Effective gene expression prediction from sequence by integrating long-range interactions

How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a de...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 18; no. 10; pp. 1196 - 1203
Main Authors Avsec, Žiga, Agarwal, Vikram, Visentin, Daniel, Ledsam, Joseph R., Grabska-Barwinska, Agnieszka, Taylor, Kyle R., Assael, Yannis, Jumper, John, Kohli, Pushmeet, Kelley, David R.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis -regulatory evolution. By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence.
AbstractList How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence.
How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis -regulatory evolution. By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence.
Abstract How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis -regulatory evolution.
How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer-promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.
Audience Academic
Author Taylor, Kyle R.
Assael, Yannis
Ledsam, Joseph R.
Kelley, David R.
Jumper, John
Avsec, Žiga
Grabska-Barwinska, Agnieszka
Kohli, Pushmeet
Visentin, Daniel
Agarwal, Vikram
Author_xml – sequence: 1
  givenname: Žiga
  orcidid: 0000-0002-7790-8936
  surname: Avsec
  fullname: Avsec, Žiga
  email: avsec@google.com
  organization: DeepMind
– sequence: 2
  givenname: Vikram
  surname: Agarwal
  fullname: Agarwal, Vikram
  organization: Calico Life Sciences
– sequence: 3
  givenname: Daniel
  surname: Visentin
  fullname: Visentin, Daniel
  organization: DeepMind
– sequence: 4
  givenname: Joseph R.
  surname: Ledsam
  fullname: Ledsam, Joseph R.
  organization: DeepMind, Google
– sequence: 5
  givenname: Agnieszka
  surname: Grabska-Barwinska
  fullname: Grabska-Barwinska, Agnieszka
  organization: DeepMind
– sequence: 6
  givenname: Kyle R.
  surname: Taylor
  fullname: Taylor, Kyle R.
  organization: DeepMind
– sequence: 7
  givenname: Yannis
  surname: Assael
  fullname: Assael, Yannis
  organization: DeepMind
– sequence: 8
  givenname: John
  surname: Jumper
  fullname: Jumper, John
  organization: DeepMind
– sequence: 9
  givenname: Pushmeet
  orcidid: 0000-0002-7466-7997
  surname: Kohli
  fullname: Kohli, Pushmeet
  email: pushmeet@google.com
  organization: DeepMind
– sequence: 10
  givenname: David R.
  orcidid: 0000-0001-7782-3548
  surname: Kelley
  fullname: Kelley, David R.
  email: drk@calicolabs.com
  organization: Calico Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34608324$$D View this record in MEDLINE/PubMed
BookMark eNp9UclqHDEQFcEhXpIfyCE0-NyO1m7pYjDGGxhycQ45CUld6shMSxOpx4z_3vKMVwhGBxX1Furx9tFOTBEQ-k7wEcFM_iycCEVbTEmLCRW0XX9Ce0Rw2fYEi53nGSuyi_ZLucWYMU7FF7TLeIclo3wP_TnzHtwc7qAZIUID62WGUkKKTR2GUKE6-pympsC_FUQHjb1vQpxhzGYOcWwWKY5tNnGEzTqbjaZ8RZ-9WRT49vQfoN_nZzenl-31r4ur05Pr1nW4n1vHhp4JZR02khoLHnrHjKFKYucVEYPqKOa8AsJaxqSVlgpjncED-IFKdoCOt77LlZ1gcBDnbBZ6mcNk8r1OJuj3SAx_9ZjutOQKE0GrweGTQU41YZn1bVrlWG_WVPRSkQ4T9coazQJ0iD5VMzeF4vRJ1_dSCsF4ZR39h1XfAFNwtT4f6v6dgG4FLqdSMviXwwnWjy3rbcu6tqw3Let1Ff14G_lF8lxrJbAtoVSoFpNfI31g-wAkSLc1
CitedBy_id crossref_primary_10_3389_fbioe_2024_1383083
crossref_primary_10_1016_j_mrrev_2023_108457
crossref_primary_10_3389_fmolb_2023_1257550
crossref_primary_10_1038_s41576_023_00638_1
crossref_primary_10_1093_bioinformatics_btac135
crossref_primary_10_1088_1572_9494_ace17d
crossref_primary_10_1038_s41588_023_01574_w
crossref_primary_10_1038_s42256_022_00574_5
crossref_primary_10_1016_j_cell_2024_01_023
crossref_primary_10_1093_jalm_jfad102
crossref_primary_10_1016_j_neunet_2023_12_002
crossref_primary_10_1177_10943420231201154
crossref_primary_10_1016_j_xgen_2024_100553
crossref_primary_10_1038_s41588_023_01509_5
crossref_primary_10_1186_s13059_023_03103_8
crossref_primary_10_1093_nar_gkac957
crossref_primary_10_1038_s41588_023_01524_6
crossref_primary_10_1093_nargab_lqae055
crossref_primary_10_1186_s13059_023_02955_4
crossref_primary_10_1038_s41467_022_34904_3
crossref_primary_10_1038_s44320_024_00013_0
crossref_primary_10_1038_s41588_022_01123_x
crossref_primary_10_1016_j_trac_2024_117540
crossref_primary_10_1038_s42256_024_00792_z
crossref_primary_10_1073_pnas_2311219120
crossref_primary_10_1038_s44222_023_00114_9
crossref_primary_10_1016_j_crmeth_2022_100384
crossref_primary_10_1038_s43586_022_00188_6
crossref_primary_10_1016_j_pbi_2023_102403
crossref_primary_10_1016_j_compbiomed_2024_108449
crossref_primary_10_1016_j_eswa_2022_118004
crossref_primary_10_1038_s42256_024_00851_5
crossref_primary_10_1016_j_csbj_2024_05_016
crossref_primary_10_3389_fgene_2022_1081842
crossref_primary_10_1186_s13059_023_03021_9
crossref_primary_10_1266_ggs_23_00140
crossref_primary_10_1093_bioinformatics_btae340
crossref_primary_10_1038_s41594_024_01235_4
crossref_primary_10_1101_gr_275394_121
crossref_primary_10_1371_journal_pcbi_1011526
crossref_primary_10_1177_03611981241252835
crossref_primary_10_1093_nar_gkad229
crossref_primary_10_3390_mi15030313
crossref_primary_10_1002_bies_202300210
crossref_primary_10_3390_biomedinformatics4020085
crossref_primary_10_1038_s41588_022_01194_w
crossref_primary_10_1093_bib_bbad442
crossref_primary_10_1016_j_vaccine_2023_07_024
crossref_primary_10_1093_bioinformatics_btad378
crossref_primary_10_1093_bib_bbad438
crossref_primary_10_1093_bioinformatics_btad021
crossref_primary_10_1186_s12859_022_05126_7
crossref_primary_10_1016_j_stem_2022_01_007
crossref_primary_10_1038_s41587_022_01435_7
crossref_primary_10_7554_eLife_88187
crossref_primary_10_1016_j_omtn_2024_102255
crossref_primary_10_1038_s41467_024_46947_9
crossref_primary_10_1093_bib_bbad070
crossref_primary_10_1016_j_cmpb_2023_107504
crossref_primary_10_1016_j_jmb_2022_167666
crossref_primary_10_1093_plcell_koac094
crossref_primary_10_3345_cep_2021_01438
crossref_primary_10_1038_s41588_024_01669_y
crossref_primary_10_1093_oncolo_oyae103
crossref_primary_10_1146_annurev_genom_112921_010715
crossref_primary_10_1093_bib_bbae163
crossref_primary_10_1038_s42004_023_01045_7
crossref_primary_10_1093_bioinformatics_btad271
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_1021_acs_jcim_3c02070
crossref_primary_10_1093_nar_gkab1049
crossref_primary_10_1186_s12859_023_05303_2
crossref_primary_10_1371_journal_pcbi_1011824
crossref_primary_10_1093_nar_gkab429
crossref_primary_10_1038_s42003_023_04583_x
crossref_primary_10_1186_s12859_023_05400_2
crossref_primary_10_1126_science_adh0559
crossref_primary_10_3390_biology12101313
crossref_primary_10_1016_j_drudis_2024_103990
crossref_primary_10_1038_s41587_022_01353_8
crossref_primary_10_1515_medgen_2022_2161
crossref_primary_10_1038_s41467_022_34902_5
crossref_primary_10_1016_j_eswa_2023_120439
crossref_primary_10_1038_s41592_021_01259_4
crossref_primary_10_7554_eLife_92574
crossref_primary_10_1128_spectrum_01716_23
crossref_primary_10_1016_j_csbj_2022_07_014
crossref_primary_10_1186_s13059_023_02885_1
crossref_primary_10_1186_s13059_023_03079_5
crossref_primary_10_1038_s43588_023_00544_w
crossref_primary_10_1093_gigascience_giad015
crossref_primary_10_3389_frai_2022_830170
crossref_primary_10_1038_s42003_022_03961_1
crossref_primary_10_1016_j_xinn_2023_100487
crossref_primary_10_1093_plcell_koac079
crossref_primary_10_1016_j_crmeth_2023_100580
crossref_primary_10_1093_nar_gkad930
crossref_primary_10_1080_21541264_2023_2222032
crossref_primary_10_1016_j_tibs_2024_03_002
crossref_primary_10_1002_jbmr_4715
crossref_primary_10_1126_science_adj0116
crossref_primary_10_1038_s41467_024_47744_0
crossref_primary_10_1093_nargab_lqae050
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1021_acssynbio_2c00202
crossref_primary_10_3390_genes15020144
crossref_primary_10_1016_j_ydbio_2022_05_004
crossref_primary_10_1038_s41592_023_01900_4
crossref_primary_10_1128_mbio_02476_23
crossref_primary_10_1038_s44320_024_00041_w
crossref_primary_10_1038_s41586_023_06661_w
crossref_primary_10_1038_s41586_023_06221_2
crossref_primary_10_1093_bioadv_vbae074
crossref_primary_10_3389_fgene_2022_920390
crossref_primary_10_1007_s00439_023_02519_3
crossref_primary_10_1146_annurev_genet_072920_032107
crossref_primary_10_1007_s13721_024_00463_4
crossref_primary_10_1584_jpestics_W22_24
crossref_primary_10_3389_fsysb_2024_1402664
crossref_primary_10_3390_cells12151995
crossref_primary_10_1038_s41586_023_06936_2
crossref_primary_10_1016_j_copbio_2022_102887
crossref_primary_10_1016_j_copbio_2023_102941
crossref_primary_10_1186_s13059_023_02956_3
crossref_primary_10_1016_j_csbj_2023_12_044
crossref_primary_10_1073_pnas_2319811121
crossref_primary_10_1089_cmb_2021_0316
crossref_primary_10_1126_science_adp0869
crossref_primary_10_3389_fbinf_2024_1347276
crossref_primary_10_1371_journal_pcbi_1010863
crossref_primary_10_1016_j_tcb_2024_03_005
crossref_primary_10_1038_s10038_023_01213_6
crossref_primary_10_1186_s12859_023_05560_1
crossref_primary_10_3390_ijms242015205
crossref_primary_10_1038_s41576_022_00532_2
crossref_primary_10_1007_s12272_023_01450_5
crossref_primary_10_1093_bioinformatics_btad062
crossref_primary_10_1016_j_gde_2022_101919
crossref_primary_10_1093_bib_bbab577
crossref_primary_10_1038_s10038_024_01256_3
crossref_primary_10_1016_j_nbt_2023_06_002
crossref_primary_10_1093_bioinformatics_btac535
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1038_s41588_024_01689_8
crossref_primary_10_1093_bib_bbad156
crossref_primary_10_1016_j_xgen_2023_100318
crossref_primary_10_3390_app14020785
crossref_primary_10_1038_s41586_023_06798_8
crossref_primary_10_1038_s41588_022_01198_6
crossref_primary_10_1038_s42256_022_00570_9
crossref_primary_10_1186_s13059_023_03063_z
crossref_primary_10_1186_s13059_024_03273_z
crossref_primary_10_1186_s13059_023_02899_9
crossref_primary_10_1002_iub_2693
crossref_primary_10_1016_j_isci_2024_109257
crossref_primary_10_1093_bib_bbae110
crossref_primary_10_3389_fcimb_2023_1182567
crossref_primary_10_3390_ijms25073698
crossref_primary_10_3389_fnagi_2022_1027224
crossref_primary_10_3389_fcell_2022_995388
crossref_primary_10_2139_ssrn_4178531
crossref_primary_10_1016_j_neunet_2022_04_014
crossref_primary_10_1038_s41598_022_22956_w
crossref_primary_10_1126_science_adf7044
crossref_primary_10_1093_nar_gkae062
crossref_primary_10_1038_s41592_023_01938_4
crossref_primary_10_1002_advs_202305449
crossref_primary_10_1038_s41467_023_37960_5
crossref_primary_10_1038_s42003_024_06465_2
crossref_primary_10_1007_s12038_022_00291_6
crossref_primary_10_1016_j_tig_2022_05_015
crossref_primary_10_1038_s41467_024_45566_8
crossref_primary_10_1038_s41576_023_00618_5
crossref_primary_10_1186_s13059_023_02985_y
crossref_primary_10_3390_insects15070463
crossref_primary_10_3389_fgene_2022_910439
crossref_primary_10_4103_NRR_NRR_D_23_01568
crossref_primary_10_1038_s41467_022_34152_5
crossref_primary_10_1038_s41588_022_01197_7
crossref_primary_10_1038_s12276_024_01243_w
crossref_primary_10_1038_s41467_023_37627_1
crossref_primary_10_1016_j_sbi_2024_102824
crossref_primary_10_1038_s41587_022_01612_8
crossref_primary_10_1038_s41598_023_38865_5
crossref_primary_10_1016_j_xgen_2023_100410
crossref_primary_10_1093_bioinformatics_btac569
crossref_primary_10_1002_cpt_3158
crossref_primary_10_1093_nar_gkad989
crossref_primary_10_1016_j_tplants_2022_08_010
crossref_primary_10_1016_j_gpb_2022_07_003
crossref_primary_10_1146_annurev_genet_030723_120717
crossref_primary_10_1093_nargab_lqad026
crossref_primary_10_1038_s41592_024_02201_0
crossref_primary_10_1093_petrology_egae036
crossref_primary_10_3389_fdata_2023_1113402
crossref_primary_10_1038_s41586_023_06824_9
crossref_primary_10_1038_s41586_024_07169_7
crossref_primary_10_37648_ijrmst_v17i01_006
crossref_primary_10_1038_s41525_022_00347_4
crossref_primary_10_1016_j_ympev_2024_108142
crossref_primary_10_1093_nar_gkad750
crossref_primary_10_1093_nar_gkad1049
crossref_primary_10_1093_bioinformatics_btae190
crossref_primary_10_3389_fninf_2023_1244336
crossref_primary_10_1042_BST20230917
crossref_primary_10_1186_s13059_022_02811_x
crossref_primary_10_1093_bib_bbae323
crossref_primary_10_1038_s41592_022_01595_z
crossref_primary_10_1093_nar_gkad436
crossref_primary_10_1093_nar_gkac1247
crossref_primary_10_3389_fpls_2023_1330793
crossref_primary_10_1093_bioinformatics_btac696
crossref_primary_10_1109_ACCESS_2024_3367801
crossref_primary_10_1093_bioadv_vbad002
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_1093_nar_gkad320
crossref_primary_10_1016_j_tplants_2024_04_013
crossref_primary_10_1016_j_neuron_2022_12_026
crossref_primary_10_3389_fgene_2022_815692
crossref_primary_10_1038_s41586_022_04506_6
crossref_primary_10_1186_s12859_022_04687_x
crossref_primary_10_1038_s41594_022_00896_3
crossref_primary_10_1093_bioinformatics_btae092
crossref_primary_10_1038_s41576_022_00512_6
crossref_primary_10_1002_advs_202303502
crossref_primary_10_3389_frai_2022_1040295
crossref_primary_10_1016_j_csbj_2023_02_015
crossref_primary_10_1021_acs_jproteome_1c00870
crossref_primary_10_1038_s41588_023_01517_5
crossref_primary_10_1038_s41592_022_01570_8
crossref_primary_10_1038_s41586_023_06905_9
crossref_primary_10_1038_s41598_022_26133_x
crossref_primary_10_1186_s13059_023_03113_6
crossref_primary_10_1093_nar_gkac326
crossref_primary_10_1002_mef2_43
crossref_primary_10_1186_s13059_023_02941_w
crossref_primary_10_3390_fermentation10020093
crossref_primary_10_1038_s41586_023_06819_6
crossref_primary_10_3390_ijms241210005
crossref_primary_10_1093_gigascience_giad085
crossref_primary_10_1016_j_compbiomed_2023_107820
crossref_primary_10_1016_j_patcog_2023_109966
crossref_primary_10_1038_s42256_023_00749_8
crossref_primary_10_1109_ACCESS_2023_3336292
crossref_primary_10_1371_journal_pcbi_1010238
crossref_primary_10_1038_s41576_024_00709_x
crossref_primary_10_1038_s41588_022_01048_5
crossref_primary_10_7554_eLife_92574_3
crossref_primary_10_1038_s41588_023_01529_1
crossref_primary_10_1093_nar_gkae514
crossref_primary_10_1016_j_csbj_2022_12_022
crossref_primary_10_1093_bioinformatics_btad457
crossref_primary_10_2174_1381612829666230412084137
crossref_primary_10_1016_j_omtn_2023_06_019
crossref_primary_10_1126_science_abj5117
crossref_primary_10_1038_s43588_023_00569_1
Cites_doi 10.1101/gr.229102
10.1038/s41592-020-0965-y
10.1038/s41467-021-23134-8
10.1038/s41588-020-0652-z
10.1038/s41588-018-0196-7
10.1038/s41588-020-00735-5
10.1038/s41592-020-0960-3
10.1016/j.cell.2015.01.006
10.1038/nbt.3300
10.1016/j.cell.2018.11.029
10.1101/gr.200535.115
10.1016/j.celrep.2020.107663
10.1038/s41576-019-0122-6
10.1038/s41576-019-0209-0
10.1093/nar/gky1016
10.1186/gb-2007-8-2-r24
10.1038/nmeth.3547
10.1002/humu.23797
10.1371/journal.pcbi.1008050
10.1038/nature13182
10.1111/rssb.12388
10.1038/ng.3331
10.1126/science.aaz1776
10.1038/nrm3949
10.1038/s41588-018-0160-6
10.1093/bioinformatics/btz352
10.1038/s41588-019-0538-0
10.1186/s13059-020-01977-6
10.1038/s41587-019-0140-0
10.1038/s41592-020-0958-x
10.1101/gr.227819.117
10.1093/bioinformatics/btw203
10.1038/s41586-020-2493-4
10.1038/s41588-019-0420-0
10.5281/zenodo.5098375
10.1016/j.cels.2020.05.007
10.18653/v1/N18-2074
10.1038/s41467-019-11526-w
10.1093/bioinformatics/btab083
10.1038/s41588-021-00782-6
10.18653/v1/P19-1285
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 Nature Publishing Group
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
RC3
5PM
DOI 10.1038/s41592-021-01252-x
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database


CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 1203
ExternalDocumentID A677885534
10_1038_s41592_021_01252_x
34608324
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABVXF
ACGFS
ACGOD
ACIWK
ACPRK
ADBBV
AENEX
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGEZK
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
AADEA
AADWK
AAYJO
ABEEJ
ABGIJ
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGGBP
AHGBK
AJDOV
NYICJ
ZA5
FIGPU
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PQEST
PQUKI
Q9U
RC3
5PM
ID FETCH-LOGICAL-c607t-c3d7359bc0a82abefe7c3aa2980cf915d962044bef5bb338b8b25abca0defd283
IEDL.DBID 8FG
ISSN 1548-7091
IngestDate Tue Sep 17 21:07:29 EDT 2024
Thu Oct 10 20:54:04 EDT 2024
Thu Feb 22 23:36:40 EST 2024
Fri Feb 02 04:24:44 EST 2024
Thu Sep 12 16:31:55 EDT 2024
Tue Oct 29 09:30:54 EDT 2024
Fri Oct 11 20:44:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-c3d7359bc0a82abefe7c3aa2980cf915d962044bef5bb338b8b25abca0defd283
ORCID 0000-0002-7790-8936
0000-0002-7466-7997
0000-0001-7782-3548
OpenAccessLink https://doi.org/10.1038/s41592-021-01252-x
PMID 34608324
PQID 2578916019
PQPubID 28015
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490152
proquest_journals_2578916019
gale_infotracmisc_A677885534
gale_infotracacademiconefile_A677885534
crossref_primary_10_1038_s41592_021_01252_x
pubmed_primary_34608324
springer_journals_10_1038_s41592_021_01252_x
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Gasperini (CR9) 2019; 176
Reshef (CR21) 2018; 50
Rentzsch, Witten, Cooper, Shendure, Kircher (CR28) 2019; 47
Wang (CR22) 2021; 12
Shigaki (CR26) 2019; 40
CR15
Zhou, Troyanskaya (CR18) 2015; 12
Kelley, Snoek, Rinn (CR19) 2016; 26
CR36
Zhou (CR1) 2018; 50
(CR10) 2014; 507
CR12
Ghandi (CR17) 2016; 32
Kelley (CR3) 2018; 28
CR31
Richter (CR37) 2020; 52
Schreiber, Durham, Bilmes, Noble (CR34) 2020; 21
Eraslan, Avsec, Gagneur, Theis (CR14) 2019; 20
Fudenberg, Kelley, Pollard (CR32) 2020; 17
Schwessinger (CR33) 2020; 17
Heinz, Romanoski, Benner, Glass (CR11) 2015; 16
Weissbrod (CR24) 2020; 52
Agarwal, Shendure (CR4) 2020; 31
CR6
Villar (CR30) 2015; 160
CR8
Fulco (CR13) 2019; 51
Wang, Sarkar, Carbonetto, Stephens (CR23) 2020; 82
Alipanahi, Delong, Weirauch, Frey (CR29) 2015; 33
Zhou (CR38) 2019; 51
CR7
Kelley (CR2) 2020; 16
CR25
CR46
Consortium (CR20) 2020; 369
CR43
Gupta, Stamatoyannopoulos, Bailey, Noble (CR39) 2007; 8
CR41
CR40
Lee (CR27) 2015; 47
Avsec (CR47) 2019; 37
Pedregosa (CR44) 2011; 12
Gasperini, Tome, Shendure (CR5) 2020; 21
Nair, Kim, Perricone, Kundaje (CR35) 2019; 35
Kent (CR42) 2002; 12
Klein (CR45) 2020; 17
(CR16) 2020; 583
34608323 - Nat Methods. 2021 Oct;18(10):1155-1156
S Heinz (1252_CR11) 2015; 16
G Eraslan (1252_CR14) 2019; 20
G Fudenberg (1252_CR32) 2020; 17
QS Wang (1252_CR22) 2021; 12
1252_CR31
B Alipanahi (1252_CR29) 2015; 33
DR Kelley (1252_CR2) 2020; 16
1252_CR8
1252_CR6
1252_CR7
YA Reshef (1252_CR21) 2018; 50
D Villar (1252_CR30) 2015; 160
TG Consortium (1252_CR20) 2020; 369
WJ Kent (1252_CR42) 2002; 12
G Wang (1252_CR23) 2020; 82
S Nair (1252_CR35) 2019; 35
Ž Avsec (1252_CR47) 2019; 37
J Zhou (1252_CR18) 2015; 12
V Agarwal (1252_CR4) 2020; 31
1252_CR36
1252_CR12
CP Fulco (1252_CR13) 2019; 51
1252_CR15
O Weissbrod (1252_CR24) 2020; 52
DR Kelley (1252_CR19) 2016; 26
M Ghandi (1252_CR17) 2016; 32
ENCODE Project Consortium (1252_CR16) 2020; 583
FANTOM Consortium and the RIKEN PMI and CLST (DGT). (1252_CR10) 2014; 507
1252_CR43
F Richter (1252_CR37) 2020; 52
1252_CR40
D Lee (1252_CR27) 2015; 47
1252_CR41
R Schwessinger (1252_CR33) 2020; 17
J Zhou (1252_CR38) 2019; 51
D Shigaki (1252_CR26) 2019; 40
J Zhou (1252_CR1) 2018; 50
M Gasperini (1252_CR9) 2019; 176
DR Kelley (1252_CR3) 2018; 28
M Gasperini (1252_CR5) 2020; 21
J Schreiber (1252_CR34) 2020; 21
S Gupta (1252_CR39) 2007; 8
1252_CR46
1252_CR25
JC Klein (1252_CR45) 2020; 17
P Rentzsch (1252_CR28) 2019; 47
F Pedregosa (1252_CR44) 2011; 12
References_xml – volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  ident: CR42
  article-title: The Human Genome Browser at UCSC
  publication-title: Genome Research
  doi: 10.1101/gr.229102
  contributor:
    fullname: Kent
– ident: CR43
– volume: 17
  start-page: 1083
  year: 2020
  end-page: 1091
  ident: CR45
  article-title: A systematic evaluation of the design and context dependencies of massively parallel reporter assays
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0965-y
  contributor:
    fullname: Klein
– volume: 12
  year: 2021
  ident: CR22
  article-title: Leveraging supervised learning for functionally informed fine-mapping of -eQTLs identifies an additional 20,913 putative causal eQTLs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23134-8
  contributor:
    fullname: Wang
– volume: 52
  start-page: 769
  year: 2020
  end-page: 777
  ident: CR37
  article-title: Genomic analyses implicate noncoding de novo variants in congenital heart disease
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0652-z
  contributor:
    fullname: Richter
– ident: CR12
– volume: 50
  start-page: 1483
  year: 2018
  end-page: 1493
  ident: CR21
  article-title: Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0196-7
  contributor:
    fullname: Reshef
– volume: 52
  start-page: 1355
  year: 2020
  end-page: 1363
  ident: CR24
  article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00735-5
  contributor:
    fullname: Weissbrod
– volume: 17
  start-page: 1118
  year: 2020
  end-page: 1124
  ident: CR33
  article-title: DeepC: predicting 3D genome folding using megabase-scale transfer learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0960-3
  contributor:
    fullname: Schwessinger
– volume: 160
  start-page: 554
  year: 2015
  ident: CR30
  article-title: Enhancer evolution across 20 mammalian species
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.006
  contributor:
    fullname: Villar
– volume: 33
  start-page: 831
  year: 2015
  end-page: 838
  ident: CR29
  article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3300
  contributor:
    fullname: Frey
– volume: 176
  start-page: 377
  year: 2019
  end-page: 390
  ident: CR9
  article-title: A genome-wide framework for mapping gene regulation via cellular genetic screens
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.029
  contributor:
    fullname: Gasperini
– volume: 26
  start-page: 990
  year: 2016
  end-page: 999
  ident: CR19
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res.
  doi: 10.1101/gr.200535.115
  contributor:
    fullname: Rinn
– ident: CR6
– volume: 31
  start-page: 107663
  year: 2020
  ident: CR4
  article-title: Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107663
  contributor:
    fullname: Shendure
– ident: CR8
– volume: 20
  start-page: 389
  year: 2019
  end-page: 403
  ident: CR14
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
  contributor:
    fullname: Theis
– ident: CR40
– volume: 21
  start-page: 292
  year: 2020
  end-page: 310
  ident: CR5
  article-title: Towards a comprehensive catalogue of validated and target-linked human enhancers
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0209-0
  contributor:
    fullname: Shendure
– ident: CR25
– volume: 47
  start-page: D886
  year: 2019
  end-page: D894
  ident: CR28
  article-title: CADD: predicting the deleteriousness of variants throughout the human genome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1016
  contributor:
    fullname: Kircher
– volume: 8
  year: 2007
  ident: CR39
  article-title: Quantifying similarity between motifs
  publication-title: Genome Biology
  doi: 10.1186/gb-2007-8-2-r24
  contributor:
    fullname: Noble
– volume: 12
  start-page: 931
  year: 2015
  end-page: 934
  ident: CR18
  article-title: Predicting effects of noncoding variants with deep learning–based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
  contributor:
    fullname: Troyanskaya
– volume: 40
  start-page: 1280
  year: 2019
  end-page: 1291
  ident: CR26
  article-title: Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis reporter assay
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23797
  contributor:
    fullname: Shigaki
– volume: 16
  start-page: e1008050
  year: 2020
  ident: CR2
  article-title: Cross-species regulatory sequence activity prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008050
  contributor:
    fullname: Kelley
– volume: 507
  start-page: 462
  year: 2014
  end-page: 470
  ident: CR10
  article-title: A promoter-level mammalian expression atlas
  publication-title: Nature
  doi: 10.1038/nature13182
– volume: 82
  start-page: 1273
  year: 2020
  end-page: 1300
  ident: CR23
  article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/rssb.12388
  contributor:
    fullname: Stephens
– volume: 47
  start-page: 955
  year: 2015
  end-page: 961
  ident: CR27
  article-title: A method to predict the impact of regulatory variants from DNA sequence
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3331
  contributor:
    fullname: Lee
– volume: 369
  start-page: 1318
  year: 2020
  end-page: 1330
  ident: CR20
  article-title: The GTEx Consortium atlas of genetic regulatory effects across human tissues
  publication-title: Science
  doi: 10.1126/science.aaz1776
  contributor:
    fullname: Consortium
– ident: CR46
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR44
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– ident: CR15
– volume: 16
  start-page: 144
  year: 2015
  end-page: 154
  ident: CR11
  article-title: The selection and function of cell type-specific enhancers
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3949
  contributor:
    fullname: Glass
– ident: CR31
– volume: 50
  start-page: 1171
  year: 2018
  end-page: 1179
  ident: CR1
  article-title: Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0160-6
  contributor:
    fullname: Zhou
– volume: 35
  start-page: i108
  year: 2019
  end-page: i116
  ident: CR35
  article-title: Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz352
  contributor:
    fullname: Kundaje
– volume: 51
  start-page: 1664
  year: 2019
  end-page: 1669
  ident: CR13
  article-title: Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0538-0
  contributor:
    fullname: Fulco
– ident: CR36
– volume: 21
  year: 2020
  ident: CR34
  article-title: Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-01977-6
  contributor:
    fullname: Noble
– volume: 37
  start-page: 592
  year: 2019
  end-page: 600
  ident: CR47
  article-title: The Kipoi repository accelerates community exchange and reuse of predictive models for genomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0140-0
  contributor:
    fullname: Avsec
– ident: CR7
– volume: 17
  start-page: 1111
  year: 2020
  end-page: 1117
  ident: CR32
  article-title: Predicting 3D genome folding from DNA sequence with Akita
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0958-x
  contributor:
    fullname: Pollard
– volume: 28
  start-page: 739
  year: 2018
  end-page: 750
  ident: CR3
  article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks
  publication-title: Genome Res.
  doi: 10.1101/gr.227819.117
  contributor:
    fullname: Kelley
– ident: CR41
– volume: 32
  start-page: 2205
  year: 2016
  end-page: 2207
  ident: CR17
  article-title: gkmSVM: an R package for gapped-kmer SVM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw203
  contributor:
    fullname: Ghandi
– volume: 583
  start-page: 699
  year: 2020
  end-page: 710
  ident: CR16
  article-title: Expanded encyclopaedias of DNA elements in the human and mouse genomes
  publication-title: Nature
  doi: 10.1038/s41586-020-2493-4
– volume: 51
  start-page: 973
  year: 2019
  end-page: 980
  ident: CR38
  article-title: Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0420-0
  contributor:
    fullname: Zhou
– ident: 1252_CR46
  doi: 10.5281/zenodo.5098375
– volume: 35
  start-page: i108
  year: 2019
  ident: 1252_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz352
  contributor:
    fullname: S Nair
– volume: 28
  start-page: 739
  year: 2018
  ident: 1252_CR3
  publication-title: Genome Res.
  doi: 10.1101/gr.227819.117
  contributor:
    fullname: DR Kelley
– volume: 369
  start-page: 1318
  year: 2020
  ident: 1252_CR20
  publication-title: Science
  doi: 10.1126/science.aaz1776
  contributor:
    fullname: TG Consortium
– volume: 37
  start-page: 592
  year: 2019
  ident: 1252_CR47
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0140-0
  contributor:
    fullname: Ž Avsec
– ident: 1252_CR36
– volume: 50
  start-page: 1483
  year: 2018
  ident: 1252_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0196-7
  contributor:
    fullname: YA Reshef
– volume: 33
  start-page: 831
  year: 2015
  ident: 1252_CR29
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3300
  contributor:
    fullname: B Alipanahi
– volume: 51
  start-page: 973
  year: 2019
  ident: 1252_CR38
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0420-0
  contributor:
    fullname: J Zhou
– volume: 176
  start-page: 377
  year: 2019
  ident: 1252_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.029
  contributor:
    fullname: M Gasperini
– volume: 51
  start-page: 1664
  year: 2019
  ident: 1252_CR13
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0538-0
  contributor:
    fullname: CP Fulco
– volume: 17
  start-page: 1111
  year: 2020
  ident: 1252_CR32
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0958-x
  contributor:
    fullname: G Fudenberg
– volume: 12
  year: 2021
  ident: 1252_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23134-8
  contributor:
    fullname: QS Wang
– volume: 21
  year: 2020
  ident: 1252_CR34
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-01977-6
  contributor:
    fullname: J Schreiber
– volume: 32
  start-page: 2205
  year: 2016
  ident: 1252_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw203
  contributor:
    fullname: M Ghandi
– ident: 1252_CR7
– volume: 47
  start-page: D886
  year: 2019
  ident: 1252_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1016
  contributor:
    fullname: P Rentzsch
– ident: 1252_CR31
  doi: 10.1016/j.cels.2020.05.007
– volume: 16
  start-page: 144
  year: 2015
  ident: 1252_CR11
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3949
  contributor:
    fullname: S Heinz
– volume: 26
  start-page: 990
  year: 2016
  ident: 1252_CR19
  publication-title: Genome Res.
  doi: 10.1101/gr.200535.115
  contributor:
    fullname: DR Kelley
– volume: 8
  year: 2007
  ident: 1252_CR39
  publication-title: Genome Biology
  doi: 10.1186/gb-2007-8-2-r24
  contributor:
    fullname: S Gupta
– volume: 21
  start-page: 292
  year: 2020
  ident: 1252_CR5
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0209-0
  contributor:
    fullname: M Gasperini
– volume: 17
  start-page: 1118
  year: 2020
  ident: 1252_CR33
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0960-3
  contributor:
    fullname: R Schwessinger
– volume: 40
  start-page: 1280
  year: 2019
  ident: 1252_CR26
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23797
  contributor:
    fullname: D Shigaki
– ident: 1252_CR40
  doi: 10.18653/v1/N18-2074
– volume: 507
  start-page: 462
  year: 2014
  ident: 1252_CR10
  publication-title: Nature
  doi: 10.1038/nature13182
  contributor:
    fullname: FANTOM Consortium and the RIKEN PMI and CLST (DGT).
– volume: 16
  start-page: e1008050
  year: 2020
  ident: 1252_CR2
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008050
  contributor:
    fullname: DR Kelley
– ident: 1252_CR6
– volume: 47
  start-page: 955
  year: 2015
  ident: 1252_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3331
  contributor:
    fullname: D Lee
– volume: 12
  start-page: 931
  year: 2015
  ident: 1252_CR18
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
  contributor:
    fullname: J Zhou
– ident: 1252_CR12
– ident: 1252_CR25
  doi: 10.1038/s41467-019-11526-w
– ident: 1252_CR8
  doi: 10.1093/bioinformatics/btab083
– volume: 52
  start-page: 1355
  year: 2020
  ident: 1252_CR24
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-00735-5
  contributor:
    fullname: O Weissbrod
– ident: 1252_CR43
– volume: 50
  start-page: 1171
  year: 2018
  ident: 1252_CR1
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0160-6
  contributor:
    fullname: J Zhou
– volume: 583
  start-page: 699
  year: 2020
  ident: 1252_CR16
  publication-title: Nature
  doi: 10.1038/s41586-020-2493-4
  contributor:
    fullname: ENCODE Project Consortium
– ident: 1252_CR15
  doi: 10.1038/s41588-021-00782-6
– volume: 12
  start-page: 996
  year: 2002
  ident: 1252_CR42
  publication-title: Genome Research
  doi: 10.1101/gr.229102
  contributor:
    fullname: WJ Kent
– volume: 17
  start-page: 1083
  year: 2020
  ident: 1252_CR45
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0965-y
  contributor:
    fullname: JC Klein
– volume: 160
  start-page: 554
  year: 2015
  ident: 1252_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.006
  contributor:
    fullname: D Villar
– volume: 52
  start-page: 769
  year: 2020
  ident: 1252_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0652-z
  contributor:
    fullname: F Richter
– volume: 20
  start-page: 389
  year: 2019
  ident: 1252_CR14
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
  contributor:
    fullname: G Eraslan
– ident: 1252_CR41
  doi: 10.18653/v1/P19-1285
– volume: 31
  start-page: 107663
  year: 2020
  ident: 1252_CR4
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107663
  contributor:
    fullname: V Agarwal
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1252_CR44
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: F Pedregosa
– volume: 82
  start-page: 1273
  year: 2020
  ident: 1252_CR23
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/rssb.12388
  contributor:
    fullname: G Wang
SSID ssj0033425
Score 2.7485254
Snippet How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend...
Abstract How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1196
SubjectTerms 631/114/1305
631/1647/794
631/208/199
631/208/212/2019
Animals
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cell Line
Databases, Genetic
Deep learning
Deoxyribonucleic acid
DNA
DNA - genetics
DNA sequencing
Epigenesis, Genetic
Gene expression
Gene Expression Regulation
Gene mapping
Gene sequencing
Genetic diversity
Genetic research
Genetic variance
Genetics
Genome
Genomes
Genomics - methods
Humans
Information processing
Interactomes
Life Sciences
Machine Learning
Methods
Mice
Nerve Net
Noncoding DNA
Nucleotide sequence
Nucleotide sequencing
Predictions
Proteomics
Quantitative Trait Loci
Saturation mutagenesis
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBYlpdBL2W5f3qaLDoUeWlFbD1s-hrAhLGxPDaQnoZfbQHGWJIXNv--MbG_XoT30ZizZsmdGM5_QzCdC3lcyD6FqHJOugQWKKyLTTS5ZrVXwMDNDIbEa-eZLuVzJ67Va9zQ5WAsz2r8X-vMeAgzmR3Jc9HLFGeDFxxiD8ZiGeTkfvK4QMh2wigicVRAE-wKZv79jFIROXfGDWHSaJ3myWZpi0OKMPOvBI5112n5OHsX2nDzpjpM8viDfOipi8F8UzCLSeNdnubYULsImlTBQLCihQwY1dUc6MEbAkPTntv3OdlhwkG7vurKH_UuyWlx9nS9Zf3QC82VeHZgXoRKqdj63mlsXm1h5YS2vde6bulChRh56CQ3KOVilOu24ss7bPMQmAOR4RSbtto1vCI3WNcG6WggPSznudFFZqQVgs4bbItiMfBxkaW47hgyTdraFNp3kDUjeJMmbu4x8QHEbnD4gU2_7KgAYC4mozAwJ7bRSQmZkOuoJZu_HzYPCTD_t9gb9D-BdgK0Zed3p7v6bhCwBbnJ4sBpp9b4DEm2PW9rNj0S4rSWiJp6RT4P-_wz571-9-L_ub8lTjiaaEgWnZHLY_YrvAPAc3GWy9N9U8fnH
  priority: 102
  providerName: Springer Nature
Title Effective gene expression prediction from sequence by integrating long-range interactions
URI https://link.springer.com/article/10.1038/s41592-021-01252-x
https://www.ncbi.nlm.nih.gov/pubmed/34608324
https://www.proquest.com/docview/2578916019
https://pubmed.ncbi.nlm.nih.gov/PMC8490152
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WlsFexr7nrgt6GOxhE7UlOZKfRhKalcHCGCtkT0Jf3grD6ZIU0v9-J9lu58D2ZCPJSD6d7n6S7gPgjRS597K2VNgaNyi2CFTVuaCVKr3DlekLEb2RPy_G5xfi07Jcdgdum86sspeJSVD7lYtn5KeRtRDKICL5cPWbxqxR8Xa1S6FxAEcFkzJytZp_7CUx5yIlXY2onEpUjJ3TTM7V6QYVV7S7ZHEzzUpGdwPFtC-e_9JP-7aTexeoSS_NH8HDDlCSScsBj-FeaJ7A_TbF5M1T-N6GJ0aZRpBVAgm7zvK1IfjiL5NbA4lOJqS3qib2hvRRJLBL8mvV_KDr6ISQitetK8TmGVzMz77NzmmXToG6cS631HEveVlZlxvFjA11kI4bwyqVu7oqSl_F2PQCK0prcedqlWWlsc7kPtQeYchzOGxWTXgJJBhbe2Mrzh1u75hVhTRCccRrNTOFNxm862mpr9qoGTrddnOlW8prpLxOlNe7DN5Gcuu4pJCmznSeAdhXDE6lJzHInSpLLjI4GbTEpeCG1f2E6W4pbvQd42Twop272zFxMUYIyvBDOZjV2wYx-Pawprn8mYJwKxGRFMvgfT__d13--1eP_z_CV_CARZZMxoIncLhdX4fXCHq2dgQHcilHib9HcDSZT6cLfE7PFl--YulsPPsDGckFcg
link.rule.ids 230,315,783,787,888,12070,12779,21402,27938,27939,31733,33387,33758,41134,42203,43324,43614,43819,51590,74081,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8Sa0BR-QOIDVxI-Nc6oq1GWBtqdWKifLr5RKKFt2F2n775lxnJasBLcodmRnPJ75xp4HIe9qWYZQt45J14KB4qrIdFtK1mgVPOzMUEmMRj4-mczO5NdzdZ4P3JbZrXKQiUlQh7nHM_I9ZC2AMoBI9q9-MawahberuYTGXXJPClA0GCk-_TxIYiFkKrqKqJzVoBhz0Ewp9N4SFBf6XXI0prnibD1STJvi-S_9tOk7uXGBmvTS9DF5lAElPeg54Am5E7un5H5fYvL6GfnepycGmUaBVSKN6-z52lF4CJcprIFikAkdvKqpu6ZDFgkYkv6cdxdsgUEI6fWiD4VYPidn08PTTzOWyykwPynrFfMi1EI1zpdWc-tiG2svrOWNLn3bVCo0mJteQoNyDixXpx1X1nlbhtgGgCEvyFY37-IrQqN1bbCuEcKDecedrmortQC81nJbBVuQDwMtzVWfNcOk226hTU95A5Q3ifJmXZD3SG6DWwpo6m2ODICxMDmVOcAkd1opIQuyM-oJW8GPm4cFM3krLs0t4xTkZb92N3MScgIQlMOH9WhVbzpg8u1xS3f5IyXh1hKRFC_Ix2H9b4f896--_v8M35IHs9PjI3P05eTbNnnIkT2T4-AO2VotfsddAEAr9yZx-R_aGAN6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCNQLYm-gBR-QOIA1iZeJc0JV26FsFQcqlZPlLVAJZcrMIE3_Pe85TktGglsUO3Ly_JbvxW8h5GUtyxDq1jHpWnBQXBWZbkvJGq2CB8kMlcRs5M8n0-NT-eFMneX4p2UOqxx0YlLUYe7xH_kEWQugDCCSSZvDIr4czt5e_GLYQQpPWnM7jZvkFljFGoVUz94NWlkImRqwIkJnNRjJnEBTCj1ZghHDGEyOjjVXnK1HRmpTVf9lqzbjKDcOU5ONmt0jdzO4pPs9N9wnN2L3gNzu201ePiTf-lLFoN8osE2kcZ2jYDsKF-E8pThQTDihQ4Q1dZd0qCgBS9Kf8-47W2BCQrq96NMilo_I6ezo68Exy60VmJ-W9Yp5EWqhGudLq7l1sY21F9byRpe-bSoVGqxTL2FAOQderNOOK-u8LUNsA0CSx2Srm3dxh9BoXRusa4Tw4Opxp6vaSi0Au7XcVsEW5PVAS3PRV9Aw6eRbaNNT3gDlTaK8WRfkFZLboHgBTb3NWQKwFhaqMvtY8E4rJWRBdkczQSz8eHjYMJPFcmmumaggT_q9u3onIacARzk8WI929WoCFuIej3TnP1JBbi0RVfGCvBn2_3rJf3_q0_-_4QtyBxjcfHp_8vEZ2ebInSmGcJdsrRa_4x5goZV7npj8Dws8B68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+gene+expression+prediction+from+sequence+by+integrating+long-range+interactions&rft.jtitle=Nature+methods&rft.au=Avsec%2C+Ziga&rft.au=Agarwal%2C+Vikram&rft.au=Visentin%2C+Daniel&rft.au=Ledsam%2C+Joseph+R&rft.date=2021-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=10&rft.spage=1196&rft_id=info:doi/10.1038%2Fs41592-021-01252-x&rft.externalDocID=A677885534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon