Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits

Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate t...

Full description

Saved in:
Bibliographic Details
Published inRice (New York, N.Y.) Vol. 16; no. 1; p. 24
Main Authors Jiménez, Juan de la Cruz, Pedersen, Ole
Format Journal Article
LanguageEnglish
Published New York Springer US 10.05.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO 2 , CH 4 and N 2 O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O 2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O 2 loss in basal parts of the roots will increase O 2 diffusion to the root apex where molecular O 2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O 2 in these zones promotes CH 4 oxidation into CO 2 by methanotrophs and nitrification (conversion of NH 4 + into NO 3 - ), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O 2 loss will have restricted diffusional entry of CH 4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
AbstractList Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO2, CH4 and N2O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O2 loss in basal parts of the roots will increase O2 diffusion to the root apex where molecular O2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O2 in these zones promotes CH4 oxidation into CO2 by methanotrophs and nitrification (conversion of NH4+ into NO3-), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O2 loss will have restricted diffusional entry of CH4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO , CH and N O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O loss in basal parts of the roots will increase O diffusion to the root apex where molecular O diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O in these zones promotes CH oxidation into CO by methanotrophs and nitrification (conversion of NH into NO ), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O loss will have restricted diffusional entry of CH produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO 2 , CH 4 and N 2 O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O 2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O 2 loss in basal parts of the roots will increase O 2 diffusion to the root apex where molecular O 2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O 2 in these zones promotes CH 4 oxidation into CO 2 by methanotrophs and nitrification (conversion of NH 4 + into NO 3 - ), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O 2 loss will have restricted diffusional entry of CH 4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Abstract Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO2, CH4 and N2O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O2 loss in basal parts of the roots will increase O2 diffusion to the root apex where molecular O2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O2 in these zones promotes CH4 oxidation into CO2 by methanotrophs and nitrification (conversion of NH4 + into NO3 -), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O2 loss will have restricted diffusional entry of CH4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
Abstract Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast amounts of CO 2 , CH 4 and N 2 O. We propose that the development of elite rice varieties should target root traits enabling an effective internal O 2 diffusion, via enlarged aerenchyma channels. Moreover, gas tight barriers impeding radial O 2 loss in basal parts of the roots will increase O 2 diffusion to the root apex where molecular O 2 diffuses into the rhizosphere. These developments result in plants with roots penetrating deeper into the flooded anoxic soils, producing higher volumes of oxic conditions in the interface between roots and rhizosphere. Molecular O 2 in these zones promotes CH 4 oxidation into CO 2 by methanotrophs and nitrification (conversion of NH 4 + into NO 3 - ), reducing greenhouse gas production and at the same time improving plant nutrition. Moreover, roots with tight barriers to radial O 2 loss will have restricted diffusional entry of CH 4 produced in the anoxic parts of the rhizosphere and therefore plant-mediated diffusion will be reduced. In this review, we describe how the exploitation of these key root traits in rice can potentially reduce greenhouse gas emissions from paddy fields.
ArticleNumber 24
Author Pedersen, Ole
Jiménez, Juan de la Cruz
Author_xml – sequence: 1
  givenname: Juan de la Cruz
  orcidid: 0000-0002-9985-5302
  surname: Jiménez
  fullname: Jiménez, Juan de la Cruz
  email: juan.jimenezserna@bio.ku.dk
  organization: Department of Biology, University of Copenhagen
– sequence: 2
  givenname: Ole
  orcidid: 0000-0002-0827-946X
  surname: Pedersen
  fullname: Pedersen, Ole
  email: opedersen@bio.ku.dk
  organization: Department of Biology, University of Copenhagen, School of Agriculture and Environment, The University of Western Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37160782$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URC_wAiyQJTbdBHzsxJcVQlUZKlohVcPachxn6lHGHuykUvv0eCZloCxY2fL5z3cu_k_RUYjBIfQWyAcAyT9moFTWFaGsIoQzWT2-QCegmKpkzdjR4U6bY3Sa83onoo16hY6ZAE6EpCdoeeNHvzKjjwHHHi-Sc-EuTtnhhcn4cuNzLqGM-xQ3-NZbh--9wTcm-O00HNK-uQd8G-OIl8n4Mb9GL3szZPfm6TxDP75cLi--VtffF1cXn68rW6qPFWdNR1ra9Q0Y4wirJQUrhYXeUmKobZzg3EnelzF5x0VfC8scNIJDI6US7AxdzdwumrXeJr8x6UFH4_X-IaaVNmn0dnBaUC6UtHXbgq2t4MYqaSiFWsi-laoprE8zazu1G9dZF8ZkhmfQ55Hg7_Qq3msgwJVSUAjnT4QUf04uj7psz7phMMGVjWoqoXyIVLCTvv9Huo5TCmVXexVToq53LdFZZVPMObn-0A0QvXOAnh2giwP03gH6sSS9-3uOQ8rvLy8CNgtyCYWVS39q_wf7C-_gvQ4
CitedBy_id crossref_primary_10_1080_00380768_2023_2298782
crossref_primary_10_1071_FP23133
crossref_primary_10_1038_s41598_024_64616_1
crossref_primary_10_1093_aob_mcae036
crossref_primary_10_1071_FP23226
crossref_primary_10_1093_aob_mcae010
Cites_doi 10.1093/jxb/36.10.1573
10.1016/S0065-2113(08)60633-1
10.1073/pnas.1907181116
10.1093/aob/mci215
10.1046/j.1365-3040.2003.00846.x
10.1093/aob/mci216
10.1007/s11104-015-2382-z
10.3117/plantroot.14.33
10.1111/nph.18883
10.1111/j.1365-3040.2012.02513.x
10.1007/s003740050568
10.1104/pp.124.2.609
10.1093/aob/mcx049
10.1007/s12284-008-9016-5
10.1111/j.1365-3040.2011.02318.x
10.1006/anbo.2000.1236
10.1111/pce.13638
10.3389/fpls.2019.00259
10.1111/gcb.12701
10.1111/nph.17474
10.1046/j.0028-646X.2001.00317.x
10.1111/j.1469-8137.2007.02364.x
10.1016/S0038-0717(01)00096-7
10.1016/j.agwat.2003.09.002
10.1111/gcb.13737
10.1007/s00122-011-1688-3
10.2136/sssaj2000.6462180x
10.1093/jxb/erab043
10.1046/j.0016-8025.2001.00817.x
10.1038/ng.2725
10.1021/es0105459
10.1093/aob/mcq221
10.1021/ac9611576
10.1002/047086303X.ch4
10.1104/pp.94.1.59
10.1071/FP20200
10.1007/978-3-642-38797-5_9
10.1080/15592324.2020.1719749
10.1007/s11104-021-05118-1
10.1016/b978-0-12-394276-0.00006-8
10.1016/j.soilbio.2018.11.015
10.1111/j.1469-8137.2012.04303.x
10.1111/gcb.16132
10.1016/S0378-4290(01)00150-2
10.1111/j.1469-8137.2008.02506.x
10.1111/nph.16452
10.5194/essd-12-1561-2020
10.1111/nph.16375
10.1007/s10452-009-9241-z
10.1270/jsbbs.20110
10.1007/BF02372636
10.1006/anbo.1999.0993
10.1093/jxb/erp089
10.3390/plants10112322
10.1071/FP13359
10.1007/BF00000896
10.1093/jxb/49.325.1431
10.1093/aob/mcf114
10.1093/jxb/eraa542
10.1073/pnas.2005911117
10.3390/plants9070880
10.1093/jxb/erad014
10.1007/978-3-642-38797-5_8
10.1111/pce.13562
10.1111/j.1469-8137.1983.tb04864.x
10.1093/aob/mcw051
10.1626/jcs.56.608
10.1111/j.1469-8137.1987.tb00860.x
10.1186/s12284-018-0262-x
10.1111/nph.17572
10.1093/nsr/nwz087
10.1016/S0304-3770(01)00144-9
10.1111/j.1469-8137.2006.01725.x
10.1080/1343943x.2017.1288550
10.1016/j.tplants.2021.10.012
10.1046/j.1365-3040.1997.d01-142.x
10.4319/lo.1997.42.3.0529
10.1111/j.1469-8137.2010.03496.x
10.1046/j.1469-8137.2003.00793.x
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
M2P
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
5PM
DOA
DOI 10.1186/s12284-023-00638-z
DatabaseName Springer Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Science Database
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
PubMed


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1939-8433
1934-8037
EndPage 24
ExternalDocumentID oai_doaj_org_article_726798c4bb1c4c76ac98a221478fb895
10_1186_s12284_023_00638_z
37160782
Genre Journal Article
Review
GrantInformation_xml – fundername: Royal Library, Copenhagen University Library
– fundername: ;
GroupedDBID -56
-5G
-A0
-BR
-Y2
0R~
123
29P
2JY
2VQ
3V.
4.4
40G
5VS
67Z
6NX
7X2
7XC
88I
8FE
8FH
8TC
AAFWJ
AAJSJ
AAKKN
AAPBV
AAYZJ
ABDBF
ABMNI
ABTEG
ABUWG
ACACY
ACGFS
ACGOD
ACOMO
ADBBV
ADINQ
ADKPE
ADRAZ
AENEX
AFGCZ
AFGXO
AFKRA
AFNRJ
AFPKN
AFRAH
AGJBK
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
AZQEC
BA0
BAPOH
BCNDV
BENPR
BHPHI
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DWQXO
EBS
ECGQY
EJD
EN4
ESX
GNUQQ
GROUPED_DOAJ
GXS
HCIFZ
HG5
HG6
HYE
HZ~
IXC
IZQ
I~X
KPH
KQ8
M0K
M2P
M48
O9-
O9I
OAM
OK1
PATMY
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
QOS
RBZ
RIG
ROL
RPM
RSV
S1Z
S27
SBL
SDH
SOJ
T13
TSK
U2A
VC2
WK8
Z7Y
AAHBH
ABEEZ
ACULB
AFBBN
EBLON
NPM
PGMZT
AAYXX
CITATION
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c607t-635d0b2df51aae034821c87c1fc20a2c5e766e86f2286d67f47c3e15761588973
IEDL.DBID RPM
ISSN 1939-8425
IngestDate Thu Sep 05 15:30:46 EDT 2024
Tue Sep 17 21:32:12 EDT 2024
Fri Aug 16 03:00:52 EDT 2024
Thu Oct 10 17:18:07 EDT 2024
Fri Aug 23 01:38:59 EDT 2024
Sat Sep 28 08:17:49 EDT 2024
Sat Dec 16 12:07:41 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords loss
barrier to radial O
CH
oxidation
Aerenchyma
CO
N
O
N2O
barrier to radial O2 loss
CH4
CO2
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-635d0b2df51aae034821c87c1fc20a2c5e766e86f2286d67f47c3e15761588973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-9985-5302
0000-0002-0827-946X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169991/
PMID 37160782
PQID 2811397445
PQPubID 54333
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_726798c4bb1c4c76ac98a221478fb895
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10169991
proquest_miscellaneous_2811938911
proquest_journals_2811397445
crossref_primary_10_1186_s12284_023_00638_z
pubmed_primary_37160782
springer_journals_10_1186_s12284_023_00638_z
PublicationCentury 2000
PublicationDate 20230510
PublicationDateYYYYMMDD 2023-05-10
PublicationDate_xml – month: 5
  year: 2023
  text: 20230510
  day: 10
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Rice (New York, N.Y.)
PublicationTitleAbbrev Rice
PublicationTitleAlternate Rice (N Y)
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: SpringerOpen
References HouAXChenGXWangZPVan CleemputOMethane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processesSoil Sci Soc Am J2000646218021861:CAS:528:DC%2BD3MXhsFSrtQ%3D%3D10.2136/sssaj2000.6462180x
TongSKjaerJEOgorekPPellegriniLLSongEPedersenZHerzogMResponses of key root traits in the genus Oryza to soil flooding mimicked by stagnant, deoxygenated nutrient solutionJ Exp Bot202310.1093/jxb/erad0143662928410049916
SchützHSeilerWConradRProcesses involved in formation and emission of methane in rice paddiesBiogeochemistry198971335310.1007/BF00000896
Jiménez JdlC, Pellegrini E, Pedersen O, Nakazono M (2021b) Radial oxygen loss from plant roots-methods. Plants (Basel) 10(11). https://doi.org/10.3390/plants10112322
AyiQZengBLiuJLiSvan BodegomPMCornelissenJHCOxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plantsAnn Bot201611846756831:CAS:528:DC%2BC1cXlvV2qu7w%3D10.1093/aob/mcw051270633665055620
EjiriMShionoKGroups of multi-cellular passage cells in the root exodermis of Echinochloa crus-galli varieties lack not only suberin lamellae but also lignin depositsPlant Signal Behav202015217197491:CAS:528:DC%2BB3cXitFGjurg%3D10.1080/15592324.2020.1719749320137097053937
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, Ciais P, Arora VK, Bastviken D, Bergamaschi P, Blake DR, Brailsford G, Bruhwiler L, Carlson KM, Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill PM, Covey K, Curry CL, Etiope G, Frankenberg C, Gedney N, Hegglin MI, Höglund-Isaksson L, Hugelius G, Ishizawa M, Ito A, Janssens-Maenhout G, Jensen KM, Joos F, Kleinen T, Krummel PB, Langenfelds RL, Laruelle GG, Liu L, Machida T, Maksyutov S, McDonald KC, McNorton J, Miller PA, Melton JR, Morino I, Müller J, Murguia-Flores F, Naik V, Niwa Y, Noce S, O’Doherty S, Parker RJ, Peng C, Peng S, Peters GP, Prigent C, Prinn R, Ramonet M, Regnier P, Riley WJ, Rosentreter JA, Segers A, Simpson IJ, Shi H, Smith SJ, Steele LP, Thornton BF, Tian H, Tohjima Y, Tubiello FN, Tsuruta A, Viovy N, Voulgarakis A, Weber TS, van Weele M, van der Werf GR, Weiss RF, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W, Zhang Z, Zhao Y, Zheng B, Zhu Q, Zhu Q, Zhuang Q (2020) The Global Methane Budget 2000–2017. Earth Syst. Sci. Data, 12(3),1561–1623. https://doi.org/10.5194/essd-12-1561-2020
ArmstrongWHealyMTLytheSOxygen diffusion in pea ii. Oxygen concentrations in the primary pea root apex as affected by growth, the production of laterals and radial oxygen lossNew Phytol198394454955910.1111/j.1469-8137.1983.tb04864.x
Mackill DJ, Ismail AM, Singh US, Labios RV, Paris TR (2012) Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties. In (pp. 299–352). https://doi.org/10.1016/b978-0-12-394276-0.00006-8
UgaYHanzawaENagaiSSasakiKYanoMSatoTIdentification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fieldsTheor Appl Genet20121241758610.1007/s00122-011-1688-321894467
WangQZhouFShangZCiaisPWiniwarterWJacksonRBTubielloFNJanssens-MaenhoutGTianHCuiXCanadellJGPiaoSTaoSData-driven estimates of global nitrous oxide emissions from croplandsNatl Sci Rev2019724414521:CAS:528:DC%2BB3cXhs1Slt77N10.1093/nsr/nwz087346920598288841
JiangFYChenXLuoACIron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptakeAquat Ecol2009438798901:CAS:528:DC%2BD1MXhsF2qu7fE10.1007/s10452-009-9241-z
ColmerTDCoxMCVoesenekLARoot aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizationsNew Phytol200617047677771:CAS:528:DC%2BD28XmslSisL0%3D10.1111/j.1469-8137.2006.01725.x16684237
McDonaldMPGalweyNWColmerTDSimilarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass speciesPlant Cell Environ200225344145110.1046/j.0016-8025.2001.00817.x
UgaYSugimotoKOgawaSRaneJIshitaniMHaraNKitomiYInukaiYOnoKKannoNInoueHTakehisaHMotoyamaRNagamuraYWuJMatsumotoTTakaiTOkunoKYanoMControl of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditionsNat Genet2013459109711021:CAS:528:DC%2BC3sXht1WgsrnM10.1038/ng.272523913002
Armstrong W (1979) Aeration in higher plants, vol 7. Academic Press
PedersenOSauterMColmerTDNakazonoMRegulation of root adaptive anatomical and morphological traits during low soil oxygenNew Phytol2021229142491:CAS:528:DC%2BB3MXpt1ymsA%3D%3D10.1111/nph.1637532045027
Abiko, T., Kotula, L., Shiono, K., Malik, A. I., Colmer, T. D., & Nakazono, M. (2012). Enhanced formation of aerenchymaand induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to itswaterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ, 35(9), 1618–1630. https://doi.org/10.1111/j.1365-3040.2012.02513.x
BeckettPMArmstrongWArmstrongJMathematical modelling of methane transport by Phragmites: the potential for diffusion within the roots and rhizosphereAquat Bot20016922933121:CAS:528:DC%2BD3MXisF2mtb4%3D10.1016/S0304-3770(01)00144-9
ZhangQHuberHBeljaarsSJMBirnbaumDde BestSde KroonHVisserEJWBenefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioningAnn Bot201712011711801:CAS:528:DC%2BC1MXjtlKmtrc%3D10.1093/aob/mcx049285864275737540
ColmerTDPedersenOOxygen dynamics in submerged rice (Oryza sativa)New Phytol200817823263341:CAS:528:DC%2BD1cXls1Gqt70%3D10.1111/j.1469-8137.2007.02364.x18248586
EjiriMFukaoTMiyashitaTShionoKA barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxiaBreed Sci202171140501:CAS:528:DC%2BB3MXhvFeqtr7P10.1270/jsbbs.20110337628757973497
JiménezJdlCClodePLSignorelliSVeneklaasEJColmerTDKotulaLThe barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicolaJ Exp Bot2021728327932931:CAS:528:DC%2BB3MXhvFKjtLfO10.1093/jxb/erab04333543268
Colmer TD (2003a) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L). Ann Bot 91 Spec No 2301–309. https://doi.org/10.1093/aob/mcf114
HanselCMFendorfSSuttonSNewvilleMCharacterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plantsEnviron Sci Technol200135386338681:CAS:528:DC%2BD3MXmtFClu70%3D10.1021/es010545911642445
ColmerTDGibberdMRWiengweeraATinhTKThe barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solutionJ Exp Bot199849325143114361:CAS:528:DyaK1cXlsVOkt7k%3D10.1093/jxb/49.325.1431
Kirk GJD, Greenway H, Atwell BJ, Ismail AM, Colmer TD (2014) Adaptation of Rice to Flooded Soils. In Progress in Botany (pp. 215–253). https://doi.org/10.1007/978-3-642-38797-5_8
Holzapfel-PschornAConradRSeilerWEffects of vegetation on the emission of methane from submerged paddy soilPlant Soil19869222232331:CAS:528:DyaL28Xhs1Oms7s%3D10.1007/BF02372636
NoorrohmahSTakahashiHNakazonoMFormation of a barrier to radial oxygen loss in L-type lateral roots of ricePlant Root202014033411:CAS:528:DC%2BB3MXitVGju7rO10.3117/plantroot.14.33
ShionoKOgawaSYamazakiSIsodaHFujimuraTNakazonoMColmerTDContrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengthsAnn Bot2011107189991:CAS:528:DC%2BC3cXhsF2rsrrO10.1093/aob/mcq22121097947
Kirk GJ (2004) Reduction and Oxidation. In The Biogeochemistry of Submerged Soils (pp. 93–134). https://doi.org/10.1002/047086303X.ch4
ChenYLiSZhangYLiTGeHXiaSGuJZhangHLüBWuXWangZYangJZhangJLiuLRice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fieldsSoil Biol Biochem20191291912001:CAS:528:DC%2BC1cXitlGjsL7E10.1016/j.soilbio.2018.11.015
LarsenMSantnerJOburgerEWenzelWWGludRNO2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodesPlant Soil20153902792921:CAS:528:DC%2BC2MXntFKmsbc%3D10.1007/s11104-015-2382-z261669024495287
KitomiYHanzawaEKuyaNInoueHHaraNKawaiSKannoNEndoMSugimotoKYamazakiTSakamotoSSentokuNWuJKannoHMitsudaNToriyamaKSatoTUgaYRoot angle modifications by the DRO1 homolog improve rice yields in saline paddy fieldsProc Natl Acad Sci U S A20201173521242212501:CAS:528:DC%2BB3cXhslWgtbjO10.1073/pnas.2005911117328175237474696
MengFXiangDZhuJLiYMaoCMolecular Mechanisms of Root Development in RiceRice (N Y)2019121110.1186/s12284-018-0262-x30631971
ArmstrongWOxygen distribution in Wetland Plant roots and permeability barriers to gas-exchange with the Rhizosphere: a Microelectrode and Modelling Study with Phragmites australisAnn Botany200086368770310.1006/anbo.2000.1236
Butterbach-BahlKPapenHRennenbergHImpact of gas transport through rice cultivars on methane emission from rice paddy fields199710.1046/j.1365-3040.1997.d01-142.x
Ejiri M, Sawazaki Y, Shiono K (2020) Some accessions of amazonian Wild Rice (Oryza glumaepatula) Constitutively Form a barrier to Radial Oxygen loss along Adventitious roots under aerated conditions. Plants (Basel) 9(7). https://doi.org/10.3390/plants9070880
RebouillatJDievartAVerdeilJLEscouteJGieseGBreitlerJCGantetPEspeoutSGuiderdoniEPérinCMolecular Genetics of Rice Root DevelopmentRice200821153410.1007/s12284-008-9016-5
YamauchiTNakazonoMMechanisms of lysigenous aerenchyma formation under abiotic stressTrends Plant Sci202227113151:CAS:528:DC%2BB3MXisVOksrrI10.1016/j.tplants.2021.10.01234810105
MongonJKonnerupDColmerTDRerkasemBResponses of rice to Fe2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrierFunct Plant Biol20144199229291:CAS:528:DC%2BC2cXhtl2nt7rO10.1071/FP1335932481045
LinquistBAAndersMMAdviento-BorbeMAChaneyRLNalleyLLda RosaEFvan KesselCReducing greenhouse gas emissions, water use, and grain arsenic levels in rice systemsGlob Chang Biol201521140741710.1111/gcb.1270125099317
DamgaardLRRevsbechNPA microscale biosensor for methane containing methanotroph
P Ramalingam (638_CR61) 2017; 20
W Armstrong (638_CR4) 1987; 105
H Ding (638_CR22) 2021; 468
J Rebouillat (638_CR63) 2008; 2
Y Kitomi (638_CR41) 2020; 117
H Schütz (638_CR67) 1989; 7
A Henneberg (638_CR29) 2012; 196
A Soukup (638_CR69) 2002; 153
N Risgaard-Petersen (638_CR65) 1997; 42
TD Colmer (638_CR20) 2019; 42
W Armstrong (638_CR6) 2000; 86
Y Bo (638_CR10) 2022; 28
638_CR48
AX Hou (638_CR30) 2000; 64
JdlC Jiménez (638_CR33) 2021; 48
C Lin (638_CR45) 2021; 72
FY Jiang (638_CR31) 2009; 43
MP McDonald (638_CR47) 2002; 25
Q Zhang (638_CR80) 2017; 120
PM Beckett (638_CR8) 2001; 69
P Belder (638_CR9) 2004; 65
TD Colmer (638_CR18) 2008; 178
J Mongon (638_CR52) 2014; 41
Y Uga (638_CR73) 2013; 45
I Nouchi (638_CR55) 1990; 94
C Matsukura (638_CR49) 2000; 85
638_CR1
Y Uga (638_CR72) 2012; 124
TD Colmer (638_CR14) 1998; 49
T Yamauchi (638_CR79) 2022; 27
638_CR15
638_CR59
M Ejiri (638_CR25) 2021; 71
BA Linquist (638_CR46) 2015; 21
638_CR19
M Larsen (638_CR44) 2015; 390
H Mergemann (638_CR51) 2000; 124
K Shiono (638_CR68) 2011; 107
GJD Kirk (638_CR40) 2019; 42
Q Wang (638_CR74) 2019; 7
A Holzapfel-Pschorn (638_CR28) 1986; 92
LR Damgaard (638_CR21) 1997; 69
S Tong (638_CR71) 2023
638_CR60
GJD Kirk (638_CR36) 2003; 159
638_CR26
GJ Kirk (638_CR38) 2005; 96
CL Møller (638_CR53) 2008; 179
T Yamauchi (638_CR78) 2019; 10
638_CR23
638_CR66
TD Colmer (638_CR17) 2006; 170
M Ejiri (638_CR24) 2020; 15
Q Ayi (638_CR7) 2016; 118
638_CR600
S Noorrohmah (638_CR54) 2020; 14
Y Jiang (638_CR32) 2017; 23
B Steffens (638_CR70) 2011; 190
K Ranathunge (638_CR62) 2011; 34
JdlC Jiménez (638_CR35) 2021; 72
TD Colmer (638_CR16) 2003; 26
HR Lafitte (638_CR43) 2001; 71
F Meng (638_CR50) 2019; 12
N Wrage (638_CR75) 2001; 33
W Armstrong (638_CR3) 1985; 36
O Pedersen (638_CR57) 2021; 229
BAM Bouman (638_CR11) 2007
638_CR37
A Yamauchi (638_CR76) 1987; 56
638_CR34
Y Chen (638_CR13) 2019; 129
LL Peralta Ogorek (638_CR58) 2021; 231
NP Revsbech (638_CR64) 1999; 29
W Armstrong (638_CR2) 1983; 94
J Armstrong (638_CR5) 2005; 96
CM Hansel (638_CR27) 2001; 35
T Yamauchi (638_CR77) 2019; 116
638_CR39
L Kotula (638_CR42) 2009; 60
K Butterbach-Bahl (638_CR12) 1997
O Pedersen (638_CR56) 2021; 229
References_xml – volume: 36
  start-page: 1573
  issue: 171
  year: 1985
  ident: 638_CR3
  publication-title: J Exp Bot
  doi: 10.1093/jxb/36.10.1573
  contributor:
    fullname: W Armstrong
– ident: 638_CR60
  doi: 10.1016/S0065-2113(08)60633-1
– volume: 116
  start-page: 20770
  issue: 41
  year: 2019
  ident: 638_CR77
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1907181116
  contributor:
    fullname: T Yamauchi
– volume: 96
  start-page: 625
  issue: 4
  year: 2005
  ident: 638_CR5
  publication-title: Ann Bot
  doi: 10.1093/aob/mci215
  contributor:
    fullname: J Armstrong
– volume: 26
  start-page: 17
  issue: 1
  year: 2003
  ident: 638_CR16
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.00846.x
  contributor:
    fullname: TD Colmer
– volume: 96
  start-page: 639
  issue: 4
  year: 2005
  ident: 638_CR38
  publication-title: Ann Bot
  doi: 10.1093/aob/mci216
  contributor:
    fullname: GJ Kirk
– volume: 390
  start-page: 279
  year: 2015
  ident: 638_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2382-z
  contributor:
    fullname: M Larsen
– ident: 638_CR1
– volume: 14
  start-page: 33
  issue: 0
  year: 2020
  ident: 638_CR54
  publication-title: Plant Root
  doi: 10.3117/plantroot.14.33
  contributor:
    fullname: S Noorrohmah
– ident: 638_CR59
  doi: 10.1111/nph.18883
– ident: 638_CR600
  doi: 10.1111/j.1365-3040.2012.02513.x
– volume: 29
  start-page: 379
  year: 1999
  ident: 638_CR64
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050568
  contributor:
    fullname: NP Revsbech
– volume: 124
  start-page: 609
  issue: 2
  year: 2000
  ident: 638_CR51
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.2.609
  contributor:
    fullname: H Mergemann
– volume: 120
  start-page: 171
  issue: 1
  year: 2017
  ident: 638_CR80
  publication-title: Ann Bot
  doi: 10.1093/aob/mcx049
  contributor:
    fullname: Q Zhang
– volume: 2
  start-page: 15
  issue: 1
  year: 2008
  ident: 638_CR63
  publication-title: Rice
  doi: 10.1007/s12284-008-9016-5
  contributor:
    fullname: J Rebouillat
– volume: 34
  start-page: 1223
  issue: 8
  year: 2011
  ident: 638_CR62
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02318.x
  contributor:
    fullname: K Ranathunge
– volume: 86
  start-page: 687
  issue: 3
  year: 2000
  ident: 638_CR6
  publication-title: Ann Botany
  doi: 10.1006/anbo.2000.1236
  contributor:
    fullname: W Armstrong
– volume: 42
  start-page: 3197
  issue: 12
  year: 2019
  ident: 638_CR40
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13638
  contributor:
    fullname: GJD Kirk
– volume: 10
  start-page: 259
  year: 2019
  ident: 638_CR78
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.00259
  contributor:
    fullname: T Yamauchi
– volume: 21
  start-page: 407
  issue: 1
  year: 2015
  ident: 638_CR46
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12701
  contributor:
    fullname: BA Linquist
– volume: 231
  start-page: 1365
  issue: 4
  year: 2021
  ident: 638_CR58
  publication-title: New Phytol
  doi: 10.1111/nph.17474
  contributor:
    fullname: LL Peralta Ogorek
– volume: 153
  start-page: 277
  issue: 2
  year: 2002
  ident: 638_CR69
  publication-title: New Phytol
  doi: 10.1046/j.0028-646X.2001.00317.x
  contributor:
    fullname: A Soukup
– start-page: 54
  volume-title: Water management in irrigated rice
  year: 2007
  ident: 638_CR11
  contributor:
    fullname: BAM Bouman
– volume: 178
  start-page: 326
  issue: 2
  year: 2008
  ident: 638_CR18
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02364.x
  contributor:
    fullname: TD Colmer
– volume: 33
  start-page: 1723
  year: 2001
  ident: 638_CR75
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00096-7
  contributor:
    fullname: N Wrage
– volume: 65
  start-page: 193
  year: 2004
  ident: 638_CR9
  publication-title: Agric Water Manage
  doi: 10.1016/j.agwat.2003.09.002
  contributor:
    fullname: P Belder
– volume: 23
  start-page: 4728
  issue: 11
  year: 2017
  ident: 638_CR32
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13737
  contributor:
    fullname: Y Jiang
– volume: 124
  start-page: 75
  issue: 1
  year: 2012
  ident: 638_CR72
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1688-3
  contributor:
    fullname: Y Uga
– volume: 64
  start-page: 2180
  issue: 6
  year: 2000
  ident: 638_CR30
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.6462180x
  contributor:
    fullname: AX Hou
– volume: 72
  start-page: 3279
  issue: 8
  year: 2021
  ident: 638_CR35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erab043
  contributor:
    fullname: JdlC Jiménez
– volume: 25
  start-page: 441
  issue: 3
  year: 2002
  ident: 638_CR47
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2001.00817.x
  contributor:
    fullname: MP McDonald
– volume: 45
  start-page: 1097
  issue: 9
  year: 2013
  ident: 638_CR73
  publication-title: Nat Genet
  doi: 10.1038/ng.2725
  contributor:
    fullname: Y Uga
– volume: 35
  start-page: 3863
  year: 2001
  ident: 638_CR27
  publication-title: Environ Sci Technol
  doi: 10.1021/es0105459
  contributor:
    fullname: CM Hansel
– volume: 107
  start-page: 89
  issue: 1
  year: 2011
  ident: 638_CR68
  publication-title: Ann Bot
  doi: 10.1093/aob/mcq221
  contributor:
    fullname: K Shiono
– volume: 69
  start-page: 2262
  year: 1997
  ident: 638_CR21
  publication-title: Anal Chem
  doi: 10.1021/ac9611576
  contributor:
    fullname: LR Damgaard
– ident: 638_CR37
  doi: 10.1002/047086303X.ch4
– volume: 94
  start-page: 59
  issue: 1
  year: 1990
  ident: 638_CR55
  publication-title: Plant Physiol
  doi: 10.1104/pp.94.1.59
  contributor:
    fullname: I Nouchi
– volume: 48
  start-page: 411
  issue: 4
  year: 2021
  ident: 638_CR33
  publication-title: Funct Plant Biol
  doi: 10.1071/FP20200
  contributor:
    fullname: JdlC Jiménez
– ident: 638_CR19
  doi: 10.1007/978-3-642-38797-5_9
– volume: 15
  start-page: 1719749
  issue: 2
  year: 2020
  ident: 638_CR24
  publication-title: Plant Signal Behav
  doi: 10.1080/15592324.2020.1719749
  contributor:
    fullname: M Ejiri
– volume: 468
  start-page: 337
  issue: 1–2
  year: 2021
  ident: 638_CR22
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05118-1
  contributor:
    fullname: H Ding
– ident: 638_CR48
  doi: 10.1016/b978-0-12-394276-0.00006-8
– volume: 129
  start-page: 191
  year: 2019
  ident: 638_CR13
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.11.015
  contributor:
    fullname: Y Chen
– volume: 196
  start-page: 799
  issue: 3
  year: 2012
  ident: 638_CR29
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04303.x
  contributor:
    fullname: A Henneberg
– volume: 28
  start-page: 3636
  issue: 11
  year: 2022
  ident: 638_CR10
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.16132
  contributor:
    fullname: Y Bo
– volume: 71
  start-page: 57
  issue: 1
  year: 2001
  ident: 638_CR43
  publication-title: Field Crops Research
  doi: 10.1016/S0378-4290(01)00150-2
  contributor:
    fullname: HR Lafitte
– volume: 179
  start-page: 848
  year: 2008
  ident: 638_CR53
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02506.x
  contributor:
    fullname: CL Møller
– volume: 229
  start-page: 94
  issue: 1
  year: 2021
  ident: 638_CR57
  publication-title: New Phytol
  doi: 10.1111/nph.16452
  contributor:
    fullname: O Pedersen
– ident: 638_CR66
  doi: 10.5194/essd-12-1561-2020
– volume: 229
  start-page: 42
  issue: 1
  year: 2021
  ident: 638_CR56
  publication-title: New Phytol
  doi: 10.1111/nph.16375
  contributor:
    fullname: O Pedersen
– volume: 43
  start-page: 879
  year: 2009
  ident: 638_CR31
  publication-title: Aquat Ecol
  doi: 10.1007/s10452-009-9241-z
  contributor:
    fullname: FY Jiang
– volume: 71
  start-page: 40
  issue: 1
  year: 2021
  ident: 638_CR25
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.20110
  contributor:
    fullname: M Ejiri
– volume: 92
  start-page: 223
  issue: 2
  year: 1986
  ident: 638_CR28
  publication-title: Plant Soil
  doi: 10.1007/BF02372636
  contributor:
    fullname: A Holzapfel-Pschorn
– volume: 85
  start-page: 19
  issue: 1
  year: 2000
  ident: 638_CR49
  publication-title: Ann Botany
  doi: 10.1006/anbo.1999.0993
  contributor:
    fullname: C Matsukura
– volume: 60
  start-page: 2155
  issue: 7
  year: 2009
  ident: 638_CR42
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp089
  contributor:
    fullname: L Kotula
– ident: 638_CR34
  doi: 10.3390/plants10112322
– volume: 41
  start-page: 922
  issue: 9
  year: 2014
  ident: 638_CR52
  publication-title: Funct Plant Biol
  doi: 10.1071/FP13359
  contributor:
    fullname: J Mongon
– volume: 7
  start-page: 33
  issue: 1
  year: 1989
  ident: 638_CR67
  publication-title: Biogeochemistry
  doi: 10.1007/BF00000896
  contributor:
    fullname: H Schütz
– volume: 49
  start-page: 1431
  issue: 325
  year: 1998
  ident: 638_CR14
  publication-title: J Exp Bot
  doi: 10.1093/jxb/49.325.1431
  contributor:
    fullname: TD Colmer
– ident: 638_CR15
  doi: 10.1093/aob/mcf114
– volume: 72
  start-page: 1879
  issue: 5
  year: 2021
  ident: 638_CR45
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eraa542
  contributor:
    fullname: C Lin
– volume: 117
  start-page: 21242
  issue: 35
  year: 2020
  ident: 638_CR41
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2005911117
  contributor:
    fullname: Y Kitomi
– ident: 638_CR23
  doi: 10.3390/plants9070880
– year: 2023
  ident: 638_CR71
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erad014
  contributor:
    fullname: S Tong
– ident: 638_CR39
  doi: 10.1007/978-3-642-38797-5_8
– volume: 42
  start-page: 2183
  issue: 7
  year: 2019
  ident: 638_CR20
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13562
  contributor:
    fullname: TD Colmer
– volume: 94
  start-page: 549
  issue: 4
  year: 1983
  ident: 638_CR2
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1983.tb04864.x
  contributor:
    fullname: W Armstrong
– volume: 118
  start-page: 675
  issue: 4
  year: 2016
  ident: 638_CR7
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw051
  contributor:
    fullname: Q Ayi
– volume: 56
  start-page: 608
  issue: 4
  year: 1987
  ident: 638_CR76
  publication-title: J Crop Sci
  doi: 10.1626/jcs.56.608
  contributor:
    fullname: A Yamauchi
– volume: 105
  start-page: 221
  issue: 2
  year: 1987
  ident: 638_CR4
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb00860.x
  contributor:
    fullname: W Armstrong
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 638_CR50
  publication-title: Rice (N Y)
  doi: 10.1186/s12284-018-0262-x
  contributor:
    fullname: F Meng
– ident: 638_CR26
  doi: 10.1111/nph.17572
– volume: 7
  start-page: 441
  issue: 2
  year: 2019
  ident: 638_CR74
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwz087
  contributor:
    fullname: Q Wang
– volume: 69
  start-page: 293
  issue: 2
  year: 2001
  ident: 638_CR8
  publication-title: Aquat Bot
  doi: 10.1016/S0304-3770(01)00144-9
  contributor:
    fullname: PM Beckett
– volume: 170
  start-page: 767
  issue: 4
  year: 2006
  ident: 638_CR17
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01725.x
  contributor:
    fullname: TD Colmer
– volume: 20
  start-page: 162
  issue: 2
  year: 2017
  ident: 638_CR61
  publication-title: Plant Prod Sci
  doi: 10.1080/1343943x.2017.1288550
  contributor:
    fullname: P Ramalingam
– volume: 27
  start-page: 13
  issue: 1
  year: 2022
  ident: 638_CR79
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2021.10.012
  contributor:
    fullname: T Yamauchi
– year: 1997
  ident: 638_CR12
  doi: 10.1046/j.1365-3040.1997.d01-142.x
  contributor:
    fullname: K Butterbach-Bahl
– volume: 42
  start-page: 529
  issue: 3
  year: 1997
  ident: 638_CR65
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1997.42.3.0529
  contributor:
    fullname: N Risgaard-Petersen
– volume: 190
  start-page: 369
  issue: 2
  year: 2011
  ident: 638_CR70
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03496.x
  contributor:
    fullname: B Steffens
– volume: 159
  start-page: 185
  issue: 1
  year: 2003
  ident: 638_CR36
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00793.x
  contributor:
    fullname: GJD Kirk
SSID ssj0063259
ssj0056243
Score 2.3867066
SecondaryResourceType review_article
Snippet Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been...
Abstract Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have...
Abstract Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 24
SubjectTerms Aerenchyma
Agricultural practices
Agriculture
Anthropogenic factors
barrier to radial O2 loss
Biomedical and Life Sciences
Carbon dioxide
CH4
CO2
Crop production
Crop yield
Diffusion
Diffusion barriers
Emissions
Emissions control
Exploitation
Farm buildings
Fertilization
Gas production
Gas tightness
Greenhouse gases
Irrigation practices
Life Sciences
Methane
Methanotrophic bacteria
Microorganisms
Mitigation
N2O
Nitrification
Nitrous oxide
Oil and gas production
Oxidation
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant nutrition
Plant Sciences
Review
Rhizosphere
Rice
Rice fields
Roots
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b94gEEZRpmaomn66TSsqdWtRDMaAx7RKGjV6O0SJlA0BhsaLXcVOpObX5wD7Td9-qEsXDwZL-LmDu-PgOYTeiVCXtm1LYr0ShKtQEzAjEKWw1ktbMWPTrffVV3F8zr9c1Bc_lfqKZ8IyPXAGbl-ymCdw3FrquJPCuEYZFqvrqGBVk9lLab0EU3kNFhVLZdLAO2lITDQt12WU2B8pgyWZgK0iyV6T2w2TlJj7_-Ru_n5q8pfUabJIR4_Qw9mVxAf5F3bRlu8fo52Db1cznYZ_gs5WXebQGHo8BJwO2VxCrO_xZzPiQ5Bx3Cwbcbxkgk9hzcA3ncEr03dLWa_42Yn_gU-HYcJg2LppfIrOjw7PPh2TuY4CcaKUEwGfoi0ta0NNjfFlpLOhTklHg2OlYa72UggQVQBgRCtk4NJVnkIkQmulGlk9Q9v90PsXCIOTqypuaRWE4YrCI4hWlg3IlYXWNAV6v0Cpv2e6DJ3CDCV0Bl4D8DoBr28L9DGive4Zqa7TC1AAPSuA_pcCFGhvkZWe59-omaLRteUcmt-umwHVmA4xvQekU58mpmlpgZ5n0a5HUslIvKdYgdSG0DeGutnSd5eJnTtuh0Svu0AfFv24H9ffsXj5P7B4hR6wpNiRXXYPbU9X1_41OE2TfZPmxx3Pyg-Z
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQkJG4gdXYcWznhFq0pQJthVat1JtlO3abS1I2KRL99XicZKvldckhdiTnG3tmPGN_g9A7Ecrc1nVOrFeCcBVKEs1I3KWw2ktbMGPTrffliTg-41_Oy_Mp4NZPxypnnZgUdd05iJHvM0XBWeG8_Hj1nUDVKMiuTiU07qJdRjmkaXcPFyffVrMujsadbxSzKFiqnRZdlopA9mm-Q6PEfk9Z1NMkGjCSjDi52bJTic7_bz7on0cpf8unJjN19BA9mPxLfDBOiEfojm8fo_sHF-uJY8M_QafLZiTW6FrcBZxO3lx2173Hn02PF1HwEEHrMdw8wauoSPCPxuClaZu51hd89tX_xKuuG3C0ds3QP0VnR4vTT8dkKq5AnMjlQKKjUeeW1aGkxvgcOG6oU9LR4FhumCu9FCLKL0RgRC1k4NIVnsbtCS2VqmTxDO20XetfIBw9X1VwS4sgDFc0PoKoZV5FYbNQmypD72co9dXIoaHT3kMJPQKvI_A6Aa9vMnQIaG96Av91etGtL_S0nLRkkD1y3FrquJPCuEoZBjWXVLCqKjO0N8tKT4uy17dTKENvN80RVciRmNZHpFOfCnK3NEPPR9FuRlJIYONTLENqS-hbQ91uaZvLRNkNMRJwxTP0YZ4ft-P6NxYv__8br9A9lqYskMnuoZ1hfe1fRx9psG-mhfALu5YLwg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVKucAB8U2gICNxA0PsOLZzQKiglgq0HKqu1JtlO3YbCSWwSRHtr2fsJIsWFi45xE7kvBl7ZjzxG4ReiFDmtq5zYr0ShKtQEjAjEKWw2ktbMGPTqffFF3G05J9Oy9MdNJc7mgDst4Z2sZ7UcvX19c_vl-9gwr9NE16JNz1lsMgSsD4kWWBydQ1dZ7zgUeMXfJ1VAFPP18u0KFiqpAYOTEViLmo-UbP1hRtWK5H7b_NI__6x8o_sajJah7fRrcnbxPujetxBO769i27un60mxg1_D50smpFmo2txF3D6D-e8u-g9_mh6fABqEPfTehzPoeBjWFbwj8bghWmbufJXfOyzv8THXTdgsH3N0N9Hy8ODkw9HZCq1QJzI5UDA7ahzy-pQUmN8HhlvqFPS0eBYbpgrvRQCpBkAGFELGbh0hacQrNBSqUoWD9Bu27X-EcLgB6uCW1oEYbiicAmilnkFomehNlWGXs5Q6m8jo4ZOkYgSegReA_A6Aa-vMvQ-or3uGdmw041udaanyaUli7kkx62ljjspjKuUYbECkwpWVWWG9mZZ6VnDNFM0er-cQ_PzdTOgGjMmpvWAdOpTxUwuzdDDUbTrkRQycvMpliG1IfSNoW62tM15IvCOOybRMc_Qq1k_fo_r31g8_v9nPEE3WFLZSC27h3aH1YV_Ch7TYJ-lafALjNAN0w
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2_b9UwELagLDAgfhMoyEhsYBE7ie2MpWqpQI-haqVulu3YbZakeglI7V_fOyd51YMysGSIncj6zvZ99vk-E_JRxip3TZMzF7RkpY4VAzcCqxTRBOUKYV3Kel_9lEen5fez6uw2jzsddl8ikmmiTqNayy8DFzCTMnAxLLlZdn2fPEDygN16H1McpulXFiLdkAbEpGYYY1oyZe78x5Y3SqL9dzHNvw9M_hE1Tc7o8Al5PLNIujeZ_Sm5F7pn5NHe-XpW0gjPycmqneQz-o72kabzNRewzA_0mx3oAZgX98kGivkl9BimC_q7tXRlu3a50Qs_-xGu6HHfjxR8WjsOL8jp4cHJ_hGbr1BgXuZqZEAnmtyJJlbc2pCjkg33Wnkevcit8FVQUoKVIgAjG6liqXwROCxCeKV1rYqXZKfru_CaUOC3uigdL6K0pebwiLJReQ0mFbGxdUY-LVCay0kpw6QVhpZmAt4A8CYBb64z8hXR3tRElev0ol-fm3nQGCUwRuRL57gvvZLW19oKvFlJR6frKiO7i63MPPQGIzRHVluWUPxhUwyoYiTEdgGQTnVqjNDyjLyaTLtpSaFQc0-LjOgto281dbukay-SMDfuhCDhzsjnpX_ctuvfWLz5v-pvyUORujBKyO6SnXH9K7wDZjS692kk3AD87gRx
  priority: 102
  providerName: Springer Nature
Title Mitigation of Greenhouse Gas Emissions from Rice via Manipulation of Key Root Traits
URI https://link.springer.com/article/10.1186/s12284-023-00638-z
https://www.ncbi.nlm.nih.gov/pubmed/37160782
https://www.proquest.com/docview/2811397445
https://search.proquest.com/docview/2811938911
https://pubmed.ncbi.nlm.nih.gov/PMC10169991
https://doaj.org/article/726798c4bb1c4c76ac98a221478fb895
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-aDkb3MPY9b13QYG-bG0uWJfkxDWnLRkoJDfTNyLLUGla7JNlg_et3kuOM7ONlLwJbNpbvd9bd-U4_AXwQLkvKqkri0ioRc-WyGM0IRimssrJMmS7DqvfZuThb8M9X2dUeiH4tTCjaN2V91Hy9PWrqm1BbeXdrRn2d2OhiNvERp3dsRgMYyDTtY_Ru_hUpC1ukoWeSxz7J1C-VUWK0ogyn4xjtVBxsdXx_AA9T6UnWFNuxTIHA_29e55_Fk79lUINhOnkCjzceJRl3I38Ke7Z5Bo_G18sNq4Z9DpezuqPSaBvSOhJqbW4w5LfkVK_IFKH2_8xWxK81IXOcOsj3WpOZbup-dy9_2xf7g8zbdk3QvtXr1QtYnEwvJ2fxZjuF2OD7rWN0LaqkZJXLqNY28aw21ChpqDMs0cxkVgqBiDmUkaiEdFya1FIMSGimVC7Tl7DftI19DQR9XZXykqZOaK4oNk5UMskRXuYqnUfwsRdlcdexZhQh2lCi6DAoEIMiYFDcR3Dspb290jNehxPt8rrY4F5I5vNFhpclNdxIoU2uNPO7LClXqjyL4LDHqth8hquCKeo9XM6x-_22G6XqsyK6sSjpcE3us7U0glcdtNuR9KoRgdoBfWeouz2os4Gku9fRCD71-vFrXP-WxZv_f9JbOGBBsz217CHsr5ff7Dv0mNblEAY8OR3Cg-Pp-cUcjyaM-1ZMhuEfBLYzrobhM8J2wcY_AQSiF8E
link.rule.ids 230,315,733,786,790,870,891,2115,2236,21416,24346,27955,27956,33777,33778,40934,41152,41153,41556,42003,42221,42222,42625,43838,51609,52128,52266,52267,53825,53827,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAcEG9SChiJG1iNncR2TqhFWxbaXaHVVurNchy7zSUpm7QS_fXYTrLV8rrkEDuS8409M56xvwF4z2wWF2UZ48IIhlNhM-zMiNul0NLwIqGqCLfe5ws2O02_nWVnQ8CtHY5VjjoxKOqy0T5Gvk8F8c5KmmafLn9gXzXKZ1eHEhp3YcdTbooJ7BxOF9-Xoy52xj3dKGaW0FA7zbksOfbZp_EOjWD7LaFOT2NnwHAw4vhmy04FOv-_-aB_HqX8LZ8azNTRI3g4-JfooJ8Qj-GOqZ_Ag4Pz9cCxYZ7Cal71xBpNjRqLwsmbi-aqNeiLatHUCd5H0Frkb56gpVMk6LpSaK7qaqz15T87Nj_Rsmk65Kxd1bXP4PRouvo8w0NxBaxZzDvsHI0yLmhpM6KUiT3HDdGCa2I1jRXVmeGMOflZBwwrGbcp14khbntCMiFynjyHSd3U5iUg5_mKJC1IYplKBXEPy0oe507Y1JYqj-DDCKW87Dk0ZNh7CCZ74KUDXgbg5U0Ehx7tTU_Pfx1eNOtzOSwnyanPHum0KIhONWdK50JRX3NJ2ELkWQR7o6zksChbeTuFIni3aXao-hyJqo1DOvTJfe6WRPCiF-1mJAn3bHyCRiC2hL411O2WuroIlN0-RuJd8Qg-jvPjdlz_xmL3_7_xFu7NVvMTefJ1cfwK7tMwfT2x7B5MuvWVee38pa54MyyKX42rDrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAcEM-SUsBI3MDa2HFs54Ra2KVQdlWtWqk3y3HsNpek3WyR6K9n7E22Wl6XHPKQnG_GM2PP-BuE3gmfp2VVpaR0ShCufE7AjcAqhVVOlhkzZTz1Pp2Jw1P-7Sw_6-ufur6scrCJ0VBXrQ175COmaAhWOM9Hvi-LOP48-Xh5RUIHqZBp7dtp3EXbkoscFmLbB-PZ8Xywy-Do-dpIi4zFPmoQvhQkZKKG8zRKjDrKwGYTcGYkOnRys-GzIrX_3-LRP8sqf8utRpc1eYQe9rEm3l8px2N0xzVP0IP980XPt-GeopNpvSLZaBvcehyrcC7a687hL6bDY1CCsJvW4XAKBc_BqOAftcFT09RD36_w2ZH7iedtu8Tg-epl9wydTsYnnw5J32iBWJHKJYGgo0pLVvmcGuPSwHdDrZKWestSw2zupBAgSw_AiEpIz6XNHIWlCs2VKmT2HG01beNeIAxRsMp4STMvDFcULl5UMi1A8MxXpkjQ-wFKfbni09BxHaKEXgGvAXgdgdc3CToIaK_fDFzY8Ua7ONf91NKShUyS5WVJLbdSGFsow0L_JeVLVeQJ2htkpfsJ2ulbdUrQ2_VjQDXkS0zjAOn4ThHyuDRBOyvRrkeSycDMp1iC1IbQN4a6-aSpLyJ9d9gvCWF5gj4M-nE7rn9jsfv_33iD7sF80N-_zo5eovssam_gmN1DW8vFtXsFodOyfN3PiV-NxRLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Greenhouse+Gas+Emissions+from+Rice+via+Manipulation+of+Key+Root+Traits&rft.au=Jim%C3%A9nez%2C+Juan+de+la+Cruz&rft.au=Pedersen%2C+Ole&rft.date=2023-05-10&rft.pub=Springer+Nature+B.V&rft.issn=1939-8425&rft.eissn=1934-8037&rft.volume=16&rft.issue=1&rft.spage=24&rft_id=info:doi/10.1186%2Fs12284-023-00638-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8425&client=summon