Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings

Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was cond...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 21; no. 1; p. 368
Main Authors Ahmad, Shakeel, Muhammad, Ihsan, Wang, Guo Yun, Zeeshan, Muhammad, Yang, Li, Ali, Izhar, Zhou, Xun Bo
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 12.08.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 [mu]M) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 [mu]M melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
AbstractList Abstract Background Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin’s role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40–45% of field capacity. Results The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. Conclusions Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity.BACKGROUNDMelatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity.The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings.RESULTSThe results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings.Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.CONCLUSIONSMelatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
Background Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 [mu]M) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. Results The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. Conclusions Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 [mu]M melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions. Keywords: Melatonin, Leaf ultrastructure, Antioxidant enzymes, Drought stress, Maize
Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 [mu]M) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 [mu]M melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin’s role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40–45% of field capacity. RESULTS: The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS: Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
ArticleNumber 368
Audience Academic
Author Zhou, Xun Bo
Wang, Guo Yun
Ahmad, Shakeel
Yang, Li
Muhammad, Ihsan
Ali, Izhar
Zeeshan, Muhammad
Author_xml – sequence: 1
  givenname: Shakeel
  surname: Ahmad
  fullname: Ahmad, Shakeel
– sequence: 2
  givenname: Ihsan
  surname: Muhammad
  fullname: Muhammad, Ihsan
– sequence: 3
  givenname: Guo Yun
  surname: Wang
  fullname: Wang, Guo Yun
– sequence: 4
  givenname: Muhammad
  surname: Zeeshan
  fullname: Zeeshan, Muhammad
– sequence: 5
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 6
  givenname: Izhar
  surname: Ali
  fullname: Ali, Izhar
– sequence: 7
  givenname: Xun Bo
  surname: Zhou
  fullname: Zhou, Xun Bo
BookMark eNqFkl1rFDEUhgep2A_9A14FvFFwajLJJJMbYSl-FAqC9j5kkpPZlNnJmmS21p_hLza7W9QtouQi4eR53-Qc3tPqaAoTVNVzgs8J6fibRJpO4Bo3pMaUcFzfPqpOCBOkbppGHv1xPq5OU7rBmIiOySfVMWW0Y1SSk-rHYgWjD1FnvwEEzoHJKDhUqjqHyU_Ir9YxbCAhG8M8LDPKYYSoJwOov0MRhrmQfhrQEMNtXr5G62XIId1NeQnZG5Sj9jkhPVk0gnZoHksl5TibPEfYvaX9d0AJwI7FJz2tHjs9Jnh2v59V1-_fXV98rK8-fbi8WFzVhmORa2qNbIURWhqpnSCGSWlF47CkPW2INVa0WlJrNae0Zwwc5xJY3xWN6zp6Vl3ubW3QN2od_UrHOxW0V7tCiIPSsTQwgrLcdbxnshdcsp5yKQVthHa6t63jAhevt3uv9dyvwBqYSo_jgenhzeSXaggb1dFW4nZr8PLeIIavM6SsVj4ZGEc9QZiTajjlrCXl3f-jLSes61jbFvTFA_QmzHEqQ91SDSeYyu43NejSq59cKF80W1O14KKhuOF863X-F6osCytvSjCdL_UDwasDQWEyfMuDnlNSl18-H7LNnjUxpBTB_RodwWqbdbXPuipZV7usq9si6h6IjM8limE7Yj_-S_oTjAkGRw
CitedBy_id crossref_primary_10_3389_fpls_2022_911610
crossref_primary_10_7717_peerj_15159
crossref_primary_10_1016_j_scienta_2024_113930
crossref_primary_10_1002_biof_1882
crossref_primary_10_1186_s40538_021_00272_1
crossref_primary_10_3390_ijms24021178
crossref_primary_10_1007_s11104_023_05942_7
crossref_primary_10_1016_j_jplph_2023_153998
crossref_primary_10_1016_j_stress_2024_100393
crossref_primary_10_1007_s42729_024_02031_1
crossref_primary_10_3390_plants14030460
crossref_primary_10_1111_jac_12784
crossref_primary_10_3390_antiox11020359
crossref_primary_10_1016_j_bse_2023_104620
crossref_primary_10_3390_agronomy13092368
crossref_primary_10_5433_1679_0359_2023v44n4p1235
crossref_primary_10_3390_metabo13010072
crossref_primary_10_3390_horticulturae9060673
crossref_primary_10_1016_j_sajb_2023_10_043
crossref_primary_10_3390_antiox11030512
crossref_primary_10_3390_biology11010099
crossref_primary_10_1016_j_scienta_2022_111365
crossref_primary_10_1093_jxb_erab553
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_7717_peerj_13008
crossref_primary_10_1016_j_scienta_2022_111800
crossref_primary_10_1007_s44154_023_00139_5
crossref_primary_10_1080_15592324_2022_2129289
crossref_primary_10_3390_plants11091151
crossref_primary_10_3390_agronomy14071372
crossref_primary_10_1016_j_ecoenv_2021_112738
crossref_primary_10_3390_agronomy14061184
crossref_primary_10_1007_s12298_023_01402_9
crossref_primary_10_1016_j_tplants_2023_11_016
crossref_primary_10_1007_s00344_024_11525_2
crossref_primary_10_1016_j_plaphy_2023_107698
crossref_primary_10_1093_plphys_kiad027
crossref_primary_10_3389_fpls_2022_965996
crossref_primary_10_1007_s00299_024_03362_0
crossref_primary_10_1007_s00344_022_10860_6
crossref_primary_10_1007_s10725_024_01120_6
crossref_primary_10_1007_s12633_023_02732_9
crossref_primary_10_1093_jxb_erac009
crossref_primary_10_1016_j_envexpbot_2022_104780
crossref_primary_10_3390_agronomy12081918
crossref_primary_10_1111_jac_12611
crossref_primary_10_1016_j_plaphy_2024_109145
crossref_primary_10_1007_s10725_024_01245_8
crossref_primary_10_1016_j_scienta_2023_112421
crossref_primary_10_3390_agriculture12091301
crossref_primary_10_1007_s00299_023_03076_9
crossref_primary_10_1071_FP23199
crossref_primary_10_1007_s11627_022_10275_8
crossref_primary_10_1016_j_stress_2024_100410
crossref_primary_10_3390_agronomy13051320
crossref_primary_10_1016_j_hpj_2023_03_011
crossref_primary_10_1016_j_scienta_2023_112387
crossref_primary_10_1016_j_stress_2023_100293
crossref_primary_10_1016_j_indcrop_2024_120089
crossref_primary_10_1016_j_heliyon_2024_e41236
crossref_primary_10_3389_fpls_2024_1406092
crossref_primary_10_1007_s10343_022_00684_5
crossref_primary_10_1007_s10725_023_01080_3
crossref_primary_10_1007_s11104_025_07301_0
crossref_primary_10_1016_j_jia_2024_04_011
crossref_primary_10_1016_j_stress_2024_100533
crossref_primary_10_32604_phyton_2023_025175
crossref_primary_10_3390_agronomy13071881
crossref_primary_10_1111_ppl_14307
crossref_primary_10_1016_j_plaphy_2022_09_011
crossref_primary_10_1016_j_hpj_2023_12_006
crossref_primary_10_1016_j_plaphy_2024_108736
crossref_primary_10_3390_agronomy12092098
crossref_primary_10_3390_agronomy12040813
crossref_primary_10_1016_j_plaphy_2024_108860
crossref_primary_10_1186_s12870_024_05879_8
crossref_primary_10_3390_plants12162948
crossref_primary_10_1016_j_jhazmat_2024_134875
crossref_primary_10_1016_j_sajb_2023_05_034
crossref_primary_10_1007_s11104_023_06343_6
crossref_primary_10_1186_s12870_024_05972_y
crossref_primary_10_32615_ps_2024_004
crossref_primary_10_3390_plants13233414
crossref_primary_10_3389_fpls_2023_1271137
crossref_primary_10_1186_s12870_024_05576_6
crossref_primary_10_7717_peerj_13936
crossref_primary_10_1016_j_scienta_2023_112528
crossref_primary_10_3389_fpls_2022_902694
crossref_primary_10_3390_plants12061407
crossref_primary_10_3390_plants11070886
Cites_doi 10.1016/j.scienta.2018.10.058
10.1111/j.1600-079X.2011.00966.x
10.1111/jpi.12401
10.1111/jpi.12453
10.1007/s10535-018-0782-7
10.1007/s00709-020-01491-3
10.3390/agronomy10091315
10.1016/j.chemosphere.2014.09.009
10.1007/978-981-10-5254-5_5
10.1007/s11738-009-0385-1
10.1016/j.pestbp.2005.03.012
10.1093/aob/mcn125
10.1016/j.plaphy.2019.07.012
10.1371/journal.pone.0149404
10.1007/s00344-020-10187-0
10.1007/s11738-019-2812-2
10.1016/j.freeradbiomed.2017.02.042
10.3390/antiox9090809
10.17221/472/2019-PSE
10.1016/j.scienta.2020.109205
10.1016/j.envexpbot.2017.02.012
10.1016/j.jplph.2004.01.013
10.1093/jxb/eru392
10.3390/molecules23071580
10.1104/pp.24.1.1
10.1080/01904167.2017.1310888
10.1016/j.plaphy.2017.06.014
10.1093/jxb/eru476
10.1016/j.envexpbot.2018.08.016
10.1016/j.scitotenv.2020.136675
10.21273/JASHS04725-19
10.1111/ppl.12540
10.3390/biom10010054
10.1016/j.agwat.2018.09.025
10.1093/jxb/ern185
10.1016/S0168-9452(02)00135-8
10.1111/jac.12466
10.1016/j.tplants.2018.10.010
10.1007/s11738-017-2502-x
10.3390/molecules25030753
10.1007/s00709-020-01537-6
10.3390/ma12223673
10.1007/s10725-006-9157-8
10.1104/pp.112.210740
10.1111/ppl.13282
10.3390/molecules25225359
10.1111/jpi.12246
10.3390/molecules23030535
10.1104/pp.59.2.309
10.1016/S2095-3119(17)61748-9
10.3390/ijms19051528
10.1007/s00344-020-10099-z
10.3390/plants9101276
10.1371/journal.pone.0057654
10.1007/s11738-015-2045-y
10.7717/peerj.7793
10.1016/0003-9861(68)90654-1
10.1016/j.pestbp.2010.04.007
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
– notice: The Author(s) 2021
DBID AAYXX
CITATION
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-021-03160-w
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic



AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 368
ExternalDocumentID oai_doaj_org_article_d6f86b49b7694b36997327afabd5f670
PMC8359050
A672302665
10_1186_s12870_021_03160_w
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c607t-3dc957c7a9c9af71c499d72f093b321dcd75a93dda633b44ef669e4b87c7f883
IEDL.DBID M48
ISSN 1471-2229
IngestDate Wed Aug 27 01:21:31 EDT 2025
Thu Aug 21 13:38:35 EDT 2025
Fri Jul 11 05:47:40 EDT 2025
Mon Jul 21 11:49:35 EDT 2025
Fri Jul 25 19:18:20 EDT 2025
Tue Jun 17 21:36:20 EDT 2025
Tue Jun 10 20:37:57 EDT 2025
Fri Jun 27 03:49:56 EDT 2025
Tue Jul 01 03:52:29 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-3dc957c7a9c9af71c499d72f093b321dcd75a93dda633b44ef669e4b87c7f883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d6f86b49b7694b36997327afabd5f670
PMID 34384391
PQID 2562610398
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d6f86b49b7694b36997327afabd5f670
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8359050
proquest_miscellaneous_2636451973
proquest_miscellaneous_2561488455
proquest_journals_2562610398
gale_infotracmisc_A672302665
gale_infotracacademiconefile_A672302665
gale_incontextgauss_ISR_A672302665
crossref_primary_10_1186_s12870_021_03160_w
crossref_citationtrail_10_1186_s12870_021_03160_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-12
PublicationDateYYYYMMDD 2021-08-12
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC plant biology
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References MF Ibrahim (3160_CR40) 2020; 9
Z Liu (3160_CR41) 2018; 17
Y Kong (3160_CR51) 2013; 8
W Wei (3160_CR30) 2015; 66
H Zhao (3160_CR54) 2007; 51
MB Arnao (3160_CR16) 2019; 24
D Liang (3160_CR27) 2019; 246
JK Tiwari (3160_CR53) 2010; 32
3160_CR12
3160_CR11
Z Xu (3160_CR35) 2008; 59
3160_CR4
N Zhang (3160_CR47) 2016; 7
C Li (3160_CR38) 2015; 66
W Gao (3160_CR48) 2018; 23
H Shi (3160_CR52) 2015; 59
Y Rahimi (3160_CR23) 2017; 39
AR Mir (3160_CR29) 2020; 257
AAM Sohag (3160_CR10) 2020; 66
J Fan (3160_CR21) 2018; 19
M Moustafa-Farag (3160_CR8) 2020; 25
3160_CR22
S Ahmad (3160_CR7) 2019; 7
GJ Ahammed (3160_CR42) 2020; 265
Y-J Zhang (3160_CR56) 2010; 98
Y Ekmekci (3160_CR59) 2005; 83
P Poór (3160_CR44) 2018; 62
XB Zhou (3160_CR6) 2020; 10
I Saidi (3160_CR13) 2017; 40
P Wang (3160_CR3) 2012; 53
A Ramachandra Reddy (3160_CR5) 2004; 161
CN Campos (3160_CR18) 2019; 211
M Chaves (3160_CR37) 2009; 103
3160_CR39
X Li (3160_CR26) 2018; 64
V Martinez (3160_CR17) 2018; 23
J Zhang (3160_CR31) 2017; 138
CN Giannopolitis (3160_CR57) 1977; 59
C Antoniou (3160_CR24) 2017; 62
B Liang (3160_CR25) 2018; 155
Y Nakano (3160_CR60) 1981; 22
D Arnon (3160_CR50) 1949; 24
E Fereiduni (3160_CR32) 2019; 12
D Arora (3160_CR19) 2017; 106
X-S Huang (3160_CR9) 2013; 162
X Su (3160_CR49) 2019; 142
G Liang (3160_CR1) 2020; 145
Y Wang (3160_CR58) 2016; 11
G Cui (3160_CR14) 2017; 118
A Sharma (3160_CR33) 2020; 713
3160_CR46
3160_CR45
AM Bosabalidis (3160_CR36) 2002; 163
RL Heath (3160_CR55) 1968; 125
MN Khan (3160_CR2) 2019; 41
3160_CR43
Y Zhang (3160_CR15) 2015; 120
M Moustafa-Farag (3160_CR28) 2020; 10
M Moustafa-Farag (3160_CR20) 2020; 9
J Ye (3160_CR34) 2016; 38
References_xml – volume: 246
  start-page: 34
  year: 2019
  ident: 3160_CR27
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.10.058
– volume: 53
  start-page: 11
  issue: 1
  year: 2012
  ident: 3160_CR3
  publication-title: J Pineal Res
  doi: 10.1111/j.1600-079X.2011.00966.x
– volume: 62
  start-page: e12401
  issue: 4
  year: 2017
  ident: 3160_CR24
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12401
– volume: 64
  start-page: e12453
  issue: 1
  year: 2018
  ident: 3160_CR26
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12453
– volume: 62
  start-page: 201
  issue: 2
  year: 2018
  ident: 3160_CR44
  publication-title: Biol Plant
  doi: 10.1007/s10535-018-0782-7
– ident: 3160_CR45
  doi: 10.1007/s00709-020-01491-3
– volume: 10
  start-page: 1315
  issue: 9
  year: 2020
  ident: 3160_CR6
  publication-title: Agronomy
  doi: 10.3390/agronomy10091315
– volume: 120
  start-page: 500
  year: 2015
  ident: 3160_CR15
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.009
– ident: 3160_CR46
  doi: 10.1007/978-981-10-5254-5_5
– volume: 32
  start-page: 103
  issue: 1
  year: 2010
  ident: 3160_CR53
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-009-0385-1
– volume: 83
  start-page: 69
  issue: 2–3
  year: 2005
  ident: 3160_CR59
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2005.03.012
– volume: 103
  start-page: 551
  year: 2009
  ident: 3160_CR37
  publication-title: Ann Bot
  doi: 10.1093/aob/mcn125
– volume: 142
  start-page: 263
  year: 2019
  ident: 3160_CR49
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2019.07.012
– volume: 11
  issue: 2
  year: 2016
  ident: 3160_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149404
– ident: 3160_CR43
  doi: 10.1007/s00344-020-10187-0
– volume: 41
  start-page: 25
  issue: 2
  year: 2019
  ident: 3160_CR2
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-019-2812-2
– volume: 106
  start-page: 315
  year: 2017
  ident: 3160_CR19
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2017.02.042
– volume: 9
  start-page: 809
  issue: 9
  year: 2020
  ident: 3160_CR20
  publication-title: Antioxidants
  doi: 10.3390/antiox9090809
– volume: 66
  start-page: 7
  issue: 1
  year: 2020
  ident: 3160_CR10
  publication-title: Plant Soil Environ
  doi: 10.17221/472/2019-PSE
– volume: 265
  start-page: 109205
  year: 2020
  ident: 3160_CR42
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2020.109205
– volume: 138
  start-page: 36
  year: 2017
  ident: 3160_CR31
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2017.02.012
– volume: 161
  start-page: 1189
  issue: 11
  year: 2004
  ident: 3160_CR5
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2004.01.013
– volume: 66
  start-page: 695
  issue: 3
  year: 2015
  ident: 3160_CR30
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru392
– volume: 23
  start-page: 1580
  issue: 7
  year: 2018
  ident: 3160_CR48
  publication-title: Molecules (Basel, Switzerland)
  doi: 10.3390/molecules23071580
– volume: 24
  start-page: 1
  issue: 1
  year: 1949
  ident: 3160_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 40
  start-page: 2326
  issue: 16
  year: 2017
  ident: 3160_CR13
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2017.1310888
– volume: 118
  start-page: 138
  year: 2017
  ident: 3160_CR14
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.06.014
– volume: 66
  start-page: 669
  issue: 3
  year: 2015
  ident: 3160_CR38
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru476
– volume: 155
  start-page: 650
  year: 2018
  ident: 3160_CR25
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2018.08.016
– volume: 713
  start-page: 136675
  year: 2020
  ident: 3160_CR33
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.136675
– volume: 145
  start-page: 12
  issue: 1
  year: 2020
  ident: 3160_CR1
  publication-title: J Amer Soc Hort Sci
  doi: 10.21273/JASHS04725-19
– ident: 3160_CR11
  doi: 10.1111/ppl.12540
– volume: 10
  start-page: 54
  issue: 1
  year: 2020
  ident: 3160_CR28
  publication-title: Biomolecules
  doi: 10.3390/biom10010054
– volume: 211
  start-page: 37
  year: 2019
  ident: 3160_CR18
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.09.025
– volume: 59
  start-page: 3317
  issue: 12
  year: 2008
  ident: 3160_CR35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern185
– volume: 163
  start-page: 375
  issue: 2
  year: 2002
  ident: 3160_CR36
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(02)00135-8
– ident: 3160_CR12
  doi: 10.1111/jac.12466
– volume: 24
  start-page: 38
  issue: 1
  year: 2019
  ident: 3160_CR16
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2018.10.010
– volume: 39
  start-page: 1
  issue: 9
  year: 2017
  ident: 3160_CR23
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-017-2502-x
– ident: 3160_CR4
  doi: 10.3390/molecules25030753
– volume: 257
  start-page: 1685
  issue: 6
  year: 2020
  ident: 3160_CR29
  publication-title: Protoplasma
  doi: 10.1007/s00709-020-01537-6
– volume: 12
  start-page: 3673
  issue: 22
  year: 2019
  ident: 3160_CR32
  publication-title: Materials
  doi: 10.3390/ma12223673
– volume: 51
  start-page: 149
  issue: 2
  year: 2007
  ident: 3160_CR54
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-006-9157-8
– volume: 162
  start-page: 1178
  issue: 2
  year: 2013
  ident: 3160_CR9
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.210740
– ident: 3160_CR22
  doi: 10.1111/ppl.13282
– volume: 25
  start-page: 5359
  issue: 22
  year: 2020
  ident: 3160_CR8
  publication-title: Molecules
  doi: 10.3390/molecules25225359
– volume: 59
  start-page: 120
  issue: 1
  year: 2015
  ident: 3160_CR52
  publication-title: J Pineal Res
  doi: 10.1111/jpi.12246
– volume: 23
  start-page: 535
  issue: 3
  year: 2018
  ident: 3160_CR17
  publication-title: Molecules
  doi: 10.3390/molecules23030535
– volume: 22
  start-page: 867
  issue: 5
  year: 1981
  ident: 3160_CR60
  publication-title: Plant Cell Physiol
– volume: 59
  start-page: 309
  issue: 2
  year: 1977
  ident: 3160_CR57
  publication-title: Plant Physiol
  doi: 10.1104/pp.59.2.309
– volume: 17
  start-page: 328
  issue: 2
  year: 2018
  ident: 3160_CR41
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(17)61748-9
– volume: 19
  start-page: 1528
  issue: 5
  year: 2018
  ident: 3160_CR21
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19051528
– ident: 3160_CR39
  doi: 10.1007/s00344-020-10099-z
– volume: 9
  start-page: 1276
  issue: 10
  year: 2020
  ident: 3160_CR40
  publication-title: Plants
  doi: 10.3390/plants9101276
– volume: 8
  start-page: e57654
  issue: 2
  year: 2013
  ident: 3160_CR51
  publication-title: PloS one
  doi: 10.1371/journal.pone.0057654
– volume: 38
  start-page: 48
  issue: 2
  year: 2016
  ident: 3160_CR34
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-015-2045-y
– volume: 7
  start-page: 197
  year: 2016
  ident: 3160_CR47
  publication-title: Front Plant Sci
– volume: 7
  year: 2019
  ident: 3160_CR7
  publication-title: PeerJ
  doi: 10.7717/peerj.7793
– volume: 125
  start-page: 189
  issue: 1
  year: 1968
  ident: 3160_CR55
  publication-title: Arch Biochem Biophys
  doi: 10.1016/0003-9861(68)90654-1
– volume: 98
  start-page: 151
  issue: 2
  year: 2010
  ident: 3160_CR56
  publication-title: Pestic Biochem Physiol
  doi: 10.1016/j.pestbp.2010.04.007
SSID ssj0017849
Score 2.591906
Snippet Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless,...
Background Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses....
BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses....
Abstract Background Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 368
SubjectTerms Abiotic stress
Antioxidant enzymes
Antioxidants
Biomass
biomass production
Carotenoids
China
Corn
Drought
Drought resistance
Drought stress
drought tolerance
Droughts
Environmental aspects
Enzymatic activity
Field capacity
Gene expression
Growth regulators
Hardiness
irrigation
Leaf ultrastructure
leaves
Maize
Malondialdehyde
Melatonin
Moisture content
Oxidative stress
Photosynthesis
Photosynthetic pigments
Physiological aspects
Physiology
Pigments
Plant growth
Plant growth promoting substances
plant growth substances
Plant species
Plants
Proteins
Reactive oxygen species
Seedlings
soil drenching
Soils
species
Stomata
stress response
Sugar
Ultrastructure
Water content
water stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4ilCCzIIiQNEzcPx47hFVAUJDlCk3izHj-5KaVI1WVXLz-AXM-NkVw1I5cI1HsvxzNgzY4-_IeSNcbwWZc1SsA5FykBpUhNyj7ePYKAKnzuF752_fOUnP9jns-rsRqkvzAkb4YFHxh06HiSvmaoFV6wuuUJ4GWGCqV0VuIjROti8bTA13R8IydT2iYzkh32O93kppiOAEvMsvZ6ZoYjW__ee_Gee5A3Dc_yA3J88RroY__QhuePbR-TuUQde3eYx-bW48M2qG_G76ZidQbtALzDJDY9a6SoeG_ieuliRZ6BD13gsp-FpvaFXYy16MGD0HCLyYfmeXi67oes3LbiGMCTFIhJDT03raONNoOsGvoyws-srH8cyq5-e9mAH8W17_4ScHn88_XCSTnUWUsszMaSls6oSVhhllQkitxAFOVGETJV1WeTOOlEZVTpneAliZT5wrjyrJfQJUpZPyV7btf4Zocxg0AtLvKosk0YYW3BnYzEPBAZjCcm3XNd2wiDHWTQ6xiKS61FSGiSlo6T0dULe7fpcjggct1IfoTB3lIieHT-ATulJp_S_dCohr1EVNOJjtJiAc27Wfa8_ff-mF1xA0AZeTZWQtxNR6GAO1kzvGYATCKk1ozyYUcICtvPmrcbpaQPpNXiiENtmpZIJebVrxp6YFNf6bh1pIJiVwOxbaDjeM-cwwYSImTbPWDRvaVfLCDQO3rnKquz5_-DpPrlXxPUn07w4IHugpv4F-HND_TIu3d9NqEo4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZg4cAF8RRZFmQQEgeINg_Hjk-oi1gtSHCARerNcvxoK3WT0qRalZ_BL2bGSQsBqdd4LMeeGc-MPf6GkFfa8krkFYvBOmQxA6GJtU8d3j6CgcpcaiW-d_78hV98Z5-mxXQ4cGuHtMrdnhg2atsYPCM_BdMMzn6Sy_Ld6keMVaPwdnUooXGT3ELoMkzpEtN9wJWKksndQ5mSn7Yp3urFmJQAosyT-HpkjAJm__8787_Zkn-Zn_N75O7gN9JJz-j75IarH5DbZw34dtuH5Nfkyi0XTY_iTfscDdp4eoWpbnjgShfh8MC11Ia6PB3tmqXDohqOVlu67ivSgxmjM4jLu_lbupo3XdNua3AQYUiKpSS6lura0qXTnm6W8KUHn92sXRhLL3462oI1xBfu7SNyef7h8v1FPFRbiA1PRBfn1shCGKGlkdqL1EAsZEXmE5lXeZZaY0WhZW6t5jkwlznPuXSsKqGPL8v8MTmqm9o9IZRpDH1B0YvCsFILbTJuTSjpgfBgLCLpbtWVGZDIcRZLFSKSkqueUwo4pQKn1HVE3uz7rHocjoPUZ8jMPSViaIcPzXqmBpVUlvuSV0xWgktW5VwicJHQXle28FwkEXmJoqAQJaPGNJyZ3rSt-vjtq5pwAaEb-DZFRF4PRL6BORg9vGqAlUBgrRHlyYgS1NiMm3cSp4ZtpFV_hD4iL_bN2BNT42rXbAINhLQlLPYBGo63zSlMMCJiJM2jJRq31It5gBsHH10mRXJ8-AefkjtZ0KwyTrMTcgQC6J6Bv9ZVz4NS_gb_50HJ
  priority: 102
  providerName: ProQuest
Title Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings
URI https://www.proquest.com/docview/2562610398
https://www.proquest.com/docview/2561488455
https://www.proquest.com/docview/2636451973
https://pubmed.ncbi.nlm.nih.gov/PMC8359050
https://doaj.org/article/d6f86b49b7694b36997327afabd5f670
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELb64MAF8RQpZWUQEgcI5GnHB4R2UauC1AotrVRxsRzb2V1pm5RNVmX5GfxiZpzsQqCquOQQj-PYnvHM2ONvCHmhDMt5nCc-aIfIT4BpfFWEFk8fQUFFNjQC7zsfn7Cjs-TTeXq-RdbpjroBrK917TCf1Nli_ub7t9V7EPh3TuAz9rYO8bTOx2ADYFEW-FfbZBfa5iiox8nvUwWeOXM4hAXZxzzW60s0136jp6gcnv-_q_bfkZR_qKbDu-ROZ1PSYcsE98iWLe-TW6MK7L7VA_JzeGHns6pF-KZt_AatCnqBYXC4GUtnbmPB1tS4nD0Nbaq5xYQbluYrumiz1YOKoxPw2Zvpa3o5rZqqXpVgPEKTFNNMNDVVpaFzqwq6nMObFph2ubCuLTX7YWkNmhJvv9cPyenhwemHI7_LxOBrFvDGj40WKddcCS1UwUMNfpLhURGIOI-j0GjDUyViYxSLYeITWzAmbJJnUKfIsvgR2Smr0j4mNFHoFsMikKY6yRRXOmJGu3QfCB2WeCRcj7rUHUo59mIunbeSMdnOlISZkm6m5JVHXm3qXLYYHTdSj3AyN5SIr-1eVIuJ7MRVGlZkLE9EzplI8pgJBDXiqlC5SQvGA488R1aQiKBRYojORC3rWn78MpZDxsGtA7sn9cjLjqiooA9adTceYCQQdKtHud-jBBHX_eI1x8m1hEiwVcH7DWKReeTZphhrYthcaaulowF3N4PBvoGG4Ul0CB30CO9xc2-I-iXlbOqgyMF-F0Ea7P3HHzwhtyMnXpkfRvtkB7jQPgWDrskHZJuf8wHZHR2cfB4P3LbIwEkuPMejr78As-dNlw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BodErwgrlphgEEgHiBac7OTB4Ra2NSyrUKjSHuzHNtpK3VJaVJV5TP4D_6Rc5y0EJD6ttf4OIl9js_F50bIK6lZwv0kcEA6eE4AROPI1DXofQQB5RlXx5jvfD5k_W_B58vwco_82uTCYFjlhidaRq1zhXfkRyCaQdnv-HH0Yf7dwa5R6F3dtNCoyOLUrFdgshXvB58Av6897-R49LHv1F0FHMU6vHR8reKQKy5jFcuUuwp0fs29FEz7xPdcrTQPZexrLZkPiwhMylhsgiSCOWkU-fDaG2Q_8MGSaZH93vHwy8XWbcGjIN5k5kTsqHDRjehgFAScHdZxVg3pZ5sE_C8K_g3P_Evendwld2pFlXYryrpH9kx2n9zs5aBMrh-Qn90rM5vmVdlwWgWF0DylVxhbhze8dGpvK0xBtW0EVNIynxns4mFosqYLM7Z9w7IxHS_yVTl5R-eTvMyLdQYaKXySYu-KsqAy03RmZEqXM3hSVbtdLoz9lpz-MLQA8Ysp9cVDMroORDwirSzPzAGhgURbGzhLGKogklwqj2lle4hgPbKgTdzNrgtVlz7HVcyENYEiJipMCcCUsJgSqzZ5u50zrwp_7ITuITK3kFi02z7IF2NR8wChWRqxJIgTzuIg8VmMlZK4TGWiw5TxTpu8RFIQWJYjw7ifsVwWhRh8vRBdxsFWBGUqbJM3NVCawxqUrNMoYCewklcD8rABCXxDNYc3FCdqvlWIP6esTV5sh3EmxuJlJl9aGLChI9jsHTAM3dsuLLBNeIOaG1vUHMmmE1vfHIyCuBN2Hu_-wefkVn90fibOBsPTJ-S2Z09Z5LjeIWkBMZqnoCyWybP6iFIirpkp_AaucIAa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ameliorative+effect+of+melatonin+improves+drought+tolerance+by+regulating+growth%2C+photosynthetic+traits+and+leaf+ultrastructure+of+maize+seedlings&rft.jtitle=BMC+plant+biology&rft.au=Ahmad%2C+Shakeel&rft.au=Muhammad%2C+Ihsan&rft.au=Wang%2C+Guo+Yun&rft.au=Zeeshan%2C+Muhammad&rft.date=2021-08-12&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=21&rft.issue=1&rft.spage=368&rft_id=info:doi/10.1186%2Fs12870-021-03160-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon