10.1364/OPTICA.418984 – volume: 26 start-page: 4421 year: 2018 ident: 40502_CR29 publication-title: Opt. Express doi: 10.1364/OE.26.004421 – volume: 37 start-page: 129 year: 2002 ident: 40502_CR38 publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/S0927-796X(02)00005-0 – volume: 3 start-page: 529 year: 2009 ident: 40502_CR45 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.138 – volume: 562 start-page: 101 year: 2018 ident: 40502_CR14 publication-title: Nature doi: 10.1038/s41586-018-0551-y – volume: 6 start-page: 1455 year: 2019 ident: 40502_CR22 publication-title: Optica doi: 10.1364/OPTICA.6.001455 – volume: 25 start-page: 28167 year: 2017 ident: 40502_CR46 publication-title: Opt. Express doi: 10.1364/OE.25.028167 – volume: 73 start-page: 2293 year: 1998 ident: 40502_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121801 – volume: 46 start-page: 1478 year: 2021 ident: 40502_CR30 publication-title: Opt. Lett. doi: 10.1364/OL.418996 – volume: 4 start-page: 751 year: 2010 ident: 40502_CR2 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200900033 – volume: 12 start-page: 583 year: 2003 ident: 40502_CR34 publication-title: Diam.Relat. Mater. doi: 10.1016/S0925-9635(03)00081-5 – volume: 13 start-page: 158 year: 2019 ident: 40502_CR5 publication-title: Nat. photonics doi: 10.1038/s41566-019-0358-x – volume: 13 start-page: 359 year: 2019 ident: 40502_CR44 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0378-6 – volume: 14 start-page: 24 year: 2020 ident: 40502_CR19 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0529-9 – volume: 17 start-page: S147 year: 2007 ident: 40502_CR36 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/7/S12 – volume: 37 start-page: 084201 year: 2020 ident: 40502_CR18 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/37/8/084201 – volume: 591 start-page: 54 year: 2021 ident: 40502_CR49 publication-title: Nature doi: 10.1038/s41586-021-03202-1 |
SSID | ssj0000391844 |
Score | 2.639636 |
Snippet | Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new... Abstract Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4856 |
SubjectTerms | 639/624/1075/1079 639/624/1111/1113 Carbon Confining Density Diamond-like carbon Electric potential Etching Fabrication Ferroelectric materials Ferroelectricity Ferroelectrics Humanities and Social Sciences Integrated circuits Light modulation Lithium Lithium niobates multidisciplinary Optical fibers Optics Photonics Science Science (multidisciplinary) Voltage Waveguides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA4iCF5EV1errlTw5haT5kfT464o4sGTgreQJimvsNsnvr6D_70zaV_1uatevJUmLcOXSWaGmXxDyAnlRVlbD56bh3BVWC-yCjzTLAdvLqjCF9TFAtkbdXUnru_l_atWX1gT1tMD98Cd1QyvGRRcVXUthM1LLWtag1mT0nqmInsp2LxXwVQ8g3kJoYsYbslQrs9mIp4JYKIgZJJ4DCxZokjY_z8v899iyTcZ02iILjfJxuBBpr96ybfISmi_kbW-p-TTNimxciP1WJfePaXgZE-a-d-0bWDfdiF9mEw7JMNNR5oIn7rm0c2bbrZD7i4vbs-vsqE_QuYAkS4LDIQSypdeM-Ft7uqKlrRCRjhMJyvnSxm4wMQkUzTIkFcQvSirCuY09ZJ_J6vttA17JGVSW-4L71Ruhde6UkF5Cg8W3CMIwRLCFlgZN5CHYw-LPyYmsbk2Pb4G8DURX6MTcjp-89BTZ3w4-zcuwTgTaa_jC1AGMyiD-UwZEnK4WEAz7MWZAQOsFVMFFwk5HodhF2FqxLZhOsc5MuaIBfxit1_vURJeSMUhkEyIXtKEJVGXR9pmEpm6GRIgcITv50JpXuR6H4v9r8DigKznqO2RvveQrHaP8_ADHKiuOop75RkuIhHU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmtChI3CCqHT9zQoBYKg6cqNSb5dgOGwmS7W720H_fGSebann0FiVO5Iw94288428IeUu5rhoXALkFcFeFC6KoAZkWJaC5qHTQ1KcE2e_q_EJ8u5SX04bbZkqr3NnEZKhD73GP_AzMqFFMaS4-rK4KrBqF0dWphMZ98oDBSoMpXWbxdd5jQfZzI8R0VoZyc7YRyTLAQgWOk0RjsLceJdr-f2HNv1Mm_4ibpuVo8ZgcTjgy_zgO_BG5F7sn5OFYWfL6KakwfyMPmJ0-XOcAtZft9nfetaC9Q8xXy35AStx8JosIuW_XftsOm2fkYvHlx-fzYqqSUHhF9VBEBp0SKlTBMBFc6ZuaVrRGXjgMKisfKhm5wPAkUzTKWNbgwyinNPOGBsmfk4Ou7-JLkjNpHA86eFU6EYypVVSBwoUDkASOWEbYTlbWTxTiWMnil02hbG7sKF8L8rVJvtZk5N38zmok0Liz9Sccgrklkl-nG_36p510yTYMT55oruqmEcKVlZENbQDpSOkCUzIjJ7sBtJNGbuzt_MnIm_kx6BIGSFwX-y22kSlSLOATL8bxnnvCtVQc3MmMmL2ZsNfV_Sddu0x83QxpEDiK7_1u0tz26_-yOL77N16RRyXO40TPe0IOhvU2ngJAGurXSQtuADIkClo priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqOXVQIuCxA0i7PiZ44Koqj1wgUq9WY7tsJEgW-1mD_33zDiPaqEgcYuScTQaz8TfZMafCXlLua4aFwC5BUhXhQuiqAGZFiWguah00NSnBtkv6vJKLK_l9QEpp70wqWk_UVqmz_TUHfZhK1JIwwoDGY_EKH5AjpCqHXz7aLFYfl3Of1aQ89wIMe6QodzcM3hvFUpk_fchzD8bJX-rlqZF6OKYPB7RY74Y9D0hB7F7Qh4O50nePiUVdm3kAXvS-9scAPaq3f3MuxZito_5zWrdIxFuPlNEhNy3G79r--0zcnXx-duny2I8G6Hwiuq-iAyUEipUwTARXOmbmla0RjY4LCUrHyoZucCiJFM0yljWkLkopzTzhgbJn5PDbt3FU5IzaRwPOnhVOhGMqVVUgcKFA2gE6VdG2GQr60ficDy_4odNBWxu7GBfC_a1yb7WZOTdPOZmoM34p_RHnIJZEimv04315rsdXcA2DPebaK7qphHClZWRDW0A30jpAlMyI2fTBNoxDrcWFl-jmNJcZOTN_BgiCMsirovrHcrIVB8W8IoXw3zPmnAtFYckMiNmzxP2VN1_0rWrxNLNkPyAo_neT05zp9ffbfHy_8RfkUcl-nUi6T0jh_1mF88BJvX16zEufgGuewln priority: 102 providerName: Springer Nature |
Title | High density lithium niobate photonic integrated circuits |
URI | https://link.springer.com/article/10.1038/s41467-023-40502-8 https://www.ncbi.nlm.nih.gov/pubmed/37563149 https://www.proquest.com/docview/2848616734 https://www.proquest.com/docview/2850304645 https://pubmed.ncbi.nlm.nih.gov/PMC10415301 https://doaj.org/article/f18360736bff44a2985f0f82255ad165 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8ducZ4ngm0Z3s595EOmVq0fBQ9RC35ZNdnMNnOnZpnD9753dJJVqFV_SkGyXYXam85vO7m8QeoWpzEpjAblZSFeZsSzJAZkmKaA5J6SVuAgbZC_FxZRNZnx2gPp2R50CV3tTO99Parq8fnv7Y_MBHP59e2RcvVux4O4QfSAb4t7DD9ExRCbpOxp86uB--GWmGSQ0vtCcYkYSGEC7czT7p9mJVYHSfx8O_XM75W811RCqxvfRvQ5jxsPWKB6gA1c_RHfarpObRyjzezti63euN5sYYPi8Wn-P6wo8u3HxzXzReLrceEskYeOiWhbrqlk9RtPx-bfRRdJ1UEgKgWWTOAJCMWEzqwizJi3KHGc495xxvuAsCptxR5kvXRKBHXdpDvmNMEKSQmHL6RN0VC9q9wzFhCtDrbSFSA2zSuXCCYvhxgCAgiQtQqTXlS46enHf5eJahzI3VbrVrwb96qBfrSL0evudm5Zc45-jz_wSbEd6YuzwYLG80p2f6ZL4UymSirwsGTNppniJS0BBnBtLBI_Qab-Aujc2DSFaCSIkZRF6uX0NfuaLJ6Z2i7Ufw0MVmcEUT9v13kpCJRcUUs0IqR1L2BF1901dzQOXN_EUCdSr701vNL_k-rsuTv5DzufobuqNOfD3nqKjZrl2LwBBNfkAHcqZhKsafxyg4-Fw8nUCn2fnl5-_wNORGA3CfxOD4D4_AZN2GA8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLspBYIEJ4gax484B4R4LVtaemql3kxiO2wkSLa7WaH9U_xGZpxHtTx66y1KnMgZj8ffeMbfEPI8ZmlW5haQmwV3leeWRwUg0ygBNOdkatPY-ATZYzk95Z_PxNkW-TWchcG0ysEmekNtG4N75PtgRpWkMmX8zfw8wqpRGF0dSmh0anHo1j_BZVu-PvgA4_siSSYfT95Po76qQGRknLaRo9Y4Lm1mFeU2T0xZxFlcII8aBmGlsZlwjGM4j8rYCZcUgPllLlNqVGyxSgSY_GucwUqOJ9Mnn8Y9HWRbV5z3Z3NipvaX3FsiWBjBURNofDbWP18m4F_Y9u8UzT_itH75m9wmt3rcGr7tFO0O2XL1XXK9q2S5vkcyzBcJLWbDt-sQoP2sWv0I6wqsRevC-axpkYI3HMkpbGiqhVlV7fI-Ob0S-T0g23VTux0SUqFyZlNrZJJzq1QhnbQxXOQAysDxCwgdZKVNT1mOlTO-ax86Z0p38tUgX-3lq1VAXo7vzDvCjktbv8MhGFsi2ba_0Sy-6X7u6pLiSZeUyaIsOc-TTIkyLgFZCZFbKkVA9oYB1L0FWOoLfQ3Is_ExzF0MyOS1a1bYRvjINIdPPOzGe-wJS4Vk4L4GRG1owkZXN5_U1czzg1OkXWAovleD0lz06_-y2L38N56SG9OTL0f66OD48BG5maBOe2rgPbLdLlbuMYCztnjiZ0RIvl71FPwNxVhF1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYIEJ4g2iR9xDghR2lVL0apCVOrNOLbDRoLsspsV2r_Gr2PGeVTLo7feVomzcsYz428y428IeRHTLC-1BeRmIVxl2rKoAGQapYDmnMhsFhtfIDsVR2fswzk_3yG_-rMwWFbZ-0TvqO3c4DfyMbhRKRKRUTYuu7KI04PJ28WPCDtIYaa1b6fRqsiJ2_yE8G315vgA1vplmk4OP78_iroOA5ERcdZELrHGMWFzKxNmdWrKIs7jAjnVMCErjM25owxTe4mIHXdpAfhfaJElRsYWO0aA-9_NMCoakd39w-npp-ELD3KvS8a6kzoxleMV834JtkkI2zi6oq3d0DcN-BfS_btg84-srd8MJ7fIzQ7Fhu9atbtNdlx9h1xr-1pu7pIcq0dCi7XxzSYEoD-r1t_DugLf0bhwMZs3SMgbDlQVNjTV0qyrZnWPnF2JBO-TUT2v3UMSJlxqajNrRKqZlbIQTtgYfmiAaBAGBiTpZaVMR2COfTS-KZ9Ip1K18lUgX-Xlq2RAXg3PLFr6jktH7-MSDCORettfmC-_qs6SVZnguZeMiqIsGdNpLnkZl4CzONc2ETwge_0Cqs4frNSF9gbk-XAbLBnTM7p28zWO4T5PzeAvHrTrPcyEZlxQCGYDIrc0YWuq23fqaubZwhMkYaAovte90lzM6_-yeHT5azwj18H81Mfj6cljciNFlfY8wXtk1CzX7gkgtaZ42plESL5ctRX-Bra3S2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+density+lithium+niobate+photonic+integrated+circuits&rft.jtitle=Nature+communications&rft.au=Li%2C+Zihan&rft.au=Wang%2C+Rui+Ning&rft.au=Lihachev%2C+Grigory&rft.au=Zhang%2C+Junyin&rft.date=2023-08-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4856&rft_id=info:doi/10.1038%2Fs41467-023-40502-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |