Semi-supervised few-shot learning approach for plant diseases recognition

Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data'...

Full description

Saved in:
Bibliographic Details
Published inPlant methods Vol. 17; no. 1; p. 68
Main Authors Li, Yang, Chao, Xuewei
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 27.06.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. The proposed methods can outperform other related works with fewer labeled training data.
AbstractList Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. The proposed methods can outperform other related works with fewer labeled training data.
Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. Methods In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. Results The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. Conclusions The proposed methods can outperform other related works with fewer labeled training data. Keywords: Classification, Transfer learning, Self-adaption, Deep learning
BACKGROUND: Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. METHODS: In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. RESULTS: The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. CONCLUSIONS: The proposed methods can outperform other related works with fewer labeled training data.
Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information.BACKGROUNDLearning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information.In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively.METHODSIn this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively.The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%.RESULTSThe average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%.The proposed methods can outperform other related works with fewer labeled training data.CONCLUSIONSThe proposed methods can outperform other related works with fewer labeled training data.
Abstract Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. Methods In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. Results The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. Conclusions The proposed methods can outperform other related works with fewer labeled training data.
ArticleNumber 68
Audience Academic
Author Chao, Xuewei
Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 2
  givenname: Xuewei
  orcidid: 0000-0001-7559-0293
  surname: Chao
  fullname: Chao, Xuewei
BookMark eNqFkk1v1DAQhiNURD_gD3CKxAUOKf6OfUGqKlpWqoRE4Ww5tpP1KmsHOynw75ntVsBWCOSDrfEzr2fG72l1FFP0VfUSo3OMpXhbMEWobRDBDewtavCT6gS3TDRMYnz0x_m4Oi1lgxDDhIpn1TFluBUc8ZNqdeu3oSnL5PNdKN7Vvf_WlHWa69GbHEMcajNNORm7rvuU62k0ca4doKb4Umdv0xDDHFJ8Xj3tzVj8i4f9rPpy9f7z5Yfm5uP16vLiprECtXPjWsmUZJLSzirRMyqVgmqcccIpgR2TEBOtIVhQzDllrPNEuU4IZLxhlp5Vq72uS2ajpxy2Jv_QyQR9H0h50CbPwY5ed54ShyVVtJeMY3jDo1460XHh204q0Hq315qWbuud9XHOZjwQPbyJYa2HdKcloS1jGARePwjk9HXxZdbbUKwfYUo-LUUTITBMXSL1f5QzrmRLyE711SN0k5YcYapAcUo45lT9pgYDvYbYJyjR7kT1hQAdoTijQJ3_hYLl4OMtGKoPED9IeHOQAMzsv8-DWUrRq9tPhyzZszanUrLvf40OI73zqN57VINH9b1H9a47-SjJhtnsLASVhfFfqT8BgUPoPg
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3373001
crossref_primary_10_21597_jist_1283491
crossref_primary_10_1111_exsy_13737
crossref_primary_10_3389_fpls_2024_1434222
crossref_primary_10_1007_s00425_025_04666_5
crossref_primary_10_3389_fpls_2022_1010981
crossref_primary_10_1016_j_atech_2025_100813
crossref_primary_10_3390_su14137825
crossref_primary_10_3389_fpls_2022_929140
crossref_primary_10_1007_s11042_023_14372_7
crossref_primary_10_1016_j_atech_2024_100613
crossref_primary_10_3390_s24186109
crossref_primary_10_1007_s00530_021_00879_2
crossref_primary_10_3389_fpls_2024_1341831
crossref_primary_10_1007_s10462_024_10775_6
crossref_primary_10_1016_j_compag_2022_106703
crossref_primary_10_1080_01431161_2024_2443620
crossref_primary_10_3389_fpls_2024_1333236
crossref_primary_10_1016_j_compag_2023_107967
crossref_primary_10_1108_DTA_10_2021_0296
crossref_primary_10_1111_tpj_16176
crossref_primary_10_1016_j_cropro_2023_106489
crossref_primary_10_3390_su152416791
crossref_primary_10_1016_j_dcan_2022_03_008
crossref_primary_10_1186_s13007_021_00818_2
crossref_primary_10_3390_agriculture12081207
crossref_primary_10_3390_s22114161
crossref_primary_10_3390_agriengineering6040238
crossref_primary_10_3390_rs14174400
crossref_primary_10_3390_plants11212814
crossref_primary_10_3390_su151511681
crossref_primary_10_3389_fpls_2021_818895
crossref_primary_10_1007_s00530_021_00882_7
crossref_primary_10_1155_2021_4409706
crossref_primary_10_1016_j_eja_2024_127387
crossref_primary_10_1007_s13735_023_00281_w
crossref_primary_10_1016_j_compag_2023_108412
crossref_primary_10_3390_s22134697
crossref_primary_10_1016_j_dcan_2021_12_001
crossref_primary_10_2196_50209
crossref_primary_10_1007_s00530_021_00847_w
crossref_primary_10_3390_rs13193915
crossref_primary_10_3389_fsufs_2022_1039299
crossref_primary_10_3389_fpls_2023_1225409
crossref_primary_10_3390_agronomy14091878
crossref_primary_10_1007_s00530_021_00832_3
crossref_primary_10_1007_s10489_022_03671_5
crossref_primary_10_1016_j_compag_2024_109751
crossref_primary_10_3390_pr10020417
crossref_primary_10_1186_s13007_021_00804_8
crossref_primary_10_1007_s41348_023_00803_y
crossref_primary_10_15832_ankutbd_1339516
crossref_primary_10_1007_s00530_022_00941_7
crossref_primary_10_1016_j_patcog_2023_109649
crossref_primary_10_3390_plants12183280
crossref_primary_10_1016_j_imavis_2022_104566
crossref_primary_10_1016_j_icte_2022_01_006
crossref_primary_10_1016_j_compbiomed_2022_106051
crossref_primary_10_1109_JAS_2023_123117
crossref_primary_10_1016_j_sciaf_2024_e02512
crossref_primary_10_3390_app122010333
crossref_primary_10_1109_TII_2022_3190405
crossref_primary_10_3390_agriculture11080707
crossref_primary_10_1155_2021_5098013
crossref_primary_10_1007_s11042_024_20518_y
crossref_primary_10_1016_j_compag_2021_106450
crossref_primary_10_3390_plants12234043
crossref_primary_10_36548_jiip_2023_3_005
crossref_primary_10_1186_s13007_022_00916_9
crossref_primary_10_1016_j_plaphe_2025_100024
crossref_primary_10_3390_su141710938
crossref_primary_10_3390_s23156880
crossref_primary_10_1117_1_JEI_32_4_042103
crossref_primary_10_3389_fpls_2021_811241
crossref_primary_10_1007_s12145_024_01339_x
crossref_primary_10_3390_agriculture15040434
crossref_primary_10_3390_pr10040634
crossref_primary_10_3389_fpls_2022_869524
crossref_primary_10_1016_j_compag_2022_107406
crossref_primary_10_3389_fbioe_2022_855667
crossref_primary_10_1016_j_compag_2024_108812
Cites_doi 10.1109/JIOT.2019.2946269
10.1016/j.compag.2018.03.032
10.1016/j.biosystemseng.2018.05.013
10.1186/s13007-019-0475-z
10.1016/j.jbiomech.2020.110198
10.1109/MNET.011.1900374
10.1016/j.biosystemseng.2020.07.005
10.1016/j.compag.2020.105828
10.1016/j.swevo.2019.100616
10.1109/CVPR.2018.00131
10.4283/JMAG.2019.24.2.328
10.1109/TCYB.2020.3024627
10.1016/j.compag.2020.105747
10.1109/CVPR.2019.00899
10.1016/j.compag.2019.104852
10.1186/s13007-019-0479-8
10.1016/j.compeleceng.2019.04.011
10.1016/j.compag.2020.105456
10.3390/agriculture10050178
10.1016/j.compag.2020.105807
10.1016/j.biosystemseng.2020.03.020
10.1016/j.compag.2020.105824
10.1186/s13007-019-0534-5
10.1016/j.compag.2020.105803
10.1016/j.compag.2021.106055
10.1016/j.compag.2020.105240
10.1109/TII.2020.2998818
10.1186/s13007-020-00700-7
10.1016/j.biosystemseng.2020.03.021
10.1016/j.agwat.2020.106163
10.3233/JIFS-190184
10.1016/j.compag.2020.105542
10.1186/s13007-020-00582-9
10.1016/j.compag.2020.105735
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
ISR
3V.
7TM
7X2
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13007-021-00770-1
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
Agricultural Science Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 1746-4811
EndPage 68
ExternalDocumentID oai_doaj_org_article_be32d18393f8451dade0f8d6b56e7b89
PMC8237441
A672269543
10_1186_s13007_021_00770_1
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 31860333
– fundername: ;
  grantid: KX01230101
GroupedDBID 0R~
123
29O
2WC
2XV
5VS
7X2
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ECGQY
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGH
IGS
ISR
ITC
KQ8
LK8
M0K
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
XSB
~8M
PMFND
3V.
7TM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c607t-d784984833bc96f43899417dad6d961d48f4367a2163155344be29db660aea4c3
IEDL.DBID M48
ISSN 1746-4811
IngestDate Wed Aug 27 01:25:01 EDT 2025
Thu Aug 21 18:31:20 EDT 2025
Fri Jul 11 05:38:52 EDT 2025
Fri Jul 11 02:21:15 EDT 2025
Fri Jul 25 18:56:07 EDT 2025
Tue Jun 17 21:36:14 EDT 2025
Tue Jun 10 20:37:50 EDT 2025
Fri Jun 27 03:49:55 EDT 2025
Tue Jul 01 02:35:11 EDT 2025
Thu Apr 24 23:16:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-d784984833bc96f43899417dad6d961d48f4367a2163155344be29db660aea4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7559-0293
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13007-021-00770-1
PMID 34176505
PQID 2553251539
PQPubID 55354
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_be32d18393f8451dade0f8d6b56e7b89
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237441
proquest_miscellaneous_2661041809
proquest_miscellaneous_2545987221
proquest_journals_2553251539
gale_infotracmisc_A672269543
gale_infotracacademiconefile_A672269543
gale_incontextgauss_ISR_A672269543
crossref_primary_10_1186_s13007_021_00770_1
crossref_citationtrail_10_1186_s13007_021_00770_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-27
PublicationDateYYYYMMDD 2021-06-27
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Plant methods
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References K Nagasubramanian (770_CR14) 2019; 15
CR Rahman (770_CR18) 2020; 194
AS Garhwal (770_CR8) 2020; 197
G Geetharamani (770_CR31) 2019; 76
D Argüeso (770_CR27) 2020; 175
J Yang (770_CR33) 2019; 7
J Nie (770_CR6) 2021; 697
J Nie (770_CR4) 2019; 24
J Liu (770_CR12) 2020; 16
A Chaudhary (770_CR22) 2020; 178
J Yang (770_CR34) 2020; 34
E Too (770_CR23) 2019; 37
J Yang (770_CR32) 2020; 17
J Snell (770_CR36) 2017; 44
Y Li (770_CR7) 2020; 10
Z Gao (770_CR9) 2020; 179
A Waheed (770_CR17) 2020; 175
E Too (770_CR13) 2019; 161
G Hu (770_CR10) 2020; 194
Y Li (770_CR30) 2021; 182
JGA Barbedo (770_CR16) 2018; 172
770_CR20
A Darwish (770_CR21) 2020; 52
F Jiang (770_CR15) 2020; 179
BQ Wen (770_CR2) 2021; 118
X Sheng (770_CR3) 2016; 74
Y Li (770_CR28) 2020; 169
F Zhong (770_CR29) 2020; 179
MG Selvaraj (770_CR19) 2019; 15
J Liu (770_CR1) 2021; 17
Y Li (770_CR24) 2020; 178
G Hu (770_CR26) 2019; 163
770_CR37
770_CR35
Y Wang (770_CR5) 2020; 239
Z Tang (770_CR25) 2020; 178
T Misra (770_CR11) 2020; 16
References_xml – volume: 697
  start-page: 012009
  issue: 1
  year: 2021
  ident: 770_CR6
  publication-title: Earth Environ Sci
– volume: 7
  start-page: 4238
  issue: 5
  year: 2019
  ident: 770_CR33
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2946269
– volume: 161
  start-page: 272
  year: 2019
  ident: 770_CR13
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.03.032
– volume: 172
  start-page: 84
  year: 2018
  ident: 770_CR16
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2018.05.013
– volume: 15
  start-page: 92
  issue: 1
  year: 2019
  ident: 770_CR19
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0475-z
– volume: 118
  start-page: 110198
  year: 2021
  ident: 770_CR2
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2020.110198
– volume: 34
  start-page: 62
  issue: 4
  year: 2020
  ident: 770_CR34
  publication-title: IEEE Network
  doi: 10.1109/MNET.011.1900374
– volume: 197
  start-page: 306
  year: 2020
  ident: 770_CR8
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2020.07.005
– volume: 179
  start-page: 105828
  year: 2020
  ident: 770_CR29
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105828
– volume: 52
  start-page: 100616
  year: 2020
  ident: 770_CR21
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.100616
– volume: 74
  start-page: 1675
  issue: 12
  year: 2016
  ident: 770_CR3
  publication-title: Mater Eval
– ident: 770_CR37
  doi: 10.1109/CVPR.2018.00131
– volume: 24
  start-page: 328
  issue: 2
  year: 2019
  ident: 770_CR4
  publication-title: J Magnet
  doi: 10.4283/JMAG.2019.24.2.328
– ident: 770_CR35
  doi: 10.1109/TCYB.2020.3024627
– volume: 178
  start-page: 105747
  year: 2020
  ident: 770_CR22
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105747
– ident: 770_CR20
  doi: 10.1109/CVPR.2019.00899
– volume: 163
  start-page: 104852
  year: 2019
  ident: 770_CR26
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2019.104852
– volume: 15
  start-page: 98
  issue: 1
  year: 2019
  ident: 770_CR14
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0479-8
– volume: 76
  start-page: 323
  year: 2019
  ident: 770_CR31
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.04.011
– volume: 175
  start-page: 105456
  year: 2020
  ident: 770_CR17
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105456
– volume: 10
  start-page: 178
  issue: 5
  year: 2020
  ident: 770_CR7
  publication-title: Agriculture
  doi: 10.3390/agriculture10050178
– volume: 179
  start-page: 105807
  year: 2020
  ident: 770_CR9
  publication-title: Comput Elect Agric.
  doi: 10.1016/j.compag.2020.105807
– volume: 194
  start-page: 112
  year: 2020
  ident: 770_CR18
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2020.03.020
– volume: 179
  start-page: 105824
  year: 2020
  ident: 770_CR15
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105824
– volume: 16
  start-page: 1
  year: 2020
  ident: 770_CR12
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0534-5
– volume: 178
  start-page: 105803
  year: 2020
  ident: 770_CR24
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105803
– volume: 182
  start-page: 106055
  year: 2021
  ident: 770_CR30
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2021.106055
– volume: 44
  start-page: 4077
  year: 2017
  ident: 770_CR36
  publication-title: Adv Neural Inf Process Syst.
– volume: 169
  start-page: 105240
  year: 2020
  ident: 770_CR28
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105240
– volume: 17
  start-page: 2204
  issue: 3
  year: 2020
  ident: 770_CR32
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.2998818
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 770_CR1
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00700-7
– volume: 194
  start-page: 138
  year: 2020
  ident: 770_CR10
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2020.03.021
– volume: 239
  start-page: 106163
  year: 2020
  ident: 770_CR5
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106163
– volume: 37
  start-page: 4003
  issue: 3
  year: 2019
  ident: 770_CR23
  publication-title: J Intellig Fuzzy Syst
  doi: 10.3233/JIFS-190184
– volume: 175
  start-page: 105542
  year: 2020
  ident: 770_CR27
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105542
– volume: 16
  start-page: 1
  issue: 1
  year: 2020
  ident: 770_CR11
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00582-9
– volume: 178
  start-page: 105735
  year: 2020
  ident: 770_CR25
  publication-title: Comput Electr Agric
  doi: 10.1016/j.compag.2020.105735
SSID ssj0041236
Score 2.5619965
Snippet Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and...
Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural...
BACKGROUND: Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural...
Abstract Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 68
SubjectTerms Agricultural production
Agriculture
Classification
confidence interval
Confidence intervals
data collection
Datasets
Deep learning
Diagnosis
domain
Domains
Labeling
Learning
Leaves
Machine learning
Plant diseases
Plants
Recognition
Self-adaption
Semi-supervised learning
Supervised learning
Transfer learning
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9VAEF6kePAiWhWf1rKK4EGWJtnJ7ubYSksr6MFa6G3ZzW7aQk0e5j1K_70zyebRWKgXbyE7CcmXmcy37Ow3jH0ETDlOQxDBNKUAL6NwBR7VWgYoXBbqSBucv31Xx2fw9bw8v9Pqi2rCRnngEbg9H2URKI3LxkCZBxdi1pigfKmi9mbYuoc5b5pMjf9gIE2RaYuMUXs9LdpoQeUIpF-TiXyWhga1_vv_5L_rJO8knqNn7GlijHx_fNLn7FFst9njgw5Z3e0LdnIaf12Jfr2kmO9j4E28Ef1lt-KpH8QFn2TDOfJTvrxGKHlalun5pn6oa1-ys6PDn1-ORWqPIGqV6ZUI2kBlwEjp60o11Ma8glwjQipUKg9g8JzSrkDKRd2BAHwsquCVylx0UMtXbKvt2viacU-qedEhWWwiuMIh2JLaGilDajFKLlg-oWXrpB1OLSyu7TCHMMqOCFtE2A4I23zBPm-uWY7KGQ9aH9BH2FiS6vVwAn3BJl-w__KFBftAn9CSrkVLhTMXbt339uT0h91XGolmVQK-y6dk1HT4DrVL-xAQCZLCmlnuzCwx8Or58OQpNgV-b3GGJpEylhIf5v1mmK6kYrY2dmuygbIyeJv8ARvkTejGJsP76JkXziCaj7RXl4NAOAkQIc198z8wfcueFEPcKFHoHba1-r2O75CHrfzuEHJ_APPRLrQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgcIBDBQXULS0KCIkDsprEjj9O1RZRtUhwoFTam-XEzrZSSbbrXSH-PTNZJyUg7S2yx1Y8tsfP9vgNIe85LDlWckedqgvKS-apzeGrkszx3Kau8vjA-es3cX7Fv8yKWTxwC9GtsreJnaF2bYVn5McAfRmsxQXTJ4s7ilGj8HY1htB4SB4hdRm6dMnZsOHiyCzSP5RR4jjg1Y2k6JSALDYpzUaLUcfZ_79l_tdb8q_l5-wZ2Y24MZluOvo5eeCbPfJ0Ol9G7gy_Rx6ftoD0fr8gF5f-5w0N6wXageBdUvtfNFy3qyTGiJgnPZV4Apg1WdyCepN4VROSwaeobV6Sq7PPPz6d0xgygVYilSvqpOJaccVYWWlRY2hzzTPprBNOi8xxBWlC2hxgGEYM4rz0uXalEKn1llfsFdlp2sbvk6REJj1vAUDWntvcalYzDHUkFDLICDYhWa87U0U-cQxrcWu6fYUSZqNvA_o2nb5NNiEfhzKLDZvGVulT7JJBEpmwu4R2OTdxYpnSs9whzGO14kUGLfVprZwoC-FlqfSEvMMONch10aAzzdyuQzAXl9_NVEgAn7rg0JYPUahuoQ2VjW8TQBNIjzWSPBxJwmSsxtn9uDHRGARzP3Qn5O2QjSXRwa3x7RpleKEVVJNtkQEsBYNapVCPHI3JkYrGOc3NdUcajqREAH0Ptv_ga_Ik7-aHoLk8JDur5dofAepalW-6qfUHMYIqQA
  priority: 102
  providerName: ProQuest
Title Semi-supervised few-shot learning approach for plant diseases recognition
URI https://www.proquest.com/docview/2553251539
https://www.proquest.com/docview/2545987221
https://www.proquest.com/docview/2661041809
https://pubmed.ncbi.nlm.nih.gov/PMC8237441
https://doaj.org/article/be32d18393f8451dade0f8d6b56e7b89
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGxgMviPFDFEYVEBIPyJDEju08ILSiTRvSJtRRqeLFcmKnm1SS0rTa9t9z5ybRAlNfoii-WPb5Lv4cn78j5D2HKcdIbqlVRUJ5xhw1Mdzlklkem9DmDg84n52Lkwn_Pk2mO6RNd9QosL53aYf5pCbL-aebP7dfweG_eIdX4nONWzKSYrABstOEFFZDezAzSXTUM97tKnBkGtkckBSUqyhqD9HcW0dvovJ8_v9_tf-NpLwzNR0_IY8bTBkcboxgn-y48il5OKoA990-I6cX7vcVrdcL_CrUzgaFu6b1ZbUKmowRs6AlFg8AwQaLOSg7aDZu6qCLMKrK52RyfPTz2wltEijQXIRyRa1UPFVcMZblqSgw0XkKarHGCpuKyHIFz4Q0MYAyzB_Eeebi1GZChMYZnrMXZLesSveSBBny6jkDcLJw3MQmZQXDxEdCIZ-MYAMStdrSecMujkku5tqvMpTQGw1r0LD2GtbRgHzs3llsuDW2So9wEDpJ5MX2D6rlTDdupjPHYougjxWKJxH01IWFsiJLhJOZSgfkHQ6hRuaLEkNrZmZd1_r0YqwPhQQomiYc-vKhESoq6ENumpMKoAkky-pJHvQkwTXzfnFrKbq1bA1rOAagMmHQmLddMb6J4W6lq9Yow5NUQTXRFhlAVmDSKoR6ZM8Keyrql5RXl55CHCmKAAi_2t7-1-RR7D1C0FgekN3Vcu3eAAZbZUPyQE7lkOyNjs5_jIf-T8bQOxtcx6NffwH6zi7U
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGhgQ8IBggCgMCAvGArCWxYzsPCLWwqWVbhfZD2ptxYqebNJLStJr2T_E3cpc6hYC0t71F8cWKz3fnL_H5O0LeclhyjOSWWlUklGfMURPDVS6Z5bEJbe7wgPPBWAxP-NfT5HSN_GrPwmBaZRsTm0Btqxz_kW8D9GWwFics_TT9SbFqFO6utiU0lmax564u4ZOt_jj6AvP7Lo53d44_D6mvKkBzEco5tVLxVHHFWJanosDq3ymPpDVW2FREliu4J6SJAalgUR3OMxenNhMiNM7wnEG_t8gGyIQQCDYGO-Nvh23s58hl0h7NUWK7xs0iSTENAnlzQhp1lr-mSsD_a8G_-Zl_LXi7D8h9j1SD_tK0HpI1V26Se_3JzLN1uE1ye1ABtrx6REZH7sc5rRdTjDy1s0HhLml9Vs0DX5ViErTk5QGg5GB6ARMa-M2hOlhlMVXlY3JyI-p8QtbLqnRPSZAhd58zAFkLx01sUlYwLK4kFHLWCNYjUas7nXsGcyykcaGbLxkl9FLfGvStG33rqEc-rJ6ZLvk7rpUe4JSsJJF7u7lRzSbau7LOHIstAktWKJ5EMFIXFsqKLBFOZirtkTc4oRrZNUpM35mYRV3r0dGh7gsJcDdNOIzlvRcqKhhDbvxpCNAEEnJ1JLc6kuD-ebe5tRvtw0-t_zhLj7xeNeOTmFJXumqBMjxJFXQTXSMD6A2MWoXQj-zYZEdF3Zby_KyhKUcaJADbz65_wVfkzvD4YF_vj8Z7z8nduPEVQWO5Rdbns4V7AZhvnr30jhaQ7zft278BDt5mow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+few-shot+learning+approach+for+plant+diseases+recognition&rft.jtitle=Plant+methods&rft.au=Li%2C+Yang&rft.au=Chao%2C+Xuewei&rft.date=2021-06-27&rft.pub=BioMed+Central+Ltd&rft.issn=1746-4811&rft.eissn=1746-4811&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs13007-021-00770-1&rft.externalDocID=A672269543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-4811&client=summon