Semi-supervised few-shot learning approach for plant diseases recognition
Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data'...
Saved in:
Published in | Plant methods Vol. 17; no. 1; p. 68 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
27.06.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. The proposed methods can outperform other related works with fewer labeled training data. |
---|---|
AbstractList | Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. The proposed methods can outperform other related works with fewer labeled training data. Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. Methods In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. Results The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. Conclusions The proposed methods can outperform other related works with fewer labeled training data. Keywords: Classification, Transfer learning, Self-adaption, Deep learning BACKGROUND: Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. METHODS: In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. RESULTS: The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. CONCLUSIONS: The proposed methods can outperform other related works with fewer labeled training data. Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information.BACKGROUNDLearning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information.In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively.METHODSIn this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively.The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%.RESULTSThe average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%.The proposed methods can outperform other related works with fewer labeled training data.CONCLUSIONSThe proposed methods can outperform other related works with fewer labeled training data. Abstract Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and quality. The existing few-shot classification studies in agriculture are mainly based on supervised learning schemes, ignoring unlabeled data's helpful information. Methods In this paper, we proposed a semi-supervised few-shot learning approach to solve the plant leaf diseases recognition. Specifically, the public PlantVillage dataset is used and split into the source domain and target domain. Extensive comparison experiments considering the domain split and few-shot parameters (N-way, k-shot) were carried out to validate the correctness and generalization of proposed semi-supervised few-shot methods. In terms of selecting pseudo-labeled samples in the semi-supervised process, we adopted the confidence interval to determine the number of unlabeled samples for pseudo-labelling adaptively. Results The average improvement by the single semi-supervised method is 2.8%, and that by the iterative semi-supervised method is 4.6%. Conclusions The proposed methods can outperform other related works with fewer labeled training data. |
ArticleNumber | 68 |
Audience | Academic |
Author | Chao, Xuewei Li, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang – sequence: 2 givenname: Xuewei orcidid: 0000-0001-7559-0293 surname: Chao fullname: Chao, Xuewei |
BookMark | eNqFkk1v1DAQhiNURD_gD3CKxAUOKf6OfUGqKlpWqoRE4Ww5tpP1KmsHOynw75ntVsBWCOSDrfEzr2fG72l1FFP0VfUSo3OMpXhbMEWobRDBDewtavCT6gS3TDRMYnz0x_m4Oi1lgxDDhIpn1TFluBUc8ZNqdeu3oSnL5PNdKN7Vvf_WlHWa69GbHEMcajNNORm7rvuU62k0ca4doKb4Umdv0xDDHFJ8Xj3tzVj8i4f9rPpy9f7z5Yfm5uP16vLiprECtXPjWsmUZJLSzirRMyqVgmqcccIpgR2TEBOtIVhQzDllrPNEuU4IZLxhlp5Vq72uS2ajpxy2Jv_QyQR9H0h50CbPwY5ed54ShyVVtJeMY3jDo1460XHh204q0Hq315qWbuud9XHOZjwQPbyJYa2HdKcloS1jGARePwjk9HXxZdbbUKwfYUo-LUUTITBMXSL1f5QzrmRLyE711SN0k5YcYapAcUo45lT9pgYDvYbYJyjR7kT1hQAdoTijQJ3_hYLl4OMtGKoPED9IeHOQAMzsv8-DWUrRq9tPhyzZszanUrLvf40OI73zqN57VINH9b1H9a47-SjJhtnsLASVhfFfqT8BgUPoPg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3373001 crossref_primary_10_21597_jist_1283491 crossref_primary_10_1111_exsy_13737 crossref_primary_10_3389_fpls_2024_1434222 crossref_primary_10_1007_s00425_025_04666_5 crossref_primary_10_3389_fpls_2022_1010981 crossref_primary_10_1016_j_atech_2025_100813 crossref_primary_10_3390_su14137825 crossref_primary_10_3389_fpls_2022_929140 crossref_primary_10_1007_s11042_023_14372_7 crossref_primary_10_1016_j_atech_2024_100613 crossref_primary_10_3390_s24186109 crossref_primary_10_1007_s00530_021_00879_2 crossref_primary_10_3389_fpls_2024_1341831 crossref_primary_10_1007_s10462_024_10775_6 crossref_primary_10_1016_j_compag_2022_106703 crossref_primary_10_1080_01431161_2024_2443620 crossref_primary_10_3389_fpls_2024_1333236 crossref_primary_10_1016_j_compag_2023_107967 crossref_primary_10_1108_DTA_10_2021_0296 crossref_primary_10_1111_tpj_16176 crossref_primary_10_1016_j_cropro_2023_106489 crossref_primary_10_3390_su152416791 crossref_primary_10_1016_j_dcan_2022_03_008 crossref_primary_10_1186_s13007_021_00818_2 crossref_primary_10_3390_agriculture12081207 crossref_primary_10_3390_s22114161 crossref_primary_10_3390_agriengineering6040238 crossref_primary_10_3390_rs14174400 crossref_primary_10_3390_plants11212814 crossref_primary_10_3390_su151511681 crossref_primary_10_3389_fpls_2021_818895 crossref_primary_10_1007_s00530_021_00882_7 crossref_primary_10_1155_2021_4409706 crossref_primary_10_1016_j_eja_2024_127387 crossref_primary_10_1007_s13735_023_00281_w crossref_primary_10_1016_j_compag_2023_108412 crossref_primary_10_3390_s22134697 crossref_primary_10_1016_j_dcan_2021_12_001 crossref_primary_10_2196_50209 crossref_primary_10_1007_s00530_021_00847_w crossref_primary_10_3390_rs13193915 crossref_primary_10_3389_fsufs_2022_1039299 crossref_primary_10_3389_fpls_2023_1225409 crossref_primary_10_3390_agronomy14091878 crossref_primary_10_1007_s00530_021_00832_3 crossref_primary_10_1007_s10489_022_03671_5 crossref_primary_10_1016_j_compag_2024_109751 crossref_primary_10_3390_pr10020417 crossref_primary_10_1186_s13007_021_00804_8 crossref_primary_10_1007_s41348_023_00803_y crossref_primary_10_15832_ankutbd_1339516 crossref_primary_10_1007_s00530_022_00941_7 crossref_primary_10_1016_j_patcog_2023_109649 crossref_primary_10_3390_plants12183280 crossref_primary_10_1016_j_imavis_2022_104566 crossref_primary_10_1016_j_icte_2022_01_006 crossref_primary_10_1016_j_compbiomed_2022_106051 crossref_primary_10_1109_JAS_2023_123117 crossref_primary_10_1016_j_sciaf_2024_e02512 crossref_primary_10_3390_app122010333 crossref_primary_10_1109_TII_2022_3190405 crossref_primary_10_3390_agriculture11080707 crossref_primary_10_1155_2021_5098013 crossref_primary_10_1007_s11042_024_20518_y crossref_primary_10_1016_j_compag_2021_106450 crossref_primary_10_3390_plants12234043 crossref_primary_10_36548_jiip_2023_3_005 crossref_primary_10_1186_s13007_022_00916_9 crossref_primary_10_1016_j_plaphe_2025_100024 crossref_primary_10_3390_su141710938 crossref_primary_10_3390_s23156880 crossref_primary_10_1117_1_JEI_32_4_042103 crossref_primary_10_3389_fpls_2021_811241 crossref_primary_10_1007_s12145_024_01339_x crossref_primary_10_3390_agriculture15040434 crossref_primary_10_3390_pr10040634 crossref_primary_10_3389_fpls_2022_869524 crossref_primary_10_1016_j_compag_2022_107406 crossref_primary_10_3389_fbioe_2022_855667 crossref_primary_10_1016_j_compag_2024_108812 |
Cites_doi | 10.1109/JIOT.2019.2946269 10.1016/j.compag.2018.03.032 10.1016/j.biosystemseng.2018.05.013 10.1186/s13007-019-0475-z 10.1016/j.jbiomech.2020.110198 10.1109/MNET.011.1900374 10.1016/j.biosystemseng.2020.07.005 10.1016/j.compag.2020.105828 10.1016/j.swevo.2019.100616 10.1109/CVPR.2018.00131 10.4283/JMAG.2019.24.2.328 10.1109/TCYB.2020.3024627 10.1016/j.compag.2020.105747 10.1109/CVPR.2019.00899 10.1016/j.compag.2019.104852 10.1186/s13007-019-0479-8 10.1016/j.compeleceng.2019.04.011 10.1016/j.compag.2020.105456 10.3390/agriculture10050178 10.1016/j.compag.2020.105807 10.1016/j.biosystemseng.2020.03.020 10.1016/j.compag.2020.105824 10.1186/s13007-019-0534-5 10.1016/j.compag.2020.105803 10.1016/j.compag.2021.106055 10.1016/j.compag.2020.105240 10.1109/TII.2020.2998818 10.1186/s13007-020-00700-7 10.1016/j.biosystemseng.2020.03.021 10.1016/j.agwat.2020.106163 10.3233/JIFS-190184 10.1016/j.compag.2020.105542 10.1186/s13007-020-00582-9 10.1016/j.compag.2020.105735 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION ISR 3V. 7TM 7X2 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13007-021-00770-1 |
DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture |
EISSN | 1746-4811 |
EndPage | 68 |
ExternalDocumentID | oai_doaj_org_article_be32d18393f8451dade0f8d6b56e7b89 PMC8237441 A672269543 10_1186_s13007_021_00770_1 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 31860333 – fundername: ; grantid: KX01230101 |
GroupedDBID | 0R~ 123 29O 2WC 2XV 5VS 7X2 7X7 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ECGQY ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGH IGS ISR ITC KQ8 LK8 M0K M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ XSB ~8M PMFND 3V. 7TM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c607t-d784984833bc96f43899417dad6d961d48f4367a2163155344be29db660aea4c3 |
IEDL.DBID | M48 |
ISSN | 1746-4811 |
IngestDate | Wed Aug 27 01:25:01 EDT 2025 Thu Aug 21 18:31:20 EDT 2025 Fri Jul 11 05:38:52 EDT 2025 Fri Jul 11 02:21:15 EDT 2025 Fri Jul 25 18:56:07 EDT 2025 Tue Jun 17 21:36:14 EDT 2025 Tue Jun 10 20:37:50 EDT 2025 Fri Jun 27 03:49:55 EDT 2025 Tue Jul 01 02:35:11 EDT 2025 Thu Apr 24 23:16:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-d784984833bc96f43899417dad6d961d48f4367a2163155344be29db660aea4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7559-0293 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13007-021-00770-1 |
PMID | 34176505 |
PQID | 2553251539 |
PQPubID | 55354 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be32d18393f8451dade0f8d6b56e7b89 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237441 proquest_miscellaneous_2661041809 proquest_miscellaneous_2545987221 proquest_journals_2553251539 gale_infotracmisc_A672269543 gale_infotracacademiconefile_A672269543 gale_incontextgauss_ISR_A672269543 crossref_primary_10_1186_s13007_021_00770_1 crossref_citationtrail_10_1186_s13007_021_00770_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-27 |
PublicationDateYYYYMMDD | 2021-06-27 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Plant methods |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | K Nagasubramanian (770_CR14) 2019; 15 CR Rahman (770_CR18) 2020; 194 AS Garhwal (770_CR8) 2020; 197 G Geetharamani (770_CR31) 2019; 76 D Argüeso (770_CR27) 2020; 175 J Yang (770_CR33) 2019; 7 J Nie (770_CR6) 2021; 697 J Nie (770_CR4) 2019; 24 J Liu (770_CR12) 2020; 16 A Chaudhary (770_CR22) 2020; 178 J Yang (770_CR34) 2020; 34 E Too (770_CR23) 2019; 37 J Yang (770_CR32) 2020; 17 J Snell (770_CR36) 2017; 44 Y Li (770_CR7) 2020; 10 Z Gao (770_CR9) 2020; 179 A Waheed (770_CR17) 2020; 175 E Too (770_CR13) 2019; 161 G Hu (770_CR10) 2020; 194 Y Li (770_CR30) 2021; 182 JGA Barbedo (770_CR16) 2018; 172 770_CR20 A Darwish (770_CR21) 2020; 52 F Jiang (770_CR15) 2020; 179 BQ Wen (770_CR2) 2021; 118 X Sheng (770_CR3) 2016; 74 Y Li (770_CR28) 2020; 169 F Zhong (770_CR29) 2020; 179 MG Selvaraj (770_CR19) 2019; 15 J Liu (770_CR1) 2021; 17 Y Li (770_CR24) 2020; 178 G Hu (770_CR26) 2019; 163 770_CR37 770_CR35 Y Wang (770_CR5) 2020; 239 Z Tang (770_CR25) 2020; 178 T Misra (770_CR11) 2020; 16 |
References_xml | – volume: 697 start-page: 012009 issue: 1 year: 2021 ident: 770_CR6 publication-title: Earth Environ Sci – volume: 7 start-page: 4238 issue: 5 year: 2019 ident: 770_CR33 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2946269 – volume: 161 start-page: 272 year: 2019 ident: 770_CR13 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.03.032 – volume: 172 start-page: 84 year: 2018 ident: 770_CR16 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2018.05.013 – volume: 15 start-page: 92 issue: 1 year: 2019 ident: 770_CR19 publication-title: Plant Methods doi: 10.1186/s13007-019-0475-z – volume: 118 start-page: 110198 year: 2021 ident: 770_CR2 publication-title: J Biomech doi: 10.1016/j.jbiomech.2020.110198 – volume: 34 start-page: 62 issue: 4 year: 2020 ident: 770_CR34 publication-title: IEEE Network doi: 10.1109/MNET.011.1900374 – volume: 197 start-page: 306 year: 2020 ident: 770_CR8 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2020.07.005 – volume: 179 start-page: 105828 year: 2020 ident: 770_CR29 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105828 – volume: 52 start-page: 100616 year: 2020 ident: 770_CR21 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.100616 – volume: 74 start-page: 1675 issue: 12 year: 2016 ident: 770_CR3 publication-title: Mater Eval – ident: 770_CR37 doi: 10.1109/CVPR.2018.00131 – volume: 24 start-page: 328 issue: 2 year: 2019 ident: 770_CR4 publication-title: J Magnet doi: 10.4283/JMAG.2019.24.2.328 – ident: 770_CR35 doi: 10.1109/TCYB.2020.3024627 – volume: 178 start-page: 105747 year: 2020 ident: 770_CR22 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105747 – ident: 770_CR20 doi: 10.1109/CVPR.2019.00899 – volume: 163 start-page: 104852 year: 2019 ident: 770_CR26 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2019.104852 – volume: 15 start-page: 98 issue: 1 year: 2019 ident: 770_CR14 publication-title: Plant Methods doi: 10.1186/s13007-019-0479-8 – volume: 76 start-page: 323 year: 2019 ident: 770_CR31 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.04.011 – volume: 175 start-page: 105456 year: 2020 ident: 770_CR17 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105456 – volume: 10 start-page: 178 issue: 5 year: 2020 ident: 770_CR7 publication-title: Agriculture doi: 10.3390/agriculture10050178 – volume: 179 start-page: 105807 year: 2020 ident: 770_CR9 publication-title: Comput Elect Agric. doi: 10.1016/j.compag.2020.105807 – volume: 194 start-page: 112 year: 2020 ident: 770_CR18 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2020.03.020 – volume: 179 start-page: 105824 year: 2020 ident: 770_CR15 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105824 – volume: 16 start-page: 1 year: 2020 ident: 770_CR12 publication-title: Plant Methods doi: 10.1186/s13007-019-0534-5 – volume: 178 start-page: 105803 year: 2020 ident: 770_CR24 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105803 – volume: 182 start-page: 106055 year: 2021 ident: 770_CR30 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2021.106055 – volume: 44 start-page: 4077 year: 2017 ident: 770_CR36 publication-title: Adv Neural Inf Process Syst. – volume: 169 start-page: 105240 year: 2020 ident: 770_CR28 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105240 – volume: 17 start-page: 2204 issue: 3 year: 2020 ident: 770_CR32 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.2998818 – volume: 17 start-page: 1 issue: 1 year: 2021 ident: 770_CR1 publication-title: Plant Methods doi: 10.1186/s13007-020-00700-7 – volume: 194 start-page: 138 year: 2020 ident: 770_CR10 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2020.03.021 – volume: 239 start-page: 106163 year: 2020 ident: 770_CR5 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106163 – volume: 37 start-page: 4003 issue: 3 year: 2019 ident: 770_CR23 publication-title: J Intellig Fuzzy Syst doi: 10.3233/JIFS-190184 – volume: 175 start-page: 105542 year: 2020 ident: 770_CR27 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105542 – volume: 16 start-page: 1 issue: 1 year: 2020 ident: 770_CR11 publication-title: Plant Methods doi: 10.1186/s13007-020-00582-9 – volume: 178 start-page: 105735 year: 2020 ident: 770_CR25 publication-title: Comput Electr Agric doi: 10.1016/j.compag.2020.105735 |
SSID | ssj0041236 |
Score | 2.5619965 |
Snippet | Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural yield and... Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural... BACKGROUND: Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the agricultural... Abstract Background Learning from a few samples to automatically recognize the plant leaf diseases is an attractive and promising study to protect the... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 68 |
SubjectTerms | Agricultural production Agriculture Classification confidence interval Confidence intervals data collection Datasets Deep learning Diagnosis domain Domains Labeling Learning Leaves Machine learning Plant diseases Plants Recognition Self-adaption Semi-supervised learning Supervised learning Transfer learning Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9VAEF6kePAiWhWf1rKK4EGWJtnJ7ubYSksr6MFa6G3ZzW7aQk0e5j1K_70zyebRWKgXbyE7CcmXmcy37Ow3jH0ETDlOQxDBNKUAL6NwBR7VWgYoXBbqSBucv31Xx2fw9bw8v9Pqi2rCRnngEbg9H2URKI3LxkCZBxdi1pigfKmi9mbYuoc5b5pMjf9gIE2RaYuMUXs9LdpoQeUIpF-TiXyWhga1_vv_5L_rJO8knqNn7GlijHx_fNLn7FFst9njgw5Z3e0LdnIaf12Jfr2kmO9j4E28Ef1lt-KpH8QFn2TDOfJTvrxGKHlalun5pn6oa1-ys6PDn1-ORWqPIGqV6ZUI2kBlwEjp60o11Ma8glwjQipUKg9g8JzSrkDKRd2BAHwsquCVylx0UMtXbKvt2viacU-qedEhWWwiuMIh2JLaGilDajFKLlg-oWXrpB1OLSyu7TCHMMqOCFtE2A4I23zBPm-uWY7KGQ9aH9BH2FiS6vVwAn3BJl-w__KFBftAn9CSrkVLhTMXbt339uT0h91XGolmVQK-y6dk1HT4DrVL-xAQCZLCmlnuzCwx8Or58OQpNgV-b3GGJpEylhIf5v1mmK6kYrY2dmuygbIyeJv8ARvkTejGJsP76JkXziCaj7RXl4NAOAkQIc198z8wfcueFEPcKFHoHba1-r2O75CHrfzuEHJ_APPRLrQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgcIBDBQXULS0KCIkDsprEjj9O1RZRtUhwoFTam-XEzrZSSbbrXSH-PTNZJyUg7S2yx1Y8tsfP9vgNIe85LDlWckedqgvKS-apzeGrkszx3Kau8vjA-es3cX7Fv8yKWTxwC9GtsreJnaF2bYVn5McAfRmsxQXTJ4s7ilGj8HY1htB4SB4hdRm6dMnZsOHiyCzSP5RR4jjg1Y2k6JSALDYpzUaLUcfZ_79l_tdb8q_l5-wZ2Y24MZluOvo5eeCbPfJ0Ol9G7gy_Rx6ftoD0fr8gF5f-5w0N6wXageBdUvtfNFy3qyTGiJgnPZV4Apg1WdyCepN4VROSwaeobV6Sq7PPPz6d0xgygVYilSvqpOJaccVYWWlRY2hzzTPprBNOi8xxBWlC2hxgGEYM4rz0uXalEKn1llfsFdlp2sbvk6REJj1vAUDWntvcalYzDHUkFDLICDYhWa87U0U-cQxrcWu6fYUSZqNvA_o2nb5NNiEfhzKLDZvGVulT7JJBEpmwu4R2OTdxYpnSs9whzGO14kUGLfVprZwoC-FlqfSEvMMONch10aAzzdyuQzAXl9_NVEgAn7rg0JYPUahuoQ2VjW8TQBNIjzWSPBxJwmSsxtn9uDHRGARzP3Qn5O2QjSXRwa3x7RpleKEVVJNtkQEsBYNapVCPHI3JkYrGOc3NdUcajqREAH0Ptv_ga_Ik7-aHoLk8JDur5dofAepalW-6qfUHMYIqQA priority: 102 providerName: ProQuest |
Title | Semi-supervised few-shot learning approach for plant diseases recognition |
URI | https://www.proquest.com/docview/2553251539 https://www.proquest.com/docview/2545987221 https://www.proquest.com/docview/2661041809 https://pubmed.ncbi.nlm.nih.gov/PMC8237441 https://doaj.org/article/be32d18393f8451dade0f8d6b56e7b89 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGxgMviPFDFEYVEBIPyJDEju08ILSiTRvSJtRRqeLFcmKnm1SS0rTa9t9z5ybRAlNfoii-WPb5Lv4cn78j5D2HKcdIbqlVRUJ5xhw1Mdzlklkem9DmDg84n52Lkwn_Pk2mO6RNd9QosL53aYf5pCbL-aebP7dfweG_eIdX4nONWzKSYrABstOEFFZDezAzSXTUM97tKnBkGtkckBSUqyhqD9HcW0dvovJ8_v9_tf-NpLwzNR0_IY8bTBkcboxgn-y48il5OKoA990-I6cX7vcVrdcL_CrUzgaFu6b1ZbUKmowRs6AlFg8AwQaLOSg7aDZu6qCLMKrK52RyfPTz2wltEijQXIRyRa1UPFVcMZblqSgw0XkKarHGCpuKyHIFz4Q0MYAyzB_Eeebi1GZChMYZnrMXZLesSveSBBny6jkDcLJw3MQmZQXDxEdCIZ-MYAMStdrSecMujkku5tqvMpTQGw1r0LD2GtbRgHzs3llsuDW2So9wEDpJ5MX2D6rlTDdupjPHYougjxWKJxH01IWFsiJLhJOZSgfkHQ6hRuaLEkNrZmZd1_r0YqwPhQQomiYc-vKhESoq6ENumpMKoAkky-pJHvQkwTXzfnFrKbq1bA1rOAagMmHQmLddMb6J4W6lq9Yow5NUQTXRFhlAVmDSKoR6ZM8Keyrql5RXl55CHCmKAAi_2t7-1-RR7D1C0FgekN3Vcu3eAAZbZUPyQE7lkOyNjs5_jIf-T8bQOxtcx6NffwH6zi7U |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGhgQ8IBggCgMCAvGArCWxYzsPCLWwqWVbhfZD2ptxYqebNJLStJr2T_E3cpc6hYC0t71F8cWKz3fnL_H5O0LeclhyjOSWWlUklGfMURPDVS6Z5bEJbe7wgPPBWAxP-NfT5HSN_GrPwmBaZRsTm0Btqxz_kW8D9GWwFics_TT9SbFqFO6utiU0lmax564u4ZOt_jj6AvP7Lo53d44_D6mvKkBzEco5tVLxVHHFWJanosDq3ymPpDVW2FREliu4J6SJAalgUR3OMxenNhMiNM7wnEG_t8gGyIQQCDYGO-Nvh23s58hl0h7NUWK7xs0iSTENAnlzQhp1lr-mSsD_a8G_-Zl_LXi7D8h9j1SD_tK0HpI1V26Se_3JzLN1uE1ye1ABtrx6REZH7sc5rRdTjDy1s0HhLml9Vs0DX5ViErTk5QGg5GB6ARMa-M2hOlhlMVXlY3JyI-p8QtbLqnRPSZAhd58zAFkLx01sUlYwLK4kFHLWCNYjUas7nXsGcyykcaGbLxkl9FLfGvStG33rqEc-rJ6ZLvk7rpUe4JSsJJF7u7lRzSbau7LOHIstAktWKJ5EMFIXFsqKLBFOZirtkTc4oRrZNUpM35mYRV3r0dGh7gsJcDdNOIzlvRcqKhhDbvxpCNAEEnJ1JLc6kuD-ebe5tRvtw0-t_zhLj7xeNeOTmFJXumqBMjxJFXQTXSMD6A2MWoXQj-zYZEdF3Zby_KyhKUcaJADbz65_wVfkzvD4YF_vj8Z7z8nduPEVQWO5Rdbns4V7AZhvnr30jhaQ7zft278BDt5mow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+few-shot+learning+approach+for+plant+diseases+recognition&rft.jtitle=Plant+methods&rft.au=Li%2C+Yang&rft.au=Chao%2C+Xuewei&rft.date=2021-06-27&rft.pub=BioMed+Central+Ltd&rft.issn=1746-4811&rft.eissn=1746-4811&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs13007-021-00770-1&rft.externalDocID=A672269543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-4811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-4811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-4811&client=summon |