High density lithium niobate photonic integrated circuits

Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 4856 - 8
Main Authors Li, Zihan, Wang, Rui Ning, Lihachev, Grigory, Zhang, Junyin, Tan, Zelin, Churaev, Mikhail, Kuznetsov, Nikolai, Siddharth, Anat, Bereyhi, Mohammad J., Riemensberger, Johann, Kippenberg, Tobias J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.
AbstractList Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Abstract Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO3. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.
ArticleNumber 4856
Author Lihachev, Grigory
Siddharth, Anat
Riemensberger, Johann
Churaev, Mikhail
Tan, Zelin
Li, Zihan
Zhang, Junyin
Kuznetsov, Nikolai
Wang, Rui Ning
Kippenberg, Tobias J.
Bereyhi, Mohammad J.
Author_xml – sequence: 1
  givenname: Zihan
  surname: Li
  fullname: Li, Zihan
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 2
  givenname: Rui Ning
  orcidid: 0000-0002-5704-3971
  surname: Wang
  fullname: Wang, Rui Ning
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 3
  givenname: Grigory
  surname: Lihachev
  fullname: Lihachev, Grigory
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 4
  givenname: Junyin
  orcidid: 0000-0001-7597-8941
  surname: Zhang
  fullname: Zhang, Junyin
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 5
  givenname: Zelin
  surname: Tan
  fullname: Tan, Zelin
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 6
  givenname: Mikhail
  orcidid: 0000-0002-1864-3288
  surname: Churaev
  fullname: Churaev, Mikhail
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 7
  givenname: Nikolai
  orcidid: 0000-0002-5609-5331
  surname: Kuznetsov
  fullname: Kuznetsov, Nikolai
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 8
  givenname: Anat
  orcidid: 0000-0003-4066-7304
  surname: Siddharth
  fullname: Siddharth, Anat
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 9
  givenname: Mohammad J.
  orcidid: 0000-0002-7685-4868
  surname: Bereyhi
  fullname: Bereyhi, Mohammad J.
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL), Luxtelligence SA
– sequence: 10
  givenname: Johann
  orcidid: 0000-0002-3468-6501
  surname: Riemensberger
  fullname: Riemensberger, Johann
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
– sequence: 11
  givenname: Tobias J.
  orcidid: 0000-0002-3408-886X
  surname: Kippenberg
  fullname: Kippenberg, Tobias J.
  email: tobias.kippenberg@epfl.ch
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Center of Quantum Science and Engineering (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37563149$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOKxIVLyvO3c0KoAlqpEhc4W47tZL3K2ovtIPXf421a-nGoL7bem5k3ep63zVGIwTXNewTnCIj8nCmiXHSASUeBAe7kq-YEA0UdEpgcPXofN2c5b6Ee0iNJ6ZvmmAjGCaL9SdNf-mnTWheyLzft7MvGL7s2-Djo4tr9JpYYvGl9KG5KtWRb45NZfMnvmtejnrM7u7tPm9_fv_26uOyuf_64uvh63RkOonQOWeMot72ViFqNzThAD4MQkmMBwI3tmSMUsGCIg2MOD5gD11wgI8Eyctpcrbo26q3aJ7_T6UZF7dVtIaZJ6VS8mZ0akSR1KOHDOFKqcS_ZCKPEmDFtET9ofVm19suwc9VYKEnPT0SfdoLfqCn-VagukxFAVeHTnUKKfxaXi9r5bNw86-DikhWWDAhQTg_DPj6DbuOSQt1VRVHJEReEVtSHx5b-e7n_ogqQK8CkmHNyozK-6OLjwaGfqzV1CIRaA6FqINRtIJSsVPyMeq_-IomspFzBYXLpwfYLrH9wh8WG
CitedBy_id crossref_primary_10_1002_apxr_202400096
crossref_primary_10_1080_23746149_2024_2360598
crossref_primary_10_1364_OPTICA_537730
crossref_primary_10_1016_j_sintl_2025_100326
crossref_primary_10_1364_OL_515576
crossref_primary_10_1021_acs_cgd_4c00116
crossref_primary_10_1364_OE_517313
crossref_primary_10_1016_j_optlastec_2024_110823
crossref_primary_10_1116_6_0004357
crossref_primary_10_1063_5_0235751
crossref_primary_10_1007_s00340_025_08434_x
crossref_primary_10_1515_nanoph_2024_0312
crossref_primary_10_3788_LOP232676
crossref_primary_10_1002_adma_202402515
crossref_primary_10_1063_5_0220463
crossref_primary_10_1063_5_0240090
crossref_primary_10_1002_lpor_202401575
crossref_primary_10_1364_OE_535076
crossref_primary_10_1364_OME_551748
crossref_primary_10_1063_5_0227255
crossref_primary_10_3788_LOP241337
crossref_primary_10_3788_PI_2024_R05
crossref_primary_10_1063_5_0241939
crossref_primary_10_1002_adpr_202400051
crossref_primary_10_1038_s41586_024_07071_2
crossref_primary_10_1016_j_optcom_2023_130080
crossref_primary_10_1103_PhysRevLett_134_113601
crossref_primary_10_1016_j_chip_2025_100128
crossref_primary_10_1364_OPTICA_514075
crossref_primary_10_1002_pssa_202400924
crossref_primary_10_1038_s41467_024_47478_z
crossref_primary_10_1515_nanoph_2024_0132
crossref_primary_10_1364_OE_535316
crossref_primary_10_1038_s41567_024_02739_y
crossref_primary_10_1088_1402_4896_ad3022
crossref_primary_10_1007_s11082_024_06888_5
crossref_primary_10_1016_j_jlumin_2023_120279
crossref_primary_10_1117_1_OE_63_3_037104
crossref_primary_10_1364_OL_553705
crossref_primary_10_1038_s41598_024_55687_1
crossref_primary_10_1038_s43246_024_00558_5
crossref_primary_10_1063_5_0228408
crossref_primary_10_1002_lpor_202400663
crossref_primary_10_1002_lpor_202400224
crossref_primary_10_1364_OL_530942
crossref_primary_10_3390_ma17184453
crossref_primary_10_1016_j_ceramint_2025_02_342
crossref_primary_10_1038_s41586_024_07369_1
crossref_primary_10_1364_OE_517840
crossref_primary_10_1109_JSTQE_2024_3448914
crossref_primary_10_1002_lpor_202300893
crossref_primary_10_3390_ma17081720
crossref_primary_10_1038_s41586_024_07078_9
crossref_primary_10_1109_LPT_2024_3434542
crossref_primary_10_1016_j_measurement_2024_116583
crossref_primary_10_1016_j_jlumin_2024_121051
crossref_primary_10_1007_s44275_024_00005_0
Cites_doi 10.1364/OE.24.029941
10.1364/OL.418996
10.1002/lpor.200900033
10.1038/nphoton.2009.138
10.1016/S0925-9635(02)00379-5
10.1088/0256-307X/37/8/084201
10.1002/lpor.201100035
10.1038/s41586-019-1008-7
10.1364/OPTICA.418984
10.1038/s41467-022-30911-6
10.1016/j.ijrmhm.2018.09.006
10.1038/s41566-019-0529-9
10.1364/AOP.411024
10.1016/j.tsf.2015.05.023
10.1038/s41566-019-0378-6
10.1016/S0925-9635(03)00081-5
10.1126/science.abo2631
10.1364/AO.49.004801
10.1038/s41586-022-05329-1
10.1038/s41566-022-01120-w
10.1103/PhysRevA.94.053815
10.1038/s41566-021-00761-7
10.1038/s41467-022-33101-6
10.1063/1.121801
10.1364/AO.56.008164
10.1038/s41586-021-03202-1
10.1088/2040-8978/18/7/073003
10.1063/1.1819527
10.1038/s41586-018-0551-y
10.1016/j.diamond.2009.09.008
10.1364/OL.442281
10.1038/s41586-018-0598-9
10.1063/5.0081660
10.1038/s41566-019-0358-x
10.1364/OPTICA.6.001455
10.1364/PRJ.7.001003
10.1364/OE.26.004421
10.1364/OL.44.002314
10.1364/OE.25.028167
10.1364/OE.25.006963
10.1364/OPTICA.4.001536
10.1016/S1369-7021(06)71791-6
10.1126/science.aad4811
10.1126/science.abo6213
10.1016/S0927-796X(02)00005-0
10.1126/sciadv.abi8150
10.1038/s41467-023-39047-7
10.1088/0960-1317/17/7/S12
ContentType Journal Article
Copyright The Author(s) 2023
2023. Springer Nature Limited.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. Springer Nature Limited.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-40502-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_f18360736bff44a2985f0f82255ad165
PMC10415301
37563149
10_1038_s41467_023_40502_8
Genre Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 835329
  funderid: https://doi.org/10.13039/100010663
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 186364
  funderid: https://doi.org/10.13039/501100001711
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 835329
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 186364
– fundername: ;
  grantid: 835329
– fundername: ;
  grantid: 186364
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c607t-e1dce46d9d814da2cfb090b778627006cd95e340275160e5e2b2606a671c80d53
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:59 EDT 2025
Thu Aug 21 18:41:01 EDT 2025
Fri Jul 11 11:13:57 EDT 2025
Wed Aug 13 11:12:19 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 02:10:30 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Springer Nature Limited.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-e1dce46d9d814da2cfb090b778627006cd95e340275160e5e2b2606a671c80d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1864-3288
0000-0003-4066-7304
0000-0002-5704-3971
0000-0002-7685-4868
0000-0001-7597-8941
0000-0002-3408-886X
0000-0002-3468-6501
0000-0002-5609-5331
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40502-8
PMID 37563149
PQID 2848616734
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10415301
proquest_miscellaneous_2850304645
proquest_journals_2848616734
pubmed_primary_37563149
crossref_citationtrail_10_1038_s41467_023_40502_8
crossref_primary_10_1038_s41467_023_40502_8
springer_journals_10_1038_s41467_023_40502_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-10
PublicationDateYYYYMMDD 2023-08-10
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rao (CR25) 2016; 24
Corato-Zanarella (CR48) 2023; 17
Ying (CR30) 2021; 46
Arrazola (CR49) 2021; 591
He (CR41) 2019; 44
Levy (CR12) 1998; 73
Wang (CR21) 2017; 25
CR32
Tyagi (CR33) 2019; 78
Luo (CR36) 2007; 17
Jin (CR10) 2021; 15
Zhang, Wang, Cheng, Shams-Ansari, Lončar (CR42) 2017; 4
Zhou (CR18) 2020; 37
Lu (CR24) 2021; 8
He (CR15) 2019; 13
Qureshi, Kang, Davidson, Gurbuz (CR37) 2009; 18
Wang (CR43) 2018; 562
Gaeta, Lipson, Kippenberg (CR5) 2019; 13
Bartali (CR40) 2015; 589
Siew (CR29) 2018; 26
Poberaj, Hu, Sohler, Guenter (CR27) 2012; 6
Stern, Ji, Okawachi, Gaeta, Lipson (CR3) 2018; 562
Riemensberger (CR7) 2022; 612
Thomson (CR1) 2016; 18
Roelkens (CR2) 2010; 4
Li (CR20) 2022; 13
Domenico, Schilt, Thomann (CR47) 2010; 49
Siddharth (CR9) 2022; 7
Zhang (CR16) 2019; 568
Lu (CR22) 2019; 6
Liu (CR8) 2022; 376
Wang (CR14) 2018; 562
Robertson (CR38) 2002; 37
Kondratiev (CR46) 2017; 25
He (CR44) 2019; 13
Lihachev (CR11) 2022; 13
Brasch (CR4) 2016; 351
Nehra (CR23) 2022; 377
Hirakuri, Yoshimura, Friedbacher (CR39) 2003; 12
Churaev (CR31) 2023; 14
Cai (CR26) 2019; 7
Wang, Li, Zhang, Chen (CR17) 2017; 56
Hauert (CR34) 2003; 12
Rabiei, Gunter (CR13) 2004; 85
Javerzac-Galy (CR50) 2016; 94
Ye (CR6) 2021; 7
Pohl (CR19) 2020; 14
Casiraghi, Robertson, Ferrari (CR35) 2007; 10
Zhu (CR28) 2021; 13
Del’Haye, Arcizet, Gorodetsky, Holzwarth, Kippenberg (CR45) 2009; 3
Han (CR51) 2021; 46
L He (40502_CR41) 2019; 44
AL Gaeta (40502_CR5) 2019; 13
GD Domenico (40502_CR47) 2010; 49
A Rao (40502_CR25) 2016; 24
M He (40502_CR44) 2019; 13
R Bartali (40502_CR40) 2015; 589
G Lihachev (40502_CR11) 2022; 13
M Churaev (40502_CR31) 2023; 14
C Wang (40502_CR14) 2018; 562
J Lu (40502_CR24) 2021; 8
Y Liu (40502_CR8) 2022; 376
D Zhu (40502_CR28) 2021; 13
J Lu (40502_CR22) 2019; 6
A Qureshi (40502_CR37) 2009; 18
G Roelkens (40502_CR2) 2010; 4
C Wang (40502_CR43) 2018; 562
C Casiraghi (40502_CR35) 2007; 10
J Luo (40502_CR36) 2007; 17
A Siddharth (40502_CR9) 2022; 7
H Wang (40502_CR17) 2017; 56
Y Han (40502_CR51) 2021; 46
P Del’Haye (40502_CR45) 2009; 3
J Robertson (40502_CR38) 2002; 37
J Riemensberger (40502_CR7) 2022; 612
M Zhang (40502_CR42) 2017; 4
G Poberaj (40502_CR27) 2012; 6
M He (40502_CR15) 2019; 13
P Ying (40502_CR30) 2021; 46
L Cai (40502_CR26) 2019; 7
R Nehra (40502_CR23) 2022; 377
KK Hirakuri (40502_CR39) 2003; 12
M Corato-Zanarella (40502_CR48) 2023; 17
SY Siew (40502_CR29) 2018; 26
M Levy (40502_CR12) 1998; 73
M Li (40502_CR20) 2022; 13
NM Kondratiev (40502_CR46) 2017; 25
JM Arrazola (40502_CR49) 2021; 591
C Javerzac-Galy (40502_CR50) 2016; 94
P Rabiei (40502_CR13) 2004; 85
C Wang (40502_CR21) 2017; 25
40502_CR32
M Zhang (40502_CR16) 2019; 568
D Pohl (40502_CR19) 2020; 14
A Tyagi (40502_CR33) 2019; 78
Z Ye (40502_CR6) 2021; 7
J-x Zhou (40502_CR18) 2020; 37
B Stern (40502_CR3) 2018; 562
R Hauert (40502_CR34) 2003; 12
W Jin (40502_CR10) 2021; 15
D Thomson (40502_CR1) 2016; 18
V Brasch (40502_CR4) 2016; 351
References_xml – volume: 24
  start-page: 29941
  year: 2016
  end-page: 29947
  ident: CR25
  article-title: Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon
  publication-title: Opt. Express
  doi: 10.1364/OE.24.029941
– volume: 46
  start-page: 1478
  year: 2021
  end-page: 1481
  ident: CR30
  article-title: Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter
  publication-title: Opt. Lett.
  doi: 10.1364/OL.418996
– volume: 4
  start-page: 751
  year: 2010
  end-page: 779
  ident: CR2
  article-title: Iii-v/silicon photonics for on-chip and intra-chip optical interconnects
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200900033
– volume: 3
  start-page: 529
  year: 2009
  end-page: 533
  ident: CR45
  article-title: Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.138
– volume: 12
  start-page: 1013
  year: 2003
  end-page: 1017
  ident: CR39
  article-title: Application of DLC films as masks for integrated circuit fabrication
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/S0925-9635(02)00379-5
– volume: 37
  start-page: 084201
  year: 2020
  ident: CR18
  article-title: Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/8/084201
– volume: 6
  start-page: 488
  year: 2012
  end-page: 503
  ident: CR27
  article-title: Lithium niobate on insulator (LNOI) for micro-photonic devices
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100035
– volume: 568
  start-page: 373
  year: 2019
  end-page: 377
  ident: CR16
  article-title: Broadband electro-optic frequency comb generation in a lithium niobate microring resonator
  publication-title: Nature
  doi: 10.1038/s41586-019-1008-7
– volume: 8
  start-page: 539
  year: 2021
  end-page: 544
  ident: CR24
  article-title: Ultralow-threshold thin-film lithium niobate optical parametric oscillator
  publication-title: Optica
  doi: 10.1364/OPTICA.418984
– volume: 13
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR11
  article-title: Low-noise frequency-agile photonic integrated lasers for coherent ranging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30911-6
– volume: 78
  start-page: 107
  year: 2019
  end-page: 122
  ident: CR33
  article-title: A critical review of diamond like carbon coating for wear resistance applications
  publication-title: Int. J. Refract Metals Hard Mater.
  doi: 10.1016/j.ijrmhm.2018.09.006
– volume: 14
  start-page: 24
  year: 2020
  end-page: 29
  ident: CR19
  article-title: An integrated broadband spectrometer on thin-film lithium niobate
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0529-9
– volume: 13
  start-page: 242
  year: 2021
  end-page: 352
  ident: CR28
  article-title: Integrated photonics on thin-film lithium niobate
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.411024
– volume: 589
  start-page: 376
  year: 2015
  end-page: 380
  ident: CR40
  article-title: Nano-hardness estimation by means of Ar ion etching
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.05.023
– volume: 13
  start-page: 359
  year: 2019
  end-page: 364
  ident: CR44
  article-title: High-performance hybrid silicon and lithium niobate mach–zehnder modulators for 100 Gbit s and beyond
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0378-6
– volume: 12
  start-page: 583
  year: 2003
  end-page: 589
  ident: CR34
  article-title: A review of modified DLC coatings for biological applications
  publication-title: Diam.Relat. Mater.
  doi: 10.1016/S0925-9635(03)00081-5
– volume: 376
  start-page: 1309
  year: 2022
  end-page: 1313
  ident: CR8
  article-title: A photonic integrated circuit-based erbium-doped amplifier
  publication-title: Science
  doi: 10.1126/science.abo2631
– volume: 49
  start-page: 4801
  year: 2010
  end-page: 4807
  ident: CR47
  article-title: Simple approach to the relation between laser frequency noise and laser line shape
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.004801
– volume: 612
  start-page: 56
  year: 2022
  end-page: 61
  ident: CR7
  article-title: A photonic integrated continuous-travelling-wave parametric amplifier
  publication-title: Nature
  doi: 10.1038/s41586-022-05329-1
– ident: CR32
– volume: 17
  start-page: 157
  year: 2023
  end-page: 164
  ident: CR48
  article-title: Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-022-01120-w
– volume: 94
  start-page: 053815
  year: 2016
  ident: CR50
  article-title: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.053815
– volume: 15
  start-page: 346
  year: 2021
  end-page: 353
  ident: CR10
  article-title: Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00761-7
– volume: 13
  year: 2022
  ident: CR20
  article-title: Integrated pockels laser
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33101-6
– volume: 73
  start-page: 2293
  year: 1998
  end-page: 2295
  ident: CR12
  article-title: Fabrication of single-crystal lithium niobate films by crystal ion slicing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121801
– volume: 56
  start-page: 8164
  year: 2017
  end-page: 8168
  ident: CR17
  article-title: Broadband 2 × 2 lithium niobate electro-optic switch based on a Mach–Zehnder interferometer with counter-tapered directional couplers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.008164
– volume: 591
  start-page: 54
  year: 2021
  end-page: 60
  ident: CR49
  article-title: Quantum circuits with many photons on a programmable nanophotonic chip
  publication-title: Nature
  doi: 10.1038/s41586-021-03202-1
– volume: 18
  start-page: 073003
  year: 2016
  ident: CR1
  article-title: Roadmap on silicon photonics
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/7/073003
– volume: 85
  start-page: 4603
  year: 2004
  end-page: 4605
  ident: CR13
  article-title: Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1819527
– volume: 562
  start-page: 101
  year: 2018
  end-page: 104
  ident: CR14
  article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 562
  start-page: 101
  year: 2018
  end-page: 104
  ident: CR43
  article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 18
  start-page: 1401
  year: 2009
  end-page: 1420
  ident: CR37
  article-title: Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2009.09.008
– volume: 46
  start-page: 5413
  year: 2021
  end-page: 5416
  ident: CR51
  article-title: Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser
  publication-title: Opt. Lett.
  doi: 10.1364/OL.442281
– volume: 562
  start-page: 401
  year: 2018
  end-page: 405
  ident: CR3
  article-title: Battery-operated integrated frequency comb generator
  publication-title: Nature
  doi: 10.1038/s41586-018-0598-9
– volume: 7
  start-page: 046108
  year: 2022
  ident: CR9
  article-title: Near ultraviolet photonic integrated lasers based on silicon nitride
  publication-title: APL Photonics
  doi: 10.1063/5.0081660
– volume: 13
  start-page: 158
  year: 2019
  end-page: 169
  ident: CR5
  article-title: Photonic-chip-based frequency combs
  publication-title: Nat. photonics
  doi: 10.1038/s41566-019-0358-x
– volume: 6
  start-page: 1455
  year: 2019
  end-page: 1460
  ident: CR22
  article-title: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001455
– volume: 7
  start-page: 1003
  year: 2019
  end-page: 1013
  ident: CR26
  article-title: Acousto-optical modulation of thin film lithium niobate waveguide devices
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.001003
– volume: 26
  start-page: 4421
  year: 2018
  end-page: 4430
  ident: CR29
  article-title: Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening
  publication-title: Opt. Express
  doi: 10.1364/OE.26.004421
– volume: 44
  start-page: 2314
  year: 2019
  end-page: 2317
  ident: CR41
  article-title: Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.002314
– volume: 25
  start-page: 28167
  year: 2017
  end-page: 28178
  ident: CR46
  article-title: Self-injection locking of a laser diode to a high-Q WGM microresonator
  publication-title: Opt. Express
  doi: 10.1364/OE.25.028167
– volume: 25
  start-page: 6963
  year: 2017
  end-page: 6973
  ident: CR21
  article-title: Second harmonic generation in nano-structured thin-film lithium niobate waveguides
  publication-title: Opt. Express
  doi: 10.1364/OE.25.006963
– volume: 4
  start-page: 1536
  year: 2017
  end-page: 1537
  ident: CR42
  article-title: Monolithic ultra-high-Q lithium niobate microring resonator
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001536
– volume: 13
  start-page: 359
  year: 2019
  end-page: 364
  ident: CR15
  article-title: High-performance hybrid silicon and lithium niobate mach–zehnder modulators for 100 gbit s-1 and beyond
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0378-6
– volume: 10
  start-page: 44
  year: 2007
  end-page: 53
  ident: CR35
  article-title: Diamond-like carbon for data and beer storage
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71791-6
– volume: 351
  start-page: 357
  year: 2016
  end-page: 360
  ident: CR4
  article-title: Photonic chip-based optical frequency comb using soliton cherenkov radiation
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 377
  start-page: 1333
  year: 2022
  end-page: 1337
  ident: CR23
  article-title: Few-cycle vacuum squeezing in nanophotonics
  publication-title: Science
  doi: 10.1126/science.abo6213
– volume: 37
  start-page: 129
  year: 2002
  end-page: 281
  ident: CR38
  article-title: Diamond-like amorphous carbon
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/S0927-796X(02)00005-0
– volume: 7
  start-page: eabi8150
  year: 2021
  ident: CR6
  article-title: Overcoming the quantum limit of optical amplification in monolithic waveguides
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi8150
– volume: 14
  year: 2023
  ident: CR31
  article-title: A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39047-7
– volume: 17
  start-page: S147
  year: 2007
  ident: CR36
  article-title: Diamond and diamond-like carbon mems
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/7/S12
– volume: 24
  start-page: 29941
  year: 2016
  ident: 40502_CR25
  publication-title: Opt. Express
  doi: 10.1364/OE.24.029941
– volume: 14
  year: 2023
  ident: 40502_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39047-7
– volume: 25
  start-page: 6963
  year: 2017
  ident: 40502_CR21
  publication-title: Opt. Express
  doi: 10.1364/OE.25.006963
– volume: 612
  start-page: 56
  year: 2022
  ident: 40502_CR7
  publication-title: Nature
  doi: 10.1038/s41586-022-05329-1
– volume: 10
  start-page: 44
  year: 2007
  ident: 40502_CR35
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71791-6
– volume: 13
  start-page: 242
  year: 2021
  ident: 40502_CR28
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.411024
– volume: 15
  start-page: 346
  year: 2021
  ident: 40502_CR10
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00761-7
– volume: 6
  start-page: 488
  year: 2012
  ident: 40502_CR27
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100035
– volume: 18
  start-page: 073003
  year: 2016
  ident: 40502_CR1
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/7/073003
– volume: 13
  year: 2022
  ident: 40502_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33101-6
– volume: 376
  start-page: 1309
  year: 2022
  ident: 40502_CR8
  publication-title: Science
  doi: 10.1126/science.abo2631
– volume: 85
  start-page: 4603
  year: 2004
  ident: 40502_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1819527
– volume: 568
  start-page: 373
  year: 2019
  ident: 40502_CR16
  publication-title: Nature
  doi: 10.1038/s41586-019-1008-7
– volume: 7
  start-page: eabi8150
  year: 2021
  ident: 40502_CR6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi8150
– volume: 589
  start-page: 376
  year: 2015
  ident: 40502_CR40
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.05.023
– volume: 562
  start-page: 401
  year: 2018
  ident: 40502_CR3
  publication-title: Nature
  doi: 10.1038/s41586-018-0598-9
– volume: 49
  start-page: 4801
  year: 2010
  ident: 40502_CR47
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.004801
– volume: 562
  start-page: 101
  year: 2018
  ident: 40502_CR43
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 13
  start-page: 359
  year: 2019
  ident: 40502_CR15
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0378-6
– volume: 7
  start-page: 1003
  year: 2019
  ident: 40502_CR26
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.001003
– volume: 78
  start-page: 107
  year: 2019
  ident: 40502_CR33
  publication-title: Int. J. Refract Metals Hard Mater.
  doi: 10.1016/j.ijrmhm.2018.09.006
– volume: 17
  start-page: 157
  year: 2023
  ident: 40502_CR48
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-022-01120-w
– volume: 46
  start-page: 5413
  year: 2021
  ident: 40502_CR51
  publication-title: Opt. Lett.
  doi: 10.1364/OL.442281
– ident: 40502_CR32
– volume: 44
  start-page: 2314
  year: 2019
  ident: 40502_CR41
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.002314
– volume: 13
  start-page: 1
  year: 2022
  ident: 40502_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30911-6
– volume: 351
  start-page: 357
  year: 2016
  ident: 40502_CR4
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 18
  start-page: 1401
  year: 2009
  ident: 40502_CR37
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2009.09.008
– volume: 12
  start-page: 1013
  year: 2003
  ident: 40502_CR39
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/S0925-9635(02)00379-5
– volume: 7
  start-page: 046108
  year: 2022
  ident: 40502_CR9
  publication-title: APL Photonics
  doi: 10.1063/5.0081660
– volume: 377
  start-page: 1333
  year: 2022
  ident: 40502_CR23
  publication-title: Science
  doi: 10.1126/science.abo6213
– volume: 94
  start-page: 053815
  year: 2016
  ident: 40502_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.053815
– volume: 56
  start-page: 8164
  year: 2017
  ident: 40502_CR17
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.008164
– volume: 4
  start-page: 1536
  year: 2017
  ident: 40502_CR42
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001536
– volume: 8
  start-page: 539
  year: 2021
  ident: 40502_CR24
  publication-title: Optica
  doi: 10.1364/OPTICA.418984
– volume: 26
  start-page: 4421
  year: 2018
  ident: 40502_CR29
  publication-title: Opt. Express
  doi: 10.1364/OE.26.004421
– volume: 37
  start-page: 129
  year: 2002
  ident: 40502_CR38
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/S0927-796X(02)00005-0
– volume: 3
  start-page: 529
  year: 2009
  ident: 40502_CR45
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.138
– volume: 562
  start-page: 101
  year: 2018
  ident: 40502_CR14
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 6
  start-page: 1455
  year: 2019
  ident: 40502_CR22
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001455
– volume: 25
  start-page: 28167
  year: 2017
  ident: 40502_CR46
  publication-title: Opt. Express
  doi: 10.1364/OE.25.028167
– volume: 73
  start-page: 2293
  year: 1998
  ident: 40502_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121801
– volume: 46
  start-page: 1478
  year: 2021
  ident: 40502_CR30
  publication-title: Opt. Lett.
  doi: 10.1364/OL.418996
– volume: 4
  start-page: 751
  year: 2010
  ident: 40502_CR2
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200900033
– volume: 12
  start-page: 583
  year: 2003
  ident: 40502_CR34
  publication-title: Diam.Relat. Mater.
  doi: 10.1016/S0925-9635(03)00081-5
– volume: 13
  start-page: 158
  year: 2019
  ident: 40502_CR5
  publication-title: Nat. photonics
  doi: 10.1038/s41566-019-0358-x
– volume: 13
  start-page: 359
  year: 2019
  ident: 40502_CR44
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0378-6
– volume: 14
  start-page: 24
  year: 2020
  ident: 40502_CR19
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0529-9
– volume: 17
  start-page: S147
  year: 2007
  ident: 40502_CR36
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/7/S12
– volume: 37
  start-page: 084201
  year: 2020
  ident: 40502_CR18
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/8/084201
– volume: 591
  start-page: 54
  year: 2021
  ident: 40502_CR49
  publication-title: Nature
  doi: 10.1038/s41586-021-03202-1
SSID ssj0000391844
Score 2.639636
Snippet Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new...
Abstract Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4856
SubjectTerms 639/624/1075/1079
639/624/1111/1113
Carbon
Confining
Density
Diamond-like carbon
Electric potential
Etching
Fabrication
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Humanities and Social Sciences
Integrated circuits
Light modulation
Lithium
Lithium niobates
multidisciplinary
Optical fibers
Optics
Photonics
Science
Science (multidisciplinary)
Voltage
Waveguides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA4iCF5EV1errlTw5haT5kfT464o4sGTgreQJimvsNsnvr6D_70zaV_1uatevJUmLcOXSWaGmXxDyAnlRVlbD56bh3BVWC-yCjzTLAdvLqjCF9TFAtkbdXUnru_l_atWX1gT1tMD98Cd1QyvGRRcVXUthM1LLWtag1mT0nqmInsp2LxXwVQ8g3kJoYsYbslQrs9mIp4JYKIgZJJ4DCxZokjY_z8v899iyTcZ02iILjfJxuBBpr96ybfISmi_kbW-p-TTNimxciP1WJfePaXgZE-a-d-0bWDfdiF9mEw7JMNNR5oIn7rm0c2bbrZD7i4vbs-vsqE_QuYAkS4LDIQSypdeM-Ft7uqKlrRCRjhMJyvnSxm4wMQkUzTIkFcQvSirCuY09ZJ_J6vttA17JGVSW-4L71Ruhde6UkF5Cg8W3CMIwRLCFlgZN5CHYw-LPyYmsbk2Pb4G8DURX6MTcjp-89BTZ3w4-zcuwTgTaa_jC1AGMyiD-UwZEnK4WEAz7MWZAQOsFVMFFwk5HodhF2FqxLZhOsc5MuaIBfxit1_vURJeSMUhkEyIXtKEJVGXR9pmEpm6GRIgcITv50JpXuR6H4v9r8DigKznqO2RvveQrHaP8_ADHKiuOop75RkuIhHU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXmmtChI3CCqHT9zQoBYKg6cqNSb5dgOGwmS7W720H_fGSebann0FiVO5Iw94288428IeUu5rhoXALkFcFeFC6KoAZkWJaC5qHTQ1KcE2e_q_EJ8u5SX04bbZkqr3NnEZKhD73GP_AzMqFFMaS4-rK4KrBqF0dWphMZ98oDBSoMpXWbxdd5jQfZzI8R0VoZyc7YRyTLAQgWOk0RjsLceJdr-f2HNv1Mm_4ibpuVo8ZgcTjgy_zgO_BG5F7sn5OFYWfL6KakwfyMPmJ0-XOcAtZft9nfetaC9Q8xXy35AStx8JosIuW_XftsOm2fkYvHlx-fzYqqSUHhF9VBEBp0SKlTBMBFc6ZuaVrRGXjgMKisfKhm5wPAkUzTKWNbgwyinNPOGBsmfk4Ou7-JLkjNpHA86eFU6EYypVVSBwoUDkASOWEbYTlbWTxTiWMnil02hbG7sKF8L8rVJvtZk5N38zmok0Liz9Sccgrklkl-nG_36p510yTYMT55oruqmEcKVlZENbQDpSOkCUzIjJ7sBtJNGbuzt_MnIm_kx6BIGSFwX-y22kSlSLOATL8bxnnvCtVQc3MmMmL2ZsNfV_Sddu0x83QxpEDiK7_1u0tz26_-yOL77N16RRyXO40TPe0IOhvU2ngJAGurXSQtuADIkClo
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqOXVQIuCxA0i7PiZ44Koqj1wgUq9WY7tsJEgW-1mD_33zDiPaqEgcYuScTQaz8TfZMafCXlLua4aFwC5BUhXhQuiqAGZFiWguah00NSnBtkv6vJKLK_l9QEpp70wqWk_UVqmz_TUHfZhK1JIwwoDGY_EKH5AjpCqHXz7aLFYfl3Of1aQ89wIMe6QodzcM3hvFUpk_fchzD8bJX-rlqZF6OKYPB7RY74Y9D0hB7F7Qh4O50nePiUVdm3kAXvS-9scAPaq3f3MuxZito_5zWrdIxFuPlNEhNy3G79r--0zcnXx-duny2I8G6Hwiuq-iAyUEipUwTARXOmbmla0RjY4LCUrHyoZucCiJFM0yljWkLkopzTzhgbJn5PDbt3FU5IzaRwPOnhVOhGMqVVUgcKFA2gE6VdG2GQr60ficDy_4odNBWxu7GBfC_a1yb7WZOTdPOZmoM34p_RHnIJZEimv04315rsdXcA2DPebaK7qphHClZWRDW0A30jpAlMyI2fTBNoxDrcWFl-jmNJcZOTN_BgiCMsirovrHcrIVB8W8IoXw3zPmnAtFYckMiNmzxP2VN1_0rWrxNLNkPyAo_neT05zp9ffbfHy_8RfkUcl-nUi6T0jh_1mF88BJvX16zEufgGuewln
  priority: 102
  providerName: Springer Nature
Title High density lithium niobate photonic integrated circuits
URI https://link.springer.com/article/10.1038/s41467-023-40502-8
https://www.ncbi.nlm.nih.gov/pubmed/37563149
https://www.proquest.com/docview/2848616734
https://www.proquest.com/docview/2850304645
https://pubmed.ncbi.nlm.nih.gov/PMC10415301
https://doaj.org/article/f18360736bff44a2985f0f82255ad165
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8ducZ4ngm0Z3s595EOmVq0fBQ9RC35ZNdnMNnOnZpnD9753dJJVqFV_SkGyXYXam85vO7m8QeoWpzEpjAblZSFeZsSzJAZkmKaA5J6SVuAgbZC_FxZRNZnx2gPp2R50CV3tTO99Parq8fnv7Y_MBHP59e2RcvVux4O4QfSAb4t7DD9ExRCbpOxp86uB--GWmGSQ0vtCcYkYSGEC7czT7p9mJVYHSfx8O_XM75W811RCqxvfRvQ5jxsPWKB6gA1c_RHfarpObRyjzezti63euN5sYYPi8Wn-P6wo8u3HxzXzReLrceEskYeOiWhbrqlk9RtPx-bfRRdJ1UEgKgWWTOAJCMWEzqwizJi3KHGc495xxvuAsCptxR5kvXRKBHXdpDvmNMEKSQmHL6RN0VC9q9wzFhCtDrbSFSA2zSuXCCYvhxgCAgiQtQqTXlS46enHf5eJahzI3VbrVrwb96qBfrSL0evudm5Zc45-jz_wSbEd6YuzwYLG80p2f6ZL4UymSirwsGTNppniJS0BBnBtLBI_Qab-Aujc2DSFaCSIkZRF6uX0NfuaLJ6Z2i7Ufw0MVmcEUT9v13kpCJRcUUs0IqR1L2BF1901dzQOXN_EUCdSr701vNL_k-rsuTv5DzufobuqNOfD3nqKjZrl2LwBBNfkAHcqZhKsafxyg4-Fw8nUCn2fnl5-_wNORGA3CfxOD4D4_AZN2GA8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLspBYIEJ4gax484B4R4LVtaemql3kxiO2wkSLa7WaH9U_xGZpxHtTx66y1KnMgZj8ffeMbfEPI8ZmlW5haQmwV3leeWRwUg0ygBNOdkatPY-ATZYzk95Z_PxNkW-TWchcG0ysEmekNtG4N75PtgRpWkMmX8zfw8wqpRGF0dSmh0anHo1j_BZVu-PvgA4_siSSYfT95Po76qQGRknLaRo9Y4Lm1mFeU2T0xZxFlcII8aBmGlsZlwjGM4j8rYCZcUgPllLlNqVGyxSgSY_GucwUqOJ9Mnn8Y9HWRbV5z3Z3NipvaX3FsiWBjBURNofDbWP18m4F_Y9u8UzT_itH75m9wmt3rcGr7tFO0O2XL1XXK9q2S5vkcyzBcJLWbDt-sQoP2sWv0I6wqsRevC-axpkYI3HMkpbGiqhVlV7fI-Ob0S-T0g23VTux0SUqFyZlNrZJJzq1QhnbQxXOQAysDxCwgdZKVNT1mOlTO-ax86Z0p38tUgX-3lq1VAXo7vzDvCjktbv8MhGFsi2ba_0Sy-6X7u6pLiSZeUyaIsOc-TTIkyLgFZCZFbKkVA9oYB1L0FWOoLfQ3Is_ExzF0MyOS1a1bYRvjINIdPPOzGe-wJS4Vk4L4GRG1owkZXN5_U1czzg1OkXWAovleD0lz06_-y2L38N56SG9OTL0f66OD48BG5maBOe2rgPbLdLlbuMYCztnjiZ0RIvl71FPwNxVhF1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYIEJ4g2iR9xDghR2lVL0apCVOrNOLbDRoLsspsV2r_Gr2PGeVTLo7feVomzcsYz428y428IeRHTLC-1BeRmIVxl2rKoAGQapYDmnMhsFhtfIDsVR2fswzk_3yG_-rMwWFbZ-0TvqO3c4DfyMbhRKRKRUTYuu7KI04PJ28WPCDtIYaa1b6fRqsiJ2_yE8G315vgA1vplmk4OP78_iroOA5ERcdZELrHGMWFzKxNmdWrKIs7jAjnVMCErjM25owxTe4mIHXdpAfhfaJElRsYWO0aA-9_NMCoakd39w-npp-ELD3KvS8a6kzoxleMV834JtkkI2zi6oq3d0DcN-BfS_btg84-srd8MJ7fIzQ7Fhu9atbtNdlx9h1xr-1pu7pIcq0dCi7XxzSYEoD-r1t_DugLf0bhwMZs3SMgbDlQVNjTV0qyrZnWPnF2JBO-TUT2v3UMSJlxqajNrRKqZlbIQTtgYfmiAaBAGBiTpZaVMR2COfTS-KZ9Ip1K18lUgX-Xlq2RAXg3PLFr6jktH7-MSDCORettfmC-_qs6SVZnguZeMiqIsGdNpLnkZl4CzONc2ETwge_0Cqs4frNSF9gbk-XAbLBnTM7p28zWO4T5PzeAvHrTrPcyEZlxQCGYDIrc0YWuq23fqaubZwhMkYaAovte90lzM6_-yeHT5azwj18H81Mfj6cljciNFlfY8wXtk1CzX7gkgtaZ42plESL5ctRX-Bra3S2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+density+lithium+niobate+photonic+integrated+circuits&rft.jtitle=Nature+communications&rft.au=Li%2C+Zihan&rft.au=Wang%2C+Rui+Ning&rft.au=Lihachev%2C+Grigory&rft.au=Zhang%2C+Junyin&rft.date=2023-08-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4856&rft_id=info:doi/10.1038%2Fs41467-023-40502-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon