Effective gene expression prediction from sequence by integrating long-range interactions
How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a de...
Saved in:
Published in | Nature methods Vol. 18; no. 10; pp. 1196 - 1203 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret
cis
-regulatory evolution.
By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence. |
---|---|
AbstractList | How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence. How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis -regulatory evolution. By using a new deep learning architecture, Enformer leverages long-range information to improve prediction of gene expression on the basis of DNA sequence. Abstract How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis -regulatory evolution. How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer-promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution. |
Audience | Academic |
Author | Taylor, Kyle R. Assael, Yannis Ledsam, Joseph R. Kelley, David R. Jumper, John Avsec, Žiga Grabska-Barwinska, Agnieszka Kohli, Pushmeet Visentin, Daniel Agarwal, Vikram |
Author_xml | – sequence: 1 givenname: Žiga orcidid: 0000-0002-7790-8936 surname: Avsec fullname: Avsec, Žiga email: avsec@google.com organization: DeepMind – sequence: 2 givenname: Vikram surname: Agarwal fullname: Agarwal, Vikram organization: Calico Life Sciences – sequence: 3 givenname: Daniel surname: Visentin fullname: Visentin, Daniel organization: DeepMind – sequence: 4 givenname: Joseph R. surname: Ledsam fullname: Ledsam, Joseph R. organization: DeepMind, Google – sequence: 5 givenname: Agnieszka surname: Grabska-Barwinska fullname: Grabska-Barwinska, Agnieszka organization: DeepMind – sequence: 6 givenname: Kyle R. surname: Taylor fullname: Taylor, Kyle R. organization: DeepMind – sequence: 7 givenname: Yannis surname: Assael fullname: Assael, Yannis organization: DeepMind – sequence: 8 givenname: John surname: Jumper fullname: Jumper, John organization: DeepMind – sequence: 9 givenname: Pushmeet orcidid: 0000-0002-7466-7997 surname: Kohli fullname: Kohli, Pushmeet email: pushmeet@google.com organization: DeepMind – sequence: 10 givenname: David R. orcidid: 0000-0001-7782-3548 surname: Kelley fullname: Kelley, David R. email: drk@calicolabs.com organization: Calico Life Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34608324$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UclqHDEQFcEhXpIfyCE0-NyO1m7pYjDGGxhycQ45CUld6shMSxOpx4z_3vKMVwhGBxX1Furx9tFOTBEQ-k7wEcFM_iycCEVbTEmLCRW0XX9Ce0Rw2fYEi53nGSuyi_ZLucWYMU7FF7TLeIclo3wP_TnzHtwc7qAZIUID62WGUkKKTR2GUKE6-pympsC_FUQHjb1vQpxhzGYOcWwWKY5tNnGEzTqbjaZ8RZ-9WRT49vQfoN_nZzenl-31r4ur05Pr1nW4n1vHhp4JZR02khoLHnrHjKFKYucVEYPqKOa8AsJaxqSVlgpjncED-IFKdoCOt77LlZ1gcBDnbBZ6mcNk8r1OJuj3SAx_9ZjutOQKE0GrweGTQU41YZn1bVrlWG_WVPRSkQ4T9coazQJ0iD5VMzeF4vRJ1_dSCsF4ZR39h1XfAFNwtT4f6v6dgG4FLqdSMviXwwnWjy3rbcu6tqw3Let1Ff14G_lF8lxrJbAtoVSoFpNfI31g-wAkSLc1 |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1383083 crossref_primary_10_1016_j_mrrev_2023_108457 crossref_primary_10_3389_fmolb_2023_1257550 crossref_primary_10_1038_s41576_023_00638_1 crossref_primary_10_1093_bioinformatics_btac135 crossref_primary_10_1088_1572_9494_ace17d crossref_primary_10_1038_s41588_023_01574_w crossref_primary_10_1038_s42256_022_00574_5 crossref_primary_10_1016_j_cell_2024_01_023 crossref_primary_10_1093_jalm_jfad102 crossref_primary_10_1016_j_neunet_2023_12_002 crossref_primary_10_1177_10943420231201154 crossref_primary_10_1016_j_xgen_2024_100553 crossref_primary_10_1038_s41588_023_01509_5 crossref_primary_10_1186_s13059_023_03103_8 crossref_primary_10_1093_nar_gkac957 crossref_primary_10_1038_s41588_023_01524_6 crossref_primary_10_1093_nargab_lqae055 crossref_primary_10_1186_s13059_023_02955_4 crossref_primary_10_1038_s41467_022_34904_3 crossref_primary_10_1038_s44320_024_00013_0 crossref_primary_10_1038_s41588_022_01123_x crossref_primary_10_1016_j_trac_2024_117540 crossref_primary_10_1038_s42256_024_00792_z crossref_primary_10_1073_pnas_2311219120 crossref_primary_10_1038_s44222_023_00114_9 crossref_primary_10_1016_j_crmeth_2022_100384 crossref_primary_10_1038_s43586_022_00188_6 crossref_primary_10_1016_j_pbi_2023_102403 crossref_primary_10_1016_j_compbiomed_2024_108449 crossref_primary_10_1016_j_eswa_2022_118004 crossref_primary_10_1038_s42256_024_00851_5 crossref_primary_10_1016_j_csbj_2024_05_016 crossref_primary_10_3389_fgene_2022_1081842 crossref_primary_10_1186_s13059_023_03021_9 crossref_primary_10_1266_ggs_23_00140 crossref_primary_10_1093_bioinformatics_btae340 crossref_primary_10_1038_s41594_024_01235_4 crossref_primary_10_1101_gr_275394_121 crossref_primary_10_1371_journal_pcbi_1011526 crossref_primary_10_1177_03611981241252835 crossref_primary_10_1093_nar_gkad229 crossref_primary_10_3390_mi15030313 crossref_primary_10_1002_bies_202300210 crossref_primary_10_3390_biomedinformatics4020085 crossref_primary_10_1038_s41588_022_01194_w crossref_primary_10_1093_bib_bbad442 crossref_primary_10_1016_j_vaccine_2023_07_024 crossref_primary_10_1093_bioinformatics_btad378 crossref_primary_10_1093_bib_bbad438 crossref_primary_10_1093_bioinformatics_btad021 crossref_primary_10_1186_s12859_022_05126_7 crossref_primary_10_1016_j_stem_2022_01_007 crossref_primary_10_1038_s41587_022_01435_7 crossref_primary_10_7554_eLife_88187 crossref_primary_10_1016_j_omtn_2024_102255 crossref_primary_10_1038_s41467_024_46947_9 crossref_primary_10_1093_bib_bbad070 crossref_primary_10_1016_j_cmpb_2023_107504 crossref_primary_10_1016_j_jmb_2022_167666 crossref_primary_10_1093_plcell_koac094 crossref_primary_10_3345_cep_2021_01438 crossref_primary_10_1038_s41588_024_01669_y crossref_primary_10_1093_oncolo_oyae103 crossref_primary_10_1146_annurev_genom_112921_010715 crossref_primary_10_1093_bib_bbae163 crossref_primary_10_1038_s42004_023_01045_7 crossref_primary_10_1093_bioinformatics_btad271 crossref_primary_10_1016_j_trac_2024_117852 crossref_primary_10_1021_acs_jcim_3c02070 crossref_primary_10_1093_nar_gkab1049 crossref_primary_10_1186_s12859_023_05303_2 crossref_primary_10_1371_journal_pcbi_1011824 crossref_primary_10_1093_nar_gkab429 crossref_primary_10_1038_s42003_023_04583_x crossref_primary_10_1186_s12859_023_05400_2 crossref_primary_10_1126_science_adh0559 crossref_primary_10_3390_biology12101313 crossref_primary_10_1016_j_drudis_2024_103990 crossref_primary_10_1038_s41587_022_01353_8 crossref_primary_10_1515_medgen_2022_2161 crossref_primary_10_1038_s41467_022_34902_5 crossref_primary_10_1016_j_eswa_2023_120439 crossref_primary_10_1038_s41592_021_01259_4 crossref_primary_10_7554_eLife_92574 crossref_primary_10_1128_spectrum_01716_23 crossref_primary_10_1016_j_csbj_2022_07_014 crossref_primary_10_1186_s13059_023_02885_1 crossref_primary_10_1186_s13059_023_03079_5 crossref_primary_10_1038_s43588_023_00544_w crossref_primary_10_1093_gigascience_giad015 crossref_primary_10_3389_frai_2022_830170 crossref_primary_10_1038_s42003_022_03961_1 crossref_primary_10_1016_j_xinn_2023_100487 crossref_primary_10_1093_plcell_koac079 crossref_primary_10_1016_j_crmeth_2023_100580 crossref_primary_10_1093_nar_gkad930 crossref_primary_10_1080_21541264_2023_2222032 crossref_primary_10_1016_j_tibs_2024_03_002 crossref_primary_10_1002_jbmr_4715 crossref_primary_10_1126_science_adj0116 crossref_primary_10_1038_s41467_024_47744_0 crossref_primary_10_1093_nargab_lqae050 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1021_acssynbio_2c00202 crossref_primary_10_3390_genes15020144 crossref_primary_10_1016_j_ydbio_2022_05_004 crossref_primary_10_1038_s41592_023_01900_4 crossref_primary_10_1128_mbio_02476_23 crossref_primary_10_1038_s44320_024_00041_w crossref_primary_10_1038_s41586_023_06661_w crossref_primary_10_1038_s41586_023_06221_2 crossref_primary_10_1093_bioadv_vbae074 crossref_primary_10_3389_fgene_2022_920390 crossref_primary_10_1007_s00439_023_02519_3 crossref_primary_10_1146_annurev_genet_072920_032107 crossref_primary_10_1007_s13721_024_00463_4 crossref_primary_10_1584_jpestics_W22_24 crossref_primary_10_3389_fsysb_2024_1402664 crossref_primary_10_3390_cells12151995 crossref_primary_10_1038_s41586_023_06936_2 crossref_primary_10_1016_j_copbio_2022_102887 crossref_primary_10_1016_j_copbio_2023_102941 crossref_primary_10_1186_s13059_023_02956_3 crossref_primary_10_1016_j_csbj_2023_12_044 crossref_primary_10_1073_pnas_2319811121 crossref_primary_10_1089_cmb_2021_0316 crossref_primary_10_1126_science_adp0869 crossref_primary_10_3389_fbinf_2024_1347276 crossref_primary_10_1371_journal_pcbi_1010863 crossref_primary_10_1016_j_tcb_2024_03_005 crossref_primary_10_1038_s10038_023_01213_6 crossref_primary_10_1186_s12859_023_05560_1 crossref_primary_10_3390_ijms242015205 crossref_primary_10_1038_s41576_022_00532_2 crossref_primary_10_1007_s12272_023_01450_5 crossref_primary_10_1093_bioinformatics_btad062 crossref_primary_10_1016_j_gde_2022_101919 crossref_primary_10_1093_bib_bbab577 crossref_primary_10_1038_s10038_024_01256_3 crossref_primary_10_1016_j_nbt_2023_06_002 crossref_primary_10_1093_bioinformatics_btac535 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_1038_s41588_024_01689_8 crossref_primary_10_1093_bib_bbad156 crossref_primary_10_1016_j_xgen_2023_100318 crossref_primary_10_3390_app14020785 crossref_primary_10_1038_s41586_023_06798_8 crossref_primary_10_1038_s41588_022_01198_6 crossref_primary_10_1038_s42256_022_00570_9 crossref_primary_10_1186_s13059_023_03063_z crossref_primary_10_1186_s13059_024_03273_z crossref_primary_10_1186_s13059_023_02899_9 crossref_primary_10_1002_iub_2693 crossref_primary_10_1016_j_isci_2024_109257 crossref_primary_10_1093_bib_bbae110 crossref_primary_10_3389_fcimb_2023_1182567 crossref_primary_10_3390_ijms25073698 crossref_primary_10_3389_fnagi_2022_1027224 crossref_primary_10_3389_fcell_2022_995388 crossref_primary_10_2139_ssrn_4178531 crossref_primary_10_1016_j_neunet_2022_04_014 crossref_primary_10_1038_s41598_022_22956_w crossref_primary_10_1126_science_adf7044 crossref_primary_10_1093_nar_gkae062 crossref_primary_10_1038_s41592_023_01938_4 crossref_primary_10_1002_advs_202305449 crossref_primary_10_1038_s41467_023_37960_5 crossref_primary_10_1038_s42003_024_06465_2 crossref_primary_10_1007_s12038_022_00291_6 crossref_primary_10_1016_j_tig_2022_05_015 crossref_primary_10_1038_s41467_024_45566_8 crossref_primary_10_1038_s41576_023_00618_5 crossref_primary_10_1186_s13059_023_02985_y crossref_primary_10_3390_insects15070463 crossref_primary_10_3389_fgene_2022_910439 crossref_primary_10_4103_NRR_NRR_D_23_01568 crossref_primary_10_1038_s41467_022_34152_5 crossref_primary_10_1038_s41588_022_01197_7 crossref_primary_10_1038_s12276_024_01243_w crossref_primary_10_1038_s41467_023_37627_1 crossref_primary_10_1016_j_sbi_2024_102824 crossref_primary_10_1038_s41587_022_01612_8 crossref_primary_10_1038_s41598_023_38865_5 crossref_primary_10_1016_j_xgen_2023_100410 crossref_primary_10_1093_bioinformatics_btac569 crossref_primary_10_1002_cpt_3158 crossref_primary_10_1093_nar_gkad989 crossref_primary_10_1016_j_tplants_2022_08_010 crossref_primary_10_1016_j_gpb_2022_07_003 crossref_primary_10_1146_annurev_genet_030723_120717 crossref_primary_10_1093_nargab_lqad026 crossref_primary_10_1038_s41592_024_02201_0 crossref_primary_10_1093_petrology_egae036 crossref_primary_10_3389_fdata_2023_1113402 crossref_primary_10_1038_s41586_023_06824_9 crossref_primary_10_1038_s41586_024_07169_7 crossref_primary_10_37648_ijrmst_v17i01_006 crossref_primary_10_1038_s41525_022_00347_4 crossref_primary_10_1016_j_ympev_2024_108142 crossref_primary_10_1093_nar_gkad750 crossref_primary_10_1093_nar_gkad1049 crossref_primary_10_1093_bioinformatics_btae190 crossref_primary_10_3389_fninf_2023_1244336 crossref_primary_10_1042_BST20230917 crossref_primary_10_1186_s13059_022_02811_x crossref_primary_10_1093_bib_bbae323 crossref_primary_10_1038_s41592_022_01595_z crossref_primary_10_1093_nar_gkad436 crossref_primary_10_1093_nar_gkac1247 crossref_primary_10_3389_fpls_2023_1330793 crossref_primary_10_1093_bioinformatics_btac696 crossref_primary_10_1109_ACCESS_2024_3367801 crossref_primary_10_1093_bioadv_vbad002 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_1093_nar_gkad320 crossref_primary_10_1016_j_tplants_2024_04_013 crossref_primary_10_1016_j_neuron_2022_12_026 crossref_primary_10_3389_fgene_2022_815692 crossref_primary_10_1038_s41586_022_04506_6 crossref_primary_10_1186_s12859_022_04687_x crossref_primary_10_1038_s41594_022_00896_3 crossref_primary_10_1093_bioinformatics_btae092 crossref_primary_10_1038_s41576_022_00512_6 crossref_primary_10_1002_advs_202303502 crossref_primary_10_3389_frai_2022_1040295 crossref_primary_10_1016_j_csbj_2023_02_015 crossref_primary_10_1021_acs_jproteome_1c00870 crossref_primary_10_1038_s41588_023_01517_5 crossref_primary_10_1038_s41592_022_01570_8 crossref_primary_10_1038_s41586_023_06905_9 crossref_primary_10_1038_s41598_022_26133_x crossref_primary_10_1186_s13059_023_03113_6 crossref_primary_10_1093_nar_gkac326 crossref_primary_10_1002_mef2_43 crossref_primary_10_1186_s13059_023_02941_w crossref_primary_10_3390_fermentation10020093 crossref_primary_10_1038_s41586_023_06819_6 crossref_primary_10_3390_ijms241210005 crossref_primary_10_1093_gigascience_giad085 crossref_primary_10_1016_j_compbiomed_2023_107820 crossref_primary_10_1016_j_patcog_2023_109966 crossref_primary_10_1038_s42256_023_00749_8 crossref_primary_10_1109_ACCESS_2023_3336292 crossref_primary_10_1371_journal_pcbi_1010238 crossref_primary_10_1038_s41576_024_00709_x crossref_primary_10_1038_s41588_022_01048_5 crossref_primary_10_7554_eLife_92574_3 crossref_primary_10_1038_s41588_023_01529_1 crossref_primary_10_1093_nar_gkae514 crossref_primary_10_1016_j_csbj_2022_12_022 crossref_primary_10_1093_bioinformatics_btad457 crossref_primary_10_2174_1381612829666230412084137 crossref_primary_10_1016_j_omtn_2023_06_019 crossref_primary_10_1126_science_abj5117 crossref_primary_10_1038_s43588_023_00569_1 |
Cites_doi | 10.1101/gr.229102 10.1038/s41592-020-0965-y 10.1038/s41467-021-23134-8 10.1038/s41588-020-0652-z 10.1038/s41588-018-0196-7 10.1038/s41588-020-00735-5 10.1038/s41592-020-0960-3 10.1016/j.cell.2015.01.006 10.1038/nbt.3300 10.1016/j.cell.2018.11.029 10.1101/gr.200535.115 10.1016/j.celrep.2020.107663 10.1038/s41576-019-0122-6 10.1038/s41576-019-0209-0 10.1093/nar/gky1016 10.1186/gb-2007-8-2-r24 10.1038/nmeth.3547 10.1002/humu.23797 10.1371/journal.pcbi.1008050 10.1038/nature13182 10.1111/rssb.12388 10.1038/ng.3331 10.1126/science.aaz1776 10.1038/nrm3949 10.1038/s41588-018-0160-6 10.1093/bioinformatics/btz352 10.1038/s41588-019-0538-0 10.1186/s13059-020-01977-6 10.1038/s41587-019-0140-0 10.1038/s41592-020-0958-x 10.1101/gr.227819.117 10.1093/bioinformatics/btw203 10.1038/s41586-020-2493-4 10.1038/s41588-019-0420-0 10.5281/zenodo.5098375 10.1016/j.cels.2020.05.007 10.18653/v1/N18-2074 10.1038/s41467-019-11526-w 10.1093/bioinformatics/btab083 10.1038/s41588-021-00782-6 10.18653/v1/P19-1285 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). COPYRIGHT 2021 Nature Publishing Group The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PTHSS PYCSY Q9U RC3 5PM |
DOI | 10.1038/s41592-021-01252-x |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 1203 |
ExternalDocumentID | A677885534 10_1038_s41592_021_01252_x 34608324 |
Genre | Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABVXF ACGFS ACGOD ACIWK ACPRK ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGEZK AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION AADEA AADWK AAYJO ABEEJ ABGIJ ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGGBP AHGBK AJDOV NYICJ ZA5 FIGPU 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PQEST PQUKI Q9U RC3 5PM |
ID | FETCH-LOGICAL-c607t-c3d7359bc0a82abefe7c3aa2980cf915d962044bef5bb338b8b25abca0defd283 |
IEDL.DBID | 8FG |
ISSN | 1548-7091 |
IngestDate | Tue Sep 17 21:07:29 EDT 2024 Thu Oct 10 20:54:04 EDT 2024 Thu Feb 22 23:36:40 EST 2024 Fri Feb 02 04:24:44 EST 2024 Thu Sep 12 16:31:55 EDT 2024 Tue Oct 29 09:30:54 EDT 2024 Fri Oct 11 20:44:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-c3d7359bc0a82abefe7c3aa2980cf915d962044bef5bb338b8b25abca0defd283 |
ORCID | 0000-0002-7790-8936 0000-0002-7466-7997 0000-0001-7782-3548 |
OpenAccessLink | https://doi.org/10.1038/s41592-021-01252-x |
PMID | 34608324 |
PQID | 2578916019 |
PQPubID | 28015 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490152 proquest_journals_2578916019 gale_infotracmisc_A677885534 gale_infotracacademiconefile_A677885534 crossref_primary_10_1038_s41592_021_01252_x pubmed_primary_34608324 springer_journals_10_1038_s41592_021_01252_x |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Gasperini (CR9) 2019; 176 Reshef (CR21) 2018; 50 Rentzsch, Witten, Cooper, Shendure, Kircher (CR28) 2019; 47 Wang (CR22) 2021; 12 Shigaki (CR26) 2019; 40 CR15 Zhou, Troyanskaya (CR18) 2015; 12 Kelley, Snoek, Rinn (CR19) 2016; 26 CR36 Zhou (CR1) 2018; 50 (CR10) 2014; 507 CR12 Ghandi (CR17) 2016; 32 Kelley (CR3) 2018; 28 CR31 Richter (CR37) 2020; 52 Schreiber, Durham, Bilmes, Noble (CR34) 2020; 21 Eraslan, Avsec, Gagneur, Theis (CR14) 2019; 20 Fudenberg, Kelley, Pollard (CR32) 2020; 17 Schwessinger (CR33) 2020; 17 Heinz, Romanoski, Benner, Glass (CR11) 2015; 16 Weissbrod (CR24) 2020; 52 Agarwal, Shendure (CR4) 2020; 31 CR6 Villar (CR30) 2015; 160 CR8 Fulco (CR13) 2019; 51 Wang, Sarkar, Carbonetto, Stephens (CR23) 2020; 82 Alipanahi, Delong, Weirauch, Frey (CR29) 2015; 33 Zhou (CR38) 2019; 51 CR7 Kelley (CR2) 2020; 16 CR25 CR46 Consortium (CR20) 2020; 369 CR43 Gupta, Stamatoyannopoulos, Bailey, Noble (CR39) 2007; 8 CR41 CR40 Lee (CR27) 2015; 47 Avsec (CR47) 2019; 37 Pedregosa (CR44) 2011; 12 Gasperini, Tome, Shendure (CR5) 2020; 21 Nair, Kim, Perricone, Kundaje (CR35) 2019; 35 Kent (CR42) 2002; 12 Klein (CR45) 2020; 17 (CR16) 2020; 583 34608323 - Nat Methods. 2021 Oct;18(10):1155-1156 S Heinz (1252_CR11) 2015; 16 G Eraslan (1252_CR14) 2019; 20 G Fudenberg (1252_CR32) 2020; 17 QS Wang (1252_CR22) 2021; 12 1252_CR31 B Alipanahi (1252_CR29) 2015; 33 DR Kelley (1252_CR2) 2020; 16 1252_CR8 1252_CR6 1252_CR7 YA Reshef (1252_CR21) 2018; 50 D Villar (1252_CR30) 2015; 160 TG Consortium (1252_CR20) 2020; 369 WJ Kent (1252_CR42) 2002; 12 G Wang (1252_CR23) 2020; 82 S Nair (1252_CR35) 2019; 35 Ž Avsec (1252_CR47) 2019; 37 J Zhou (1252_CR18) 2015; 12 V Agarwal (1252_CR4) 2020; 31 1252_CR36 1252_CR12 CP Fulco (1252_CR13) 2019; 51 1252_CR15 O Weissbrod (1252_CR24) 2020; 52 DR Kelley (1252_CR19) 2016; 26 M Ghandi (1252_CR17) 2016; 32 ENCODE Project Consortium (1252_CR16) 2020; 583 FANTOM Consortium and the RIKEN PMI and CLST (DGT). (1252_CR10) 2014; 507 1252_CR43 F Richter (1252_CR37) 2020; 52 1252_CR40 D Lee (1252_CR27) 2015; 47 1252_CR41 R Schwessinger (1252_CR33) 2020; 17 J Zhou (1252_CR38) 2019; 51 D Shigaki (1252_CR26) 2019; 40 J Zhou (1252_CR1) 2018; 50 M Gasperini (1252_CR9) 2019; 176 DR Kelley (1252_CR3) 2018; 28 M Gasperini (1252_CR5) 2020; 21 J Schreiber (1252_CR34) 2020; 21 S Gupta (1252_CR39) 2007; 8 1252_CR46 1252_CR25 JC Klein (1252_CR45) 2020; 17 P Rentzsch (1252_CR28) 2019; 47 F Pedregosa (1252_CR44) 2011; 12 |
References_xml | – volume: 12 start-page: 996 year: 2002 end-page: 1006 ident: CR42 article-title: The Human Genome Browser at UCSC publication-title: Genome Research doi: 10.1101/gr.229102 contributor: fullname: Kent – ident: CR43 – volume: 17 start-page: 1083 year: 2020 end-page: 1091 ident: CR45 article-title: A systematic evaluation of the design and context dependencies of massively parallel reporter assays publication-title: Nat. Methods doi: 10.1038/s41592-020-0965-y contributor: fullname: Klein – volume: 12 year: 2021 ident: CR22 article-title: Leveraging supervised learning for functionally informed fine-mapping of -eQTLs identifies an additional 20,913 putative causal eQTLs publication-title: Nat. Commun. doi: 10.1038/s41467-021-23134-8 contributor: fullname: Wang – volume: 52 start-page: 769 year: 2020 end-page: 777 ident: CR37 article-title: Genomic analyses implicate noncoding de novo variants in congenital heart disease publication-title: Nat. Genet. doi: 10.1038/s41588-020-0652-z contributor: fullname: Richter – ident: CR12 – volume: 50 start-page: 1483 year: 2018 end-page: 1493 ident: CR21 article-title: Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk publication-title: Nat. Genet. doi: 10.1038/s41588-018-0196-7 contributor: fullname: Reshef – volume: 52 start-page: 1355 year: 2020 end-page: 1363 ident: CR24 article-title: Functionally informed fine-mapping and polygenic localization of complex trait heritability publication-title: Nat. Genet. doi: 10.1038/s41588-020-00735-5 contributor: fullname: Weissbrod – volume: 17 start-page: 1118 year: 2020 end-page: 1124 ident: CR33 article-title: DeepC: predicting 3D genome folding using megabase-scale transfer learning publication-title: Nat. Methods doi: 10.1038/s41592-020-0960-3 contributor: fullname: Schwessinger – volume: 160 start-page: 554 year: 2015 ident: CR30 article-title: Enhancer evolution across 20 mammalian species publication-title: Cell doi: 10.1016/j.cell.2015.01.006 contributor: fullname: Villar – volume: 33 start-page: 831 year: 2015 end-page: 838 ident: CR29 article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3300 contributor: fullname: Frey – volume: 176 start-page: 377 year: 2019 end-page: 390 ident: CR9 article-title: A genome-wide framework for mapping gene regulation via cellular genetic screens publication-title: Cell doi: 10.1016/j.cell.2018.11.029 contributor: fullname: Gasperini – volume: 26 start-page: 990 year: 2016 end-page: 999 ident: CR19 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res. doi: 10.1101/gr.200535.115 contributor: fullname: Rinn – ident: CR6 – volume: 31 start-page: 107663 year: 2020 ident: CR4 article-title: Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107663 contributor: fullname: Shendure – ident: CR8 – volume: 20 start-page: 389 year: 2019 end-page: 403 ident: CR14 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 contributor: fullname: Theis – ident: CR40 – volume: 21 start-page: 292 year: 2020 end-page: 310 ident: CR5 article-title: Towards a comprehensive catalogue of validated and target-linked human enhancers publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0209-0 contributor: fullname: Shendure – ident: CR25 – volume: 47 start-page: D886 year: 2019 end-page: D894 ident: CR28 article-title: CADD: predicting the deleteriousness of variants throughout the human genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1016 contributor: fullname: Kircher – volume: 8 year: 2007 ident: CR39 article-title: Quantifying similarity between motifs publication-title: Genome Biology doi: 10.1186/gb-2007-8-2-r24 contributor: fullname: Noble – volume: 12 start-page: 931 year: 2015 end-page: 934 ident: CR18 article-title: Predicting effects of noncoding variants with deep learning–based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 contributor: fullname: Troyanskaya – volume: 40 start-page: 1280 year: 2019 end-page: 1291 ident: CR26 article-title: Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis reporter assay publication-title: Hum. Mutat. doi: 10.1002/humu.23797 contributor: fullname: Shigaki – volume: 16 start-page: e1008050 year: 2020 ident: CR2 article-title: Cross-species regulatory sequence activity prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008050 contributor: fullname: Kelley – volume: 507 start-page: 462 year: 2014 end-page: 470 ident: CR10 article-title: A promoter-level mammalian expression atlas publication-title: Nature doi: 10.1038/nature13182 – volume: 82 start-page: 1273 year: 2020 end-page: 1300 ident: CR23 article-title: A simple new approach to variable selection in regression, with application to genetic fine mapping publication-title: J. R. Stat. Soc. doi: 10.1111/rssb.12388 contributor: fullname: Stephens – volume: 47 start-page: 955 year: 2015 end-page: 961 ident: CR27 article-title: A method to predict the impact of regulatory variants from DNA sequence publication-title: Nat. Genet. doi: 10.1038/ng.3331 contributor: fullname: Lee – volume: 369 start-page: 1318 year: 2020 end-page: 1330 ident: CR20 article-title: The GTEx Consortium atlas of genetic regulatory effects across human tissues publication-title: Science doi: 10.1126/science.aaz1776 contributor: fullname: Consortium – ident: CR46 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR44 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – ident: CR15 – volume: 16 start-page: 144 year: 2015 end-page: 154 ident: CR11 article-title: The selection and function of cell type-specific enhancers publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3949 contributor: fullname: Glass – ident: CR31 – volume: 50 start-page: 1171 year: 2018 end-page: 1179 ident: CR1 article-title: Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk publication-title: Nat. Genet. doi: 10.1038/s41588-018-0160-6 contributor: fullname: Zhou – volume: 35 start-page: i108 year: 2019 end-page: i116 ident: CR35 article-title: Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz352 contributor: fullname: Kundaje – volume: 51 start-page: 1664 year: 2019 end-page: 1669 ident: CR13 article-title: Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations publication-title: Nat. Genet. doi: 10.1038/s41588-019-0538-0 contributor: fullname: Fulco – ident: CR36 – volume: 21 year: 2020 ident: CR34 article-title: Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome publication-title: Genome Biol. doi: 10.1186/s13059-020-01977-6 contributor: fullname: Noble – volume: 37 start-page: 592 year: 2019 end-page: 600 ident: CR47 article-title: The Kipoi repository accelerates community exchange and reuse of predictive models for genomics publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0140-0 contributor: fullname: Avsec – ident: CR7 – volume: 17 start-page: 1111 year: 2020 end-page: 1117 ident: CR32 article-title: Predicting 3D genome folding from DNA sequence with Akita publication-title: Nat. Methods doi: 10.1038/s41592-020-0958-x contributor: fullname: Pollard – volume: 28 start-page: 739 year: 2018 end-page: 750 ident: CR3 article-title: Sequential regulatory activity prediction across chromosomes with convolutional neural networks publication-title: Genome Res. doi: 10.1101/gr.227819.117 contributor: fullname: Kelley – ident: CR41 – volume: 32 start-page: 2205 year: 2016 end-page: 2207 ident: CR17 article-title: gkmSVM: an R package for gapped-kmer SVM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw203 contributor: fullname: Ghandi – volume: 583 start-page: 699 year: 2020 end-page: 710 ident: CR16 article-title: Expanded encyclopaedias of DNA elements in the human and mouse genomes publication-title: Nature doi: 10.1038/s41586-020-2493-4 – volume: 51 start-page: 973 year: 2019 end-page: 980 ident: CR38 article-title: Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk publication-title: Nat. Genet. doi: 10.1038/s41588-019-0420-0 contributor: fullname: Zhou – ident: 1252_CR46 doi: 10.5281/zenodo.5098375 – volume: 35 start-page: i108 year: 2019 ident: 1252_CR35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz352 contributor: fullname: S Nair – volume: 28 start-page: 739 year: 2018 ident: 1252_CR3 publication-title: Genome Res. doi: 10.1101/gr.227819.117 contributor: fullname: DR Kelley – volume: 369 start-page: 1318 year: 2020 ident: 1252_CR20 publication-title: Science doi: 10.1126/science.aaz1776 contributor: fullname: TG Consortium – volume: 37 start-page: 592 year: 2019 ident: 1252_CR47 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0140-0 contributor: fullname: Ž Avsec – ident: 1252_CR36 – volume: 50 start-page: 1483 year: 2018 ident: 1252_CR21 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0196-7 contributor: fullname: YA Reshef – volume: 33 start-page: 831 year: 2015 ident: 1252_CR29 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3300 contributor: fullname: B Alipanahi – volume: 51 start-page: 973 year: 2019 ident: 1252_CR38 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0420-0 contributor: fullname: J Zhou – volume: 176 start-page: 377 year: 2019 ident: 1252_CR9 publication-title: Cell doi: 10.1016/j.cell.2018.11.029 contributor: fullname: M Gasperini – volume: 51 start-page: 1664 year: 2019 ident: 1252_CR13 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0538-0 contributor: fullname: CP Fulco – volume: 17 start-page: 1111 year: 2020 ident: 1252_CR32 publication-title: Nat. Methods doi: 10.1038/s41592-020-0958-x contributor: fullname: G Fudenberg – volume: 12 year: 2021 ident: 1252_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23134-8 contributor: fullname: QS Wang – volume: 21 year: 2020 ident: 1252_CR34 publication-title: Genome Biol. doi: 10.1186/s13059-020-01977-6 contributor: fullname: J Schreiber – volume: 32 start-page: 2205 year: 2016 ident: 1252_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw203 contributor: fullname: M Ghandi – ident: 1252_CR7 – volume: 47 start-page: D886 year: 2019 ident: 1252_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1016 contributor: fullname: P Rentzsch – ident: 1252_CR31 doi: 10.1016/j.cels.2020.05.007 – volume: 16 start-page: 144 year: 2015 ident: 1252_CR11 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3949 contributor: fullname: S Heinz – volume: 26 start-page: 990 year: 2016 ident: 1252_CR19 publication-title: Genome Res. doi: 10.1101/gr.200535.115 contributor: fullname: DR Kelley – volume: 8 year: 2007 ident: 1252_CR39 publication-title: Genome Biology doi: 10.1186/gb-2007-8-2-r24 contributor: fullname: S Gupta – volume: 21 start-page: 292 year: 2020 ident: 1252_CR5 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0209-0 contributor: fullname: M Gasperini – volume: 17 start-page: 1118 year: 2020 ident: 1252_CR33 publication-title: Nat. Methods doi: 10.1038/s41592-020-0960-3 contributor: fullname: R Schwessinger – volume: 40 start-page: 1280 year: 2019 ident: 1252_CR26 publication-title: Hum. Mutat. doi: 10.1002/humu.23797 contributor: fullname: D Shigaki – ident: 1252_CR40 doi: 10.18653/v1/N18-2074 – volume: 507 start-page: 462 year: 2014 ident: 1252_CR10 publication-title: Nature doi: 10.1038/nature13182 contributor: fullname: FANTOM Consortium and the RIKEN PMI and CLST (DGT). – volume: 16 start-page: e1008050 year: 2020 ident: 1252_CR2 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008050 contributor: fullname: DR Kelley – ident: 1252_CR6 – volume: 47 start-page: 955 year: 2015 ident: 1252_CR27 publication-title: Nat. Genet. doi: 10.1038/ng.3331 contributor: fullname: D Lee – volume: 12 start-page: 931 year: 2015 ident: 1252_CR18 publication-title: Nat. Methods doi: 10.1038/nmeth.3547 contributor: fullname: J Zhou – ident: 1252_CR12 – ident: 1252_CR25 doi: 10.1038/s41467-019-11526-w – ident: 1252_CR8 doi: 10.1093/bioinformatics/btab083 – volume: 52 start-page: 1355 year: 2020 ident: 1252_CR24 publication-title: Nat. Genet. doi: 10.1038/s41588-020-00735-5 contributor: fullname: O Weissbrod – ident: 1252_CR43 – volume: 50 start-page: 1171 year: 2018 ident: 1252_CR1 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0160-6 contributor: fullname: J Zhou – volume: 583 start-page: 699 year: 2020 ident: 1252_CR16 publication-title: Nature doi: 10.1038/s41586-020-2493-4 contributor: fullname: ENCODE Project Consortium – ident: 1252_CR15 doi: 10.1038/s41588-021-00782-6 – volume: 12 start-page: 996 year: 2002 ident: 1252_CR42 publication-title: Genome Research doi: 10.1101/gr.229102 contributor: fullname: WJ Kent – volume: 17 start-page: 1083 year: 2020 ident: 1252_CR45 publication-title: Nat. Methods doi: 10.1038/s41592-020-0965-y contributor: fullname: JC Klein – volume: 160 start-page: 554 year: 2015 ident: 1252_CR30 publication-title: Cell doi: 10.1016/j.cell.2015.01.006 contributor: fullname: D Villar – volume: 52 start-page: 769 year: 2020 ident: 1252_CR37 publication-title: Nat. Genet. doi: 10.1038/s41588-020-0652-z contributor: fullname: F Richter – volume: 20 start-page: 389 year: 2019 ident: 1252_CR14 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 contributor: fullname: G Eraslan – ident: 1252_CR41 doi: 10.18653/v1/P19-1285 – volume: 31 start-page: 107663 year: 2020 ident: 1252_CR4 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107663 contributor: fullname: V Agarwal – volume: 12 start-page: 2825 year: 2011 ident: 1252_CR44 publication-title: J. Mach. Learn. Res. contributor: fullname: F Pedregosa – volume: 82 start-page: 1273 year: 2020 ident: 1252_CR23 publication-title: J. R. Stat. Soc. doi: 10.1111/rssb.12388 contributor: fullname: G Wang |
SSID | ssj0033425 |
Score | 2.7485254 |
Snippet | How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend... Abstract How noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human... |
SourceID | pubmedcentral proquest gale crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1196 |
SubjectTerms | 631/114/1305 631/1647/794 631/208/199 631/208/212/2019 Animals Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cell Line Databases, Genetic Deep learning Deoxyribonucleic acid DNA DNA - genetics DNA sequencing Epigenesis, Genetic Gene expression Gene Expression Regulation Gene mapping Gene sequencing Genetic diversity Genetic research Genetic variance Genetics Genome Genomes Genomics - methods Humans Information processing Interactomes Life Sciences Machine Learning Methods Mice Nerve Net Noncoding DNA Nucleotide sequence Nucleotide sequencing Predictions Proteomics Quantitative Trait Loci Saturation mutagenesis |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBYlpdBL2W5f3qaLDoUeWlFbD1s-hrAhLGxPDaQnoZfbQHGWJIXNv--MbG_XoT30ZizZsmdGM5_QzCdC3lcyD6FqHJOugQWKKyLTTS5ZrVXwMDNDIbEa-eZLuVzJ67Va9zQ5WAsz2r8X-vMeAgzmR3Jc9HLFGeDFxxiD8ZiGeTkfvK4QMh2wigicVRAE-wKZv79jFIROXfGDWHSaJ3myWZpi0OKMPOvBI5112n5OHsX2nDzpjpM8viDfOipi8F8UzCLSeNdnubYULsImlTBQLCihQwY1dUc6MEbAkPTntv3OdlhwkG7vurKH_UuyWlx9nS9Zf3QC82VeHZgXoRKqdj63mlsXm1h5YS2vde6bulChRh56CQ3KOVilOu24ss7bPMQmAOR4RSbtto1vCI3WNcG6WggPSznudFFZqQVgs4bbItiMfBxkaW47hgyTdraFNp3kDUjeJMmbu4x8QHEbnD4gU2_7KgAYC4mozAwJ7bRSQmZkOuoJZu_HzYPCTD_t9gb9D-BdgK0Zed3p7v6bhCwBbnJ4sBpp9b4DEm2PW9rNj0S4rSWiJp6RT4P-_wz571-9-L_ub8lTjiaaEgWnZHLY_YrvAPAc3GWy9N9U8fnH priority: 102 providerName: Springer Nature |
Title | Effective gene expression prediction from sequence by integrating long-range interactions |
URI | https://link.springer.com/article/10.1038/s41592-021-01252-x https://www.ncbi.nlm.nih.gov/pubmed/34608324 https://www.proquest.com/docview/2578916019 https://pubmed.ncbi.nlm.nih.gov/PMC8490152 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WlsFexr7nrgt6GOxhE7UlOZKfRhKalcHCGCtkT0Jf3grD6ZIU0v9-J9lu58D2ZCPJSD6d7n6S7gPgjRS597K2VNgaNyi2CFTVuaCVKr3DlekLEb2RPy_G5xfi07Jcdgdum86sspeJSVD7lYtn5KeRtRDKICL5cPWbxqxR8Xa1S6FxAEcFkzJytZp_7CUx5yIlXY2onEpUjJ3TTM7V6QYVV7S7ZHEzzUpGdwPFtC-e_9JP-7aTexeoSS_NH8HDDlCSScsBj-FeaJ7A_TbF5M1T-N6GJ0aZRpBVAgm7zvK1IfjiL5NbA4lOJqS3qib2hvRRJLBL8mvV_KDr6ISQitetK8TmGVzMz77NzmmXToG6cS631HEveVlZlxvFjA11kI4bwyqVu7oqSl_F2PQCK0prcedqlWWlsc7kPtQeYchzOGxWTXgJJBhbe2Mrzh1u75hVhTRCccRrNTOFNxm862mpr9qoGTrddnOlW8prpLxOlNe7DN5Gcuu4pJCmznSeAdhXDE6lJzHInSpLLjI4GbTEpeCG1f2E6W4pbvQd42Twop272zFxMUYIyvBDOZjV2wYx-Pawprn8mYJwKxGRFMvgfT__d13--1eP_z_CV_CARZZMxoIncLhdX4fXCHq2dgQHcilHib9HcDSZT6cLfE7PFl--YulsPPsDGckFcg |
link.rule.ids | 230,315,783,787,888,12070,12779,21402,27938,27939,31733,33387,33758,41134,42203,43324,43614,43819,51590,74081,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8Sa0BR-QOIDVxI-Nc6oq1GWBtqdWKifLr5RKKFt2F2n775lxnJasBLcodmRnPJ75xp4HIe9qWYZQt45J14KB4qrIdFtK1mgVPOzMUEmMRj4-mczO5NdzdZ4P3JbZrXKQiUlQh7nHM_I9ZC2AMoBI9q9-MawahberuYTGXXJPClA0GCk-_TxIYiFkKrqKqJzVoBhz0Ewp9N4SFBf6XXI0prnibD1STJvi-S_9tOk7uXGBmvTS9DF5lAElPeg54Am5E7un5H5fYvL6GfnepycGmUaBVSKN6-z52lF4CJcprIFikAkdvKqpu6ZDFgkYkv6cdxdsgUEI6fWiD4VYPidn08PTTzOWyykwPynrFfMi1EI1zpdWc-tiG2svrOWNLn3bVCo0mJteQoNyDixXpx1X1nlbhtgGgCEvyFY37-IrQqN1bbCuEcKDecedrmortQC81nJbBVuQDwMtzVWfNcOk226hTU95A5Q3ifJmXZD3SG6DWwpo6m2ODICxMDmVOcAkd1opIQuyM-oJW8GPm4cFM3krLs0t4xTkZb92N3MScgIQlMOH9WhVbzpg8u1xS3f5IyXh1hKRFC_Ix2H9b4f896--_v8M35IHs9PjI3P05eTbNnnIkT2T4-AO2VotfsddAEAr9yZx-R_aGAN6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCNQLYm-gBR-QOIA1iZeJc0JV26FsFQcqlZPlLVAJZcrMIE3_Pe85TktGglsUO3Ly_JbvxW8h5GUtyxDq1jHpWnBQXBWZbkvJGq2CB8kMlcRs5M8n0-NT-eFMneX4p2UOqxx0YlLUYe7xH_kEWQugDCCSSZvDIr4czt5e_GLYQQpPWnM7jZvkFljFGoVUz94NWlkImRqwIkJnNRjJnEBTCj1ZghHDGEyOjjVXnK1HRmpTVf9lqzbjKDcOU5ONmt0jdzO4pPs9N9wnN2L3gNzu201ePiTf-lLFoN8osE2kcZ2jYDsKF-E8pThQTDihQ4Q1dZd0qCgBS9Kf8-47W2BCQrq96NMilo_I6ezo68Exy60VmJ-W9Yp5EWqhGudLq7l1sY21F9byRpe-bSoVGqxTL2FAOQderNOOK-u8LUNsA0CSx2Srm3dxh9BoXRusa4Tw4Opxp6vaSi0Au7XcVsEW5PVAS3PRV9Aw6eRbaNNT3gDlTaK8WRfkFZLboHgBTb3NWQKwFhaqMvtY8E4rJWRBdkczQSz8eHjYMJPFcmmumaggT_q9u3onIacARzk8WI929WoCFuIej3TnP1JBbi0RVfGCvBn2_3rJf3_q0_-_4QtyBxjcfHp_8vEZ2ebInSmGcJdsrRa_4x5goZV7npj8Dws8B68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+gene+expression+prediction+from+sequence+by+integrating+long-range+interactions&rft.jtitle=Nature+methods&rft.au=Avsec%2C+Ziga&rft.au=Agarwal%2C+Vikram&rft.au=Visentin%2C+Daniel&rft.au=Ledsam%2C+Joseph+R&rft.date=2021-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=10&rft.spage=1196&rft_id=info:doi/10.1038%2Fs41592-021-01252-x&rft.externalDocID=A677885534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |