State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance
Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombinat...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 7; pp. 998 - 1013 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
18.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
The state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. |
---|---|
AbstractList | Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
The state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state-of-the-art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type-I and type-II heterojunctions, Z-scheme system, p-n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible-light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. The state-of-the-art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type-I and type-II heterojunctions, Z-scheme system, p-n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible-light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. |
Author | Ye, Jinhua Tu, Wenguang Zhou, Yong Zou, Zhigang Li, Haijin |
Author_xml | – sequence: 1 givenname: Haijin surname: Li fullname: Li, Haijin organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China – sequence: 2 givenname: Yong surname: Zhou fullname: Zhou, Yong email: zhouyong1999@nju.edu.cn organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China – sequence: 3 givenname: Wenguang surname: Tu fullname: Tu, Wenguang organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China – sequence: 4 givenname: Jinhua surname: Ye fullname: Ye, Jinhua organization: Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan – sequence: 5 givenname: Zhigang surname: Zou fullname: Zou, Zhigang email: zhouyong1999@nju.edu.cn organization: Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, Nanjing, P. R. China |
BookMark | eNqF0E1PGzEQBmALUYmP9sp5j71s8NjOOHuM-KygNBKgIi6W450Fl911sJ1C_n0TpYoQEuLkkfw-I827x7b70BNjB8AHwLk4tHXTDQQHxQElbrFdQMBScjHa3sxwt8P2UvrDOWgt1S6bXWebqQxNmR-pHMdcTGJ4iJRS4fvi2P-lmKg4p0wxpBznLs8j1cXkMeTgbLbtIuVU5PBiY72iXci-f3j7n70rJhSbEDvbO_rKvjS2TfTt_7vPbk9Pbo7Oy8tfZz-OxpelQ66xnAqpG1IjPhXKKS3BWV1pUFI4OxSN5SMacqgQtcC6crWbCpAolRoCcomV3Gff13tnMTzPKWXT-eSobW1PYZ4MIFYjDRz4MqrWUbe8MUVqjPPLVnzoc7S-NcDNqmCzKthsCl6ywTs2i76zcfExqNbgxbe0-CRtxsenP9_acm19yvS6sTY-GdRSD83vqzNzhXf3-uL-xqD8B1IXoPA |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_128802 crossref_primary_10_1016_j_jes_2022_05_045 crossref_primary_10_1021_acsaem_8b01123 crossref_primary_10_1039_D1SE01829A crossref_primary_10_1021_acs_nanolett_9b02122 crossref_primary_10_1016_j_seppur_2021_119153 crossref_primary_10_1021_acsami_8b01268 crossref_primary_10_1016_j_apcatb_2018_09_011 crossref_primary_10_1016_j_ceramint_2021_12_134 crossref_primary_10_1016_j_materresbull_2020_111045 crossref_primary_10_1016_j_seppur_2021_120263 crossref_primary_10_1039_D0TA12269F crossref_primary_10_1016_j_solener_2017_11_048 crossref_primary_10_1016_j_cej_2021_134371 crossref_primary_10_1016_S1872_2067_20_63615_4 crossref_primary_10_1038_s41598_018_21239_7 crossref_primary_10_1080_0371750X_2020_1864664 crossref_primary_10_1016_j_jcis_2017_01_121 crossref_primary_10_1016_j_cattod_2018_11_001 crossref_primary_10_1007_s10854_020_03620_3 crossref_primary_10_1016_j_apsusc_2018_11_107 crossref_primary_10_1016_j_jcis_2022_04_003 crossref_primary_10_1088_1757_899X_239_1_012013 crossref_primary_10_1021_acsami_7b01605 crossref_primary_10_1002_admi_202101690 crossref_primary_10_1016_j_cej_2022_137804 crossref_primary_10_1016_j_colsurfa_2024_134900 crossref_primary_10_1016_j_cattod_2018_04_039 crossref_primary_10_1016_j_colsurfa_2020_125184 crossref_primary_10_1016_j_apcatb_2017_01_070 crossref_primary_10_1039_D3MA00662J crossref_primary_10_1002_cssc_201801431 crossref_primary_10_3866_PKU_WHXB202407014 crossref_primary_10_1063_1_4960806 crossref_primary_10_1039_C9NJ04555D crossref_primary_10_1016_j_jece_2021_107030 crossref_primary_10_1021_acsaem_4c00769 crossref_primary_10_1016_j_chemosphere_2023_137828 crossref_primary_10_1002_adfm_201602779 crossref_primary_10_1016_j_jece_2024_113414 crossref_primary_10_1021_acsomega_9b02359 crossref_primary_10_1002_ange_201900046 crossref_primary_10_1021_acs_jpcc_8b04224 crossref_primary_10_1016_j_jics_2022_100495 crossref_primary_10_1039_C7TA02116J crossref_primary_10_2139_ssrn_4055898 crossref_primary_10_1039_C5RA13755A crossref_primary_10_1016_j_ijhydene_2019_11_078 crossref_primary_10_1016_j_jcis_2022_04_111 crossref_primary_10_1016_j_cej_2025_160313 crossref_primary_10_1016_j_cej_2025_161763 crossref_primary_10_1016_j_seppur_2022_120539 crossref_primary_10_1021_acs_inorgchem_7b00219 crossref_primary_10_1016_j_apsadv_2023_100536 crossref_primary_10_1016_j_nanoen_2020_105031 crossref_primary_10_1016_j_jallcom_2019_06_311 crossref_primary_10_1016_j_seppur_2022_120778 crossref_primary_10_1039_C8CC01873A crossref_primary_10_1016_j_apcatb_2018_10_001 crossref_primary_10_1016_j_ceramint_2021_12_355 crossref_primary_10_1002_aenm_202003159 crossref_primary_10_1039_D3NJ00856H crossref_primary_10_1039_D2RA07070G crossref_primary_10_1021_acsaem_8b01345 crossref_primary_10_1016_j_apsusc_2018_04_011 crossref_primary_10_1016_j_materresbull_2019_110757 crossref_primary_10_1016_j_apcatb_2016_06_027 crossref_primary_10_1002_adfm_202106700 crossref_primary_10_1016_j_ceramint_2021_06_086 crossref_primary_10_1016_j_seppur_2015_09_021 crossref_primary_10_1021_acsanm_3c04168 crossref_primary_10_1016_j_cej_2022_135401 crossref_primary_10_1002_smll_201800749 crossref_primary_10_1016_j_jcat_2017_05_010 crossref_primary_10_1039_C8SC03297A crossref_primary_10_1016_j_jenvman_2022_114930 crossref_primary_10_1016_j_seppur_2023_125056 crossref_primary_10_1016_j_cej_2019_123710 crossref_primary_10_1016_j_jcis_2018_03_033 crossref_primary_10_1039_C9NJ01580A crossref_primary_10_1088_1757_899X_774_1_012039 crossref_primary_10_1186_s11671_019_3070_3 crossref_primary_10_1002_chem_201904594 crossref_primary_10_3934_matersci_2023049 crossref_primary_10_1016_j_jallcom_2016_10_240 crossref_primary_10_1016_j_apcatb_2020_119157 crossref_primary_10_1016_j_apsusc_2025_162447 crossref_primary_10_1016_j_jcis_2017_02_069 crossref_primary_10_1016_j_wen_2020_03_008 crossref_primary_10_3390_catal11020205 crossref_primary_10_1002_tcr_202400202 crossref_primary_10_1016_j_jallcom_2015_07_124 crossref_primary_10_1016_j_apcatb_2019_117856 crossref_primary_10_1016_j_apcatb_2019_117855 crossref_primary_10_1039_D0DT02309D crossref_primary_10_1016_j_ceramint_2019_08_092 crossref_primary_10_1016_j_jallcom_2016_12_069 crossref_primary_10_1016_j_jallcom_2020_154953 crossref_primary_10_1002_solr_201900059 crossref_primary_10_1016_j_colsurfa_2020_125198 crossref_primary_10_1007_s42114_017_0001_6 crossref_primary_10_1016_j_jallcom_2019_06_331 crossref_primary_10_1039_C8CS00607E crossref_primary_10_1016_S1872_2067_19_63383_8 crossref_primary_10_1016_j_jallcom_2019_07_319 crossref_primary_10_1002_adma_201806808 crossref_primary_10_1016_j_mtadv_2022_100249 crossref_primary_10_1039_C5RA14889H crossref_primary_10_1016_j_optmat_2020_110500 crossref_primary_10_1016_j_apsusc_2019_04_230 crossref_primary_10_1021_acs_langmuir_2c02903 crossref_primary_10_1088_1361_6528_ab4e2c crossref_primary_10_1016_j_apsusc_2020_146943 crossref_primary_10_1021_acsaem_0c02252 crossref_primary_10_1039_D4TA09139F crossref_primary_10_1016_j_scitotenv_2020_138144 crossref_primary_10_1134_S0036024419040307 crossref_primary_10_3390_molecules27030833 crossref_primary_10_1002_ange_201708645 crossref_primary_10_1016_j_ijhydene_2024_10_308 crossref_primary_10_1007_s42864_020_00031_z crossref_primary_10_1016_j_cattod_2024_115092 crossref_primary_10_1063_1_5124856 crossref_primary_10_1088_1674_4926_41_1_011701 crossref_primary_10_1007_s13391_018_0055_9 crossref_primary_10_1039_C5DT01560J crossref_primary_10_1002_pssb_202100309 crossref_primary_10_1016_j_jmst_2016_11_017 crossref_primary_10_1002_ange_202210849 crossref_primary_10_1039_D4MH01316F crossref_primary_10_1039_C7CY01134B crossref_primary_10_1039_C5CY01857A crossref_primary_10_1016_j_matt_2020_02_006 crossref_primary_10_1002_smll_202402219 crossref_primary_10_1007_s10562_019_02718_6 crossref_primary_10_1021_acsomega_9b00493 crossref_primary_10_1002_cptc_201700163 crossref_primary_10_1021_acsanm_3c04213 crossref_primary_10_1002_chem_201706164 crossref_primary_10_1021_acs_inorgchem_0c03342 crossref_primary_10_1016_j_apmate_2024_100204 crossref_primary_10_1021_acs_energyfuels_3c00672 crossref_primary_10_1016_j_ijhydene_2020_04_160 crossref_primary_10_1007_s10853_019_03634_1 crossref_primary_10_1039_C5TA10194H crossref_primary_10_1002_cphc_201900632 crossref_primary_10_1007_s10853_020_05528_z crossref_primary_10_1039_D0QI00506A crossref_primary_10_1016_j_apcatb_2016_07_022 crossref_primary_10_1016_j_jcis_2016_06_007 crossref_primary_10_1016_j_apcatb_2019_117948 crossref_primary_10_1016_j_apsusc_2019_03_333 crossref_primary_10_1039_D0TA05485B crossref_primary_10_1039_D0TA09059J crossref_primary_10_1007_s11051_019_4525_2 crossref_primary_10_1021_acsenergylett_9b01150 crossref_primary_10_1039_D0RA08358E crossref_primary_10_1002_advs_201500389 crossref_primary_10_1016_j_apcatb_2023_122688 crossref_primary_10_1016_j_seppur_2023_126066 crossref_primary_10_1039_D1NJ02247D crossref_primary_10_1016_j_apt_2019_08_035 crossref_primary_10_1016_j_ceramint_2018_05_017 crossref_primary_10_1016_j_apsusc_2021_152206 crossref_primary_10_1016_j_nanoen_2019_03_004 crossref_primary_10_1039_C7RA06462D crossref_primary_10_1016_j_nanoen_2017_09_021 crossref_primary_10_1016_j_cattod_2018_02_006 crossref_primary_10_1016_j_jallcom_2018_09_097 crossref_primary_10_3390_molecules28227500 crossref_primary_10_1016_j_jcis_2024_03_066 crossref_primary_10_1134_S1063782624602760 crossref_primary_10_1186_s11671_016_1246_7 crossref_primary_10_1039_C6TA10728A crossref_primary_10_1016_j_bios_2019_03_028 crossref_primary_10_1016_j_envres_2024_120487 crossref_primary_10_1049_mnl_2018_5682 crossref_primary_10_1016_j_chemosphere_2020_129148 crossref_primary_10_3390_nano7010022 crossref_primary_10_1039_D0TA05621A crossref_primary_10_1021_acs_langmuir_3c02458 crossref_primary_10_1016_j_nanoen_2016_08_054 crossref_primary_10_1016_j_materresbull_2019_110571 crossref_primary_10_1016_j_apcatb_2017_08_016 crossref_primary_10_1002_ange_201912439 crossref_primary_10_1016_j_cap_2015_11_002 crossref_primary_10_1016_j_jallcom_2016_03_249 crossref_primary_10_1016_S1872_2067_17_62962_0 crossref_primary_10_1016_S1872_2067_20_63700_7 crossref_primary_10_1016_j_ceramint_2023_09_149 crossref_primary_10_1070_RCR5004 crossref_primary_10_1039_C9TA06407A crossref_primary_10_1007_s00604_021_04999_4 crossref_primary_10_1039_D0TA04068A crossref_primary_10_1016_j_apcatb_2017_02_027 crossref_primary_10_1016_j_jwpe_2023_104032 crossref_primary_10_1021_acsami_3c01255 crossref_primary_10_1007_s00216_019_01765_7 crossref_primary_10_2139_ssrn_4149302 crossref_primary_10_1016_j_colsurfa_2023_131755 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_apsusc_2017_01_069 crossref_primary_10_1016_j_jece_2019_103209 crossref_primary_10_1063_1_4980011 crossref_primary_10_1002_adfm_201801983 crossref_primary_10_3389_fchem_2019_00713 crossref_primary_10_1016_j_seppur_2024_129870 crossref_primary_10_1088_1674_4926_41_9_091709 crossref_primary_10_1002_adma_201808185 crossref_primary_10_1016_j_jphotochem_2020_112755 crossref_primary_10_1002_cptc_202200017 crossref_primary_10_1007_s10563_021_09349_1 crossref_primary_10_1016_j_jwpe_2023_104384 crossref_primary_10_1039_C5EE02650D crossref_primary_10_1142_S021798492050339X crossref_primary_10_1021_acscombsci_7b00077 crossref_primary_10_1016_j_apcatb_2017_09_020 crossref_primary_10_1016_j_nanoen_2019_01_095 crossref_primary_10_1016_j_cej_2023_144569 crossref_primary_10_1016_j_physb_2024_416230 crossref_primary_10_1007_s40789_024_00681_1 crossref_primary_10_1016_j_apcatb_2018_05_070 crossref_primary_10_1016_j_jhazmat_2018_08_074 crossref_primary_10_1002_nano_202000010 crossref_primary_10_1088_2053_1591_ab1b8c crossref_primary_10_1002_anie_201708645 crossref_primary_10_1016_j_apcatb_2019_05_003 crossref_primary_10_1039_C7QM00055C crossref_primary_10_1007_s10854_018_9629_4 crossref_primary_10_1016_j_jechem_2021_03_033 crossref_primary_10_1016_j_materresbull_2016_01_039 crossref_primary_10_1039_D0QI00339E crossref_primary_10_1016_j_catcom_2022_106556 crossref_primary_10_1002_cctc_201800750 crossref_primary_10_1016_j_jphotochem_2020_112625 crossref_primary_10_3390_nano10040619 crossref_primary_10_1016_j_ceramint_2025_03_074 crossref_primary_10_1039_C6CE01948J crossref_primary_10_1039_C6RA22674D crossref_primary_10_1039_D3CP06143D crossref_primary_10_1016_j_apcatb_2017_09_028 crossref_primary_10_1016_j_ijhydene_2017_04_283 crossref_primary_10_1002_aenm_201700171 crossref_primary_10_1016_j_jallcom_2025_178464 crossref_primary_10_1038_srep41253 crossref_primary_10_1021_acsami_5b11973 crossref_primary_10_1039_D4CY01334D crossref_primary_10_1088_1361_6528_ab7888 crossref_primary_10_1039_C6RA13060G crossref_primary_10_1016_j_mattod_2019_09_003 crossref_primary_10_1039_C6RA03420A crossref_primary_10_1016_j_apmate_2024_100178 crossref_primary_10_1016_j_ceramint_2022_12_231 crossref_primary_10_1016_j_jpowsour_2017_01_050 crossref_primary_10_1021_acs_iecr_7b02671 crossref_primary_10_1021_acs_inorgchem_9b00834 crossref_primary_10_1016_j_renene_2022_03_073 crossref_primary_10_1016_j_watres_2020_115798 crossref_primary_10_1051_e3sconf_201911801043 crossref_primary_10_1021_acs_inorgchem_4c04552 crossref_primary_10_1002_solr_202301002 crossref_primary_10_3390_catal10091046 crossref_primary_10_1002_nano_202000127 crossref_primary_10_1007_s13391_020_00200_9 crossref_primary_10_1016_j_jiec_2024_03_054 crossref_primary_10_3390_catal9050439 crossref_primary_10_1021_acsami_1c04130 crossref_primary_10_1016_j_cej_2020_125662 crossref_primary_10_1021_acssuschemeng_6b02902 crossref_primary_10_1007_s12274_016_1311_7 crossref_primary_10_1016_j_envpol_2020_115605 crossref_primary_10_3390_catal12020153 crossref_primary_10_1016_j_molcata_2016_07_032 crossref_primary_10_1016_j_apsusc_2019_03_246 crossref_primary_10_1016_j_jcis_2017_04_057 crossref_primary_10_1016_j_jechem_2021_04_050 crossref_primary_10_1016_j_optmat_2023_114670 crossref_primary_10_1039_C6TA07420K crossref_primary_10_1039_D0RA06596J crossref_primary_10_1016_j_cej_2021_133573 crossref_primary_10_1039_C5RA15821D crossref_primary_10_1002_admi_201701694 crossref_primary_10_1039_C7CE01260H crossref_primary_10_1039_D3NR04270G crossref_primary_10_1039_D3TA00079F crossref_primary_10_1002_asia_201700540 crossref_primary_10_1016_j_jallcom_2021_158810 crossref_primary_10_1016_j_jphotochemrev_2015_08_003 crossref_primary_10_1021_acs_langmuir_9b03015 crossref_primary_10_1039_C5RA27427C crossref_primary_10_1007_s10854_023_11057_7 crossref_primary_10_3390_nano10071387 crossref_primary_10_1002_aenm_202200435 crossref_primary_10_3390_molecules28186502 crossref_primary_10_1039_C7CY00466D crossref_primary_10_1016_j_apcatb_2015_09_050 crossref_primary_10_1039_C7RA01201B crossref_primary_10_1002_smll_202405551 crossref_primary_10_1021_acsnano_9b03649 crossref_primary_10_1016_j_apsusc_2021_151852 crossref_primary_10_1039_D0RA06226J crossref_primary_10_1016_j_isci_2018_01_002 crossref_primary_10_1039_C7TA02379K crossref_primary_10_1002_cssc_202402106 crossref_primary_10_1016_j_snb_2022_132777 crossref_primary_10_1007_s40097_020_00363_9 crossref_primary_10_1002_smll_201503611 crossref_primary_10_1142_S1793604719500061 crossref_primary_10_1016_S1872_2067_17_62821_3 crossref_primary_10_1016_j_apcatb_2018_03_040 crossref_primary_10_1021_acscatal_9b00313 crossref_primary_10_1021_acsami_6b01850 crossref_primary_10_1007_s10895_025_04136_x crossref_primary_10_1039_C7RA05175A crossref_primary_10_1016_j_jcat_2024_115670 crossref_primary_10_1021_acs_jpcc_7b11567 crossref_primary_10_1021_acsaem_1c03713 crossref_primary_10_1016_j_jallcom_2021_159847 crossref_primary_10_1021_acs_chemrev_0c01328 crossref_primary_10_1039_D2MA00947A crossref_primary_10_1016_j_jcis_2019_11_100 crossref_primary_10_1038_s41598_024_58751_y crossref_primary_10_1016_j_jcat_2024_115429 crossref_primary_10_1016_j_jallcom_2023_171075 crossref_primary_10_1002_cctc_201800959 crossref_primary_10_1016_j_inoche_2023_111559 crossref_primary_10_1016_j_ijhydene_2024_12_300 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_1016_j_psep_2019_08_001 crossref_primary_10_1016_j_cej_2020_126567 crossref_primary_10_1002_anie_201900046 crossref_primary_10_1002_asia_202100392 crossref_primary_10_1038_s41598_017_12625_8 crossref_primary_10_1016_j_apcatb_2019_117788 crossref_primary_10_1021_acs_inorgchem_4c04472 crossref_primary_10_1016_j_seppur_2023_125011 crossref_primary_10_1002_cey2_179 crossref_primary_10_1016_j_surfin_2021_101246 crossref_primary_10_1021_acs_inorgchem_4c03268 crossref_primary_10_1142_S1793292021500971 crossref_primary_10_1002_cnma_202000170 crossref_primary_10_1016_j_inoche_2019_107576 crossref_primary_10_1021_acs_jpclett_9b01436 crossref_primary_10_1007_s40097_018_0278_1 crossref_primary_10_1016_j_eti_2020_101060 crossref_primary_10_1016_j_jallcom_2021_159830 crossref_primary_10_1039_D1MA00748C crossref_primary_10_3762_bjnano_9_123 crossref_primary_10_1002_advs_201800244 crossref_primary_10_1007_s11356_024_33893_8 crossref_primary_10_1039_C9EE00717B crossref_primary_10_1016_j_jallcom_2023_172132 crossref_primary_10_1016_j_apcatb_2016_09_021 crossref_primary_10_1021_acsanm_8b01693 crossref_primary_10_1016_j_jcis_2020_06_014 crossref_primary_10_1039_D0QM00216J crossref_primary_10_1002_slct_201902612 crossref_primary_10_1002_slct_201800908 crossref_primary_10_1016_j_apcatb_2020_118702 crossref_primary_10_1038_nenergy_2016_151 crossref_primary_10_1039_C5RA10771G crossref_primary_10_1016_j_jhazmat_2016_05_080 crossref_primary_10_3390_molecules23112947 crossref_primary_10_1039_C6CY00298F crossref_primary_10_1016_j_jcis_2018_10_027 crossref_primary_10_1016_j_jcis_2020_12_009 crossref_primary_10_1002_adma_202205782 crossref_primary_10_1016_j_cej_2021_128915 crossref_primary_10_1039_D2CC05660G crossref_primary_10_1016_j_apsusc_2017_08_149 crossref_primary_10_1039_C8MH00110C crossref_primary_10_1016_j_apcatb_2023_122614 crossref_primary_10_1039_D0NJ01026J crossref_primary_10_1002_adma_202206516 crossref_primary_10_1016_j_jallcom_2021_158734 crossref_primary_10_1021_acsaem_9b00150 crossref_primary_10_1016_S1872_2067_21_63978_5 crossref_primary_10_1016_j_apcatb_2018_03_014 crossref_primary_10_1007_s11144_020_01916_3 crossref_primary_10_1039_C7GC03731G crossref_primary_10_1039_D1EE02359D crossref_primary_10_1016_j_diamond_2024_111398 crossref_primary_10_1016_S1872_2067_16_62449_X crossref_primary_10_1002_adfm_202406549 crossref_primary_10_1002_adhm_202200360 crossref_primary_10_1016_j_jclepro_2024_140568 crossref_primary_10_1002_smll_202100961 crossref_primary_10_1016_j_mcat_2017_03_027 crossref_primary_10_1021_acs_est_5b03758 crossref_primary_10_1021_acsami_0c10531 crossref_primary_10_1016_j_apcatb_2017_05_080 crossref_primary_10_1039_C6RA03268K crossref_primary_10_1016_j_ijhydene_2021_10_221 crossref_primary_10_1016_j_apmt_2020_100741 crossref_primary_10_1016_j_jallcom_2023_170335 crossref_primary_10_1016_j_jcis_2019_03_092 crossref_primary_10_1002_sstr_202300142 crossref_primary_10_1016_j_cclet_2024_109727 crossref_primary_10_1039_D1TA05365E crossref_primary_10_1016_j_jssc_2018_07_026 crossref_primary_10_1002_ange_201700286 crossref_primary_10_1016_j_colsurfa_2024_134229 crossref_primary_10_1007_s10854_019_02662_6 crossref_primary_10_1007_s42768_024_00198_y crossref_primary_10_1021_acs_jpclett_3c02038 crossref_primary_10_1002_slct_201600855 crossref_primary_10_1016_j_apt_2018_02_006 crossref_primary_10_1002_adma_201502755 crossref_primary_10_1080_10408436_2018_1485549 crossref_primary_10_1016_j_ijhydene_2018_11_014 crossref_primary_10_1002_eem2_12171 crossref_primary_10_1002_adfm_202006883 crossref_primary_10_1039_C5CC09222A crossref_primary_10_1007_s40820_025_01695_3 crossref_primary_10_1021_jacs_5b05926 crossref_primary_10_1007_s11356_023_27141_8 crossref_primary_10_1016_j_apcatb_2016_09_005 crossref_primary_10_1039_C6TA02764D crossref_primary_10_1021_acs_nanolett_5b03871 crossref_primary_10_1016_j_jpcs_2019_109100 crossref_primary_10_1021_acsomega_8b03267 crossref_primary_10_1039_C8DT02708K crossref_primary_10_1002_advs_201700194 crossref_primary_10_1016_j_jcis_2018_07_130 crossref_primary_10_1016_j_materresbull_2018_10_009 crossref_primary_10_1038_s41929_018_0128_z crossref_primary_10_20964_2016_08_44 crossref_primary_10_1039_C7CY01638G crossref_primary_10_1016_j_surfin_2025_105808 crossref_primary_10_1039_D0CY00256A crossref_primary_10_1016_j_scitotenv_2022_153790 crossref_primary_10_1016_j_trechm_2022_08_010 crossref_primary_10_1039_C6DT03449G crossref_primary_10_30723_ijp_v20i3_1001 crossref_primary_10_3390_photochem2030041 crossref_primary_10_1016_j_seppur_2024_129331 crossref_primary_10_1039_C8RA09403A crossref_primary_10_3390_coatings8110374 crossref_primary_10_1002_advs_202412459 crossref_primary_10_1016_j_apsusc_2017_12_219 crossref_primary_10_1016_j_apsusc_2019_143840 crossref_primary_10_1016_j_jece_2018_04_003 crossref_primary_10_1002_cplu_201700527 crossref_primary_10_1002_adma_201503730 crossref_primary_10_1016_j_colsurfa_2019_124079 crossref_primary_10_1021_acs_analchem_1c04820 crossref_primary_10_1002_cssc_201601799 crossref_primary_10_1039_C8QM00537K crossref_primary_10_1016_j_matre_2021_100019 crossref_primary_10_1039_C6RA19365J crossref_primary_10_1088_2053_1591_aadb7c crossref_primary_10_1149_2_0221704jes crossref_primary_10_1021_acsami_7b05302 crossref_primary_10_1039_C7CC07636C crossref_primary_10_1016_j_jtice_2023_104679 crossref_primary_10_1039_D3TA01479G crossref_primary_10_1002_smtd_201700080 crossref_primary_10_1016_j_jechem_2020_06_024 crossref_primary_10_1016_j_physe_2021_114767 crossref_primary_10_1002_bkcs_12125 crossref_primary_10_1007_s12274_016_1292_6 crossref_primary_10_1016_j_cclet_2022_05_037 crossref_primary_10_1039_D2QM00892K crossref_primary_10_1002_adfm_201903490 crossref_primary_10_1016_j_colsurfa_2019_124183 crossref_primary_10_1016_j_jtice_2018_07_037 crossref_primary_10_1016_j_solener_2019_03_040 crossref_primary_10_3390_catal10101126 crossref_primary_10_3390_ijms241915021 crossref_primary_10_1016_j_apcatb_2016_02_060 crossref_primary_10_1016_j_chemosphere_2021_132126 crossref_primary_10_1016_j_cclet_2020_11_065 crossref_primary_10_1016_j_inoche_2024_112247 crossref_primary_10_2139_ssrn_4073644 crossref_primary_10_1016_j_jhazmat_2018_01_010 crossref_primary_10_1016_j_jhazmat_2018_09_055 crossref_primary_10_1039_C8CE00700D crossref_primary_10_1016_j_cej_2023_143174 crossref_primary_10_1557_jmr_2016_128 crossref_primary_10_1016_j_jcis_2020_03_111 crossref_primary_10_1039_C8TA03462A crossref_primary_10_1016_j_apcatb_2019_118222 crossref_primary_10_1016_j_catcom_2019_03_023 crossref_primary_10_1039_C9CY02435B crossref_primary_10_1016_j_jece_2018_11_024 crossref_primary_10_1039_D1DT02853G crossref_primary_10_1021_acsami_5b06009 crossref_primary_10_1021_acs_jpcc_4c06027 crossref_primary_10_1039_C7NR09244J crossref_primary_10_3390_catal10020227 crossref_primary_10_1016_j_jphotochem_2016_06_012 crossref_primary_10_1016_j_ijhydene_2024_09_006 crossref_primary_10_1016_j_jece_2021_105563 crossref_primary_10_1088_1361_6641_aa5246 crossref_primary_10_1016_j_apsusc_2020_147002 crossref_primary_10_1016_j_inoche_2021_108786 crossref_primary_10_3390_catal9080667 crossref_primary_10_1039_D1TC00014D crossref_primary_10_1016_j_ceramint_2024_07_260 crossref_primary_10_1007_s10853_018_2810_6 crossref_primary_10_1007_s12274_023_6014_2 crossref_primary_10_1016_j_apcatb_2019_118470 crossref_primary_10_1016_j_seppur_2020_118251 crossref_primary_10_1016_j_ceramint_2016_11_102 crossref_primary_10_1039_D2CY02177C crossref_primary_10_1002_anie_201912439 crossref_primary_10_1039_C5SC03249K crossref_primary_10_1016_j_snb_2019_127210 crossref_primary_10_1016_j_apsusc_2017_05_147 crossref_primary_10_1039_C9NA00634F crossref_primary_10_1016_j_ceramint_2018_08_320 crossref_primary_10_1142_S1793292018500996 crossref_primary_10_1002_cnma_202000125 crossref_primary_10_1016_j_cej_2019_123020 crossref_primary_10_1021_acsami_4c10831 crossref_primary_10_1016_j_cclet_2023_108306 crossref_primary_10_1021_acs_langmuir_7b02403 crossref_primary_10_1039_D0TA00901F crossref_primary_10_1002_anie_201700286 crossref_primary_10_1021_acsami_4c07664 crossref_primary_10_1007_s11356_018_1767_y crossref_primary_10_1016_j_apcatb_2017_05_049 crossref_primary_10_1016_j_apcatb_2018_07_057 crossref_primary_10_1021_acs_nanolett_8b04768 crossref_primary_10_1016_j_ceramint_2023_11_013 crossref_primary_10_1021_acssuschemeng_7b01386 crossref_primary_10_1016_j_jcis_2021_05_130 crossref_primary_10_1016_j_jece_2024_115147 crossref_primary_10_1016_j_apcatb_2020_119626 crossref_primary_10_1039_C9NR01732A crossref_primary_10_1007_s10854_019_02149_4 crossref_primary_10_1016_j_jcis_2022_08_152 crossref_primary_10_1039_C5RA14374H crossref_primary_10_1016_j_cej_2019_123352 crossref_primary_10_1016_j_ijhydene_2021_04_131 crossref_primary_10_1039_C8CC09371G crossref_primary_10_1039_D4EY00245H crossref_primary_10_1039_C8CS00479J crossref_primary_10_1007_s10562_018_2525_y crossref_primary_10_1016_j_apsusc_2017_05_012 crossref_primary_10_1021_acs_iecr_5b01993 crossref_primary_10_1039_D4CY00645C crossref_primary_10_1016_j_jpcs_2018_03_032 crossref_primary_10_1002_admi_201701304 crossref_primary_10_1039_D2NR04727F crossref_primary_10_1016_j_cej_2019_122264 crossref_primary_10_1016_j_chemosphere_2023_140381 crossref_primary_10_1021_acssuschemeng_6b01852 crossref_primary_10_1016_j_apcatb_2021_120902 crossref_primary_10_1016_j_cej_2022_137197 crossref_primary_10_1016_j_jpcs_2021_110063 crossref_primary_10_1016_j_nanoen_2017_04_002 crossref_primary_10_1016_j_enchem_2022_100094 crossref_primary_10_1016_j_jssc_2021_122737 crossref_primary_10_1039_C5NR08624H crossref_primary_10_1002_adfm_201801585 crossref_primary_10_1016_j_envres_2023_116000 crossref_primary_10_1007_s10562_025_04968_z crossref_primary_10_1016_j_apcatb_2016_02_015 crossref_primary_10_1002_adfm_201801214 crossref_primary_10_1021_acsami_1c01108 crossref_primary_10_1016_j_apsusc_2021_149731 crossref_primary_10_1016_j_apsusc_2020_147016 crossref_primary_10_1016_j_apsusc_2020_147379 crossref_primary_10_1016_j_rser_2025_115490 crossref_primary_10_1142_S1793292018500893 crossref_primary_10_1002_smtd_201900586 crossref_primary_10_1016_j_nanoen_2017_05_046 crossref_primary_10_1002_cssc_201600773 crossref_primary_10_1016_j_apcatb_2016_10_086 crossref_primary_10_1016_j_cej_2018_09_102 crossref_primary_10_1038_ncomms9340 crossref_primary_10_1038_s42004_021_00589_w crossref_primary_10_1016_j_ijhydene_2024_08_403 crossref_primary_10_1021_acs_est_7b04503 crossref_primary_10_1002_adfm_202213901 crossref_primary_10_1007_s10971_024_06608_1 crossref_primary_10_1016_j_cej_2021_128766 crossref_primary_10_1016_j_optmat_2022_112681 crossref_primary_10_1016_j_apcatb_2018_09_096 crossref_primary_10_1016_j_apsusc_2021_151140 crossref_primary_10_1016_j_molstruc_2021_131329 crossref_primary_10_1039_D2NR03924A crossref_primary_10_1039_C7SC03920D crossref_primary_10_1016_j_jece_2017_07_009 crossref_primary_10_1007_s11164_020_04312_7 crossref_primary_10_1016_j_cej_2018_11_229 crossref_primary_10_1016_j_ceramint_2019_06_093 crossref_primary_10_1016_j_inoche_2022_110319 crossref_primary_10_1515_revic_2022_0015 crossref_primary_10_1016_j_mssp_2022_106805 crossref_primary_10_1016_j_colsurfa_2020_125580 crossref_primary_10_1016_j_jece_2021_105922 crossref_primary_10_1007_s11356_023_27113_y crossref_primary_10_1002_adma_201606688 crossref_primary_10_1039_C7NJ01278K crossref_primary_10_3390_molecules28114520 crossref_primary_10_1002_aelm_202000240 crossref_primary_10_1016_j_apsusc_2022_155575 crossref_primary_10_1016_j_jcis_2018_08_008 crossref_primary_10_1016_j_apcatb_2017_07_076 crossref_primary_10_1039_D3SE00499F crossref_primary_10_1007_s10854_018_00602_4 crossref_primary_10_1039_D1CS00684C crossref_primary_10_1016_j_molcata_2016_03_021 crossref_primary_10_1016_j_rser_2021_111864 crossref_primary_10_2139_ssrn_4167648 crossref_primary_10_3390_catal10070804 crossref_primary_10_1038_srep39973 crossref_primary_10_1016_j_coco_2017_07_003 crossref_primary_10_1021_acs_inorgchem_0c00277 crossref_primary_10_1002_chem_202000821 crossref_primary_10_1016_j_apcatb_2016_12_019 crossref_primary_10_1007_s13762_017_1401_4 crossref_primary_10_1016_j_apcatb_2018_12_016 crossref_primary_10_1002_cplu_201900103 crossref_primary_10_1039_C7SE00344G crossref_primary_10_1016_j_bioactmat_2020_07_005 crossref_primary_10_1039_C8NJ04849E crossref_primary_10_1016_j_ccr_2023_215489 crossref_primary_10_1039_C8TA10606A crossref_primary_10_1016_j_apcatb_2019_118085 crossref_primary_10_1039_C5RA26250J crossref_primary_10_1039_D1NJ00812A crossref_primary_10_1002_anie_202210849 crossref_primary_10_1016_j_apcatb_2019_117908 crossref_primary_10_1016_j_ces_2019_115266 crossref_primary_10_1039_D4TA06179A crossref_primary_10_1016_j_seppur_2022_121490 crossref_primary_10_1039_C7RA12236E crossref_primary_10_1039_C7EN01031A crossref_primary_10_1016_j_apcatb_2015_11_043 crossref_primary_10_1371_journal_pone_0309389 crossref_primary_10_1016_j_cattod_2018_11_068 crossref_primary_10_1016_j_seppur_2019_03_040 crossref_primary_10_1016_j_apsusc_2016_11_081 crossref_primary_10_1021_acs_iecr_0c02397 crossref_primary_10_1039_C5TA02337H crossref_primary_10_1007_s40097_021_00411_y crossref_primary_10_1016_j_apsusc_2017_05_058 crossref_primary_10_1039_C7RA02026K crossref_primary_10_1016_j_carbon_2024_119153 crossref_primary_10_1021_acs_jpclett_3c02792 crossref_primary_10_1039_D0TA06442D crossref_primary_10_1016_j_apsusc_2021_152003 crossref_primary_10_1016_j_envpol_2020_116018 crossref_primary_10_1016_j_ijhydene_2018_10_145 crossref_primary_10_1016_j_jcis_2017_07_017 crossref_primary_10_1016_j_jcis_2022_07_031 crossref_primary_10_1016_j_jhazmat_2021_126567 crossref_primary_10_1142_S2810922822300069 crossref_primary_10_1039_C8TA03398F crossref_primary_10_1039_D4TC00972J crossref_primary_10_1016_j_apsusc_2016_10_172 crossref_primary_10_1016_j_cattod_2017_04_030 crossref_primary_10_1016_j_nxener_2024_100222 crossref_primary_10_1016_j_mssp_2022_106600 crossref_primary_10_1016_j_apcatb_2017_06_055 crossref_primary_10_1016_j_biomaterials_2025_123258 crossref_primary_10_1039_C8NR08292H crossref_primary_10_1016_j_jmst_2021_12_064 crossref_primary_10_1016_j_ijhydene_2024_11_051 crossref_primary_10_1039_C8TA06783J crossref_primary_10_1002_chem_201804922 crossref_primary_10_1021_acs_jpcc_7b03001 crossref_primary_10_3390_nano10020321 crossref_primary_10_1016_j_apt_2021_11_009 crossref_primary_10_1039_C8CY00930A crossref_primary_10_1039_D0RA05779G crossref_primary_10_1016_j_cogsc_2021_100465 crossref_primary_10_1021_acs_energyfuels_4c00160 crossref_primary_10_1016_j_nanoen_2020_104688 crossref_primary_10_1007_s10853_019_03417_8 crossref_primary_10_1016_j_cattod_2020_06_015 crossref_primary_10_1039_C7TA02626A crossref_primary_10_1016_j_jcis_2021_11_070 crossref_primary_10_1039_D4EN00715H crossref_primary_10_1002_cctc_202000546 crossref_primary_10_1016_j_jcat_2019_02_019 crossref_primary_10_1021_acsami_8b04855 crossref_primary_10_1007_s10853_019_03900_2 crossref_primary_10_1186_s11671_017_2428_7 crossref_primary_10_1039_C5RA21339H crossref_primary_10_1016_j_apcatb_2016_11_024 crossref_primary_10_1016_j_colsurfa_2023_131150 crossref_primary_10_1039_C6RA27388B crossref_primary_10_3390_chemengineering6060089 crossref_primary_10_1016_j_cej_2024_153099 crossref_primary_10_1016_j_ceramint_2020_11_127 crossref_primary_10_1039_C6RA07589D crossref_primary_10_1016_j_cej_2017_07_049 crossref_primary_10_1007_s11356_021_18332_2 crossref_primary_10_1002_adma_202418138 crossref_primary_10_1007_s00339_017_1133_9 crossref_primary_10_1016_j_apsusc_2018_04_116 crossref_primary_10_1021_acsami_9b09290 crossref_primary_10_1002_adma_202413931 crossref_primary_10_1002_ijch_202100084 crossref_primary_10_1002_adma_202203836 crossref_primary_10_1016_j_jallcom_2021_162338 crossref_primary_10_1002_solr_202200493 crossref_primary_10_1016_j_apcata_2017_04_009 crossref_primary_10_1088_2053_1591_ab20b1 crossref_primary_10_1088_1361_6463_abfb18 crossref_primary_10_1002_cctc_201700786 crossref_primary_10_1016_j_nanoen_2021_105936 crossref_primary_10_1021_acsomega_1c06239 crossref_primary_10_1016_j_jiec_2023_10_055 crossref_primary_10_1039_C9TA07569K crossref_primary_10_3390_catal10080901 crossref_primary_10_1039_D1GC02307A crossref_primary_10_1016_j_apsusc_2022_155400 crossref_primary_10_1039_C7CY00529F crossref_primary_10_1002_slct_202401038 crossref_primary_10_1002_adfm_202106982 crossref_primary_10_1016_j_ijhydene_2024_02_002 crossref_primary_10_1039_C9TA12870K crossref_primary_10_1007_s10854_019_02569_2 crossref_primary_10_1016_j_scib_2018_02_008 crossref_primary_10_1016_j_ijhydene_2017_09_128 crossref_primary_10_3390_catal13030522 crossref_primary_10_1002_cctc_201701965 crossref_primary_10_3390_ma15062221 crossref_primary_10_1016_j_jcis_2022_04_105 crossref_primary_10_1016_j_apcatb_2016_05_056 crossref_primary_10_1016_j_materresbull_2018_02_041 crossref_primary_10_1186_s11671_019_3066_z crossref_primary_10_1039_C6EE02265K crossref_primary_10_1021_acs_energyfuels_2c01364 crossref_primary_10_1016_j_apcatb_2016_06_071 crossref_primary_10_1021_acsanm_3c02571 crossref_primary_10_1016_j_jobe_2024_111077 crossref_primary_10_1016_j_jcis_2017_06_018 crossref_primary_10_1016_j_apsusc_2021_151096 crossref_primary_10_1002_ejic_201600646 crossref_primary_10_1007_s11356_021_14308_4 crossref_primary_10_1039_D2EE00050D crossref_primary_10_1039_C7MH00557A crossref_primary_10_1016_j_apcatb_2017_06_018 crossref_primary_10_1021_acsami_7b12386 crossref_primary_10_1016_j_ijhydene_2024_01_315 crossref_primary_10_1039_C6DT04079A |
Cites_doi | 10.1021/jp308921s 10.1021/am400964c 10.1021/nn1001547 10.1039/c3cp53131g 10.1039/c2nr32797j 10.1021/jp063441z 10.1021/jp311532s 10.1021/jp902866b 10.1002/adma.201104110 10.1039/c3ta12803b 10.1021/jp3083419 10.1002/adma.201200330 10.1021/ja106710m 10.1007/s10832-006-9073-3 10.1002/adfm.201103074 10.1021/cr900056b 10.1016/j.cej.2012.09.084 10.1021/jp410692y 10.1002/adma.201002290 10.1002/anie.201001827 10.1021/nl101010m 10.1149/1.3328177 10.1021/cs400156m 10.1021/ja8007825 10.1021/ja308723w 10.1039/b904668b 10.1021/jp400010z 10.1021/jp4009652 10.1021/ja203296z 10.1021/am400851q 10.1016/S1003-9953(10)60212-5 10.1016/j.jallcom.2012.02.043 10.1021/jp075605x 10.1021/ja212032q 10.1016/j.elecom.2011.09.023 10.1021/jp2037476 10.1002/anie.201205333 10.1016/j.jallcom.2012.10.038 10.1021/ja0361749 10.1021/cr00035a013 10.1002/anie.200603148 10.1016/j.elecom.2010.07.035 10.1039/c0jm03818k 10.1021/ja300319g 10.1002/adma.201400288 10.1016/j.jhazmat.2011.09.051 10.1021/am201343q 10.1002/adfm.200901435 10.1021/nn200088x 10.1021/jp804699c 10.1016/j.jphotochem.2004.02.006 10.1039/c2ce25563d 10.1016/j.ijhydene.2010.01.008 10.1016/j.jcis.2010.12.034 10.1002/anie.201207554 10.1038/ncomms3195 10.1039/c3cy00055a 10.1039/c3ce40446c 10.1038/238037a0 10.1021/jp112259p 10.1021/la2000975 10.1016/j.cattod.2012.11.011 10.1021/jp209353j 10.1021/am3011516 10.1246/cl.2004.1348 10.1021/cm303206s 10.1021/jp107531h 10.1021/am401746b 10.1016/S1010-6030(02)00070-9 10.1039/b302418k 10.1021/jp209258r 10.1021/jp904320d 10.1039/c2jm32660d 10.1002/smll.201301276 10.1039/c0cc04985a 10.1021/am302136y 10.1039/C2CP41153A 10.1021/cr1002326 10.1038/414625a 10.1039/C2CS35367A 10.1039/c2cp41629h 10.1021/cs4002089 10.1021/cr0500535 10.1021/ie402437k 10.1021/nn100229x 10.1021/jp301904s 10.1021/nn2006738 10.1126/science.1103755 10.1021/jp400014j 10.1021/cm902516f 10.1039/c2cy20202f 10.1016/j.catcom.2010.05.010 10.1039/c3nr03493c 10.1002/adfm.200902390 10.1021/jp301355q 10.1039/c3ta01476b 10.1002/adfm.201203547 10.1021/jp303307r 10.1038/nmat1734 10.1021/jp204747w 10.1016/0047-2670(79)80037-4 10.1021/jp201901b 10.1039/c0ee00604a 10.1021/ja0777741 10.1557/mrs.2010.3 10.1016/j.cattod.2011.02.055 10.1039/c3cs60176e 10.1021/am100605a 10.1039/c2jm31589k 10.1021/ja311541a 10.1039/C3CS60370A 10.1021/am100618h 10.1039/c3cp51722e 10.1016/j.apcatb.2012.11.019 10.1021/jp0729112 10.1021/jp303255f 10.1039/C4CS00126E 10.1021/nl903217w 10.1038/ncomms2401 10.1039/C2CS35355E 10.1021/am300812n 10.1021/jp104208z 10.1021/cm903260f 10.1038/nature04165 10.1002/smll.200800841 10.1002/anie.201301306 10.1039/C1CS15172J 10.1021/am3008533 10.1021/jp2078117 10.1021/jp405989z 10.1021/am403264q 10.1002/adfm.201202349 10.1039/b822385h 10.1038/srep02720 10.1021/jp3031754 10.1002/adma.201302014 10.1039/c3ta12207g 10.1002/adfm.201000931 10.1021/jz2013193 10.1002/anie.200453728 10.1021/am201499r 10.1111/jace.12071 10.1038/ncomms3278 10.1021/jp110190a 10.1007/s10971-010-2179-8 10.1002/adfm.200900891 10.1016/j.apcatb.2013.07.048 10.1021/ja204881d 10.1016/j.molcata.2012.09.031 10.1039/C2CS35241A 10.1021/nn100684q 10.1021/ja1025112 10.1039/C2NR33109H 10.1088/0957-4484/17/18/006 10.1016/j.enconman.2011.02.014 10.1039/C4CS00180J 10.1039/c3ce26672a 10.1021/ja506386e 10.1039/c2cp43524a 10.1103/PhysRevB.81.165303 10.1021/jp203414q 10.1021/ja1068596 10.1016/j.apsusc.2007.04.077 10.1021/cm070754d 10.1021/jp200274k 10.1021/ja806370s 10.1002/anie.201207199 10.1002/adfm.201102566 10.1021/nn901087c 10.1021/ac3028799 10.1021/am302074p 10.1021/jp210033y 10.1016/j.jpowsour.2012.01.154 10.1063/1.2266237 10.1021/cm901762h 10.1021/am402929d 10.1021/cm802282t 10.1021/nl025596y 10.1002/chem.201300579 10.1021/jp806645c 10.1021/la104195v 10.1002/adfm.201303214 10.1002/anie.201400966 10.1021/es903087w 10.1021/jz4013504 10.1021/jp310495j 10.1039/c3nr03998f 10.1039/C3CS60437C 10.1039/c3dt50699a 10.1021/jp305388c 10.1016/j.ijhydene.2009.12.091 10.1002/adfm.200400184 10.1039/c3ra41782d 10.1021/cs300724r 10.1021/nl100250z 10.1016/j.catcom.2010.11.027 10.1039/c3nr01577g 10.1557/mrs.2011.238 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201401636 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 1013 |
ExternalDocumentID | 10_1002_adfm_201401636 ADFM201401636 ark_67375_WNG_N6XZ7KZT_6 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c6076-b237fe480b24c4731ca7971432ca52fa08e501966726d9cdcb213634451603693 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 09:17:49 EDT 2025 Tue Jul 01 01:30:17 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Jan 22 16:47:17 EST 2025 Wed Oct 30 09:49:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6076-b237fe480b24c4731ca7971432ca52fa08e501966726d9cdcb213634451603693 |
Notes | ArticleID:ADFM201401636 istex:BCD6B36B97714B843B140B56AA2858E06803EC62 ark:/67375/WNG-N6XZ7KZT-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669871010 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1669871010 crossref_citationtrail_10_1002_adfm_201401636 crossref_primary_10_1002_adfm_201401636 wiley_primary_10_1002_adfm_201401636_ADFM201401636 istex_primary_ark_67375_WNG_N6XZ7KZT_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 18, 2015 |
PublicationDateYYYYMMDD | 2015-02-18 |
PublicationDate_xml | – month: 02 year: 2015 text: February 18, 2015 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Y. L. Liao, H. W. Zhang, Z. Y. Zhong, L. J. Jia, F. M. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 11022. P. Xiong, J. w. Zhu, X. Wang, Ind. Eng. Chem. Res. 2013, 52, 17126. W. G. Tu, Y. Zhou, Q. Liu, S. C. Yan, S. S. Bao, X. Y. Wang, M. Xiao, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 1743. K. E. deKrafft, C. Wang, W. B. Lin, Adv. Mater. 2012, 24, 2014. H. Wang, Y. S. Bai, H. Zhang, Z. H. Zhang, J. H. Li, L. Guo, J. Phys. Chem. C 2010, 114, 16451. N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718. L. X. Sang, H. Y. Tan, X. M. Zhang, Y. T. Wu, C. F. Ma, C. Burda, J. Phys. Chem. C 2012, 116, 18633. H. M. Zhu, N. H. Song, T. Q. Lian, J. Am. Chem. Soc. 2010, 132, 15038. J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425. T. Teranishi, M. Sakamoto, J. Phys. Chem. Lett. 2013, 4, 2867. A. Fujishima, K. Honda, Nature 1972, 238, 37. Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 2012, 116, 12958. B. M. Rajbongshi, S. K. Samdarshi, Appl. Catal. B Environ. 2014, 144, 435. V. Luca, M. G. Blackford, K. S. Finnie, P. J. Evans, M. James, M. J. Lindsay, M. Skyllas-Kazacos, P. R. F. Barnes, J. Phys. Chem. C 2007, 111, 18479. J. S. Lee, K. H. You, C. B. Park, Adv. Mater. 2012, 24, 1084. Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Catal. Sci. Technol. 2013, 3, 1750. A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energ. Convers. Manag. 2011, 52, 2800. L. Li, Y. L. Zhang, A. M. Schultz, X. Liu, P. A. Salvador, G. S. Rohrer, Catal. Sci. Technol. 2012, 2, 1945. X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 2011, 115, 14648. W. Fan, Q. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 2013, 15, 2632. L. G. Gai, X. Q. Duan, H. H. Jiang, Q. H. Mei, G. W. Zhou, Y. Tian, H. Liu, CrystEngComm 2012, 14, 7662. J. Zhang, X. H. Tang, D. Y. Li, J. Phys. Chem. C 2011, 115, 21529. N. N. Hewa-Kasakarage, P. Z. El-Khoury, A. N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov, ACS Nano 2010, 4, 1837. L. Q. Jing, W. Zhou, G. H. Tian, H. G. Fu, Chem. Soc. Rev. 2013, 42, 9509. X. Li, J. T. Chen, H. L. Li, J. T. Li, Y. T. Xu, Y. J. Liu, J. R. Zhou, J. Nat. Gas. Chem. 2011, 20, 413. X. W. Zhang, T. Zhang, J. Ng, D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731. W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 1215. Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968. J. S. Luo, L. Ma, T. C. He, C. F. Ng, S. J. Wang, H. D. Sun, H. J. Fan, J. Phys. Chem. C 2012, 116, 11956. J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, H. Liu, Adv. Mater. 2013, 25, 5075. P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2002, 2, 781. X. N. Wang, H. J. Zhu, Y. M. Xu, H. Wang, Y. Tao, S. Hark, X. D. Xiao, Q. A. Li, ACS Nano 2010, 4, 3302. J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630. R. Zamani, R. Fiz, J. Pan, T. Fischer, S. Mathur, J. R. Morante, J. Arbiol, CrystEngComm 2013, 15, 4532. H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 2009, 38, 1849. P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920. J. T. Carneiro, T. J. Savenije, J. A. Moulijn, G. Mul, J. Phys. Chem. C 2011, 115, 2211. J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, M. G. Bawendi, Angew. Chem. Int. Ed. 2004, 43, 2154. D. A. Chen, F. Zhao, H. Qi, M. Rutherford, X. G. Peng, Chem. Mater. 2010, 22, 1437. L. H. Yu, Y. Huang, G. C. Xiao, D. Z. Li, J. Mater. Chem. A 2013, 1, 9637. L. C. K. Liau, C. C. Lin, Appl. Surf. Sci. 2007, 253, 8798. W. W. Zhao, Z. Y. Ma, D. Y. Yan, J. J. Xu, H. Y. Chen, Anal. Chem. 2012, 84, 10518. J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 2006, 5, 782. P. Dhanasekaran, H. G. Salunke, N. M. Gupta, J. Phys. Chem. C 2012, 116, 12156. R. Marschall, Adv. Funct. Mater. 2014, 24, 2421. Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664. J. Ng, S. P. Xu, X. W. Zhang, H. Y. Yang, D. D. Sun, Adv. Funct. Mater. 2010, 20, 4287. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446. X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda, J. L. Gole, Adv. Funct. Mater. 2005, 15, 41. J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C 2008, 112, 17200. Y. L. Lee, C. F. Chi, S. Y. Liau, Chem. Mater. 2010, 22, 922. L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 2013, 5, 588. J. Pan, S. M. Huhne, H. Shen, L. S. Xiao, P. Born, W. Mader, S. Mathur, J. Phys. Chem. C 2011, 115, 17265. S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011, 23, 180. S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 2011, 133, 15240. Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949. D. H. Son, S. M. Hughes, Y. D. Yin, A. P. Alivisatos, Science 2004, 306, 1009. S. L. Cheng, W. Y. Fu, B. Y. Hai, L. N. Zhang, J. W. Ma, H. Zhao, M. L. Sun, L. H. Yang, J. Phys. Chem. C 2012, 116, 2615. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2010, 2, 2915. W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, H. Zhang, J. Hazard. Mater. 2011, 197, 19. D. Perera, R. Lorek, R. S. Khnayzer, P. Moroz, T. O'Connor, D. Khon, G. Diederich, E. Kinder, S. Lambright, F. N. Castellano, M. Zamkov, J. Phys. Chem. C 2012, 116, 22786. K. Maeda, D. L. Lu, K. Domen, ACS Catal. 2013, 3, 1026. X. W. Wang, G. Liu, Z. G. Chen, F. Li, L. Z. Wang, G. Q. Lu, H. M. Cheng, Chem. Commun. 2009, 3452. Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turner, G. Van Tendeloo, J. Mater. Chem. 2012, 22, 11739. V. Etacheri, M. K. Seery, S. J. Hinder, S. C. Pillai, Chem. Mater. 2010, 22, 3843. G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088. Y. Q. Qu, X. F. Duan, Chem. Soc. Rev. 2013, 42, 2568. F. F. Abdi, L. H. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195. X. B. Cao, P. Chen, Y. Guo, J. Phys. Chem. C 2008, 112, 20560. J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883. J. Zhang, J. H. Bang, C. C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387. D. Liu, Z. Z. Zheng, C. Q. Wang, Y. Q. Yin, S. Q. Liu, B. Yang, Z. H. Jiang, J. Phys. Chem. C 2013, 117, 26529. X. Yang, J. Xu, T. Wong, Q. Yang, C. S. Lee, Phys. Chem. Chem. Phys. 2013, 15, 12688. S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Chem. Mater. 2008, 20, 6784. S. J. Ding, X. Yin, X. J. Lu, Y. M. Wang, F. Q. Huang, D. Y. Wan, ACS Appl. Mater. Interfaces 2012, 4, 306. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photoch. Photobio. A 2002, 148, 71. Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano 2010, 4, 3789. H. X. Li, C. W. Cheng, X. L. Li, J. P. Liu, C. Guan, Y. Y. Tay, H. J. Fan, J. Phys. Chem. C 2012, 116, 3802. Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li, L. H. Zhou, Appl. Catal. B Environ. 2013, 130, 277. S. A. K. Leghari, S. Sajjad, J. L. Zhang, RSC Adv. 2013, 3, 15354. H. W. Bai, Z. Y. Liu, D. D. Sun, J. Am. Ceram. Soc. 2013, 96, 942. X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, L. M. Peng, J. Phys. Chem. C 2009, 113, 20481. L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Environ. Sci. Technol. 2010, 44, 1392. Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. Y. Q. Qu, L. Liao, R. Cheng, Y. Wang, Y. C. Lin, Y. Huang, X. F. Duan, Nano Lett. 2010, 10, 1941. Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968. H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A 2013, 1, 12327. M. C. Liu, D. W. Jing, Z. H. Zhou, L. J. Guo, Nat. Commun. 2013, 4, 2278. K. H. Lin, C. Y. Chuang, Y. Y. Lee, F. C. Li, Y. M. Chang, I. P. Liu, S. C. Chou, Y. L. Lee, J. Phys. Chem. C 2012, 116, 1550. X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13089. X. Y. Li, Y. Hou, Q. D. Zhao, G. H. Chen, Langmuir 2011, 27, 3113. X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891. L. Huang, J. H. Yang, X. l. Wang, J. Han, H. X. Han, C. Li, Phys. Chem. Chem. Phys. 2013, 15, 553. B. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759. C. M. McShane, K. S. Choi, J. Am. Chem. Soc. 2009, 131, 2561. Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625. C. Z. Yao, B. H. Wei, L. X. Meng, H. Li, Q. J. Gong, H. Sun, H. X. Ma, X. H. Hu, J. Power. Sources 2012, 207, 222. Y. C. Chen, Y. C. Pu, Y. J. Hsu, J. Phys. Chem. C 2012, 116, 2967. S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372. R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, C. Li, Nat. Commun. 2013, 4, 1432. J. X. Wang, H. Ruan, W. J. Li, D. Z. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, J. Phys. Chem. C 2012, 116, 13935. T. K. Sung, J. H. Kang, D. M. Jang, Y. Myung, G. B. Jung, H. S. Kim, C. S. Jung, Y. J. Cho, J. Park, C. L. Lee, J. Mater. Chem. 2011, 21, 4553. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, J. Mater. Chem. 2012, 22, 17055. M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu, X. Z. Li, Catal. Today. 2011, 175, 256. J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C. L. Shao, Y. C. Liu, ACS Appl. Mater. Interfaces 2012, 4, 424. L. Huang, X. L. Wang, J. H. Yang, G. Liu, J. F. Han, C. Li, J. Phys. Chem. C 2013, 117, 11584. Y. Wang, S. C. Li, H. Shi, K. Yu, Nanoscale 2012, 4, 7817. H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Chem. Soc. Rev. 2014, 43, 4281. Z. B. Yu, Y 2010; 12 2011; 115 2010; 11 2010; 10 2011; 356 2013; 3 2007; 107 2013; 4 2013; 1 2004; 163 2011; 52 2014; 26 2013; 367 2014; 24 2009; 113 2012; 14 2013; 5 2014; 136 2012; 527 2013; 9 2011; 197 2010; 22 2004; 33 2010; 20 2012; 134 2010; 114 2013; 52 2013; 117 2010; 110 2002; 148 2008; 20 2008; 112 2012; 24 2009; 19 2010; 2 2012; 22 2010; 4 2001; 414 2004; 43 2011; 2 2010; 35 2002; 2 2006; 110 2011; 4 2004; 306 2011; 5 1979; 10 2011; 133 2014; 43 2010; 44 2010; 49 2005; 15 2014; 144 2012; 116 2008; 130 2012; 41 2010; 54 2013; 25 2013; 23 2013; 209 2011; 13 2011; 12 2012; 207 2012; 51 2013; 19 2013; 15 2012; 211 2007; 253 2013; 96 2010; 157 2011; 20 2011; 22 2013; 553 2011; 21 2011; 23 2003; 125 2011; 27 2014; 6 2014; 53 1995; 95 2006; 17 2013; 42 2005; 437 2009 2006; 5 2003 2011; 36 2009; 131 2010; 81 1972; 238 2011; 175 2012; 2 2006; 89 2007; 111 2010; 132 2013; 135 2013; 130 2009; 5 2011; 47 2012; 4 2009; 38 2007; 46 2012; 84 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_152_1 e_1_2_6_175_1 e_1_2_6_198_1 Jung S. (e_1_2_6_144_1) 2011; 22 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_148_1 e_1_2_6_41_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_102_1 e_1_2_6_186_1 e_1_2_6_200_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_26_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_92_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_113_1 e_1_2_6_197_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_185_1 e_1_2_6_6_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_158_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_196_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_108_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_119_1 e_1_2_6_90_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_195_1 e_1_2_6_134_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_37_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_183_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_205_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_194_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_57_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_9_1 e_1_2_6_193_1 e_1_2_6_170_1 e_1_2_6_1_1 e_1_2_6_22_1 e_1_2_6_204_1 e_1_2_6_45_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_155_1 e_1_2_6_181_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_189_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_192_1 Liau L. C. K. (e_1_2_6_169_1) 2013; 1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_203_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_142_1 e_1_2_6_188_1 e_1_2_6_165_1 e_1_2_6_191_1 e_1_2_6_7_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_202_1 e_1_2_6_115_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_153_1 e_1_2_6_199_1 e_1_2_6_130_1 e_1_2_6_176_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_21_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_190_1 e_1_2_6_8_1 e_1_2_6_201_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: H. X. Li, C. W. Cheng, X. L. Li, J. P. Liu, C. Guan, Y. Y. Tay, H. J. Fan, J. Phys. Chem. C 2012, 116, 3802. – reference: S. S. K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, Chem. Eur. J. 2013, 19, 7480. – reference: J. S. Luo, L. Ma, T. C. He, C. F. Ng, S. J. Wang, H. D. Sun, H. J. Fan, J. Phys. Chem. C 2012, 116, 11956. – reference: J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064. – reference: D. Liu, Z. Z. Zheng, C. Q. Wang, Y. Q. Yin, S. Q. Liu, B. Yang, Z. H. Jiang, J. Phys. Chem. C 2013, 117, 26529. – reference: H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348. – reference: J. B. Rivest, P. K. Jain, Chem. Soc. Rev. 2013, 42, 89. – reference: D. J. Martin, P. J. Reardon, S. J. Moniz, J. Tang, J. Am. Chem. Soc. 2014, 136, 12568. – reference: H. M. Zhu, N. H. Song, T. Q. Lian, J. Am. Chem. Soc. 2010, 132, 15038. – reference: T. Zewdu, J. N. Clifford, E. Palomares, Phys. Chem. Chem. Phys. 2012, 14, 13076. – reference: J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630. – reference: J. Pan, S. M. Huhne, H. Shen, L. S. Xiao, P. Born, W. Mader, S. Mathur, J. Phys. Chem. C 2011, 115, 17265. – reference: Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625. – reference: Y. L. Lee, C. F. Chi, S. Y. Liau, Chem. Mater. 2010, 22, 922. – reference: S. Kim, B. Fisher, H. J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466. – reference: C. T. Dinh, H. Yen, F. Kleitz, T. O. Do, Angew. Chem. 2014, 53, 6618. – reference: H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234. – reference: S. Jung, K. Yong, Chem. Commun. 2011, 47, 2643. – reference: J. Ng, S. P. Xu, X. W. Zhang, H. Y. Yang, D. D. Sun, Adv. Funct. Mater. 2010, 20, 4287. – reference: H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A 2013, 1, 12327. – reference: N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718. – reference: Z. B. Jiao, T. Chen, J. Y. Xiong, T. Wang, G. X. Lu, J. H. Ye, Y. P. Bi, Sci. Rep. 2013, 3, 2720. – reference: W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 1215. – reference: L. Li, Y. L. Zhang, A. M. Schultz, X. Liu, P. A. Salvador, G. S. Rohrer, Catal. Sci. Technol. 2012, 2, 1945. – reference: T. K. Sung, J. H. Kang, D. M. Jang, Y. Myung, G. B. Jung, H. S. Kim, C. S. Jung, Y. J. Cho, J. Park, C. L. Lee, J. Mater. Chem. 2011, 21, 4553. – reference: X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 2008, 130, 7176. – reference: J. C. Yu, L. Wu, J. Lin, P. S. Li, Q. Li, Chem. Commun. 2003, 1552. – reference: K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2013, 135, 4596. – reference: M. Miyauchi, Y. Nukui, D. Atarashi, E. Sakai, ACS Appl. Mater. Interfaces 2013, 5, 9770. – reference: R. Zamani, R. Fiz, J. Pan, T. Fischer, S. Mathur, J. R. Morante, J. Arbiol, CrystEngComm 2013, 15, 4532. – reference: Y. Q. Qu, L. Liao, R. Cheng, Y. Wang, Y. C. Lin, Y. Huang, X. F. Duan, Nano Lett. 2010, 10, 1941. – reference: P. Xiong, J. w. Zhu, X. Wang, Ind. Eng. Chem. Res. 2013, 52, 17126. – reference: K. Maeda, D. L. Lu, K. Domen, ACS Catal. 2013, 3, 1026. – reference: J. Zhang, X. H. Tang, D. Y. Li, J. Phys. Chem. C 2011, 115, 21529. – reference: J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C 2008, 112, 17200. – reference: K. K. Manga, Y. Zhou, Y. L. Yan, K. P. Loh, Adv. Funct. Mater. 2009, 19, 3638. – reference: H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Chem. Soc. Rev. 2014, 43, 4281. – reference: S. Jung, S. Jeon, K. Yong, Nanotechnology 2011, 22. – reference: S. F. Chen, X. L. Yu, H. Y. Zhang, W. Liu, J. Electrochem. Soc. 2010, 157, K96. – reference: W. Zhu, X. Liu, H. Q. Liu, D. L. Tong, J. Y. Yang, J. Y. Peng, J. Am. Chem. Soc. 2010, 132, 12619. – reference: Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2010, 2, 2915. – reference: K. E. deKrafft, C. Wang, W. B. Lin, Adv. Mater. 2012, 24, 2014. – reference: J. Y. Wang, Z. H. Liu, Q. Zheng, Z. K. He, R. X. Cai, Nanotechnology 2006, 17, 4561. – reference: A. Kudo, MRS Bull. 2011, 36, 32. – reference: Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968. – reference: P. Dhanasekaran, H. G. Salunke, N. M. Gupta, J. Phys. Chem. C 2012, 116, 12156. – reference: Y. Shi, H. Y. Li, L. Wang, W. Shen, H. Z. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4800. – reference: S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, J. Phys. Chem. C 2013, 117, 5558. – reference: K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photoch. Photobio. A 2002, 148, 71. – reference: H. M. Wei, H. B. Gong, L. Chen, M. Zi, B. Q. Cao, J. Phys. Chem. C 2012, 116, 10510. – reference: K. Maeda, D. Lu, K. Domen, ACS Catal. 2013, 3, 1026. – reference: M. C. Liu, L. Z. Wang, G. Q. Lu, X. D. Yao, L. J. Guo, Energ. Environ. Sci. 2011, 4, 1372. – reference: H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu, J. Yi, ACS Nano 2011, 5, 4084. – reference: Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turner, G. Van Tendeloo, J. Mater. Chem. 2012, 22, 11739. – reference: H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 2009, 38, 1849. – reference: E. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J. W. Jang, H. Jun, J. Kubota, K. Domen, J. S. Lee, J. Am. Chem. Soc. 2013, 135, 5375. – reference: F. F. Abdi, L. H. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195. – reference: Y. Y. Bu, Z. Y. Chen, W. B. Li, J. Q. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097. – reference: H. J. Chen, L. Shao, Q. Li, J. F. Wang, Chem. Soc. Rev. 2013, 42, 2679. – reference: S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Chem. Mater. 2008, 20, 6784. – reference: Y. Y. Sun, W. Z. Wang, L. Zhang, Z. J. Zhang, Chem. Eng. J. 2012, 211, 161. – reference: S. Y. Qin, F. Xin, Y. D. Liu, X. H. Yin, W. Ma, J. Colloid. Interf. Sci. 2011, 356, 257. – reference: W. W. Zhao, Z. Y. Ma, D. Y. Yan, J. J. Xu, H. Y. Chen, Anal. Chem. 2012, 84, 10518. – reference: L. Wang, H. W. Wei, Y. J. Fan, X. Gu, J. H. Zhan, J. Phys. Chem. C 2009, 113, 14119. – reference: M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, J. Mater. Chem. 2012, 22, 17055. – reference: T. Teranishi, M. Sakamoto, J. Phys. Chem. Lett. 2013, 4, 2867. – reference: X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13089. – reference: Y. Luo, X. Y. Liu, J. G. Huang, CrystEngComm 2013, 15, 5586. – reference: L. C. K. Liau, Y. C. Lin, Y. J. Peng, J. Phys. Chem. C 2013, 1, 1. – reference: P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920. – reference: Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508. – reference: J. X. Wang, H. Ruan, W. J. Li, D. Z. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, J. Phys. Chem. C 2012, 116, 13935. – reference: S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton. Trans. 2013, 42, 10759. – reference: H. L. Meng, C. Cui, H. L. Shen, D. Y. Liang, Y. Z. Xue, P. G. Li, W. H. Tang, J. Alloy. Compd. 2012, 527, 30. – reference: Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 2013, 5, 8326. – reference: M. Wang, J. G. Jiang, J. W. Shi, L. J. Guo, Acs Appl. Mater. Interfaces 2013, 5, 4021. – reference: L. Li, P. A. Salvador, G. S. Rohrer, Nanoscale Res. Lett. 2014, 6, 24. – reference: S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011, 23, 180. – reference: L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 2013, 5, 588. – reference: G. N. Parsons, S. M. George, M. Knez, MRS Bull. 2011, 36, 865. – reference: L. X. Sang, H. Y. Tan, X. M. Zhang, Y. T. Wu, C. F. Ma, C. Burda, J. Phys. Chem. C 2012, 116, 18633. – reference: G. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, Angew. Chem. Int. Ed. 2013, 52, 4810. – reference: A. Fujishima, K. Honda, Nature 1972, 238, 37. – reference: L. L. Xu, J. G. Guan, L. A. Gao, Z. G. Sun, Catal. Commun. 2011, 12, 548. – reference: S. F. Chen, W. Liu, S. J. Zhang, Y. H. Chen, J. Sol-Gel Sci. Technol. 2010, 54, 258. – reference: H. W. Bai, Z. Y. Liu, D. D. Sun, J. Am. Ceram. Soc. 2013, 96, 942. – reference: M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211. – reference: L. C. K. Liau, C. C. Lin, Appl. Surf. Sci. 2007, 253, 8798. – reference: Y. Q. Qu, X. F. Duan, Chem. Soc. Rev. 2013, 42, 2568. – reference: H. J. Li, Y. Zhou, L. Chen, W. J. Luo, Q. F. Xu, X. Y. Wang, M. Xiao, Z. G. Zou, Nanoscale 2013, 5, 11933. – reference: L. Huang, X. L. Wang, J. H. Yang, G. Liu, J. F. Han, C. Li, J. Phys. Chem. C 2013, 117, 11584. – reference: Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782. – reference: X. W. Zhang, T. Zhang, J. Ng, D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731. – reference: Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li, L. H. Zhou, Appl. Catal. B Environ. 2013, 130, 277. – reference: R. Marschall, Adv. Funct. Mater. 2014, 24, 2421. – reference: S. Y. Chai, Y. J. Kim, W. I. Lee, J. Electroceram. 2006, 17, 909. – reference: C. L. Li, J. A. Yuan, B. Y. Han, L. Jiang, W. F. Shangguan, Int. J. Hydrogen. Energ. 2010, 35, 7073. – reference: A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735. – reference: Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664. – reference: Y. Bessekhouad, D. Robert, J. Weber, J. Photoch. Photobio. A 2004, 163, 569. – reference: Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165. – reference: Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949. – reference: H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. Int. Ed. 2010, 49, 5966. – reference: V. Etacheri, M. K. Seery, S. J. Hinder, S. C. Pillai, Chem. Mater. 2010, 22, 3843. – reference: J. T. Carneiro, T. J. Savenije, J. A. Moulijn, G. Mul, J. Phys. Chem. C 2011, 115, 2211. – reference: A. J. Bard, J. Photochem. 1979, 10, 59. – reference: Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano 2010, 4, 3789. – reference: S. M. George, Chem. Rev. 2010, 110, 111. – reference: H. H. Yang, W. G. Fan, A. Vaneski, A. S. Susha, W. Y. Teoh, A. L. Rogach, Adv. Funct. Mater. 2012, 22, 2821. – reference: L. G. Gai, X. Q. Duan, H. H. Jiang, Q. H. Mei, G. W. Zhou, Y. Tian, H. Liu, CrystEngComm 2012, 14, 7662. – reference: Y. J. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. W. Wang, J. Am. Chem. Soc. 2012, 134, 5508. – reference: J. Hensel, G. M. Wang, Y. Li, J. Z. Zhang, Nano Lett. 2010, 10, 478. – reference: N. A. Ramos-Delgado, L. Hinojosa-Reyes, I. L. Guzman-Mar, M. A. Gracia-Pinilla, A. Hernandez-Ramirez, Catal. Today. 2013, 209, 35. – reference: R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, C. Li, Nat. Commun. 2013, 4, 1432. – reference: N. N. Hewa-Kasakarage, P. Z. El-Khoury, A. N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov, ACS Nano 2010, 4, 1837. – reference: W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, H. Zhang, J. Hazard. Mater. 2011, 197, 19. – reference: X. Li, J. T. Chen, H. L. Li, J. T. Li, Y. T. Xu, Y. J. Liu, J. R. Zhou, J. Nat. Gas. Chem. 2011, 20, 413. – reference: X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda, J. L. Gole, Adv. Funct. Mater. 2005, 15, 41. – reference: L. Huang, J. H. Yang, X. l. Wang, J. Han, H. X. Han, C. Li, Phys. Chem. Chem. Phys. 2013, 15, 553. – reference: M. S. Zhu, P. L. Chen, M. H. Liu, ACS Nano 2011, 5, 4529. – reference: L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Environ. Sci. Technol. 2010, 44, 1392. – reference: X. W. Wang, G. Liu, Z. G. Chen, F. Li, L. Z. Wang, G. Q. Lu, H. M. Cheng, Chem. Commun. 2009, 3452. – reference: A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688. – reference: T. P. Cao, Y. J. Li, C. H. Wang, C. L. Shao, Y. C. Liu, Langmuir 2011, 27, 2946. – reference: M. Seol, J. W. Jang, S. Cho, J. S. Lee, K. Yong, Chem. Mater. 2013, 25, 184. – reference: F. Y. Shen, W. X. Que, Y. C. He, Y. Yuan, X. T. Yin, G. F. Wang, Acs Appl. Mater. Inter. 2012, 4, 4087. – reference: W. Fan, Q. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 2013, 15, 2632. – reference: W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 4996. – reference: S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 2011, 133, 15240. – reference: S. J. Ding, X. Yin, X. J. Lu, Y. M. Wang, F. Q. Huang, D. Y. Wan, ACS Appl. Mater. Interfaces 2012, 4, 306. – reference: S. Verma, S. Kaniyankandy, H. N. Ghosh, J. Phys. Chem. C 2013, 117, 10901. – reference: Y. Xie, G. Ali, S. H. Yoo, S. O. Cho, ACS Appl. Mater. Interfaces 2010, 2, 2910. – reference: S. Kaniyankandy, S. Rawalekar, S. Verma, H. N. Ghosh, J. Phys. Chem. C 2011, 115, 1428. – reference: S. L. Cheng, W. Y. Fu, B. Y. Hai, L. N. Zhang, J. W. Ma, H. Zhao, M. L. Sun, L. H. Yang, J. Phys. Chem. C 2012, 116, 2615. – reference: S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, J. Phys. Chem. C 2012, 116, 23653. – reference: L. Q. Jing, W. Zhou, G. H. Tian, H. G. Fu, Chem. Soc. Rev. 2013, 42, 9509. – reference: J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425. – reference: X. W. Wang, G. Liu, G. Q. Lu, H. M. Cheng, Int. J. Hydrogen. Energ. 2010, 35, 8199. – reference: S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372. – reference: Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou, J. Am. Chem. Soc. 2010, 132, 14385. – reference: J. S. Lee, K. H. You, C. B. Park, Adv. Mater. 2012, 24, 1084. – reference: W. K. Bae, K. Char, H. Hur, S. Lee, Chem. Mater. 2008, 20, 531. – reference: C. Z. Yao, B. H. Wei, L. X. Meng, H. Li, Q. J. Gong, H. Sun, H. X. Ma, X. H. Hu, J. Power. Sources 2012, 207, 222. – reference: M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu, X. Z. Li, Catal. Today. 2011, 175, 256. – reference: T. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev. 2014, 43,7469. – reference: M. A. Ahmed, E. E. El-Katori, Z. H. Gharni, J. Alloy. Compd. 2013, 553, 19. – reference: X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891. – reference: C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Small 2013, 9, 3951. – reference: S. A. K. Leghari, S. Sajjad, J. L. Zhang, RSC Adv. 2013, 3, 15354. – reference: Z. K. Cui, D. W. Zeng, T. T. Tang, J. Liu, C. S. Xie, Catal. Commun. 2010, 11, 1054. – reference: X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 2011, 115, 14648. – reference: B. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759. – reference: J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, M. G. Bawendi, Angew. Chem. Int. Ed. 2004, 43, 2154. – reference: K. Li, B. Chai, T. Y. Peng, J. Mao, L. Zan, ACS Catal. 2013, 3, 170. – reference: Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968. – reference: T. F. Jiang, T. F. Xie, W. S. Yang, L. P. Chen, H. M. Fan, D. J. Wang, J. Phys. Chem. C 2013, 117, 4619. – reference: D. H. Son, S. M. Hughes, Y. D. Yin, A. P. Alivisatos, Science 2004, 306, 1009. – reference: A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energ. Convers. Manag. 2011, 52, 2800. – reference: X. Yang, J. Xu, T. Wong, Q. Yang, C. S. Lee, Phys. Chem. Chem. Phys. 2013, 15, 12688. – reference: J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, H. Liu, Adv. Mater. 2013, 25, 5075. – reference: J. Zhang, J. H. Bang, C. C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387. – reference: J. Zhang, M. Zhang, R. Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 10145. – reference: P. Reiss, M. Protiere, L. Li, Small 2009, 5, 154. – reference: V. Luca, M. G. Blackford, K. S. Finnie, P. J. Evans, M. James, M. J. Lindsay, M. Skyllas-Kazacos, P. R. F. Barnes, J. Phys. Chem. C 2007, 111, 18479. – reference: Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, J. A. Hollingsworth, J. Am. Chem. Soc. 2012, 134, 9634. – reference: M. C. Liu, D. W. Jing, Z. H. Zhou, L. J. Guo, Nat. Commun. 2013, 4, 2278. – reference: D. Perera, R. Lorek, R. S. Khnayzer, P. Moroz, T. O'Connor, D. Khon, G. Diederich, E. Kinder, S. Lambright, F. N. Castellano, M. Zamkov, J. Phys. Chem. C 2012, 116, 22786. – reference: X. N. Wang, H. J. Zhu, Y. M. Xu, H. Wang, Y. Tao, S. Hark, X. D. Xiao, Q. A. Li, ACS Nano 2010, 4, 3302. – reference: W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc. 2008, 130, 1124. – reference: Z. B. Yu, Y. P. Xie, G. Liu, G. Q. Lu, X. L. Ma, H. M. Cheng, J. Mater. Chem. A 2013, 1, 2773. – reference: J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, H. Liu, Chem. Soc. Rev. 2014, 43,6920. – reference: D. Sarkar, C. K. Ghosh, S. Mukherjee, K. K. Chattopadhyay, ACS Appl. Mater. Interfaces 2013, 5, 331. – reference: X. B. Cao, P. Chen, Y. Guo, J. Phys. Chem. C 2008, 112, 20560. – reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446. – reference: A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 2011, 133, 11054. – reference: L. H. Yu, Y. Huang, G. C. Xiao, D. Z. Li, J. Mater. Chem. A 2013, 1, 9637. – reference: Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Catal. Sci. Technol. 2013, 3, 1750. – reference: K. P. Xie, Q. Wu, Y. Y. Wang, W. X. Guo, M. Y. Wang, L. Sun, C. J. Lin, Electrochem. Commun. 2011, 13, 1469. – reference: H. G. Kim, E. D. Jeong, P. H. Borse, S. Jeon, K. J. Yong, J. S. Lee, W. Li, S. H. Oh, Appl. Phys. Lett. 2006, 89, 064103. – reference: D. A. Chen, F. Zhao, H. Qi, M. Rutherford, X. G. Peng, Chem. Mater. 2010, 22, 1437. – reference: J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C. L. Shao, Y. C. Liu, ACS Appl. Mater. Interfaces 2012, 4, 424. – reference: W. G. Tu, Y. Zhou, Q. Liu, S. C. Yan, S. S. Bao, X. Y. Wang, M. Xiao, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 1743. – reference: H. Wang, Y. S. Bai, H. Zhang, Z. H. Zhang, J. H. Li, L. Guo, J. Phys. Chem. C 2010, 114, 16451. – reference: C. D. Donega, Phys. Rev. B 2010, 81, 165303. – reference: M. Seol, H. Kim, W. Kim, K. Yong, Electrochem. Commun. 2010, 12, 1416. – reference: D. Q. Bi, Y. M. Xu, J. Mol. Catal. A Chem. 2013, 367, 103. – reference: K. Maeda, ACS Catal. 2013, 3, 1486. – reference: S. Q. Liu, N. Zhang, Z. R. Tang, Y. J. Xu, ACS Appl. Mater. Interfaces 2012, 4, 6378 – reference: J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883. – reference: Y. C. Chen, Y. C. Pu, Y. J. Hsu, J. Phys. Chem. C 2012, 116, 2967. – reference: Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 2012, 116, 12958. – reference: B. M. Rajbongshi, S. K. Samdarshi, Appl. Catal. B Environ. 2014, 144, 435. – reference: X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, L. M. Peng, J. Phys. Chem. C 2009, 113, 20481. – reference: M. C. Long, W. M. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548. – reference: C. M. McShane, K. S. Choi, J. Am. Chem. Soc. 2009, 131, 2561. – reference: Y. Wang, S. C. Li, H. Shi, K. Yu, Nanoscale 2012, 4, 7817. – reference: G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088. – reference: P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2002, 2, 781. – reference: Y. L. Liao, H. W. Zhang, Z. Y. Zhong, L. J. Jia, F. M. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 11022. – reference: X. Y. Li, Y. Hou, Q. D. Zhao, G. H. Chen, Langmuir 2011, 27, 3113. – reference: H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 2006, 5, 782. – reference: Z. B. Shao, W. Zhu, Z. Li, Q. H. Yang, G. Z. Wang, J. Phys. Chem. C 2012, 116, 2438. – reference: K. H. Lin, C. Y. Chuang, Y. Y. Lee, F. C. Li, Y. M. Chang, I. P. Liu, S. C. Chou, Y. L. Lee, J. Phys. Chem. C 2012, 116, 1550. – volume: 15 start-page: 41 year: 2005 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 306 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 4529 year: 2011 publication-title: ACS Nano – volume: 116 start-page: 18633 year: 2012 publication-title: J. Phys. Chem. C – volume: 38 start-page: 1849 year: 2009 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 7480 year: 2013 publication-title: Chem. Eur. J. – volume: 44 start-page: 1392 year: 2010 publication-title: Environ. Sci. Technol. – volume: 22 start-page: 11739 year: 2012 publication-title: J. Mater. Chem. – volume: 130 start-page: 7176 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 4561 year: 2006 publication-title: Nanotechnology – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 306 start-page: 1009 year: 2004 publication-title: Science – volume: 2 start-page: 781 year: 2002 publication-title: Nano Lett. – volume: 95 start-page: 735 year: 1995 publication-title: Chem. Rev. – volume: 15 start-page: 12688 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 10901 year: 2013 publication-title: J. Phys. Chem. C – volume: 144 start-page: 435 year: 2014 publication-title: Appl. Catal. B Environ. – volume: 115 start-page: 13968 year: 2011 publication-title: J. Phys. Chem. C – volume: 5 start-page: 588 year: 2013 publication-title: Nanoscale – volume: 42 start-page: 10759 year: 2013 publication-title: Dalton. Trans. – volume: 116 start-page: 3802 year: 2012 publication-title: J. Phys. Chem. C – volume: 3 start-page: 2720 year: 2013 publication-title: Sci. Rep. – volume: 4 start-page: 2278 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 1437 year: 2010 publication-title: Chem. Mater. – volume: 23 start-page: 4996 year: 2013 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 548 year: 2011 publication-title: Catal. Commun. – volume: 3 start-page: 1486 year: 2013 publication-title: ACS Catal. – volume: 134 start-page: 5508 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 865 year: 2011 publication-title: MRS Bull. – volume: 117 start-page: 5558 year: 2013 publication-title: J. Phys. Chem. C – volume: 5 start-page: 9770 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 7817 year: 2012 publication-title: Nanoscale – volume: 115 start-page: 17265 year: 2011 publication-title: J. Phys. Chem. C – volume: 115 start-page: 1428 year: 2011 publication-title: J. Phys. Chem. C – volume: 113 start-page: 14119 year: 2009 publication-title: J. Phys. Chem. C – volume: 130 start-page: 1124 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3113 year: 2011 publication-title: Langmuir – volume: 131 start-page: 2561 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 4532 year: 2013 publication-title: CrystEngComm – volume: 5 start-page: 8326 year: 2013 publication-title: Nanoscale – volume: 96 start-page: 942 year: 2013 publication-title: J. Am. Ceram. Soc. – volume: 52 start-page: 2800 year: 2011 publication-title: Energ. Convers. Manag. – volume: 3 start-page: 170 year: 2013 publication-title: ACS Catal. – volume: 35 start-page: 7073 year: 2010 publication-title: Int. J. Hydrogen. Energ. – volume: 49 start-page: 5966 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 89 year: 2013 publication-title: Chem. Soc. Rev. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 132 start-page: 15038 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 548 year: 2008 publication-title: J. Phys. Chem. C – volume: 5 start-page: 4084 year: 2011 publication-title: ACS Nano – volume: 4 start-page: 4087 year: 2012 publication-title: Acs Appl. Mater. Inter. – volume: 5 start-page: 782 year: 2006 publication-title: Nat. Mater. – volume: 113 start-page: 20481 year: 2009 publication-title: J. Phys. Chem. C – volume: 116 start-page: 2615 year: 2012 publication-title: J. Phys. Chem. C – volume: 133 start-page: 11054 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 157 start-page: K96 year: 2010 publication-title: J. Electrochem. Soc. – volume: 136 start-page: 12568 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4630 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 2821 year: 2012 publication-title: Adv. Funct. Mater. – volume: 115 start-page: 14648 year: 2011 publication-title: J. Phys. Chem. C – volume: 14 start-page: 13076 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 2632 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 1750 year: 2013 publication-title: Catal. Sci. Technol. – volume: 27 start-page: 2946 year: 2011 publication-title: Langmuir – volume: 437 start-page: 664 year: 2005 publication-title: Nature – volume: 25 start-page: 184 year: 2013 publication-title: Chem. Mater. – volume: 107 start-page: 2891 year: 2007 publication-title: Chem. Rev. – volume: 117 start-page: 19759 year: 2013 publication-title: J. Phys. Chem. C – volume: 20 start-page: 4287 year: 2010 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2165 year: 2010 publication-title: Adv. Funct. Mater. – volume: 116 start-page: 2438 year: 2012 publication-title: J. Phys. Chem. C – volume: 4 start-page: 387 year: 2010 publication-title: ACS Nano – volume: 9 start-page: 3951 year: 2013 publication-title: Small – volume: 47 start-page: 2643 year: 2011 publication-title: Chem. Commun. – volume: 117 start-page: 12949 year: 2013 publication-title: J. Phys. Chem. C – volume: 20 start-page: 6784 year: 2008 publication-title: Chem. Mater. – volume: 25 start-page: 5075 year: 2013 publication-title: Adv. Mater. – volume: 116 start-page: 13935 year: 2012 publication-title: J. Phys. Chem. C – start-page: 3452 year: 2009 publication-title: Chem. Commun. – volume: 110 start-page: 20211 year: 2006 publication-title: J. Phys. Chem. B – volume: 15 start-page: 553 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 16883 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 1215 year: 2012 publication-title: Adv. Funct. Mater. – volume: 414 start-page: 625 year: 2001 publication-title: Nature – volume: 116 start-page: 23653 year: 2012 publication-title: J. Phys. Chem. C – volume: 21 start-page: 4553 year: 2011 publication-title: J. Mater. Chem. – volume: 33 start-page: 1348 year: 2004 publication-title: Chem. Lett. – volume: 207 start-page: 222 year: 2012 publication-title: J. Power. Sources – volume: 116 start-page: 22786 year: 2012 publication-title: J. Phys. Chem. C – volume: 115 start-page: 8064 year: 2011 publication-title: J. Phys. Chem. C – volume: 89 start-page: 064103 year: 2006 publication-title: Appl. Phys. Lett. – volume: 116 start-page: 1550 year: 2012 publication-title: J. Phys. Chem. C – volume: 132 start-page: 14385 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4021 year: 2013 publication-title: Acs Appl. Mater. Interfaces – volume: 26 start-page: 4920 year: 2014 publication-title: Adv. Mater. – volume: 41 start-page: 782 year: 2012 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1372 year: 2011 publication-title: Energ. Environ. Sci. – volume: 1 start-page: 2773 year: 2013 publication-title: J. Mater. Chem. A – volume: 116 start-page: 12958 year: 2012 publication-title: J. Phys. Chem. C – volume: 1 start-page: 9637 year: 2013 publication-title: J. Mater. Chem. A – volume: 114 start-page: 16451 year: 2010 publication-title: J. Phys. Chem. C – volume: 23 start-page: 180 year: 2011 publication-title: Adv. Mater. – volume: 52 start-page: 17126 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 130 start-page: 277 year: 2013 publication-title: Appl. Catal. B Environ. – volume: 22 start-page: 17055 year: 2012 publication-title: J. Mater. Chem. – volume: 43 start-page: 5234 year: 2014 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 9634 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 22 year: 2011 publication-title: Nanotechnology – volume: 19 start-page: 3638 year: 2009 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1088 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 2195 year: 2013 publication-title: Nat. Commun. – volume: 3 start-page: 15354 year: 2013 publication-title: RSC Adv. – volume: 6 start-page: 24 year: 2014 publication-title: Nanoscale Res. Lett. – volume: 22 start-page: 922 year: 2010 publication-title: Chem. Mater. – volume: 135 start-page: 4596 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 4281 year: 2014 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 1469 year: 2011 publication-title: Electrochem. Commun. – volume: 10 start-page: 1941 year: 2010 publication-title: Nano Lett. – volume: 4 start-page: 424 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 1743 year: 2013 publication-title: Adv. Funct. Mater. – volume: 81 start-page: 165303 year: 2010 publication-title: Phys. Rev. B – volume: 133 start-page: 15240 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2915 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 209 start-page: 35 year: 2013 publication-title: Catal. Today. – volume: 35 start-page: 8199 year: 2010 publication-title: Int. J. Hydrogen. Energ. – volume: 117 start-page: 4619 year: 2013 publication-title: J. Phys. Chem. C – volume: 116 start-page: 2967 year: 2012 publication-title: J. Phys. Chem. C – volume: 52 start-page: 4810 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 909 year: 2006 publication-title: J. Electroceram. – volume: 553 start-page: 19 year: 2013 publication-title: J. Alloy. Compd. – volume: 116 start-page: 12156 year: 2012 publication-title: J. Phys. Chem. C – volume: 211 start-page: 161 year: 2012 publication-title: Chem. Eng. J. – volume: 2 start-page: 2688 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 7372 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 11466 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3731 year: 2009 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2910 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 2014 year: 2012 publication-title: Adv. Mater. – volume: 115 start-page: 21529 year: 2011 publication-title: J. Phys. Chem. C – volume: 356 start-page: 257 year: 2011 publication-title: J. Colloid. Interf. Sci. – volume: 12 start-page: 1416 year: 2010 publication-title: Electrochem. Commun. – volume: 4 start-page: 6378 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 478 year: 2010 publication-title: Nano Lett. – volume: 163 start-page: 569 year: 2004 publication-title: J. Photoch. Photobio. A – volume: 148 start-page: 71 year: 2002 publication-title: J. Photoch. Photobio. A – volume: 111 start-page: 18479 year: 2007 publication-title: J. Phys. Chem. C – start-page: 1552 year: 2003 publication-title: Chem. Commun. – volume: 117 start-page: 26529 year: 2013 publication-title: J. Phys. Chem. C – volume: 10 start-page: 59 year: 1979 publication-title: J. Photochem. – volume: 24 start-page: 1084 year: 2012 publication-title: Adv. Mater. – volume: 197 start-page: 19 year: 2011 publication-title: J. Hazard. Mater. – volume: 51 start-page: 13089 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 367 start-page: 103 year: 2013 publication-title: J. Mol. Catal. A Chem. – volume: 117 start-page: 11584 year: 2013 publication-title: J. Phys. Chem. C – volume: 253 start-page: 8798 year: 2007 publication-title: Appl. Surf. Sci. – volume: 3 start-page: 1026 year: 2013 publication-title: ACS Catal. – volume: 5 start-page: 11933 year: 2013 publication-title: Nanoscale – volume: 53 start-page: 6618 year: 2014 publication-title: Angew. Chem. – volume: 1 start-page: 1 year: 2013 publication-title: J. Phys. Chem. C – volume: 135 start-page: 5375 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3789 year: 2010 publication-title: ACS Nano – volume: 110 start-page: 111 year: 2010 publication-title: Chem. Rev. – volume: 42 start-page: 2568 year: 2013 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1432 year: 2013 publication-title: Nat. Commun. – volume: 115 start-page: 2211 year: 2011 publication-title: J. Phys. Chem. C – volume: 4 start-page: 2867 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1945 year: 2012 publication-title: Catal. Sci. Technol. – volume: 5 start-page: 154 year: 2009 publication-title: Small – volume: 14 start-page: 7662 year: 2012 publication-title: CrystEngComm – volume: 132 start-page: 12619 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3302 year: 2010 publication-title: ACS Nano – volume: 116 start-page: 10510 year: 2012 publication-title: J. Phys. Chem. C – volume: 54 start-page: 258 year: 2010 publication-title: J. Sol–Gel Sci. Technol. – volume: 22 start-page: 3843 year: 2010 publication-title: Chem. Mater. – volume: 116 start-page: 11956 year: 2012 publication-title: J. Phys. Chem. C – volume: 5 start-page: 7425 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 2154 year: 2004 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 5586 year: 2013 publication-title: CrystEngComm – volume: 20 start-page: 531 year: 2008 publication-title: Chem. Mater. – volume: 11 start-page: 1054 year: 2010 publication-title: Catal. Commun. – volume: 5 start-page: 5097 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 12327 year: 2013 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1837 year: 2010 publication-title: ACS Nano – volume: 43 start-page: 7469 year: 2014 publication-title: Chem. Soc. Rev. – volume: 527 start-page: 30 year: 2012 publication-title: J. Alloy. Compd. – volume: 4 start-page: 4800 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 112 start-page: 17200 year: 2008 publication-title: J. Phys. Chem. C – volume: 42 start-page: 9509 year: 2013 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 32 year: 2011 publication-title: MRS Bull. – volume: 42 start-page: 2679 year: 2013 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 413 year: 2011 publication-title: J. Nat. Gas. Chem. – volume: 175 start-page: 256 year: 2011 publication-title: Catal. Today. – volume: 5 start-page: 331 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 112 start-page: 20560 year: 2008 publication-title: J. Phys. Chem. C – volume: 5 start-page: 11022 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 6920 year: 2014 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 3718 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 2421 year: 2014 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 10145 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 84 start-page: 10518 year: 2012 publication-title: Anal. Chem. – ident: e_1_2_6_88_1 doi: 10.1021/jp308921s – ident: e_1_2_6_119_1 doi: 10.1021/am400964c – ident: e_1_2_6_120_1 doi: 10.1021/nn1001547 – ident: e_1_2_6_187_1 doi: 10.1039/c3cp53131g – ident: e_1_2_6_148_1 doi: 10.1039/c2nr32797j – ident: e_1_2_6_152_1 doi: 10.1021/jp063441z – ident: e_1_2_6_170_1 doi: 10.1021/jp311532s – ident: e_1_2_6_103_1 doi: 10.1021/jp902866b – ident: e_1_2_6_6_1 doi: 10.1002/adma.201104110 – ident: e_1_2_6_184_1 doi: 10.1039/c3ta12803b – ident: e_1_2_6_117_1 doi: 10.1021/jp3083419 – ident: e_1_2_6_77_1 doi: 10.1002/adma.201200330 – ident: e_1_2_6_44_1 doi: 10.1021/ja106710m – ident: e_1_2_6_74_1 doi: 10.1007/s10832-006-9073-3 – ident: e_1_2_6_115_1 doi: 10.1002/adfm.201103074 – ident: e_1_2_6_33_1 doi: 10.1021/cr900056b – ident: e_1_2_6_164_1 doi: 10.1016/j.cej.2012.09.084 – ident: e_1_2_6_121_1 doi: 10.1021/jp410692y – ident: e_1_2_6_66_1 doi: 10.1002/adma.201002290 – ident: e_1_2_6_123_1 doi: 10.1002/anie.201001827 – ident: e_1_2_6_174_1 doi: 10.1021/nl101010m – ident: e_1_2_6_160_1 doi: 10.1149/1.3328177 – ident: e_1_2_6_182_1 doi: 10.1021/cs400156m – ident: e_1_2_6_205_1 doi: 10.1021/ja8007825 – ident: e_1_2_6_154_1 doi: 10.1021/ja308723w – ident: e_1_2_6_202_1 doi: 10.1039/b904668b – ident: e_1_2_6_41_1 doi: 10.1021/jp400010z – ident: e_1_2_6_149_1 doi: 10.1021/jp4009652 – ident: e_1_2_6_179_1 doi: 10.1021/ja203296z – ident: e_1_2_6_124_1 doi: 10.1021/am400851q – ident: e_1_2_6_61_1 doi: 10.1016/S1003-9953(10)60212-5 – ident: e_1_2_6_72_1 doi: 10.1016/j.jallcom.2012.02.043 – ident: e_1_2_6_151_1 doi: 10.1021/jp075605x – ident: e_1_2_6_45_1 doi: 10.1021/ja212032q – ident: e_1_2_6_195_1 doi: 10.1016/j.elecom.2011.09.023 – ident: e_1_2_6_193_1 doi: 10.1021/jp2037476 – ident: e_1_2_6_20_1 doi: 10.1002/anie.201205333 – ident: e_1_2_6_76_1 doi: 10.1016/j.jallcom.2012.10.038 – ident: e_1_2_6_90_1 doi: 10.1021/ja0361749 – ident: e_1_2_6_57_1 doi: 10.1021/cr00035a013 – ident: e_1_2_6_35_1 doi: 10.1002/anie.200603148 – ident: e_1_2_6_130_1 doi: 10.1016/j.elecom.2010.07.035 – ident: e_1_2_6_133_1 doi: 10.1039/c0jm03818k – ident: e_1_2_6_168_1 doi: 10.1021/ja300319g – ident: e_1_2_6_199_1 doi: 10.1002/adma.201400288 – ident: e_1_2_6_17_1 doi: 10.1016/j.jhazmat.2011.09.051 – ident: e_1_2_6_69_1 doi: 10.1021/am201343q – ident: e_1_2_6_14_1 doi: 10.1002/adfm.200901435 – ident: e_1_2_6_7_1 doi: 10.1021/nn200088x – ident: e_1_2_6_70_1 doi: 10.1021/jp804699c – ident: e_1_2_6_67_1 doi: 10.1016/j.jphotochem.2004.02.006 – ident: e_1_2_6_157_1 doi: 10.1039/c2ce25563d – ident: e_1_2_6_99_1 doi: 10.1016/j.ijhydene.2010.01.008 – ident: e_1_2_6_203_1 doi: 10.1016/j.jcis.2010.12.034 – ident: e_1_2_6_165_1 doi: 10.1002/anie.201207554 – ident: e_1_2_6_173_1 doi: 10.1038/ncomms3195 – ident: e_1_2_6_180_1 doi: 10.1039/c3cy00055a – ident: e_1_2_6_201_1 doi: 10.1021/ja203296z – ident: e_1_2_6_159_1 doi: 10.1039/c3ce40446c – ident: e_1_2_6_10_1 doi: 10.1038/238037a0 – ident: e_1_2_6_62_1 doi: 10.1021/jp112259p – ident: e_1_2_6_116_1 doi: 10.1021/la2000975 – ident: e_1_2_6_73_1 doi: 10.1016/j.cattod.2012.11.011 – ident: e_1_2_6_127_1 doi: 10.1021/jp209353j – ident: e_1_2_6_102_1 doi: 10.1021/am3011516 – ident: e_1_2_6_191_1 doi: 10.1246/cl.2004.1348 – ident: e_1_2_6_131_1 doi: 10.1021/cm303206s – ident: e_1_2_6_92_1 doi: 10.1021/jp107531h – ident: e_1_2_6_158_1 doi: 10.1021/am401746b – ident: e_1_2_6_189_1 doi: 10.1016/S1010-6030(02)00070-9 – ident: e_1_2_6_68_1 doi: 10.1039/b302418k – ident: e_1_2_6_126_1 doi: 10.1021/jp209258r – ident: e_1_2_6_107_1 doi: 10.1021/jp904320d – ident: e_1_2_6_147_1 doi: 10.1039/c2jm32660d – ident: e_1_2_6_153_1 doi: 10.1002/smll.201301276 – ident: e_1_2_6_146_1 doi: 10.1039/c0cc04985a – ident: e_1_2_6_138_1 doi: 10.1021/am302136y – ident: e_1_2_6_63_1 doi: 10.1039/C2CP41153A – ident: e_1_2_6_2_1 doi: 10.1021/cr1002326 – ident: e_1_2_6_1_1 doi: 10.1038/414625a – ident: e_1_2_6_22_1 doi: 10.1039/C2CS35367A – ident: e_1_2_6_128_1 doi: 10.1039/c2cp41629h – ident: e_1_2_6_181_1 doi: 10.1021/cs4002089 – ident: e_1_2_6_94_1 doi: 10.1021/cr0500535 – ident: e_1_2_6_86_1 doi: 10.1021/ie402437k – ident: e_1_2_6_38_1 doi: 10.1021/nn100229x – ident: e_1_2_6_172_1 doi: 10.1021/jp301904s – ident: e_1_2_6_194_1 doi: 10.1021/nn2006738 – ident: e_1_2_6_49_1 doi: 10.1126/science.1103755 – ident: e_1_2_6_89_1 doi: 10.1021/jp400014j – ident: e_1_2_6_43_1 doi: 10.1021/cm902516f – ident: e_1_2_6_54_1 doi: 10.1039/c2cy20202f – ident: e_1_2_6_167_1 doi: 10.1016/j.catcom.2010.05.010 – ident: e_1_2_6_27_1 doi: 10.1039/c3nr03493c – ident: e_1_2_6_139_1 doi: 10.1002/adfm.200902390 – ident: e_1_2_6_85_1 doi: 10.1021/jp301355q – ident: e_1_2_6_200_1 doi: 10.1039/c3ta01476b – ident: e_1_2_6_19_1 doi: 10.1002/adfm.201203547 – ident: e_1_2_6_87_1 doi: 10.1021/jp303307r – ident: e_1_2_6_196_1 doi: 10.1038/nmat1734 – ident: e_1_2_6_135_1 doi: 10.1021/jp204747w – ident: e_1_2_6_177_1 doi: 10.1016/0047-2670(79)80037-4 – ident: e_1_2_6_29_1 doi: 10.1021/jp201901b – ident: e_1_2_6_176_1 doi: 10.1039/c0ee00604a – ident: e_1_2_6_108_1 doi: 10.1021/ja0777741 – ident: e_1_2_6_178_1 doi: 10.1557/mrs.2010.3 – ident: e_1_2_6_78_1 doi: 10.1016/j.cattod.2011.02.055 – ident: e_1_2_6_18_1 doi: 10.1039/c3cs60176e – ident: e_1_2_6_112_1 doi: 10.1021/am100605a – ident: e_1_2_6_145_1 doi: 10.1039/c2jm31589k – ident: e_1_2_6_185_1 doi: 10.1021/ja311541a – ident: e_1_2_6_32_1 doi: 10.1039/C3CS60370A – ident: e_1_2_6_142_1 doi: 10.1021/am100618h – ident: e_1_2_6_46_1 doi: 10.1039/c3cp51722e – ident: e_1_2_6_79_1 doi: 10.1016/j.apcatb.2012.11.019 – ident: e_1_2_6_55_1 doi: 10.1021/jp0729112 – ident: e_1_2_6_93_1 doi: 10.1021/jp303255f – ident: e_1_2_6_137_1 doi: 10.1039/C4CS00126E – ident: e_1_2_6_114_1 doi: 10.1021/nl903217w – ident: e_1_2_6_12_1 doi: 10.1038/ncomms2401 – ident: e_1_2_6_9_1 doi: 10.1039/C2CS35355E – ident: e_1_2_6_83_1 doi: 10.1021/am300812n – ident: e_1_2_6_109_1 doi: 10.1021/jp104208z – ident: e_1_2_6_53_1 doi: 10.1021/cm903260f – ident: e_1_2_6_36_1 doi: 10.1038/nature04165 – ident: e_1_2_6_37_1 doi: 10.1002/smll.200800841 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201301306 – ident: e_1_2_6_25_1 doi: 10.1039/C1CS15172J – ident: e_1_2_6_143_1 doi: 10.1021/am3008533 – ident: e_1_2_6_111_1 doi: 10.1021/jp2078117 – ident: e_1_2_6_31_1 doi: 10.1021/ja300319g – ident: e_1_2_6_51_1 doi: 10.1021/jp405989z – ident: e_1_2_6_140_1 doi: 10.1021/am403264q – ident: e_1_2_6_5_1 doi: 10.1002/adfm.201202349 – ident: e_1_2_6_23_1 doi: 10.1039/b822385h – ident: e_1_2_6_104_1 doi: 10.1038/srep02720 – ident: e_1_2_6_132_1 doi: 10.1021/jp3031754 – ident: e_1_2_6_82_1 doi: 10.1002/adma.201302014 – ident: e_1_2_6_150_1 doi: 10.1039/c3ta12207g – ident: e_1_2_6_97_1 doi: 10.1002/adfm.201000931 – ident: e_1_2_6_64_1 doi: 10.1021/jz2013193 – ident: e_1_2_6_42_1 doi: 10.1002/anie.200453728 – ident: e_1_2_6_100_1 doi: 10.1021/am201499r – ident: e_1_2_6_98_1 doi: 10.1111/jace.12071 – ident: e_1_2_6_175_1 doi: 10.1038/ncomms3278 – volume: 22 year: 2011 ident: e_1_2_6_144_1 publication-title: Nanotechnology – ident: e_1_2_6_163_1 doi: 10.1021/jp110190a – volume: 1 start-page: 1 year: 2013 ident: e_1_2_6_169_1 publication-title: J. Phys. Chem. C – ident: e_1_2_6_161_1 doi: 10.1007/s10971-010-2179-8 – ident: e_1_2_6_26_1 doi: 10.1002/adfm.200900891 – ident: e_1_2_6_166_1 doi: 10.1016/j.apcatb.2013.07.048 – ident: e_1_2_6_186_1 doi: 10.1021/ja204881d – ident: e_1_2_6_81_1 doi: 10.1016/j.molcata.2012.09.031 – ident: e_1_2_6_50_1 doi: 10.1039/C2CS35241A – ident: e_1_2_6_134_1 doi: 10.1021/nn100684q – ident: e_1_2_6_105_1 doi: 10.1021/ja1025112 – ident: e_1_2_6_155_1 doi: 10.1039/C2NR33109H – ident: e_1_2_6_71_1 doi: 10.1088/0957-4484/17/18/006 – ident: e_1_2_6_141_1 doi: 10.1016/j.enconman.2011.02.014 – ident: e_1_2_6_15_1 doi: 10.1039/C4CS00180J – ident: e_1_2_6_30_1 doi: 10.1039/c3ce26672a – ident: e_1_2_6_192_1 doi: 10.1021/ja506386e – ident: e_1_2_6_8_1 doi: 10.1039/c2cp43524a – ident: e_1_2_6_91_1 doi: 10.1103/PhysRevB.81.165303 – ident: e_1_2_6_156_1 doi: 10.1021/jp203414q – ident: e_1_2_6_4_1 doi: 10.1021/ja1068596 – ident: e_1_2_6_162_1 doi: 10.1016/j.apsusc.2007.04.077 – ident: e_1_2_6_47_1 doi: 10.1021/jp112259p – ident: e_1_2_6_39_1 doi: 10.1021/cm070754d – ident: e_1_2_6_60_1 doi: 10.1021/jp200274k – ident: e_1_2_6_171_1 doi: 10.1021/ja806370s – ident: e_1_2_6_3_1 doi: 10.1002/anie.201207199 – ident: e_1_2_6_21_1 doi: 10.1002/adfm.201102566 – ident: e_1_2_6_96_1 doi: 10.1021/nn901087c – ident: e_1_2_6_106_1 doi: 10.1021/ac3028799 – ident: e_1_2_6_48_1 doi: 10.1021/am302074p – ident: e_1_2_6_101_1 doi: 10.1021/jp210033y – ident: e_1_2_6_56_1 doi: 10.1016/j.jpowsour.2012.01.154 – ident: e_1_2_6_197_1 doi: 10.1063/1.2266237 – ident: e_1_2_6_125_1 doi: 10.1021/cm901762h – ident: e_1_2_6_204_1 doi: 10.1021/am402929d – ident: e_1_2_6_28_1 doi: 10.1021/nn100684q – ident: e_1_2_6_113_1 doi: 10.1021/cm802282t – ident: e_1_2_6_40_1 doi: 10.1021/nl025596y – ident: e_1_2_6_183_1 doi: 10.1002/chem.201300579 – ident: e_1_2_6_122_1 doi: 10.1021/jp806645c – ident: e_1_2_6_95_1 doi: 10.1021/la104195v – ident: e_1_2_6_65_1 doi: 10.1002/adfm.201303214 – ident: e_1_2_6_16_1 doi: 10.1002/anie.201400966 – ident: e_1_2_6_198_1 doi: 10.1021/es903087w – ident: e_1_2_6_59_1 doi: 10.1021/jz4013504 – ident: e_1_2_6_52_1 doi: 10.1021/jp310495j – ident: e_1_2_6_136_1 doi: 10.1039/c3nr03998f – ident: e_1_2_6_24_1 doi: 10.1039/C3CS60437C – ident: e_1_2_6_188_1 doi: 10.1039/c3dt50699a – ident: e_1_2_6_110_1 doi: 10.1021/jp305388c – ident: e_1_2_6_118_1 doi: 10.1016/j.ijhydene.2009.12.091 – ident: e_1_2_6_13_1 doi: 10.1002/adfm.200400184 – ident: e_1_2_6_75_1 doi: 10.1039/c3ra41782d – ident: e_1_2_6_84_1 doi: 10.1021/cs300724r – ident: e_1_2_6_190_1 doi: 10.1021/cs400156m – ident: e_1_2_6_129_1 doi: 10.1021/nl100250z – ident: e_1_2_6_80_1 doi: 10.1016/j.catcom.2010.11.027 – ident: e_1_2_6_58_1 doi: 10.1039/c3nr01577g – ident: e_1_2_6_34_1 doi: 10.1557/mrs.2011.238 |
SSID | ssj0017734 |
Score | 2.6456485 |
Snippet | Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 998 |
SubjectTerms | band alignment Charge charge carriers Heterojunctions heterostructures Photocatalysis Photocatalysts Promotion Semiconductors Separation State of the art |
Title | State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance |
URI | https://api.istex.fr/ark:/67375/WNG-N6XZ7KZT-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201401636 https://www.proquest.com/docview/1669871010 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQ9gIPsDEQZWMyEoKnbImT2MljRekqoFU1NlHtxXL8sU1DCVrTadvTfgK_kV_CvU6btUgICV6iRLl2HH-eax8fE_JGWc6YsS5IMmuDxCQuUC6NAsCuXJjMAcTGecjhiA-Ok4-TdLK0i7_Rh2gn3LBl-P4aG7gqpvv3oqHKONxJjg4Cj1FzGwlbiIoOW_2oSIhmWZlHSPCKJgvVxpDtrwZfGZXWMYOvVyDnMnD1I0__CVGLNDeEk4u9WV3s6dvf5Bz_56c2yOM5LKXdph5tkge2fEoeLYkVbpErj0t_3v2oHFwAN8IV7OkYGV7QX9LzkvY8y8PSAZJsqkabdnZpDR2fVXXlp4pupvWU1p6si0GRC1ieLr-HFNDx_XaGZ-S4_-Ho_SCYn9oQaB4KHhQsFs4mWViwRCcijrQSOZ6yzrRKmVNhZlMU5eGCcZNrowsGJRejUBqH4TSPn5O1sirtC0ITA96R5pyBowgxuczkYWyM1lHuCoiyQ4JFqUk9lzTHkzW-yUaMmUnMT9nmZ4e8a-2_N2Ief7R86ytBa6YuL5ACJ1L5dXQgR3xyIj6dHEkwfL2oJRIaJq62qNJWs6mMOM_BGwV_t0OYL_O_fFN2e_1h-_TyXwJtk4dw77fcR9kOWYNitq8ANNXFLlnv9oafv-z6BvILPi0TQg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaq9gAc-Eds-amR-DmlXTuJkxw4VGyXLdtdrdBWrHpxE_9A1SqpulmgnHgEXoVX4RF4EmacTbqLhJCQeuASKcnYcTxje8b-_JmQp6kRnGtjvSA2xgt0YL3UhswD31VEOrbgYuM85GAoevvBm0k4WSHf670wFT9EM-GGLcP119jAcUJ664I1NNUWt5JjhCB8McdV9s35J4japi93O6DiZ5x3d8avet78YAFPCYjbvYz7kTVB3M54oILIZyqNEjwInKs05DZtxyZE3hgRcaETpVXGmS985PIS0OMj_xL0-mt4jDjS9XfeNoxVLIqqhWzBEFLGJjVPZJtvLZd3aRxcQ5V-XnJyF11lN9Z1b5AfdS1VEJfjzVmZbaovvxFI_lfVeJNcn3vedLtqKrfIislvk2sLfIx3yEfnev_8-q2wcAHXGK4gT0cIYoMhgR7ltOOALIb2EEdUVPS7szOj6ehDURZuNux8Wk5p6fDImBThjvn7xfdQAjq62LFxl-xfyo_fI6t5kZv7hAYaAkAlBIdYGHKysU7avtZKscRmkGWLeLWZSDVnbcfDQ05kxTfNJepPNvprkReN_GnFV_JHyefO6hqx9OwYUX5RKN8NX8uhmBxE_YOxBMEntVlK6HtwQSnNTTGbSiZEAgE3hPQtwp2R_eWbcrvTHTR36_-SaINc6Y0He3Jvd9h_QK7Cc8cwwOKHZBVUbh6Bj1hmj12rpOTwsu33F1QGauY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVkJw4B-x5c9I_JzSxk7iJAcOFWHZsnS1Qq1Y9eIm_oGqKKm6WaCceAQehVfhFXgSZpxNuouEkJB64BIpydhxPGN7xv78mZBHuRGca2O9MDHGC3VovdxGzAPfVcQ6seBi4zzkzkgM9sJXk2iyQr63e2Eafohuwg1bhuuvsYEfa7t5Rhqaa4s7yTFAEIGYwyqH5vQTBG3TZ9sZaPgx5_0Xu88H3vxcAU8JCNu9ggexNWHiFzxUYRwwlccpngPOVR5xm_uJiZA2RsRc6FRpVXAWiACpvAR0-Ei_BJ3-Wij8FA-LyN50hFUsjpt1bMEQUcYmLU2kzzeXy7s0DK6hRj8v-biLnrIb6vpXyI-2khqEy9HGrC421Jff-CP_p1q8Si7P_W661TSUa2TFlNfJpQU2xhvko3O8f379Vlm4gGMMV5CnY4SwwYBAD0uaORiLoQNEEVUN-e7sxGg6fl_VlZsLO53WU1o7NDImRbBj-W7xPZSAjs_2a9wke-fy47fIalmV5jahoYbwTwnBIRKGnGyiUz_QWimW2gKy7BGvtRKp5pzteHTIB9mwTXOJ-pOd_nrkaSd_3LCV_FHyiTO6Tiw_OUKMXxzJt6OXciQm-_Fwf1eC4MPWKiX0PLiclJemmk0lEyKFcBsC-h7hzsb-8k25lfV3urv1f0n0gFwYZ335ens0vEMuwmNHL8CSu2QVNG7ugYNYF_ddm6Tk4LzN9xeFg2mV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90the%E2%80%90Art+Progress+in+Diverse+Heterostructured+Photocatalysts+toward+Promoting+Photocatalytic+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Haijin&rft.au=Zhou%2C+Yong&rft.au=Tu%2C+Wenguang&rft.au=Ye%2C+Jinhua&rft.date=2015-02-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=7&rft.spage=998&rft.epage=1013&rft_id=info:doi/10.1002%2Fadfm.201401636&rft.externalDBID=10.1002%252Fadfm.201401636&rft.externalDocID=ADFM201401636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |