Machine intelligence accelerated design of conductive MXene aerogels with programmable properties

Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 4685 - 14
Main Authors Shrestha, Snehi, Barvenik, Kieran James, Chen, Tianle, Yang, Haochen, Li, Yang, Kesavan, Meera Muthachi, Little, Joshua M., Whitley, Hayden C., Teng, Zi, Luo, Yaguang, Tubaldi, Eleonora, Chen, Po-Yen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti 3 C 2 T x MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating.
AbstractList Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti₃C₂Tₓ MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti 3 C 2 T x MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti C T MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Abstract Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti 3 C 2 T x MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating.
ArticleNumber 4685
Author Whitley, Hayden C.
Teng, Zi
Kesavan, Meera Muthachi
Chen, Tianle
Little, Joshua M.
Shrestha, Snehi
Tubaldi, Eleonora
Yang, Haochen
Barvenik, Kieran James
Li, Yang
Luo, Yaguang
Chen, Po-Yen
Author_xml – sequence: 1
  givenname: Snehi
  surname: Shrestha
  fullname: Shrestha, Snehi
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 2
  givenname: Kieran James
  surname: Barvenik
  fullname: Barvenik, Kieran James
  organization: Department of Mechanical Engineering, University of Maryland
– sequence: 3
  givenname: Tianle
  orcidid: 0000-0003-1332-0399
  surname: Chen
  fullname: Chen, Tianle
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 4
  givenname: Haochen
  orcidid: 0000-0002-8367-9711
  surname: Yang
  fullname: Yang, Haochen
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 6
  givenname: Meera Muthachi
  surname: Kesavan
  fullname: Kesavan, Meera Muthachi
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 7
  givenname: Joshua M.
  surname: Little
  fullname: Little, Joshua M.
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 8
  givenname: Hayden C.
  surname: Whitley
  fullname: Whitley, Hayden C.
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 9
  givenname: Zi
  surname: Teng
  fullname: Teng, Zi
  organization: US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center
– sequence: 10
  givenname: Yaguang
  surname: Luo
  fullname: Luo, Yaguang
  organization: US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center
– sequence: 11
  givenname: Eleonora
  orcidid: 0000-0002-5604-1181
  surname: Tubaldi
  fullname: Tubaldi, Eleonora
  email: etubaldi@umd.edu
  organization: Department of Mechanical Engineering, University of Maryland, Maryland Robotics Center
– sequence: 12
  givenname: Po-Yen
  orcidid: 0000-0003-0310-4748
  surname: Chen
  fullname: Chen, Po-Yen
  email: checp@umd.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Maryland Robotics Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38824129$$D View this record in MEDLINE/PubMed
BookMark eNqNkklv1TAUhSNUREvpH2CBIrFhE_AUx1khVDFUasUGJHbWjX2T56c8-2Enrfj3OE0pbRcFLzx-53g6z4sDHzwWxUtK3lLC1bskqJBNRZioREsordST4ogRQSvaMH5wp39YnKS0JbnwliohnhWHXCkmKGuPCrgAs3EeS-cnHEc3oDdYgjE4YoQJbWkxucGXoS9N8HY2k7vE8uIHZg1gDAOOqbxy06bc50GE3Q66EZfBHuPkML0onvYwJjy5aY-L758-fjv9Up1__Xx2-uG8MpI0U0WtFESYpqvRQI8dctlLa4Bxha21PaBtbQ29VSCB1G3TI5NMCclRMtYpflycrb42wFbvo9tB_KUDOH09EeKgIR_IjKh7sNjSpumkQAGKgawJ6fq2g9yrjc1e71ev_dzt0Br0U4Txnun9Fe82egiXmlIqBBMsO7y5cYjh54xp0juX8qOO4DHMSXMqa9Xk6n_QmjeSKtr-GyWSC6kk5xl9_QDdhjn6_AMLxdpaUkIz9eruRW9v-CcgGWArYGJIKWJ_i1CilyDqNYg6B1FfB1EvX6EeiIybYHJheSw3Pi7lqzTlffyA8e-xH1H9Bm4h8z0
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2024_113512
crossref_primary_10_1002_anse_202400095
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_3390_ma18030534
crossref_primary_10_1002_adma_202416345
crossref_primary_10_1007_s12598_024_03022_y
crossref_primary_10_1016_j_cej_2025_160274
crossref_primary_10_1039_D4RA06384H
crossref_primary_10_1002_adma_202417580
Cites_doi 10.1038/s41467-018-03268-y
10.1038/nnano.2014.248
10.1146/annurev-matsci-070218-010015
10.1021/acsnano.1c01727
10.1038/s41467-020-17652-0
10.1038/s42256-021-00434-8
10.1039/D0CS00022A
10.1038/s41524-018-0081-z
10.1126/sciadv.1601536
10.1016/j.cej.2019.123998
10.1021/acsnano.0c09959
10.1002/adfm.202107767
10.1021/acsnano.8b05739
10.1016/j.cej.2020.126777
10.1021/acs.chemrev.2c00061
10.1002/adma.202207969
10.1038/s41578-020-00255-y
10.1016/j.promfg.2019.04.103
10.1021/acsnano.9b08832
10.1021/acssuschemeng.2c05597
10.1016/j.cej.2023.141677
10.1002/adma.202001626
10.1021/acsami.9b02754
10.1039/C0NR00583E
10.1002/smll.201700453
10.1002/adma.202104980
10.1016/j.cej.2023.141402
10.1016/j.cej.2019.122628
10.1038/s41467-022-28580-6
10.1016/j.cej.2022.137093
10.1016/S0142-9612(00)00236-2
10.1038/s41578-021-00340-w
10.1007/s40820-023-01017-5
10.1038/s41524-019-0221-0
10.1038/s41586-018-0337-2
10.1007/s40820-023-01073-x
10.1002/adfm.202008807
10.1126/sciadv.aaz1708
10.1002/adfm.202103703
10.1002/adma.202110608
10.1038/s41467-022-32200-8
10.1002/admi.202102098
10.1002/adfm.202211889
10.1126/sciadv.abd4045
10.1021/acsnano.7b01815
10.1038/s41467-022-28760-4
10.1021/acsnano.0c04888
10.1021/acsami.0c09726
10.1038/s42256-020-00236-4
10.1021/acsami.1c02059
10.1039/C5RA20674J
10.1002/adfm.201502395
10.1038/ncomms2251
10.1039/C8CS00706C
10.1126/scirobotics.abc8134
10.1038/s41467-022-29874-5
10.1016/j.cej.2020.126222
10.1021/acsanm.3c00249
10.1039/D2TA06621A
10.1002/anie.201908402
10.1021/acsnano.2c07187
10.1038/s41524-021-00678-3
10.1002/adom.201900267
10.1038/s41467-022-32938-1
10.1038/s41467-023-37139-y
10.1002/advs.201903077
10.1002/adfm.202000883
10.1021/nn102246a
10.1021/acsami.1c09675
10.1038/ncomms7962
10.1016/j.cej.2020.127772
10.1002/advs.202000979
10.1002/adfm.202000475
10.1016/j.nanoen.2022.107177
10.1016/j.carbpol.2021.118414
10.1021/acsami.3c03659
10.1002/admi.202100952
10.1016/j.xcrp.2020.100264
10.1002/adma.201902432
10.1016/j.carbon.2022.01.055
10.1038/s41578-021-00337-5
10.1038/s41467-022-32361-6
10.1002/smll.201802479
10.1038/s41560-022-01112-8
10.1002/aenm.202101494
10.1002/adma.201100310
10.1002/adma.202203073
10.1002/smll.201302182
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
7S9
L.6
5PM
DOA
DOI 10.1038/s41467-024-49011-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
MEDLINE - Academic
PubMed


Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_fade9177b64e4a82a6500bf9baa655cd
PMC11144242
38824129
10_1038_s41467_024_49011_8
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c607t-1d6404c7b5ecafebe36f6dca238e9ddfaed9d5afd8a6a0597fe2628463e622b83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:26 EDT 2025
Thu Aug 21 18:33:40 EDT 2025
Fri Jul 11 17:26:14 EDT 2025
Tue Aug 05 09:09:14 EDT 2025
Thu Jul 10 22:59:24 EDT 2025
Wed Aug 13 07:12:57 EDT 2025
Mon Jul 21 06:02:21 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 02:11:10 EDT 2025
Fri Feb 21 02:37:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-1d6404c7b5ecafebe36f6dca238e9ddfaed9d5afd8a6a0597fe2628463e622b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1332-0399
0000-0002-8367-9711
0000-0003-0310-4748
0000-0002-5604-1181
OpenAccessLink https://doaj.org/article/fade9177b64e4a82a6500bf9baa655cd
PMID 38824129
PQID 3062956101
PQPubID 24069
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_fade9177b64e4a82a6500bf9baa655cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11144242
proquest_miscellaneous_3165871652
proquest_miscellaneous_3153761819
proquest_miscellaneous_3063468633
proquest_journals_3062956101
pubmed_primary_38824129
crossref_primary_10_1038_s41467_024_49011_8
crossref_citationtrail_10_1038_s41467_024_49011_8
springer_journals_10_1038_s41467_024_49011_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ma (CR32) 2023; 15
Quero, Rosenkranz (CR35) 2021; 8
Dave (CR57) 2022; 13
Wu, Li, Lai, Chen, Zeng (CR7) 2020; 386
Lin (CR64) 2020; 14
Xu, Wu, Gwon, Choi (CR76) 2023; 11
Xin (CR59) 2022; 7
Wang (CR88) 2021; 31
Wang (CR18) 2020; 402
Wu, Zhu, Dufresne, Lin (CR68) 2019; 11
Zhao (CR23) 2018; 12
Qiu, Liu, Chang, Wu, Li (CR21) 2012; 3
Mai, Le, Chen, Winkler, Caruso (CR60) 2022; 122
Yang (CR71) 2022; 4
Luo (CR84) 2022; 191
Butler, Davies, Cartwright, Isayev, Walsh (CR50) 2018; 559
Dave (CR58) 2020; 1
Shi (CR8) 2022; 13
Liu (CR45) 2018; 14
Qian (CR43) 2022; 9
Lei (CR10) 2022; 34
Han (CR11) 2019; 7
Yan (CR82) 2023; 6
Batra, Song, Ramprasad (CR67) 2021; 6
Yang (CR2) 2017; 11
Cha (CR24) 2014; 10
Kim, Vural, Islam (CR28) 2011; 23
Wicklein (CR15) 2015; 10
Baykara (CR69) 2023; 8
Volk (CR75) 2023; 14
Min (CR9) 2021; 31
Zhao (CR78) 2022; 10
Bigi, Cojazzi, Panzavolta, Rubini, Roveri (CR36) 2001; 22
Qin, Jung, Kang, Buehler (CR44) 2017; 3
Wang, Shen, Liu, Wang (CR61) 2022; 97
Pang (CR85) 2020; 6
Thean (CR55) 2022; 13
Deng, Tang, Wu, Zhang, Yu (CR79) 2021; 13
Wei, Wang, Wu, Wang (CR87) 2022; 34
Zhang, Ling (CR52) 2018; 4
Wu, Shang, Deng, Tao, Yang (CR41) 2020; 7
Feng (CR12) 2022; 16
Piao, Chen (CR26) 2016; 6
Obafemi, Stephen, Ajayi, Nkosinathi (CR70) 2019; 33
Cao (CR6) 2021; 406
Zhang, Ji, Ma (CR42) 2023; 458
Gongora (CR74) 2020; 6
Tetik (CR20) 2022; 34
Jiménez-Luna, Grisoni, Schneider (CR49) 2020; 2
Shi (CR62) 2019; 58
Wang, Zhang, Yang, Tan, Ding (CR81) 2020; 14
Guo (CR5) 2018; 9
Cai, Wei, Huang, Fu (CR19) 2021; 421
Li, Liu, Wang, Zhu (CR86) 2020; 5
Song (CR39) 2020; 30
Zhu (CR4) 2015; 6
Zou (CR27) 2010; 4
Zeng (CR33) 2020; 7
Lundberg, Lee (CR72) 2017; 30
He (CR17) 2023; 459
Deng (CR37) 2019; 31
Jiang (CR80) 2021; 15
Ding (CR90) 2021; 11
Li, Wu, Liang, Chen, Yu (CR34) 2017; 13
Shao, Hanaor, Shen, Gurlo (CR22) 2020; 32
Epps (CR65) 2020; 32
Morgan (CR54) 2020; 50
Wu (CR16) 2022; 446
Schmidt, Marques, Botti, Marques (CR51) 2019; 5
Isogai, Saito, Fukuzumi (CR91) 2011; 3
Yang (CR25) 2020; 12
Zhang (CR46) 2020; 49
Xu (CR77) 2023; 15
Xue (CR1) 2023; 15
Wang, Meng, Lv, Wang, Pu (CR14) 2021; 270
Moon, Yoon, Chun, Oh (CR83) 2015; 25
MacLeod (CR73) 2022; 13
Hart, Mueller, Toher, Curtarolo (CR66) 2021; 6
Yun (CR63) 2021; 15
Li, Zhang (CR3) 2022; 32
Wu (CR47) 2022; 13
Gussow (CR56) 2020; 11
Bandar Abadi (CR31) 2021; 13
Vazhayal, Wilson, Prabhakaran (CR13) 2020; 381
Wu (CR29) 2023; 35
Choi, Han, Kim, Hyeon, Kim (CR89) 2019; 48
Zhou (CR30) 2022; 13
Iqbal, Sambyal, Koo (CR38) 2020; 30
Tao (CR48) 2021; 6
Wei (CR40) 2023; 33
Zhang (CR53) 2022; 8
H Tetik (49011_CR20) 2022; 34
L Qiu (49011_CR21) 2012; 3
H Xin (49011_CR59) 2022; 7
H Yang (49011_CR71) 2022; 4
C Cha (49011_CR24) 2014; 10
F Quero (49011_CR35) 2021; 8
Y-Z Zhang (49011_CR46) 2020; 49
J Zhang (49011_CR53) 2022; 8
M Cao (49011_CR6) 2021; 406
C Li (49011_CR34) 2017; 13
IK Moon (49011_CR83) 2015; 25
L Vazhayal (49011_CR13) 2020; 381
J Liu (49011_CR45) 2018; 14
A Dave (49011_CR58) 2020; 1
G Shao (49011_CR22) 2020; 32
X Ma (49011_CR32) 2023; 15
A Dave (49011_CR57) 2022; 13
AA Volk (49011_CR75) 2023; 14
W Zhang (49011_CR42) 2023; 458
BP MacLeod (49011_CR73) 2022; 13
J Wu (49011_CR7) 2020; 386
GLW Hart (49011_CR66) 2021; 6
X Shi (49011_CR8) 2022; 13
Z Deng (49011_CR79) 2021; 13
L Feng (49011_CR12) 2022; 16
F Guo (49011_CR5) 2018; 9
P Min (49011_CR9) 2021; 31
M Yang (49011_CR2) 2017; 11
B Wicklein (49011_CR15) 2015; 10
S Zhao (49011_CR23) 2018; 12
T Xue (49011_CR1) 2023; 15
RW Epps (49011_CR65) 2020; 32
Z Yan (49011_CR82) 2023; 6
KH Kim (49011_CR28) 2011; 23
Y Deng (49011_CR37) 2019; 31
A Bigi (49011_CR36) 2001; 22
H Tao (49011_CR48) 2021; 6
M Yang (49011_CR25) 2020; 12
W Xu (49011_CR76) 2023; 11
J Schmidt (49011_CR51) 2019; 5
AE Gongora (49011_CR74) 2020; 6
S Choi (49011_CR89) 2019; 48
C Zhu (49011_CR4) 2015; 6
R Luo (49011_CR84) 2022; 191
B Wu (49011_CR68) 2019; 11
Y Li (49011_CR3) 2022; 32
D Morgan (49011_CR54) 2020; 50
M Ding (49011_CR90) 2021; 11
Y Zhang (49011_CR52) 2018; 4
S Shi (49011_CR62) 2019; 58
Y Wang (49011_CR18) 2020; 402
Q Song (49011_CR39) 2020; 30
M Bandar Abadi (49011_CR31) 2021; 13
J Jiménez-Luna (49011_CR49) 2020; 2
SM Lundberg (49011_CR72) 2017; 30
X Wei (49011_CR87) 2022; 34
D Baykara (49011_CR69) 2023; 8
T Zhou (49011_CR30) 2022; 13
W He (49011_CR17) 2023; 459
KT Butler (49011_CR50) 2018; 559
D Lei (49011_CR10) 2022; 34
J Wang (49011_CR61) 2022; 97
C Cai (49011_CR19) 2021; 421
A Iqbal (49011_CR38) 2020; 30
G Li (49011_CR86) 2020; 5
J Zou (49011_CR27) 2010; 4
T Xu (49011_CR77) 2023; 15
O Obafemi (49011_CR70) 2019; 33
M Wu (49011_CR47) 2022; 13
R Batra (49011_CR67) 2021; 6
S Wu (49011_CR16) 2022; 446
D Jiang (49011_CR80) 2021; 15
Z Wu (49011_CR41) 2020; 7
A Isogai (49011_CR91) 2011; 3
Z Zeng (49011_CR33) 2020; 7
H Mai (49011_CR60) 2022; 122
T Yun (49011_CR63) 2021; 15
M Han (49011_CR11) 2019; 7
C Wei (49011_CR40) 2023; 33
M Wang (49011_CR88) 2021; 31
N Wu (49011_CR29) 2023; 35
Y Piao (49011_CR26) 2016; 6
G Qian (49011_CR43) 2022; 9
DGL Thean (49011_CR55) 2022; 13
D Zhao (49011_CR78) 2022; 10
S Wang (49011_CR14) 2021; 270
AB Gussow (49011_CR56) 2020; 11
L Wang (49011_CR81) 2020; 14
Z Lin (49011_CR64) 2020; 14
K Pang (49011_CR85) 2020; 6
Z Qin (49011_CR44) 2017; 3
References_xml – volume: 9
  year: 2018
  ident: CR5
  article-title: Highly stretchable carbon aerogels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03268-y
– volume: 10
  start-page: 277
  year: 2015
  end-page: 283
  ident: CR15
  article-title: Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.248
– volume: 50
  start-page: 71
  year: 2020
  end-page: 103
  ident: CR54
  article-title: Opportunities and challenges for machine learning in materials science
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-010015
– volume: 15
  start-page: 10058
  year: 2021
  end-page: 10066
  ident: CR63
  article-title: Multidimensional Ti C T MXene architectures via interfacial electrochemical self-assembly
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01727
– volume: 8
  year: 2023
  ident: CR69
  article-title: Controlled release of gentamicin from electrospun poly(vinyl alcohol)/gelatin nanofibers: the effect of crosslinking time using glutaraldehyde vapor
  publication-title: Chem. Select
– volume: 11
  year: 2020
  ident: CR56
  article-title: Machine-learning approach expands the repertoire of anti-CRISPR protein families
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17652-0
– volume: 4
  start-page: 84
  year: 2022
  end-page: 94
  ident: CR71
  article-title: Automatic strain sensor design via active learning and data augmentation for soft machines
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-021-00434-8
– volume: 49
  start-page: 7229
  year: 2020
  end-page: 7251
  ident: CR46
  article-title: MXene hydrogels: fundamentals and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00022A
– volume: 4
  start-page: 25
  year: 2018
  ident: CR52
  article-title: A strategy to apply machine learning to small datasets in materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– volume: 3
  start-page: e1601536
  year: 2017
  ident: CR44
  article-title: The mechanics and design of a lightweight three-dimensional graphene assembly
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601536
– volume: 386
  start-page: 123998
  year: 2020
  ident: CR7
  article-title: Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123998
– volume: 15
  start-page: 5000
  year: 2021
  end-page: 5010
  ident: CR80
  article-title: Superelastic Ti C T MXene-based hybrid aerogels for compression-resilient devices
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09959
– volume: 32
  start-page: 2107767
  year: 2022
  ident: CR3
  article-title: Electrically conductive, optically responsive, and highly orientated Ti C T MXene aerogel fibers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107767
– volume: 12
  start-page: 11193
  year: 2018
  end-page: 11202
  ident: CR23
  article-title: Highly electrically conductive three-dimensional Ti C T MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05739
– volume: 406
  start-page: 126777
  year: 2021
  ident: CR6
  article-title: Wearable piezoresistive pressure sensors based on 3D graphene
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126777
– volume: 122
  start-page: 13478
  year: 2022
  end-page: 13515
  ident: CR60
  article-title: Machine learning for electrocatalyst and photocatalyst design and discovery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00061
– volume: 35
  start-page: 2207969
  year: 2023
  ident: CR29
  article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional mxene aerogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207969
– volume: 6
  start-page: 655
  year: 2021
  end-page: 678
  ident: CR67
  article-title: Emerging materials intelligence ecosystems propelled by machine learning
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00255-y
– volume: 33
  start-page: 184
  year: 2019
  end-page: 191
  ident: CR70
  article-title: A survey of artificial neural network-based prediction models for thermal properties of biomass
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2019.04.103
– volume: 14
  start-page: 2109
  year: 2020
  end-page: 2117
  ident: CR64
  article-title: Highly stable 3D Ti C T MXene-based foam architectures toward high-performance terahertz radiation shielding
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08832
– volume: 11
  start-page: 3208
  year: 2023
  end-page: 3218
  ident: CR76
  article-title: Ice-crystal-templated “accordion-like” cellulose nanofiber/Mxene composite aerogels for sensitive wearable pressure sensors
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c05597
– volume: 459
  start-page: 141677
  year: 2023
  ident: CR17
  article-title: Efficient electromagnetic wave absorption and joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141677
– volume: 32
  year: 2020
  ident: CR65
  article-title: Artificial chemist: an autonomous quantum dot synthesis bot
  publication-title: Adv Mater
  doi: 10.1002/adma.202001626
– volume: 11
  start-page: 16048
  year: 2019
  end-page: 16058
  ident: CR68
  article-title: Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02754
– volume: 3
  start-page: 71
  year: 2011
  end-page: 85
  ident: CR91
  article-title: TMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 13
  start-page: 1700453
  year: 2017
  ident: CR34
  article-title: Ultralight multifunctional carbon-based aerogels by combining graphene oxide and bacterial cellulose
  publication-title: Small
  doi: 10.1002/smll.201700453
– volume: 34
  start-page: 2104980
  year: 2022
  ident: CR20
  article-title: 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104980
– volume: 458
  start-page: 141402
  year: 2023
  ident: CR42
  article-title: Emerging MXene/cellulose composites: design strategies and diverse applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141402
– volume: 381
  start-page: 122628
  year: 2020
  ident: CR13
  article-title: Waste to wealth: lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122628
– volume: 13
  start-page: 995
  year: 2022
  ident: CR73
  article-title: A self-driving laboratory advances the Pareto front for material Properties
  publication-title: Nat.Commun.
  doi: 10.1038/s41467-022-28580-6
– volume: 446
  start-page: 137093
  year: 2022
  ident: CR16
  article-title: Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137093
– volume: 22
  start-page: 763
  year: 2001
  end-page: 768
  ident: CR36
  article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00236-2
– volume: 6
  start-page: 730
  year: 2021
  end-page: 755
  ident: CR66
  article-title: Machine learning for alloys
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00340-w
– volume: 15
  year: 2023
  ident: CR1
  article-title: 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01017-5
– volume: 5
  start-page: 83
  year: 2019
  ident: CR51
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0221-0
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: CR50
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 15
  year: 2023
  ident: CR77
  article-title: Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01073-x
– volume: 31
  start-page: 2008807
  year: 2021
  ident: CR88
  article-title: Fusing stretchable sensing technology with machine learning for human-machine interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008807
– volume: 32
  start-page: 1907176
  year: 2020
  ident: CR22
  article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials
  publication-title: Methods Appl. Adv. Mater.
– volume: 6
  start-page: eaaz1708
  year: 2020
  ident: CR74
  article-title: A Bayesian experimental autonomous researcher for mechanical design
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz1708
– volume: 31
  start-page: 2103703
  year: 2021
  ident: CR9
  article-title: Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103703
– volume: 34
  start-page: 2110608
  year: 2022
  ident: CR10
  article-title: Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110608
– volume: 13
  year: 2022
  ident: CR47
  article-title: Superelastic graphene aerogel-based metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32200-8
– volume: 30
  start-page: 4765
  year: 2017
  end-page: 4774
  ident: CR72
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  year: 2022
  ident: CR43
  article-title: Enhanced thermal conductivity in situ constructed CNT aerogel structure in composites
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202102098
– volume: 33
  start-page: 2211889
  year: 2023
  ident: CR40
  article-title: Recent advances in MXene-based aerogels: fabrication, performance and application
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211889
– volume: 6
  start-page: eabd4045
  year: 2020
  ident: CR85
  article-title: Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd4045
– volume: 11
  start-page: 6817
  year: 2017
  end-page: 6824
  ident: CR2
  article-title: Biomimetic architectured graphene aerogel with exceptional strength and resilience
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01815
– volume: 13
  year: 2022
  ident: CR8
  article-title: Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28760-4
– volume: 14
  start-page: 10633
  year: 2020
  end-page: 10647
  ident: CR81
  article-title: Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti AlC MXene composite aerogel for sensitive pressure sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04888
– volume: 12
  start-page: 33128
  year: 2020
  end-page: 33138
  ident: CR25
  article-title: Anisotropic electromagnetic absorption of aligned Ti C T MXene/gelatin nanocomposite aerogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09726
– volume: 2
  start-page: 573
  year: 2020
  end-page: 584
  ident: CR49
  article-title: Drug discovery with explainable artificial intelligence
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-020-00236-4
– volume: 13
  start-page: 20539
  year: 2021
  end-page: 20547
  ident: CR79
  article-title: Superelastic, ultralight, and conductive Ti C T MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02059
– volume: 6
  start-page: 6171
  year: 2016
  end-page: 6181
  ident: CR26
  article-title: One-pot synthesis and characterization of reduced graphene oxide–gelatin nanocomposite hydrogels
  publication-title: RSC Adv
  doi: 10.1039/C5RA20674J
– volume: 25
  start-page: 6976
  year: 2015
  end-page: 6984
  ident: CR83
  article-title: Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502395
– volume: 3
  year: 2012
  ident: CR21
  article-title: Biomimetic superelastic graphene-based cellular monoliths
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2251
– volume: 48
  start-page: 1566
  year: 2019
  end-page: 1595
  ident: CR89
  article-title: High-performance stretchable conductive nanocomposites: materials, processes, and device applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00706C
– volume: 5
  year: 2020
  ident: CR86
  article-title: Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abc8134
– volume: 13
  year: 2022
  ident: CR55
  article-title: Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29874-5
– volume: 402
  start-page: 126222
  year: 2020
  ident: CR18
  article-title: Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126222
– volume: 6
  start-page: 6141
  year: 2023
  end-page: 6150
  ident: CR82
  article-title: MXene/CNTs/aramid aerogels for electromagnetic interference shielding and joule heating
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c00249
– volume: 10
  start-page: 24772
  year: 2022
  end-page: 24782
  ident: CR78
  article-title: Multifunctional, superhydrophobic, and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA06621A
– volume: 58
  start-page: 18171
  year: 2019
  end-page: 18176
  ident: CR62
  article-title: Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908402
– volume: 16
  start-page: 17049
  year: 2022
  end-page: 17061
  ident: CR12
  article-title: Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07187
– volume: 8
  start-page: 5
  year: 2022
  ident: CR53
  article-title: Design high-entropy carbide ceramics from machine learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00678-3
– volume: 7
  start-page: 1900267
  year: 2019
  ident: CR11
  article-title: Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900267
– volume: 13
  year: 2022
  ident: CR57
  article-title: Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32938-1
– volume: 14
  start-page: 1403
  year: 2023
  ident: CR75
  article-title: AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
  publication-title: Nat.Commun.
  doi: 10.1038/s41467-023-37139-y
– volume: 7
  start-page: 1903077
  year: 2020
  ident: CR41
  article-title: The assembly of MXenes from 2D to 3D
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903077
– volume: 30
  start-page: 2000883
  year: 2020
  ident: CR38
  article-title: 2D MXenes for electromagnetic shielding: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 4
  start-page: 7293
  year: 2010
  end-page: 7302
  ident: CR27
  article-title: Ultralight multiwalled carbon nanotube aerogel
  publication-title: ACS Nano
  doi: 10.1021/nn102246a
– volume: 13
  start-page: 34996
  year: 2021
  end-page: 35007
  ident: CR31
  article-title: Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09675
– volume: 6
  year: 2015
  ident: CR4
  article-title: Highly compressible 3D periodic graphene aerogel microlattices
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7962
– volume: 421
  start-page: 127772
  year: 2021
  ident: CR19
  article-title: Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127772
– volume: 7
  start-page: 2000979
  year: 2020
  ident: CR33
  article-title: Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000979
– volume: 30
  start-page: 2000475
  year: 2020
  ident: CR39
  article-title: Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000475
– volume: 97
  start-page: 107177
  year: 2022
  ident: CR61
  article-title: MXene materials for advanced thermal management and thermal energy utilization
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107177
– volume: 270
  start-page: 118414
  year: 2021
  ident: CR14
  article-title: Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118414
– volume: 15
  start-page: 30630
  year: 2023
  end-page: 30642
  ident: CR32
  article-title: Anisotropic free-standing aerogels based on graphene/silk for pressure sensing and efficient adsorption
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03659
– volume: 8
  start-page: 2100952
  year: 2021
  ident: CR35
  article-title: Mechanical performance of binary and ternary hybrid MXene/Nanocellulose hydro- and aerogels—a critical review
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202100952
– volume: 1
  start-page: 100264
  year: 2020
  ident: CR58
  article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100264
– volume: 31
  start-page: 1902432
  year: 2019
  ident: CR37
  article-title: Fast gelation of Ti C T MXene initiated by metal ions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902432
– volume: 191
  start-page: 153
  year: 2022
  end-page: 163
  ident: CR84
  article-title: Super durable graphene aerogel inspired by deep-sea glass sponge skeleton
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.01.055
– volume: 6
  start-page: 701
  year: 2021
  end-page: 716
  ident: CR48
  article-title: Nanoparticle synthesis assisted by machine learning
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00337-5
– volume: 13
  year: 2022
  ident: CR30
  article-title: Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32361-6
– volume: 14
  year: 2018
  ident: CR45
  article-title: Multifunctional, superelastic, and lightweight MXene/polyimide aerogels
  publication-title: Small
  doi: 10.1002/smll.201802479
– volume: 7
  start-page: 790
  year: 2022
  end-page: 791
  ident: CR59
  article-title: Catalyst design with machine learning
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01112-8
– volume: 11
  start-page: 2101494
  year: 2021
  ident: CR90
  article-title: Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101494
– volume: 23
  start-page: 2865
  year: 2011
  end-page: 2869
  ident: CR28
  article-title: Single-walled carbon nanotube aerogel-based elastic conductors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100310
– volume: 34
  start-page: 2203073
  year: 2022
  ident: CR87
  article-title: An open-environment tactile sensing system: toward simple and efficient material identification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203073
– volume: 10
  start-page: 514
  year: 2014
  end-page: 523
  ident: CR24
  article-title: Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide
  publication-title: Small
  doi: 10.1002/smll.201302182
– volume: 6
  start-page: 655
  year: 2021
  ident: 49011_CR67
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00255-y
– volume: 97
  start-page: 107177
  year: 2022
  ident: 49011_CR61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107177
– volume: 8
  start-page: 5
  year: 2022
  ident: 49011_CR53
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00678-3
– volume: 3
  start-page: 71
  year: 2011
  ident: 49011_CR91
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 406
  start-page: 126777
  year: 2021
  ident: 49011_CR6
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126777
– volume: 23
  start-page: 2865
  year: 2011
  ident: 49011_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100310
– volume: 559
  start-page: 547
  year: 2018
  ident: 49011_CR50
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 402
  start-page: 126222
  year: 2020
  ident: 49011_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126222
– volume: 14
  start-page: 1403
  year: 2023
  ident: 49011_CR75
  publication-title: Nat.Commun.
  doi: 10.1038/s41467-023-37139-y
– volume: 10
  start-page: 24772
  year: 2022
  ident: 49011_CR78
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA06621A
– volume: 12
  start-page: 11193
  year: 2018
  ident: 49011_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05739
– volume: 11
  start-page: 6817
  year: 2017
  ident: 49011_CR2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01815
– volume: 3
  year: 2012
  ident: 49011_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2251
– volume: 34
  start-page: 2104980
  year: 2022
  ident: 49011_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104980
– volume: 30
  start-page: 2000475
  year: 2020
  ident: 49011_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000475
– volume: 7
  start-page: 1900267
  year: 2019
  ident: 49011_CR11
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900267
– volume: 1
  start-page: 100264
  year: 2020
  ident: 49011_CR58
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2020.100264
– volume: 4
  start-page: 7293
  year: 2010
  ident: 49011_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn102246a
– volume: 50
  start-page: 71
  year: 2020
  ident: 49011_CR54
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-010015
– volume: 10
  start-page: 277
  year: 2015
  ident: 49011_CR15
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.248
– volume: 33
  start-page: 2211889
  year: 2023
  ident: 49011_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211889
– volume: 6
  start-page: eabd4045
  year: 2020
  ident: 49011_CR85
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd4045
– volume: 32
  start-page: 1907176
  year: 2020
  ident: 49011_CR22
  publication-title: Methods Appl. Adv. Mater.
– volume: 5
  year: 2020
  ident: 49011_CR86
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abc8134
– volume: 7
  start-page: 2000979
  year: 2020
  ident: 49011_CR33
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000979
– volume: 15
  start-page: 10058
  year: 2021
  ident: 49011_CR63
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01727
– volume: 6
  start-page: eaaz1708
  year: 2020
  ident: 49011_CR74
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz1708
– volume: 13
  start-page: 20539
  year: 2021
  ident: 49011_CR79
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02059
– volume: 191
  start-page: 153
  year: 2022
  ident: 49011_CR84
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.01.055
– volume: 30
  start-page: 2000883
  year: 2020
  ident: 49011_CR38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000883
– volume: 14
  start-page: 2109
  year: 2020
  ident: 49011_CR64
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08832
– volume: 32
  year: 2020
  ident: 49011_CR65
  publication-title: Adv Mater
  doi: 10.1002/adma.202001626
– volume: 270
  start-page: 118414
  year: 2021
  ident: 49011_CR14
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118414
– volume: 3
  start-page: e1601536
  year: 2017
  ident: 49011_CR44
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601536
– volume: 5
  start-page: 83
  year: 2019
  ident: 49011_CR51
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0221-0
– volume: 48
  start-page: 1566
  year: 2019
  ident: 49011_CR89
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00706C
– volume: 7
  start-page: 1903077
  year: 2020
  ident: 49011_CR41
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903077
– volume: 4
  start-page: 25
  year: 2018
  ident: 49011_CR52
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-018-0081-z
– volume: 16
  start-page: 17049
  year: 2022
  ident: 49011_CR12
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07187
– volume: 33
  start-page: 184
  year: 2019
  ident: 49011_CR70
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2019.04.103
– volume: 6
  start-page: 730
  year: 2021
  ident: 49011_CR66
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00340-w
– volume: 31
  start-page: 2103703
  year: 2021
  ident: 49011_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103703
– volume: 30
  start-page: 4765
  year: 2017
  ident: 49011_CR72
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 5000
  year: 2021
  ident: 49011_CR80
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09959
– volume: 34
  start-page: 2110608
  year: 2022
  ident: 49011_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110608
– volume: 381
  start-page: 122628
  year: 2020
  ident: 49011_CR13
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122628
– volume: 13
  year: 2022
  ident: 49011_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32200-8
– volume: 13
  year: 2022
  ident: 49011_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29874-5
– volume: 122
  start-page: 13478
  year: 2022
  ident: 49011_CR60
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00061
– volume: 6
  start-page: 6141
  year: 2023
  ident: 49011_CR82
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c00249
– volume: 2
  start-page: 573
  year: 2020
  ident: 49011_CR49
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-020-00236-4
– volume: 11
  start-page: 2101494
  year: 2021
  ident: 49011_CR90
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101494
– volume: 446
  start-page: 137093
  year: 2022
  ident: 49011_CR16
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137093
– volume: 14
  start-page: 10633
  year: 2020
  ident: 49011_CR81
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04888
– volume: 22
  start-page: 763
  year: 2001
  ident: 49011_CR36
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00236-2
– volume: 31
  start-page: 1902432
  year: 2019
  ident: 49011_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902432
– volume: 6
  start-page: 701
  year: 2021
  ident: 49011_CR48
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00337-5
– volume: 7
  start-page: 790
  year: 2022
  ident: 49011_CR59
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01112-8
– volume: 14
  year: 2018
  ident: 49011_CR45
  publication-title: Small
  doi: 10.1002/smll.201802479
– volume: 58
  start-page: 18171
  year: 2019
  ident: 49011_CR62
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908402
– volume: 6
  year: 2015
  ident: 49011_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7962
– volume: 13
  year: 2022
  ident: 49011_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32361-6
– volume: 4
  start-page: 84
  year: 2022
  ident: 49011_CR71
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-021-00434-8
– volume: 12
  start-page: 33128
  year: 2020
  ident: 49011_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09726
– volume: 13
  start-page: 34996
  year: 2021
  ident: 49011_CR31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09675
– volume: 13
  year: 2022
  ident: 49011_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28760-4
– volume: 11
  start-page: 3208
  year: 2023
  ident: 49011_CR76
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c05597
– volume: 11
  year: 2020
  ident: 49011_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17652-0
– volume: 13
  year: 2022
  ident: 49011_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32938-1
– volume: 25
  start-page: 6976
  year: 2015
  ident: 49011_CR83
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502395
– volume: 15
  start-page: 30630
  year: 2023
  ident: 49011_CR32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03659
– volume: 31
  start-page: 2008807
  year: 2021
  ident: 49011_CR88
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008807
– volume: 9
  year: 2022
  ident: 49011_CR43
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202102098
– volume: 32
  start-page: 2107767
  year: 2022
  ident: 49011_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107767
– volume: 8
  start-page: 2100952
  year: 2021
  ident: 49011_CR35
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202100952
– volume: 11
  start-page: 16048
  year: 2019
  ident: 49011_CR68
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02754
– volume: 421
  start-page: 127772
  year: 2021
  ident: 49011_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127772
– volume: 34
  start-page: 2203073
  year: 2022
  ident: 49011_CR87
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203073
– volume: 8
  year: 2023
  ident: 49011_CR69
  publication-title: Chem. Select
– volume: 6
  start-page: 6171
  year: 2016
  ident: 49011_CR26
  publication-title: RSC Adv
  doi: 10.1039/C5RA20674J
– volume: 15
  year: 2023
  ident: 49011_CR77
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01073-x
– volume: 459
  start-page: 141677
  year: 2023
  ident: 49011_CR17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141677
– volume: 15
  year: 2023
  ident: 49011_CR1
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01017-5
– volume: 13
  start-page: 995
  year: 2022
  ident: 49011_CR73
  publication-title: Nat.Commun.
  doi: 10.1038/s41467-022-28580-6
– volume: 386
  start-page: 123998
  year: 2020
  ident: 49011_CR7
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123998
– volume: 49
  start-page: 7229
  year: 2020
  ident: 49011_CR46
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00022A
– volume: 9
  year: 2018
  ident: 49011_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03268-y
– volume: 10
  start-page: 514
  year: 2014
  ident: 49011_CR24
  publication-title: Small
  doi: 10.1002/smll.201302182
– volume: 13
  start-page: 1700453
  year: 2017
  ident: 49011_CR34
  publication-title: Small
  doi: 10.1002/smll.201700453
– volume: 458
  start-page: 141402
  year: 2023
  ident: 49011_CR42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141402
– volume: 35
  start-page: 2207969
  year: 2023
  ident: 49011_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207969
SSID ssj0000391844
Score 2.538645
Snippet Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely...
Abstract Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4685
SubjectTerms 140/146
147/135
639/301/1023/1025
639/925/357/1018
639/925/357/537
Aerogels
Artificial neural networks
Automation
Cellulose
Compression
compression strength
Compressive strength
Data augmentation
Fabrication
finite element analysis
Freeze drying
Gelatin
Glutaraldehyde
Heating
Humanities and Social Sciences
Industrial robots
Inverse design
Learning algorithms
Machine learning
Manufacturing engineering
Mechanical properties
multidisciplinary
MXenes
Neural networks
Ohmic dissipation
Parameters
Physicochemical properties
Prediction models
Predictions
Resistance heating
Robot learning
Robotics
Science
Science (multidisciplinary)
Structural integrity
Support vector machines
Thermal management
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcKqClhJbKSL0Vq3H8iHMERFVVWk5U2pvlJ1SCbNXdHvj3HTvZZbfQ5cIxyUSJPeOZb-zxZ4ATaxVzCOSpRvRKBWOKah8l9UkmlRyLzuX5jskXdXElLqdyunbUV64JG-iBh447SzZETClap0QUVjcWIUXtUufwK1L6kL0vxry1ZKr4YN5h6iLGXTI112dzUXwChiQq8nZLqjciUSHs_xvK_LNY8sGKaQlE589hd0SQ5MPw5y_gSexfwtPhTMlfe2AnpTwykus1sk1ivcf4kmkhAgmlaIPMEsFcONO9osMjkyk6PWLj7ewbRkuSp2fJWLv1M--uyhc3uQY7zvfh6vzz108XdDxHgXpVtwvKghK18K2T0duEWuMqqeAtRuvYhZBsDF2QNgVtlUW41abYKAxbikfVNE7zV7DTz_r4Ggh6BI-AqQ5WWtG6VgcdpG-7wFtM0ZmvgC371PiRZDyfdfHDlMVurs2gB4N6MEUPRldwunrnZqDY2Cr9MatqJZnpscsNNBozGo35l9FUcLRUtBnH7Nxg8tTkbb41q-Dd6jGOtryEYvs4uysyXCitON8iwzJFDiKnbpsMIj9MVWVTwcFgX6sWcUx6BMKwCvSG5W00efNJf_29MINj4BICQVcF75dG-rt9j_fpm__Rp4fwrMmjq8xQHcHO4vYuvkXAtnDHZWzeA6jVPvA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbz8CsnBIiqQlpOVNqb5WepRJNld3vg33fG8W5ZHntMMjnY45n5PB5_Q8gba2XjAMgzDeiV8aaRTPsomE8iyeSa6BzmO2Zf5ekZ_zIX85JwW5Wyyo1PzI46jB5z5McAbVu8hFk37xc_GXaNwtPV0kLjNrmD1GVY0qXmaptjQfZzzXm5K1N3-njFs2eAwMQ4XrpkeiceZdr-f2HNv0sm_zg3zeHo5AG5X3Ak_TAp_iG5FYdH5O7UWfLXY2JnuUgy0ovfKDep9R6iDJJDBBpy6QYdE4UdMZK-gtujszm4PmrjcjyHmEkxSUtLBdcl3rHChwVWYsfVE3J28vnbp1NWuikwL2u1Zk2QvOZeORG9TaC7TiYZvIWYHfsQko2hD8KmoK20ALpUiq2E4CW7KNvW6e4pORjGIT4nFPyCB9hUByssV07poIPwqg-dgo164yvSbObU-EI1jh0vfph85N1pM-nBgB5M1oPRFXm7_WcxEW3slf6IqtpKIkl2fjEuz02xOZNsiLAbVU7yyK1uLaDR2qXewQIVwoeKHG0UbYrlrszNOqvI6-1nsDk8SLFDHK-yTMelll23R6ZBohzAT_0-GcB_sGEVbUWeTetrO6IOtj4cwFhF9M7K2xny7pfh4nvmB4fwxTlAr4q82yzSm_H9f04P90_HC3KvRbvJGagjcrBeXsWXAMjW7lW2umsTiDUt
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqDwbWpCRuIFFEj_iHGFFVSEtJyrtzfKzVIKk2t0e-PeMnQcslJU4JplIcWbG84098xngtTGysgjkqUL0SnlVSapcENRFEWW0VbA2rXcsP8vzC_5pJVYHUE-9MLloP1Na5ml6qg57t-HZpTGiUJ66Jam6A3cTdXuy6oVczOsqifFccT72x5RM3fLqTgzKVP234cu_yyT_2CvNIejsCB6M2JG8H772IRyE7hHcG06T_PEYzDIXRgZy9RvNJjHOYWRJhBCe-FyuQfpIMAtORK841ZHlCqc7YsK6v8Q4SdLCLBmrtr6nvqp0cZ2qr8PmCVycffyyOKfjCQrUybLZ0spLXnLXWBGciagvJqP0zmCcDq330QTfemGiV0YaBFpNDLXEgCVZkHVtFXsKh13fhWMgOBc4hEqlN8LwxjbKKy9c03rWYHJeuQKq6Z9qN9KLp1Muvum8zc2UHvSgUQ8660GrAt7M71wP5Bp7pT8kVc2SiRg73-jXl3o0FB2ND5iBNlbywI2qDSLQ0sbWolEK4XwBp5Oi9eitG41pU50afMuqgFfzY_SztHliutDfZBnGpZKM7ZGpEjkOYqZ2nwxiPkxSRV3As8G-5hExTHc4ArAC1I7l7Qx590l39TVzgmPI4hzhVgFvJyP9Nb5__9Pn_yd-Avfr5Ed5FeoUDrfrm_ACQdnWvsxe-BNHHzMF
  priority: 102
  providerName: Springer Nature
Title Machine intelligence accelerated design of conductive MXene aerogels with programmable properties
URI https://link.springer.com/article/10.1038/s41467-024-49011-8
https://www.ncbi.nlm.nih.gov/pubmed/38824129
https://www.proquest.com/docview/3062956101
https://www.proquest.com/docview/3063468633
https://www.proquest.com/docview/3153761819
https://www.proquest.com/docview/3165871652
https://pubmed.ncbi.nlm.nih.gov/PMC11144242
https://doaj.org/article/fade9177b64e4a82a6500bf9baa655cd
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvEEgiR3beUCoq1amSp0QUKlvkT_HpJGOtpPYf8_ZSQuFUvHSqMmlqn13vt_Z9wHwUimeawTyqUT0mrI856k0rkyNLz33Ondah_2O8Rk_nbDRtJzuwardUTeBi62uXegnNZlfvvnx_eY9Kvy7NmVcvl2wqO5obVIWMilTuQ-HaJlEUNRxB_fjykwrdGjCQXORsTxF2027PJrtP7Nhq2JJ_2049O9wyj_OVKOpGt6FOx3GJP1WKO7Bnmvuw6226-TNA1DjGEDpyMVv5TiJMgYtUCgcYYmNYR1k5gl6y6EgLC6JZDzFZZEoN5-doz0lYQOXdNFd30L-VfhyFaK03eIhTIYnXwanaddpITU8E8s0t5xlzAhdOqM88pVyz61RaM9dZa1Xzla2VN5KxRUCMuFdwdGwcep4UWhJH8FBM2vcEyC4ZhiEVJlVpWJCC2mlLY2oLBXoxOcmgXw1p7XpypCHbhiXdTwOp7Ju-VAjH-rIh1om8Gr9zlVbhGMn9XFg1ZoyFNCON2bz87rTx9or69BTFZozx5QsFCLVTPtKo_CWpbEJHK0YXa-Eskb3qgiJwFmewIv1Y9THcMiiGje7jjSUcckp3UGThyI6iK2qXTSIDdGZLYsEHrfytR4RRbeIIVBLQG5I3saQN580F19j7XA0bYwhLEvg9UpIf43v33P69D_-5zO4XQTliVtUR3CwnF-754jYlroH-2Iq8FMOP_TgsN8ffR7h9fjk7OMnvDvgg17cC-lFdf0JhhRDCg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qRQguiLUYCgwSnMCql_F4ckCIrUpp01Mr5TbMWipBHJJUqH-K38h7YzslLLn16PjF0szbvnnzFoDnWovcIJBPJaLXlOe5SKX1VWpDFUQwuTeG4h2jQzE85p_G1XgDfva1MJRW2dvEaKhdYylGvoPQtqAizCx_M_2e0tQoul3tR2i0YrHvz3_gkW3-eu8D8vdFUex-PHo_TLupAqkVWb1Icyd4xm1tKm91wDWUIghnNfouP3AuaO8GrtLBSS00go86-EKgERelF0VhZInfvQJX0fFmpFH1uF7GdKjbuuS8q83JSrkz59ESoSNMORV5pnLF_8UxAf_Ctn-naP5xTxvd3-4tuNnhVva2FbTbsOEnd-BaO8ny_C7oUUzK9Oz0txafTFuLXo2aUTjmYqoIawLDEzg1mUUzy0ZjNLVM-1lzgj6aUVCYdRlj36imix6mlPnt5_fg-FL2-T5sTpqJfwAM7ZBFmJY5XWlem1o66SpbD1xZe1PkNoG831Nlu9bmNGHjq4pX7KVULR8U8kFFPiiZwMvlf6ZtY4-11O-IVUtKasodf2hmJ6rTcRW083j6rY3gnmtZaES_mQkDgwpRVdYlsN0zWnWWYq4u5DqBZ8vXqON0caMnvjmLNCUXUpTlGpqcGvMgXhuso0G8iQfkqkhgq5Wv5YpKPGpxBH8JyBXJW1ny6pvJ6ZfYjxzdJecI9RJ41Qvpxfr-v6cP12_HU7g-PBodqIO9w_1HcKMgHYrRr23YXMzO_GMEgwvzJGogg8-XrfK_AEbjdIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIhAXxLMsFDASnGCV3bXXdg4IASVqKa04UCk342epBNmQpEL9a_w6xt7dlPDIrcfNTlay5_V5PA-Ap1rz0iCQzyWi15yVJc-l9XVuQx14MKU3JsY7Dg757hF7P67HG_Czr4WJaZW9TUyG2jU2xsgHCG2rWIRZlIPQpUV83Bm9mn7P4wSpeNPaj9NoRWTfn_3A49v85d4O8vpZVY3efXq7m3cTBnLLC7HIS8dZwawwtbc64HooD9xZjX7MD50L2ruhq3VwUnONQEQEX3E06Jx6XlVGUvzuJbgsaF1GHRNjsYzvxM7rkrGuTqegcjBnySqhU8xZLPjM5YovTCMD_oVz_07X_OPONrnC0Q243mFY8roVupuw4Se34Eo71fLsNuiDlKDpyclv7T6JthY9XGxM4YhLaSOkCQRP47HhLJpccjBGs0u0nzXH6K9JDBCTLnvsW6zvig_TmAXu53fg6EL2-S5sTpqJvwcEbZJFyFY4XWsmjJBOutqKoaPCm6q0GZT9nirbtTmP0za-qnTdTqVq-aCQDyrxQckMni__M22bfKylfhNZtaSMDbrTD83sWHX6roJ2Hk_CwnDmmZaVRiRcmDA0qBx1bV0G2z2jVWc15upcxjN4snyN-h4vcfTEN6eJhjIuOaVraMrYpAex23AdDWJPPCzXVQZbrXwtV0Tx2MUQCGYgVyRvZcmrbyYnX1JvcnSdjCHsy-BFL6Tn6_v_nt5fvx2P4Soqu_qwd7j_AK5VUYVSIGwbNhezU_8QceHCPEoKSODzRWv8L5GweMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+intelligence+accelerated+design+of+conductive+MXene+aerogels+with+programmable+properties&rft.jtitle=Nature+communications&rft.au=Shrestha%2C+Snehi&rft.au=Barvenik%2C+Kieran+James&rft.au=Chen%2C+Tianle&rft.au=Yang%2C+Haochen&rft.date=2024-06-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1+p.4685-&rft_id=info:doi/10.1038%2Fs41467-024-49011-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon