Machine intelligence accelerated design of conductive MXene aerogels with programmable properties
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 4685 - 14 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti
3
C
2
T
x
MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating. |
---|---|
AbstractList | Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti₃C₂Tₓ MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti 3 C 2 T x MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti C T MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Abstract Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti 3 C 2 T x MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management. Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating. Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of Ti3C2Tx MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels’ structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels’ physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.Machine learning-assisted robots produce MXene aerogels containing cellulose, gelatin, and glutaraldehyde, fabricating 162 compositions. Inverse design from resulting properties affords tailored compression-stable materials for Joule heating. |
ArticleNumber | 4685 |
Author | Whitley, Hayden C. Teng, Zi Kesavan, Meera Muthachi Chen, Tianle Little, Joshua M. Shrestha, Snehi Tubaldi, Eleonora Yang, Haochen Barvenik, Kieran James Li, Yang Luo, Yaguang Chen, Po-Yen |
Author_xml | – sequence: 1 givenname: Snehi surname: Shrestha fullname: Shrestha, Snehi organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 2 givenname: Kieran James surname: Barvenik fullname: Barvenik, Kieran James organization: Department of Mechanical Engineering, University of Maryland – sequence: 3 givenname: Tianle orcidid: 0000-0003-1332-0399 surname: Chen fullname: Chen, Tianle organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 4 givenname: Haochen orcidid: 0000-0002-8367-9711 surname: Yang fullname: Yang, Haochen organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 6 givenname: Meera Muthachi surname: Kesavan fullname: Kesavan, Meera Muthachi organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 7 givenname: Joshua M. surname: Little fullname: Little, Joshua M. organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 8 givenname: Hayden C. surname: Whitley fullname: Whitley, Hayden C. organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 9 givenname: Zi surname: Teng fullname: Teng, Zi organization: US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center – sequence: 10 givenname: Yaguang surname: Luo fullname: Luo, Yaguang organization: US Department of Agriculture, Agricultural Research Service, Food Quality Laboratory and Environment Microbial Food Safety Laboratory, Beltsville Agricultural Research Center – sequence: 11 givenname: Eleonora orcidid: 0000-0002-5604-1181 surname: Tubaldi fullname: Tubaldi, Eleonora email: etubaldi@umd.edu organization: Department of Mechanical Engineering, University of Maryland, Maryland Robotics Center – sequence: 12 givenname: Po-Yen orcidid: 0000-0003-0310-4748 surname: Chen fullname: Chen, Po-Yen email: checp@umd.edu organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Maryland Robotics Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38824129$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkklv1TAUhSNUREvpH2CBIrFhE_AUx1khVDFUasUGJHbWjX2T56c8-2Enrfj3OE0pbRcFLzx-53g6z4sDHzwWxUtK3lLC1bskqJBNRZioREsordST4ogRQSvaMH5wp39YnKS0JbnwliohnhWHXCkmKGuPCrgAs3EeS-cnHEc3oDdYgjE4YoQJbWkxucGXoS9N8HY2k7vE8uIHZg1gDAOOqbxy06bc50GE3Q66EZfBHuPkML0onvYwJjy5aY-L758-fjv9Up1__Xx2-uG8MpI0U0WtFESYpqvRQI8dctlLa4Bxha21PaBtbQ29VSCB1G3TI5NMCclRMtYpflycrb42wFbvo9tB_KUDOH09EeKgIR_IjKh7sNjSpumkQAGKgawJ6fq2g9yrjc1e71ev_dzt0Br0U4Txnun9Fe82egiXmlIqBBMsO7y5cYjh54xp0juX8qOO4DHMSXMqa9Xk6n_QmjeSKtr-GyWSC6kk5xl9_QDdhjn6_AMLxdpaUkIz9eruRW9v-CcgGWArYGJIKWJ_i1CilyDqNYg6B1FfB1EvX6EeiIybYHJheSw3Pi7lqzTlffyA8e-xH1H9Bm4h8z0 |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2024_113512 crossref_primary_10_1002_anse_202400095 crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_3390_ma18030534 crossref_primary_10_1002_adma_202416345 crossref_primary_10_1007_s12598_024_03022_y crossref_primary_10_1016_j_cej_2025_160274 crossref_primary_10_1039_D4RA06384H crossref_primary_10_1002_adma_202417580 |
Cites_doi | 10.1038/s41467-018-03268-y 10.1038/nnano.2014.248 10.1146/annurev-matsci-070218-010015 10.1021/acsnano.1c01727 10.1038/s41467-020-17652-0 10.1038/s42256-021-00434-8 10.1039/D0CS00022A 10.1038/s41524-018-0081-z 10.1126/sciadv.1601536 10.1016/j.cej.2019.123998 10.1021/acsnano.0c09959 10.1002/adfm.202107767 10.1021/acsnano.8b05739 10.1016/j.cej.2020.126777 10.1021/acs.chemrev.2c00061 10.1002/adma.202207969 10.1038/s41578-020-00255-y 10.1016/j.promfg.2019.04.103 10.1021/acsnano.9b08832 10.1021/acssuschemeng.2c05597 10.1016/j.cej.2023.141677 10.1002/adma.202001626 10.1021/acsami.9b02754 10.1039/C0NR00583E 10.1002/smll.201700453 10.1002/adma.202104980 10.1016/j.cej.2023.141402 10.1016/j.cej.2019.122628 10.1038/s41467-022-28580-6 10.1016/j.cej.2022.137093 10.1016/S0142-9612(00)00236-2 10.1038/s41578-021-00340-w 10.1007/s40820-023-01017-5 10.1038/s41524-019-0221-0 10.1038/s41586-018-0337-2 10.1007/s40820-023-01073-x 10.1002/adfm.202008807 10.1126/sciadv.aaz1708 10.1002/adfm.202103703 10.1002/adma.202110608 10.1038/s41467-022-32200-8 10.1002/admi.202102098 10.1002/adfm.202211889 10.1126/sciadv.abd4045 10.1021/acsnano.7b01815 10.1038/s41467-022-28760-4 10.1021/acsnano.0c04888 10.1021/acsami.0c09726 10.1038/s42256-020-00236-4 10.1021/acsami.1c02059 10.1039/C5RA20674J 10.1002/adfm.201502395 10.1038/ncomms2251 10.1039/C8CS00706C 10.1126/scirobotics.abc8134 10.1038/s41467-022-29874-5 10.1016/j.cej.2020.126222 10.1021/acsanm.3c00249 10.1039/D2TA06621A 10.1002/anie.201908402 10.1021/acsnano.2c07187 10.1038/s41524-021-00678-3 10.1002/adom.201900267 10.1038/s41467-022-32938-1 10.1038/s41467-023-37139-y 10.1002/advs.201903077 10.1002/adfm.202000883 10.1021/nn102246a 10.1021/acsami.1c09675 10.1038/ncomms7962 10.1016/j.cej.2020.127772 10.1002/advs.202000979 10.1002/adfm.202000475 10.1016/j.nanoen.2022.107177 10.1016/j.carbpol.2021.118414 10.1021/acsami.3c03659 10.1002/admi.202100952 10.1016/j.xcrp.2020.100264 10.1002/adma.201902432 10.1016/j.carbon.2022.01.055 10.1038/s41578-021-00337-5 10.1038/s41467-022-32361-6 10.1002/smll.201802479 10.1038/s41560-022-01112-8 10.1002/aenm.202101494 10.1002/adma.201100310 10.1002/adma.202203073 10.1002/smll.201302182 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1038/s41467-024-49011-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_fade9177b64e4a82a6500bf9baa655cd PMC11144242 38824129 10_1038_s41467_024_49011_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c607t-1d6404c7b5ecafebe36f6dca238e9ddfaed9d5afd8a6a0597fe2628463e622b83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:26 EDT 2025 Thu Aug 21 18:33:40 EDT 2025 Fri Jul 11 17:26:14 EDT 2025 Tue Aug 05 09:09:14 EDT 2025 Thu Jul 10 22:59:24 EDT 2025 Wed Aug 13 07:12:57 EDT 2025 Mon Jul 21 06:02:21 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 02:11:10 EDT 2025 Fri Feb 21 02:37:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-1d6404c7b5ecafebe36f6dca238e9ddfaed9d5afd8a6a0597fe2628463e622b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1332-0399 0000-0002-8367-9711 0000-0003-0310-4748 0000-0002-5604-1181 |
OpenAccessLink | https://doaj.org/article/fade9177b64e4a82a6500bf9baa655cd |
PMID | 38824129 |
PQID | 3062956101 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fade9177b64e4a82a6500bf9baa655cd pubmedcentral_primary_oai_pubmedcentral_nih_gov_11144242 proquest_miscellaneous_3165871652 proquest_miscellaneous_3153761819 proquest_miscellaneous_3063468633 proquest_journals_3062956101 pubmed_primary_38824129 crossref_primary_10_1038_s41467_024_49011_8 crossref_citationtrail_10_1038_s41467_024_49011_8 springer_journals_10_1038_s41467_024_49011_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ma (CR32) 2023; 15 Quero, Rosenkranz (CR35) 2021; 8 Dave (CR57) 2022; 13 Wu, Li, Lai, Chen, Zeng (CR7) 2020; 386 Lin (CR64) 2020; 14 Xu, Wu, Gwon, Choi (CR76) 2023; 11 Xin (CR59) 2022; 7 Wang (CR88) 2021; 31 Wang (CR18) 2020; 402 Wu, Zhu, Dufresne, Lin (CR68) 2019; 11 Zhao (CR23) 2018; 12 Qiu, Liu, Chang, Wu, Li (CR21) 2012; 3 Mai, Le, Chen, Winkler, Caruso (CR60) 2022; 122 Yang (CR71) 2022; 4 Luo (CR84) 2022; 191 Butler, Davies, Cartwright, Isayev, Walsh (CR50) 2018; 559 Dave (CR58) 2020; 1 Shi (CR8) 2022; 13 Liu (CR45) 2018; 14 Qian (CR43) 2022; 9 Lei (CR10) 2022; 34 Han (CR11) 2019; 7 Yan (CR82) 2023; 6 Batra, Song, Ramprasad (CR67) 2021; 6 Yang (CR2) 2017; 11 Cha (CR24) 2014; 10 Kim, Vural, Islam (CR28) 2011; 23 Wicklein (CR15) 2015; 10 Baykara (CR69) 2023; 8 Volk (CR75) 2023; 14 Min (CR9) 2021; 31 Zhao (CR78) 2022; 10 Bigi, Cojazzi, Panzavolta, Rubini, Roveri (CR36) 2001; 22 Qin, Jung, Kang, Buehler (CR44) 2017; 3 Wang, Shen, Liu, Wang (CR61) 2022; 97 Pang (CR85) 2020; 6 Thean (CR55) 2022; 13 Deng, Tang, Wu, Zhang, Yu (CR79) 2021; 13 Wei, Wang, Wu, Wang (CR87) 2022; 34 Zhang, Ling (CR52) 2018; 4 Wu, Shang, Deng, Tao, Yang (CR41) 2020; 7 Feng (CR12) 2022; 16 Piao, Chen (CR26) 2016; 6 Obafemi, Stephen, Ajayi, Nkosinathi (CR70) 2019; 33 Cao (CR6) 2021; 406 Zhang, Ji, Ma (CR42) 2023; 458 Gongora (CR74) 2020; 6 Tetik (CR20) 2022; 34 Jiménez-Luna, Grisoni, Schneider (CR49) 2020; 2 Shi (CR62) 2019; 58 Wang, Zhang, Yang, Tan, Ding (CR81) 2020; 14 Guo (CR5) 2018; 9 Cai, Wei, Huang, Fu (CR19) 2021; 421 Li, Liu, Wang, Zhu (CR86) 2020; 5 Song (CR39) 2020; 30 Zhu (CR4) 2015; 6 Zou (CR27) 2010; 4 Zeng (CR33) 2020; 7 Lundberg, Lee (CR72) 2017; 30 He (CR17) 2023; 459 Deng (CR37) 2019; 31 Jiang (CR80) 2021; 15 Ding (CR90) 2021; 11 Li, Wu, Liang, Chen, Yu (CR34) 2017; 13 Shao, Hanaor, Shen, Gurlo (CR22) 2020; 32 Epps (CR65) 2020; 32 Morgan (CR54) 2020; 50 Wu (CR16) 2022; 446 Schmidt, Marques, Botti, Marques (CR51) 2019; 5 Isogai, Saito, Fukuzumi (CR91) 2011; 3 Yang (CR25) 2020; 12 Zhang (CR46) 2020; 49 Xu (CR77) 2023; 15 Xue (CR1) 2023; 15 Wang, Meng, Lv, Wang, Pu (CR14) 2021; 270 Moon, Yoon, Chun, Oh (CR83) 2015; 25 MacLeod (CR73) 2022; 13 Hart, Mueller, Toher, Curtarolo (CR66) 2021; 6 Yun (CR63) 2021; 15 Li, Zhang (CR3) 2022; 32 Wu (CR47) 2022; 13 Gussow (CR56) 2020; 11 Bandar Abadi (CR31) 2021; 13 Vazhayal, Wilson, Prabhakaran (CR13) 2020; 381 Wu (CR29) 2023; 35 Choi, Han, Kim, Hyeon, Kim (CR89) 2019; 48 Zhou (CR30) 2022; 13 Iqbal, Sambyal, Koo (CR38) 2020; 30 Tao (CR48) 2021; 6 Wei (CR40) 2023; 33 Zhang (CR53) 2022; 8 H Tetik (49011_CR20) 2022; 34 L Qiu (49011_CR21) 2012; 3 H Xin (49011_CR59) 2022; 7 H Yang (49011_CR71) 2022; 4 C Cha (49011_CR24) 2014; 10 F Quero (49011_CR35) 2021; 8 Y-Z Zhang (49011_CR46) 2020; 49 J Zhang (49011_CR53) 2022; 8 M Cao (49011_CR6) 2021; 406 C Li (49011_CR34) 2017; 13 IK Moon (49011_CR83) 2015; 25 L Vazhayal (49011_CR13) 2020; 381 J Liu (49011_CR45) 2018; 14 A Dave (49011_CR58) 2020; 1 G Shao (49011_CR22) 2020; 32 X Ma (49011_CR32) 2023; 15 A Dave (49011_CR57) 2022; 13 AA Volk (49011_CR75) 2023; 14 W Zhang (49011_CR42) 2023; 458 BP MacLeod (49011_CR73) 2022; 13 J Wu (49011_CR7) 2020; 386 GLW Hart (49011_CR66) 2021; 6 X Shi (49011_CR8) 2022; 13 Z Deng (49011_CR79) 2021; 13 L Feng (49011_CR12) 2022; 16 F Guo (49011_CR5) 2018; 9 P Min (49011_CR9) 2021; 31 M Yang (49011_CR2) 2017; 11 B Wicklein (49011_CR15) 2015; 10 S Zhao (49011_CR23) 2018; 12 T Xue (49011_CR1) 2023; 15 RW Epps (49011_CR65) 2020; 32 Z Yan (49011_CR82) 2023; 6 KH Kim (49011_CR28) 2011; 23 Y Deng (49011_CR37) 2019; 31 A Bigi (49011_CR36) 2001; 22 H Tao (49011_CR48) 2021; 6 M Yang (49011_CR25) 2020; 12 W Xu (49011_CR76) 2023; 11 J Schmidt (49011_CR51) 2019; 5 AE Gongora (49011_CR74) 2020; 6 S Choi (49011_CR89) 2019; 48 C Zhu (49011_CR4) 2015; 6 R Luo (49011_CR84) 2022; 191 B Wu (49011_CR68) 2019; 11 Y Li (49011_CR3) 2022; 32 D Morgan (49011_CR54) 2020; 50 M Ding (49011_CR90) 2021; 11 Y Zhang (49011_CR52) 2018; 4 S Shi (49011_CR62) 2019; 58 Y Wang (49011_CR18) 2020; 402 Q Song (49011_CR39) 2020; 30 M Bandar Abadi (49011_CR31) 2021; 13 J Jiménez-Luna (49011_CR49) 2020; 2 SM Lundberg (49011_CR72) 2017; 30 X Wei (49011_CR87) 2022; 34 D Baykara (49011_CR69) 2023; 8 T Zhou (49011_CR30) 2022; 13 W He (49011_CR17) 2023; 459 KT Butler (49011_CR50) 2018; 559 D Lei (49011_CR10) 2022; 34 J Wang (49011_CR61) 2022; 97 C Cai (49011_CR19) 2021; 421 A Iqbal (49011_CR38) 2020; 30 G Li (49011_CR86) 2020; 5 J Zou (49011_CR27) 2010; 4 T Xu (49011_CR77) 2023; 15 O Obafemi (49011_CR70) 2019; 33 M Wu (49011_CR47) 2022; 13 R Batra (49011_CR67) 2021; 6 S Wu (49011_CR16) 2022; 446 D Jiang (49011_CR80) 2021; 15 Z Wu (49011_CR41) 2020; 7 A Isogai (49011_CR91) 2011; 3 Z Zeng (49011_CR33) 2020; 7 H Mai (49011_CR60) 2022; 122 T Yun (49011_CR63) 2021; 15 M Han (49011_CR11) 2019; 7 C Wei (49011_CR40) 2023; 33 M Wang (49011_CR88) 2021; 31 N Wu (49011_CR29) 2023; 35 Y Piao (49011_CR26) 2016; 6 G Qian (49011_CR43) 2022; 9 DGL Thean (49011_CR55) 2022; 13 D Zhao (49011_CR78) 2022; 10 S Wang (49011_CR14) 2021; 270 AB Gussow (49011_CR56) 2020; 11 L Wang (49011_CR81) 2020; 14 Z Lin (49011_CR64) 2020; 14 K Pang (49011_CR85) 2020; 6 Z Qin (49011_CR44) 2017; 3 |
References_xml | – volume: 9 year: 2018 ident: CR5 article-title: Highly stretchable carbon aerogels publication-title: Nat. Commun. doi: 10.1038/s41467-018-03268-y – volume: 10 start-page: 277 year: 2015 end-page: 283 ident: CR15 article-title: Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.248 – volume: 50 start-page: 71 year: 2020 end-page: 103 ident: CR54 article-title: Opportunities and challenges for machine learning in materials science publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-010015 – volume: 15 start-page: 10058 year: 2021 end-page: 10066 ident: CR63 article-title: Multidimensional Ti C T MXene architectures via interfacial electrochemical self-assembly publication-title: ACS Nano doi: 10.1021/acsnano.1c01727 – volume: 8 year: 2023 ident: CR69 article-title: Controlled release of gentamicin from electrospun poly(vinyl alcohol)/gelatin nanofibers: the effect of crosslinking time using glutaraldehyde vapor publication-title: Chem. Select – volume: 11 year: 2020 ident: CR56 article-title: Machine-learning approach expands the repertoire of anti-CRISPR protein families publication-title: Nat. Commun. doi: 10.1038/s41467-020-17652-0 – volume: 4 start-page: 84 year: 2022 end-page: 94 ident: CR71 article-title: Automatic strain sensor design via active learning and data augmentation for soft machines publication-title: Nat. Mach. Intell doi: 10.1038/s42256-021-00434-8 – volume: 49 start-page: 7229 year: 2020 end-page: 7251 ident: CR46 article-title: MXene hydrogels: fundamentals and applications publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00022A – volume: 4 start-page: 25 year: 2018 ident: CR52 article-title: A strategy to apply machine learning to small datasets in materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0081-z – volume: 3 start-page: e1601536 year: 2017 ident: CR44 article-title: The mechanics and design of a lightweight three-dimensional graphene assembly publication-title: Sci. Adv. doi: 10.1126/sciadv.1601536 – volume: 386 start-page: 123998 year: 2020 ident: CR7 article-title: Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123998 – volume: 15 start-page: 5000 year: 2021 end-page: 5010 ident: CR80 article-title: Superelastic Ti C T MXene-based hybrid aerogels for compression-resilient devices publication-title: ACS Nano doi: 10.1021/acsnano.0c09959 – volume: 32 start-page: 2107767 year: 2022 ident: CR3 article-title: Electrically conductive, optically responsive, and highly orientated Ti C T MXene aerogel fibers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107767 – volume: 12 start-page: 11193 year: 2018 end-page: 11202 ident: CR23 article-title: Highly electrically conductive three-dimensional Ti C T MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances publication-title: ACS Nano doi: 10.1021/acsnano.8b05739 – volume: 406 start-page: 126777 year: 2021 ident: CR6 article-title: Wearable piezoresistive pressure sensors based on 3D graphene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126777 – volume: 122 start-page: 13478 year: 2022 end-page: 13515 ident: CR60 article-title: Machine learning for electrocatalyst and photocatalyst design and discovery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00061 – volume: 35 start-page: 2207969 year: 2023 ident: CR29 article-title: Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional mxene aerogels publication-title: Adv. Mater. doi: 10.1002/adma.202207969 – volume: 6 start-page: 655 year: 2021 end-page: 678 ident: CR67 article-title: Emerging materials intelligence ecosystems propelled by machine learning publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – volume: 33 start-page: 184 year: 2019 end-page: 191 ident: CR70 article-title: A survey of artificial neural network-based prediction models for thermal properties of biomass publication-title: Procedia Manuf doi: 10.1016/j.promfg.2019.04.103 – volume: 14 start-page: 2109 year: 2020 end-page: 2117 ident: CR64 article-title: Highly stable 3D Ti C T MXene-based foam architectures toward high-performance terahertz radiation shielding publication-title: ACS Nano doi: 10.1021/acsnano.9b08832 – volume: 11 start-page: 3208 year: 2023 end-page: 3218 ident: CR76 article-title: Ice-crystal-templated “accordion-like” cellulose nanofiber/Mxene composite aerogels for sensitive wearable pressure sensors publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c05597 – volume: 459 start-page: 141677 year: 2023 ident: CR17 article-title: Efficient electromagnetic wave absorption and joule heating via ultra-light carbon composite aerogels derived from bimetal-organic frameworks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141677 – volume: 32 year: 2020 ident: CR65 article-title: Artificial chemist: an autonomous quantum dot synthesis bot publication-title: Adv Mater doi: 10.1002/adma.202001626 – volume: 11 start-page: 16048 year: 2019 end-page: 16058 ident: CR68 article-title: Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02754 – volume: 3 start-page: 71 year: 2011 end-page: 85 ident: CR91 article-title: TMPO-oxidized cellulose nanofibers publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 13 start-page: 1700453 year: 2017 ident: CR34 article-title: Ultralight multifunctional carbon-based aerogels by combining graphene oxide and bacterial cellulose publication-title: Small doi: 10.1002/smll.201700453 – volume: 34 start-page: 2104980 year: 2022 ident: CR20 article-title: 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance publication-title: Adv. Mater. doi: 10.1002/adma.202104980 – volume: 458 start-page: 141402 year: 2023 ident: CR42 article-title: Emerging MXene/cellulose composites: design strategies and diverse applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141402 – volume: 381 start-page: 122628 year: 2020 ident: CR13 article-title: Waste to wealth: lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122628 – volume: 13 start-page: 995 year: 2022 ident: CR73 article-title: A self-driving laboratory advances the Pareto front for material Properties publication-title: Nat.Commun. doi: 10.1038/s41467-022-28580-6 – volume: 446 start-page: 137093 year: 2022 ident: CR16 article-title: Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137093 – volume: 22 start-page: 763 year: 2001 end-page: 768 ident: CR36 article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00236-2 – volume: 6 start-page: 730 year: 2021 end-page: 755 ident: CR66 article-title: Machine learning for alloys publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00340-w – volume: 15 year: 2023 ident: CR1 article-title: 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01017-5 – volume: 5 start-page: 83 year: 2019 ident: CR51 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – volume: 559 start-page: 547 year: 2018 end-page: 555 ident: CR50 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 15 year: 2023 ident: CR77 article-title: Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01073-x – volume: 31 start-page: 2008807 year: 2021 ident: CR88 article-title: Fusing stretchable sensing technology with machine learning for human-machine interfaces publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008807 – volume: 32 start-page: 1907176 year: 2020 ident: CR22 article-title: Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials publication-title: Methods Appl. Adv. Mater. – volume: 6 start-page: eaaz1708 year: 2020 ident: CR74 article-title: A Bayesian experimental autonomous researcher for mechanical design publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz1708 – volume: 31 start-page: 2103703 year: 2021 ident: CR9 article-title: Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103703 – volume: 34 start-page: 2110608 year: 2022 ident: CR10 article-title: Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism publication-title: Adv. Mater. doi: 10.1002/adma.202110608 – volume: 13 year: 2022 ident: CR47 article-title: Superelastic graphene aerogel-based metamaterials publication-title: Nat. Commun. doi: 10.1038/s41467-022-32200-8 – volume: 30 start-page: 4765 year: 2017 end-page: 4774 ident: CR72 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 year: 2022 ident: CR43 article-title: Enhanced thermal conductivity in situ constructed CNT aerogel structure in composites publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202102098 – volume: 33 start-page: 2211889 year: 2023 ident: CR40 article-title: Recent advances in MXene-based aerogels: fabrication, performance and application publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211889 – volume: 6 start-page: eabd4045 year: 2020 ident: CR85 article-title: Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors publication-title: Sci. Adv. doi: 10.1126/sciadv.abd4045 – volume: 11 start-page: 6817 year: 2017 end-page: 6824 ident: CR2 article-title: Biomimetic architectured graphene aerogel with exceptional strength and resilience publication-title: ACS Nano doi: 10.1021/acsnano.7b01815 – volume: 13 year: 2022 ident: CR8 article-title: Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel publication-title: Nat. Commun. doi: 10.1038/s41467-022-28760-4 – volume: 14 start-page: 10633 year: 2020 end-page: 10647 ident: CR81 article-title: Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti AlC MXene composite aerogel for sensitive pressure sensor publication-title: ACS Nano doi: 10.1021/acsnano.0c04888 – volume: 12 start-page: 33128 year: 2020 end-page: 33138 ident: CR25 article-title: Anisotropic electromagnetic absorption of aligned Ti C T MXene/gelatin nanocomposite aerogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09726 – volume: 2 start-page: 573 year: 2020 end-page: 584 ident: CR49 article-title: Drug discovery with explainable artificial intelligence publication-title: Nat. Mach. Intell doi: 10.1038/s42256-020-00236-4 – volume: 13 start-page: 20539 year: 2021 end-page: 20547 ident: CR79 article-title: Superelastic, ultralight, and conductive Ti C T MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02059 – volume: 6 start-page: 6171 year: 2016 end-page: 6181 ident: CR26 article-title: One-pot synthesis and characterization of reduced graphene oxide–gelatin nanocomposite hydrogels publication-title: RSC Adv doi: 10.1039/C5RA20674J – volume: 25 start-page: 6976 year: 2015 end-page: 6984 ident: CR83 article-title: Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502395 – volume: 3 year: 2012 ident: CR21 article-title: Biomimetic superelastic graphene-based cellular monoliths publication-title: Nat. Commun. doi: 10.1038/ncomms2251 – volume: 48 start-page: 1566 year: 2019 end-page: 1595 ident: CR89 article-title: High-performance stretchable conductive nanocomposites: materials, processes, and device applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00706C – volume: 5 year: 2020 ident: CR86 article-title: Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition publication-title: Sci. Robot. doi: 10.1126/scirobotics.abc8134 – volume: 13 year: 2022 ident: CR55 article-title: Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities publication-title: Nat. Commun. doi: 10.1038/s41467-022-29874-5 – volume: 402 start-page: 126222 year: 2020 ident: CR18 article-title: Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126222 – volume: 6 start-page: 6141 year: 2023 end-page: 6150 ident: CR82 article-title: MXene/CNTs/aramid aerogels for electromagnetic interference shielding and joule heating publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c00249 – volume: 10 start-page: 24772 year: 2022 end-page: 24782 ident: CR78 article-title: Multifunctional, superhydrophobic, and highly elastic MXene/bacterial cellulose hybrid aerogels enabled via silylation publication-title: J. Mater. Chem. A doi: 10.1039/D2TA06621A – volume: 58 start-page: 18171 year: 2019 end-page: 18176 ident: CR62 article-title: Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908402 – volume: 16 start-page: 17049 year: 2022 end-page: 17061 ident: CR12 article-title: Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons publication-title: ACS Nano doi: 10.1021/acsnano.2c07187 – volume: 8 start-page: 5 year: 2022 ident: CR53 article-title: Design high-entropy carbide ceramics from machine learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00678-3 – volume: 7 start-page: 1900267 year: 2019 ident: CR11 article-title: Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900267 – volume: 13 year: 2022 ident: CR57 article-title: Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling publication-title: Nat. Commun. doi: 10.1038/s41467-022-32938-1 – volume: 14 start-page: 1403 year: 2023 ident: CR75 article-title: AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning publication-title: Nat.Commun. doi: 10.1038/s41467-023-37139-y – volume: 7 start-page: 1903077 year: 2020 ident: CR41 article-title: The assembly of MXenes from 2D to 3D publication-title: Adv. Sci. doi: 10.1002/advs.201903077 – volume: 30 start-page: 2000883 year: 2020 ident: CR38 article-title: 2D MXenes for electromagnetic shielding: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 4 start-page: 7293 year: 2010 end-page: 7302 ident: CR27 article-title: Ultralight multiwalled carbon nanotube aerogel publication-title: ACS Nano doi: 10.1021/nn102246a – volume: 13 start-page: 34996 year: 2021 end-page: 35007 ident: CR31 article-title: Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09675 – volume: 6 year: 2015 ident: CR4 article-title: Highly compressible 3D periodic graphene aerogel microlattices publication-title: Nat. Commun. doi: 10.1038/ncomms7962 – volume: 421 start-page: 127772 year: 2021 ident: CR19 article-title: Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127772 – volume: 7 start-page: 2000979 year: 2020 ident: CR33 article-title: Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance publication-title: Adv. Sci. doi: 10.1002/advs.202000979 – volume: 30 start-page: 2000475 year: 2020 ident: CR39 article-title: Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000475 – volume: 97 start-page: 107177 year: 2022 ident: CR61 article-title: MXene materials for advanced thermal management and thermal energy utilization publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107177 – volume: 270 start-page: 118414 year: 2021 ident: CR14 article-title: Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118414 – volume: 15 start-page: 30630 year: 2023 end-page: 30642 ident: CR32 article-title: Anisotropic free-standing aerogels based on graphene/silk for pressure sensing and efficient adsorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03659 – volume: 8 start-page: 2100952 year: 2021 ident: CR35 article-title: Mechanical performance of binary and ternary hybrid MXene/Nanocellulose hydro- and aerogels—a critical review publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202100952 – volume: 1 start-page: 100264 year: 2020 ident: CR58 article-title: Autonomous discovery of battery electrolytes with robotic experimentation and machine learning publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100264 – volume: 31 start-page: 1902432 year: 2019 ident: CR37 article-title: Fast gelation of Ti C T MXene initiated by metal ions publication-title: Adv. Mater. doi: 10.1002/adma.201902432 – volume: 191 start-page: 153 year: 2022 end-page: 163 ident: CR84 article-title: Super durable graphene aerogel inspired by deep-sea glass sponge skeleton publication-title: Carbon doi: 10.1016/j.carbon.2022.01.055 – volume: 6 start-page: 701 year: 2021 end-page: 716 ident: CR48 article-title: Nanoparticle synthesis assisted by machine learning publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00337-5 – volume: 13 year: 2022 ident: CR30 article-title: Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses publication-title: Nat. Commun. doi: 10.1038/s41467-022-32361-6 – volume: 14 year: 2018 ident: CR45 article-title: Multifunctional, superelastic, and lightweight MXene/polyimide aerogels publication-title: Small doi: 10.1002/smll.201802479 – volume: 7 start-page: 790 year: 2022 end-page: 791 ident: CR59 article-title: Catalyst design with machine learning publication-title: Nat. Energy doi: 10.1038/s41560-022-01112-8 – volume: 11 start-page: 2101494 year: 2021 ident: CR90 article-title: Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101494 – volume: 23 start-page: 2865 year: 2011 end-page: 2869 ident: CR28 article-title: Single-walled carbon nanotube aerogel-based elastic conductors publication-title: Adv. Mater. doi: 10.1002/adma.201100310 – volume: 34 start-page: 2203073 year: 2022 ident: CR87 article-title: An open-environment tactile sensing system: toward simple and efficient material identification publication-title: Adv. Mater. doi: 10.1002/adma.202203073 – volume: 10 start-page: 514 year: 2014 end-page: 523 ident: CR24 article-title: Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide publication-title: Small doi: 10.1002/smll.201302182 – volume: 6 start-page: 655 year: 2021 ident: 49011_CR67 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – volume: 97 start-page: 107177 year: 2022 ident: 49011_CR61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107177 – volume: 8 start-page: 5 year: 2022 ident: 49011_CR53 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00678-3 – volume: 3 start-page: 71 year: 2011 ident: 49011_CR91 publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 406 start-page: 126777 year: 2021 ident: 49011_CR6 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126777 – volume: 23 start-page: 2865 year: 2011 ident: 49011_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201100310 – volume: 559 start-page: 547 year: 2018 ident: 49011_CR50 publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 402 start-page: 126222 year: 2020 ident: 49011_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126222 – volume: 14 start-page: 1403 year: 2023 ident: 49011_CR75 publication-title: Nat.Commun. doi: 10.1038/s41467-023-37139-y – volume: 10 start-page: 24772 year: 2022 ident: 49011_CR78 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA06621A – volume: 12 start-page: 11193 year: 2018 ident: 49011_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.8b05739 – volume: 11 start-page: 6817 year: 2017 ident: 49011_CR2 publication-title: ACS Nano doi: 10.1021/acsnano.7b01815 – volume: 3 year: 2012 ident: 49011_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms2251 – volume: 34 start-page: 2104980 year: 2022 ident: 49011_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.202104980 – volume: 30 start-page: 2000475 year: 2020 ident: 49011_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000475 – volume: 7 start-page: 1900267 year: 2019 ident: 49011_CR11 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900267 – volume: 1 start-page: 100264 year: 2020 ident: 49011_CR58 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100264 – volume: 4 start-page: 7293 year: 2010 ident: 49011_CR27 publication-title: ACS Nano doi: 10.1021/nn102246a – volume: 50 start-page: 71 year: 2020 ident: 49011_CR54 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-010015 – volume: 10 start-page: 277 year: 2015 ident: 49011_CR15 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.248 – volume: 33 start-page: 2211889 year: 2023 ident: 49011_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211889 – volume: 6 start-page: eabd4045 year: 2020 ident: 49011_CR85 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd4045 – volume: 32 start-page: 1907176 year: 2020 ident: 49011_CR22 publication-title: Methods Appl. Adv. Mater. – volume: 5 year: 2020 ident: 49011_CR86 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abc8134 – volume: 7 start-page: 2000979 year: 2020 ident: 49011_CR33 publication-title: Adv. Sci. doi: 10.1002/advs.202000979 – volume: 15 start-page: 10058 year: 2021 ident: 49011_CR63 publication-title: ACS Nano doi: 10.1021/acsnano.1c01727 – volume: 6 start-page: eaaz1708 year: 2020 ident: 49011_CR74 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz1708 – volume: 13 start-page: 20539 year: 2021 ident: 49011_CR79 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02059 – volume: 191 start-page: 153 year: 2022 ident: 49011_CR84 publication-title: Carbon doi: 10.1016/j.carbon.2022.01.055 – volume: 30 start-page: 2000883 year: 2020 ident: 49011_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 14 start-page: 2109 year: 2020 ident: 49011_CR64 publication-title: ACS Nano doi: 10.1021/acsnano.9b08832 – volume: 32 year: 2020 ident: 49011_CR65 publication-title: Adv Mater doi: 10.1002/adma.202001626 – volume: 270 start-page: 118414 year: 2021 ident: 49011_CR14 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118414 – volume: 3 start-page: e1601536 year: 2017 ident: 49011_CR44 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601536 – volume: 5 start-page: 83 year: 2019 ident: 49011_CR51 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – volume: 48 start-page: 1566 year: 2019 ident: 49011_CR89 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00706C – volume: 7 start-page: 1903077 year: 2020 ident: 49011_CR41 publication-title: Adv. Sci. doi: 10.1002/advs.201903077 – volume: 4 start-page: 25 year: 2018 ident: 49011_CR52 publication-title: npj Comput. Mater. doi: 10.1038/s41524-018-0081-z – volume: 16 start-page: 17049 year: 2022 ident: 49011_CR12 publication-title: ACS Nano doi: 10.1021/acsnano.2c07187 – volume: 33 start-page: 184 year: 2019 ident: 49011_CR70 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2019.04.103 – volume: 6 start-page: 730 year: 2021 ident: 49011_CR66 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00340-w – volume: 31 start-page: 2103703 year: 2021 ident: 49011_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103703 – volume: 30 start-page: 4765 year: 2017 ident: 49011_CR72 publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 5000 year: 2021 ident: 49011_CR80 publication-title: ACS Nano doi: 10.1021/acsnano.0c09959 – volume: 34 start-page: 2110608 year: 2022 ident: 49011_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202110608 – volume: 381 start-page: 122628 year: 2020 ident: 49011_CR13 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122628 – volume: 13 year: 2022 ident: 49011_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32200-8 – volume: 13 year: 2022 ident: 49011_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29874-5 – volume: 122 start-page: 13478 year: 2022 ident: 49011_CR60 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00061 – volume: 6 start-page: 6141 year: 2023 ident: 49011_CR82 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c00249 – volume: 2 start-page: 573 year: 2020 ident: 49011_CR49 publication-title: Nat. Mach. Intell doi: 10.1038/s42256-020-00236-4 – volume: 11 start-page: 2101494 year: 2021 ident: 49011_CR90 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101494 – volume: 446 start-page: 137093 year: 2022 ident: 49011_CR16 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137093 – volume: 14 start-page: 10633 year: 2020 ident: 49011_CR81 publication-title: ACS Nano doi: 10.1021/acsnano.0c04888 – volume: 22 start-page: 763 year: 2001 ident: 49011_CR36 publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00236-2 – volume: 31 start-page: 1902432 year: 2019 ident: 49011_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201902432 – volume: 6 start-page: 701 year: 2021 ident: 49011_CR48 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00337-5 – volume: 7 start-page: 790 year: 2022 ident: 49011_CR59 publication-title: Nat. Energy doi: 10.1038/s41560-022-01112-8 – volume: 14 year: 2018 ident: 49011_CR45 publication-title: Small doi: 10.1002/smll.201802479 – volume: 58 start-page: 18171 year: 2019 ident: 49011_CR62 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908402 – volume: 6 year: 2015 ident: 49011_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms7962 – volume: 13 year: 2022 ident: 49011_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32361-6 – volume: 4 start-page: 84 year: 2022 ident: 49011_CR71 publication-title: Nat. Mach. Intell doi: 10.1038/s42256-021-00434-8 – volume: 12 start-page: 33128 year: 2020 ident: 49011_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09726 – volume: 13 start-page: 34996 year: 2021 ident: 49011_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09675 – volume: 13 year: 2022 ident: 49011_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28760-4 – volume: 11 start-page: 3208 year: 2023 ident: 49011_CR76 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c05597 – volume: 11 year: 2020 ident: 49011_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17652-0 – volume: 13 year: 2022 ident: 49011_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32938-1 – volume: 25 start-page: 6976 year: 2015 ident: 49011_CR83 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502395 – volume: 15 start-page: 30630 year: 2023 ident: 49011_CR32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03659 – volume: 31 start-page: 2008807 year: 2021 ident: 49011_CR88 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008807 – volume: 9 year: 2022 ident: 49011_CR43 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202102098 – volume: 32 start-page: 2107767 year: 2022 ident: 49011_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107767 – volume: 8 start-page: 2100952 year: 2021 ident: 49011_CR35 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202100952 – volume: 11 start-page: 16048 year: 2019 ident: 49011_CR68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02754 – volume: 421 start-page: 127772 year: 2021 ident: 49011_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127772 – volume: 34 start-page: 2203073 year: 2022 ident: 49011_CR87 publication-title: Adv. Mater. doi: 10.1002/adma.202203073 – volume: 8 year: 2023 ident: 49011_CR69 publication-title: Chem. Select – volume: 6 start-page: 6171 year: 2016 ident: 49011_CR26 publication-title: RSC Adv doi: 10.1039/C5RA20674J – volume: 15 year: 2023 ident: 49011_CR77 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01073-x – volume: 459 start-page: 141677 year: 2023 ident: 49011_CR17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141677 – volume: 15 year: 2023 ident: 49011_CR1 publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01017-5 – volume: 13 start-page: 995 year: 2022 ident: 49011_CR73 publication-title: Nat.Commun. doi: 10.1038/s41467-022-28580-6 – volume: 386 start-page: 123998 year: 2020 ident: 49011_CR7 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123998 – volume: 49 start-page: 7229 year: 2020 ident: 49011_CR46 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00022A – volume: 9 year: 2018 ident: 49011_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03268-y – volume: 10 start-page: 514 year: 2014 ident: 49011_CR24 publication-title: Small doi: 10.1002/smll.201302182 – volume: 13 start-page: 1700453 year: 2017 ident: 49011_CR34 publication-title: Small doi: 10.1002/smll.201700453 – volume: 458 start-page: 141402 year: 2023 ident: 49011_CR42 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141402 – volume: 35 start-page: 2207969 year: 2023 ident: 49011_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.202207969 |
SSID | ssj0000391844 |
Score | 2.538645 |
Snippet | Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely... Abstract Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4685 |
SubjectTerms | 140/146 147/135 639/301/1023/1025 639/925/357/1018 639/925/357/537 Aerogels Artificial neural networks Automation Cellulose Compression compression strength Compressive strength Data augmentation Fabrication finite element analysis Freeze drying Gelatin Glutaraldehyde Heating Humanities and Social Sciences Industrial robots Inverse design Learning algorithms Machine learning Manufacturing engineering Mechanical properties multidisciplinary MXenes Neural networks Ohmic dissipation Parameters Physicochemical properties Prediction models Predictions Resistance heating Robot learning Robotics Science Science (multidisciplinary) Structural integrity Support vector machines Thermal management Workflow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcKqClhJbKSL0Vq3H8iHMERFVVWk5U2pvlJ1SCbNXdHvj3HTvZZbfQ5cIxyUSJPeOZb-zxZ4ATaxVzCOSpRvRKBWOKah8l9UkmlRyLzuX5jskXdXElLqdyunbUV64JG-iBh447SzZETClap0QUVjcWIUXtUufwK1L6kL0vxry1ZKr4YN5h6iLGXTI112dzUXwChiQq8nZLqjciUSHs_xvK_LNY8sGKaQlE589hd0SQ5MPw5y_gSexfwtPhTMlfe2AnpTwykus1sk1ivcf4kmkhAgmlaIPMEsFcONO9osMjkyk6PWLj7ewbRkuSp2fJWLv1M--uyhc3uQY7zvfh6vzz108XdDxHgXpVtwvKghK18K2T0duEWuMqqeAtRuvYhZBsDF2QNgVtlUW41abYKAxbikfVNE7zV7DTz_r4Ggh6BI-AqQ5WWtG6VgcdpG-7wFtM0ZmvgC371PiRZDyfdfHDlMVurs2gB4N6MEUPRldwunrnZqDY2Cr9MatqJZnpscsNNBozGo35l9FUcLRUtBnH7Nxg8tTkbb41q-Dd6jGOtryEYvs4uysyXCitON8iwzJFDiKnbpsMIj9MVWVTwcFgX6sWcUx6BMKwCvSG5W00efNJf_29MINj4BICQVcF75dG-rt9j_fpm__Rp4fwrMmjq8xQHcHO4vYuvkXAtnDHZWzeA6jVPvA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbz8CsnBIiqQlpOVNqb5WepRJNld3vg33fG8W5ZHntMMjnY45n5PB5_Q8gba2XjAMgzDeiV8aaRTPsomE8iyeSa6BzmO2Zf5ekZ_zIX85JwW5Wyyo1PzI46jB5z5McAbVu8hFk37xc_GXaNwtPV0kLjNrmD1GVY0qXmaptjQfZzzXm5K1N3-njFs2eAwMQ4XrpkeiceZdr-f2HNv0sm_zg3zeHo5AG5X3Ak_TAp_iG5FYdH5O7UWfLXY2JnuUgy0ovfKDep9R6iDJJDBBpy6QYdE4UdMZK-gtujszm4PmrjcjyHmEkxSUtLBdcl3rHChwVWYsfVE3J28vnbp1NWuikwL2u1Zk2QvOZeORG9TaC7TiYZvIWYHfsQko2hD8KmoK20ALpUiq2E4CW7KNvW6e4pORjGIT4nFPyCB9hUByssV07poIPwqg-dgo164yvSbObU-EI1jh0vfph85N1pM-nBgB5M1oPRFXm7_WcxEW3slf6IqtpKIkl2fjEuz02xOZNsiLAbVU7yyK1uLaDR2qXewQIVwoeKHG0UbYrlrszNOqvI6-1nsDk8SLFDHK-yTMelll23R6ZBohzAT_0-GcB_sGEVbUWeTetrO6IOtj4cwFhF9M7K2xny7pfh4nvmB4fwxTlAr4q82yzSm_H9f04P90_HC3KvRbvJGagjcrBeXsWXAMjW7lW2umsTiDUt priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqDwbWpCRuIFFEj_iHGFFVSEtJyrtzfKzVIKk2t0e-PeMnQcslJU4JplIcWbG84098xngtTGysgjkqUL0SnlVSapcENRFEWW0VbA2rXcsP8vzC_5pJVYHUE-9MLloP1Na5ml6qg57t-HZpTGiUJ66Jam6A3cTdXuy6oVczOsqifFccT72x5RM3fLqTgzKVP234cu_yyT_2CvNIejsCB6M2JG8H772IRyE7hHcG06T_PEYzDIXRgZy9RvNJjHOYWRJhBCe-FyuQfpIMAtORK841ZHlCqc7YsK6v8Q4SdLCLBmrtr6nvqp0cZ2qr8PmCVycffyyOKfjCQrUybLZ0spLXnLXWBGciagvJqP0zmCcDq330QTfemGiV0YaBFpNDLXEgCVZkHVtFXsKh13fhWMgOBc4hEqlN8LwxjbKKy9c03rWYHJeuQKq6Z9qN9KLp1Muvum8zc2UHvSgUQ8660GrAt7M71wP5Bp7pT8kVc2SiRg73-jXl3o0FB2ND5iBNlbywI2qDSLQ0sbWolEK4XwBp5Oi9eitG41pU50afMuqgFfzY_SztHliutDfZBnGpZKM7ZGpEjkOYqZ2nwxiPkxSRV3As8G-5hExTHc4ArAC1I7l7Qx590l39TVzgmPI4hzhVgFvJyP9Nb5__9Pn_yd-Avfr5Ed5FeoUDrfrm_ACQdnWvsxe-BNHHzMF priority: 102 providerName: Springer Nature |
Title | Machine intelligence accelerated design of conductive MXene aerogels with programmable properties |
URI | https://link.springer.com/article/10.1038/s41467-024-49011-8 https://www.ncbi.nlm.nih.gov/pubmed/38824129 https://www.proquest.com/docview/3062956101 https://www.proquest.com/docview/3063468633 https://www.proquest.com/docview/3153761819 https://www.proquest.com/docview/3165871652 https://pubmed.ncbi.nlm.nih.gov/PMC11144242 https://doaj.org/article/fade9177b64e4a82a6500bf9baa655cd |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvEEgiR3beUCoq1amSp0QUKlvkT_HpJGOtpPYf8_ZSQuFUvHSqMmlqn13vt_Z9wHwUimeawTyqUT0mrI856k0rkyNLz33Ondah_2O8Rk_nbDRtJzuwardUTeBi62uXegnNZlfvvnx_eY9Kvy7NmVcvl2wqO5obVIWMilTuQ-HaJlEUNRxB_fjykwrdGjCQXORsTxF2027PJrtP7Nhq2JJ_2049O9wyj_OVKOpGt6FOx3GJP1WKO7Bnmvuw6226-TNA1DjGEDpyMVv5TiJMgYtUCgcYYmNYR1k5gl6y6EgLC6JZDzFZZEoN5-doz0lYQOXdNFd30L-VfhyFaK03eIhTIYnXwanaddpITU8E8s0t5xlzAhdOqM88pVyz61RaM9dZa1Xzla2VN5KxRUCMuFdwdGwcep4UWhJH8FBM2vcEyC4ZhiEVJlVpWJCC2mlLY2oLBXoxOcmgXw1p7XpypCHbhiXdTwOp7Ju-VAjH-rIh1om8Gr9zlVbhGMn9XFg1ZoyFNCON2bz87rTx9or69BTFZozx5QsFCLVTPtKo_CWpbEJHK0YXa-Eskb3qgiJwFmewIv1Y9THcMiiGje7jjSUcckp3UGThyI6iK2qXTSIDdGZLYsEHrfytR4RRbeIIVBLQG5I3saQN580F19j7XA0bYwhLEvg9UpIf43v33P69D_-5zO4XQTliVtUR3CwnF-754jYlroH-2Iq8FMOP_TgsN8ffR7h9fjk7OMnvDvgg17cC-lFdf0JhhRDCg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qRQguiLUYCgwSnMCql_F4ckCIrUpp01Mr5TbMWipBHJJUqH-K38h7YzslLLn16PjF0szbvnnzFoDnWovcIJBPJaLXlOe5SKX1VWpDFUQwuTeG4h2jQzE85p_G1XgDfva1MJRW2dvEaKhdYylGvoPQtqAizCx_M_2e0tQoul3tR2i0YrHvz3_gkW3-eu8D8vdFUex-PHo_TLupAqkVWb1Icyd4xm1tKm91wDWUIghnNfouP3AuaO8GrtLBSS00go86-EKgERelF0VhZInfvQJX0fFmpFH1uF7GdKjbuuS8q83JSrkz59ESoSNMORV5pnLF_8UxAf_Ctn-naP5xTxvd3-4tuNnhVva2FbTbsOEnd-BaO8ny_C7oUUzK9Oz0txafTFuLXo2aUTjmYqoIawLDEzg1mUUzy0ZjNLVM-1lzgj6aUVCYdRlj36imix6mlPnt5_fg-FL2-T5sTpqJfwAM7ZBFmJY5XWlem1o66SpbD1xZe1PkNoG831Nlu9bmNGHjq4pX7KVULR8U8kFFPiiZwMvlf6ZtY4-11O-IVUtKasodf2hmJ6rTcRW083j6rY3gnmtZaES_mQkDgwpRVdYlsN0zWnWWYq4u5DqBZ8vXqON0caMnvjmLNCUXUpTlGpqcGvMgXhuso0G8iQfkqkhgq5Wv5YpKPGpxBH8JyBXJW1ny6pvJ6ZfYjxzdJecI9RJ41Qvpxfr-v6cP12_HU7g-PBodqIO9w_1HcKMgHYrRr23YXMzO_GMEgwvzJGogg8-XrfK_AEbjdIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIhAXxLMsFDASnGCV3bXXdg4IASVqKa04UCk342epBNmQpEL9a_w6xt7dlPDIrcfNTlay5_V5PA-Ap1rz0iCQzyWi15yVJc-l9XVuQx14MKU3JsY7Dg757hF7P67HG_Czr4WJaZW9TUyG2jU2xsgHCG2rWIRZlIPQpUV83Bm9mn7P4wSpeNPaj9NoRWTfn_3A49v85d4O8vpZVY3efXq7m3cTBnLLC7HIS8dZwawwtbc64HooD9xZjX7MD50L2ruhq3VwUnONQEQEX3E06Jx6XlVGUvzuJbgsaF1GHRNjsYzvxM7rkrGuTqegcjBnySqhU8xZLPjM5YovTCMD_oVz_07X_OPONrnC0Q243mFY8roVupuw4Se34Eo71fLsNuiDlKDpyclv7T6JthY9XGxM4YhLaSOkCQRP47HhLJpccjBGs0u0nzXH6K9JDBCTLnvsW6zvig_TmAXu53fg6EL2-S5sTpqJvwcEbZJFyFY4XWsmjJBOutqKoaPCm6q0GZT9nirbtTmP0za-qnTdTqVq-aCQDyrxQckMni__M22bfKylfhNZtaSMDbrTD83sWHX6roJ2Hk_CwnDmmZaVRiRcmDA0qBx1bV0G2z2jVWc15upcxjN4snyN-h4vcfTEN6eJhjIuOaVraMrYpAex23AdDWJPPCzXVQZbrXwtV0Tx2MUQCGYgVyRvZcmrbyYnX1JvcnSdjCHsy-BFL6Tn6_v_nt5fvx2P4Soqu_qwd7j_AK5VUYVSIGwbNhezU_8QceHCPEoKSODzRWv8L5GweMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+intelligence+accelerated+design+of+conductive+MXene+aerogels+with+programmable+properties&rft.jtitle=Nature+communications&rft.au=Shrestha%2C+Snehi&rft.au=Barvenik%2C+Kieran+James&rft.au=Chen%2C+Tianle&rft.au=Yang%2C+Haochen&rft.date=2024-06-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1+p.4685-&rft_id=info:doi/10.1038%2Fs41467-024-49011-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |