State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance

Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombinat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 7; pp. 998 - 1013
Main Authors Li, Haijin, Zhou, Yong, Tu, Wenguang, Ye, Jinhua, Zou, Zhigang
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 18.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. The state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
AbstractList Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. The state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state‐of‐the‐art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type‐I and type‐II heterojunctions, Z‐scheme system, p–n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible‐light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies, as well as for environmental protection and remediation. The effective harvesting of solar energy and suppression of charge carrier recombination are two key aspects in photocatalysis. The formation of heterostructured photocatalysts is a promising strategy to improve photocatalytic activity, which is superior to that of their single component photocatalysts. This Feature Article concisely summarizes and highlights the state-of-the-art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models, including type-I and type-II heterojunctions, Z-scheme system, p-n heterojunctions, and homojunction band alignments, which were explored for effective improvement of photocatalytic activity through increase of the visible-light absorption, promotion of separation, and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability. The state-of-the-art progress of semiconductor/semiconductor heterostructured photocatalysts with diverse models is concisely summarized and highlighted, including type-I and type-II heterojunctions, Z-scheme system, p-n heterojunctions, and homo junction band alignments, which are explored for effective improvement of photocatalytic activity through increase of the visible-light absorption, promotion of separation and transportation of the photoinduced charge carries, and enhancement of the photocatalytic stability.
Author Ye, Jinhua
Tu, Wenguang
Zhou, Yong
Zou, Zhigang
Li, Haijin
Author_xml – sequence: 1
  givenname: Haijin
  surname: Li
  fullname: Li, Haijin
  organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China
– sequence: 2
  givenname: Yong
  surname: Zhou
  fullname: Zhou, Yong
  email: zhouyong1999@nju.edu.cn
  organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China
– sequence: 3
  givenname: Wenguang
  surname: Tu
  fullname: Tu, Wenguang
  organization: Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics, Department of Physics, Nanjing University, 210093, Nanjing, Jiangsu, P. R. China
– sequence: 4
  givenname: Jinhua
  surname: Ye
  fullname: Ye, Jinhua
  organization: Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
– sequence: 5
  givenname: Zhigang
  surname: Zou
  fullname: Zou, Zhigang
  email: zhouyong1999@nju.edu.cn
  organization: Jiangsu Key Laboratory for Nano Technology, Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Jiangsu, 210093, Nanjing, P. R. China
BookMark eNqF0E1PGzEQBmALUYmP9sp5j71s8NjOOHuM-KygNBKgIi6W450Fl911sJ1C_n0TpYoQEuLkkfw-I827x7b70BNjB8AHwLk4tHXTDQQHxQElbrFdQMBScjHa3sxwt8P2UvrDOWgt1S6bXWebqQxNmR-pHMdcTGJ4iJRS4fvi2P-lmKg4p0wxpBznLs8j1cXkMeTgbLbtIuVU5PBiY72iXci-f3j7n70rJhSbEDvbO_rKvjS2TfTt_7vPbk9Pbo7Oy8tfZz-OxpelQ66xnAqpG1IjPhXKKS3BWV1pUFI4OxSN5SMacqgQtcC6crWbCpAolRoCcomV3Gff13tnMTzPKWXT-eSobW1PYZ4MIFYjDRz4MqrWUbe8MUVqjPPLVnzoc7S-NcDNqmCzKthsCl6ywTs2i76zcfExqNbgxbe0-CRtxsenP9_acm19yvS6sTY-GdRSD83vqzNzhXf3-uL-xqD8B1IXoPA
CitedBy_id crossref_primary_10_1016_j_cej_2021_128802
crossref_primary_10_1016_j_jes_2022_05_045
crossref_primary_10_1021_acsaem_8b01123
crossref_primary_10_1039_D1SE01829A
crossref_primary_10_1021_acs_nanolett_9b02122
crossref_primary_10_1016_j_seppur_2021_119153
crossref_primary_10_1021_acsami_8b01268
crossref_primary_10_1016_j_apcatb_2018_09_011
crossref_primary_10_1016_j_ceramint_2021_12_134
crossref_primary_10_1016_j_materresbull_2020_111045
crossref_primary_10_1016_j_seppur_2021_120263
crossref_primary_10_1039_D0TA12269F
crossref_primary_10_1016_j_solener_2017_11_048
crossref_primary_10_1016_j_cej_2021_134371
crossref_primary_10_1016_S1872_2067_20_63615_4
crossref_primary_10_1038_s41598_018_21239_7
crossref_primary_10_1080_0371750X_2020_1864664
crossref_primary_10_1016_j_jcis_2017_01_121
crossref_primary_10_1016_j_cattod_2018_11_001
crossref_primary_10_1007_s10854_020_03620_3
crossref_primary_10_1016_j_apsusc_2018_11_107
crossref_primary_10_1016_j_jcis_2022_04_003
crossref_primary_10_1088_1757_899X_239_1_012013
crossref_primary_10_1021_acsami_7b01605
crossref_primary_10_1002_admi_202101690
crossref_primary_10_1016_j_cej_2022_137804
crossref_primary_10_1016_j_colsurfa_2024_134900
crossref_primary_10_1016_j_cattod_2018_04_039
crossref_primary_10_1016_j_colsurfa_2020_125184
crossref_primary_10_1016_j_apcatb_2017_01_070
crossref_primary_10_1039_D3MA00662J
crossref_primary_10_1002_cssc_201801431
crossref_primary_10_3866_PKU_WHXB202407014
crossref_primary_10_1063_1_4960806
crossref_primary_10_1039_C9NJ04555D
crossref_primary_10_1016_j_jece_2021_107030
crossref_primary_10_1021_acsaem_4c00769
crossref_primary_10_1016_j_chemosphere_2023_137828
crossref_primary_10_1002_adfm_201602779
crossref_primary_10_1016_j_jece_2024_113414
crossref_primary_10_1021_acsomega_9b02359
crossref_primary_10_1002_ange_201900046
crossref_primary_10_1021_acs_jpcc_8b04224
crossref_primary_10_1016_j_jics_2022_100495
crossref_primary_10_1039_C7TA02116J
crossref_primary_10_2139_ssrn_4055898
crossref_primary_10_1039_C5RA13755A
crossref_primary_10_1016_j_ijhydene_2019_11_078
crossref_primary_10_1016_j_jcis_2022_04_111
crossref_primary_10_1016_j_cej_2025_160313
crossref_primary_10_1016_j_cej_2025_161763
crossref_primary_10_1016_j_seppur_2022_120539
crossref_primary_10_1021_acs_inorgchem_7b00219
crossref_primary_10_1016_j_apsadv_2023_100536
crossref_primary_10_1016_j_nanoen_2020_105031
crossref_primary_10_1016_j_jallcom_2019_06_311
crossref_primary_10_1016_j_seppur_2022_120778
crossref_primary_10_1039_C8CC01873A
crossref_primary_10_1016_j_apcatb_2018_10_001
crossref_primary_10_1016_j_ceramint_2021_12_355
crossref_primary_10_1002_aenm_202003159
crossref_primary_10_1039_D3NJ00856H
crossref_primary_10_1039_D2RA07070G
crossref_primary_10_1021_acsaem_8b01345
crossref_primary_10_1016_j_apsusc_2018_04_011
crossref_primary_10_1016_j_materresbull_2019_110757
crossref_primary_10_1016_j_apcatb_2016_06_027
crossref_primary_10_1002_adfm_202106700
crossref_primary_10_1016_j_ceramint_2021_06_086
crossref_primary_10_1016_j_seppur_2015_09_021
crossref_primary_10_1021_acsanm_3c04168
crossref_primary_10_1016_j_cej_2022_135401
crossref_primary_10_1002_smll_201800749
crossref_primary_10_1016_j_jcat_2017_05_010
crossref_primary_10_1039_C8SC03297A
crossref_primary_10_1016_j_jenvman_2022_114930
crossref_primary_10_1016_j_seppur_2023_125056
crossref_primary_10_1016_j_cej_2019_123710
crossref_primary_10_1016_j_jcis_2018_03_033
crossref_primary_10_1039_C9NJ01580A
crossref_primary_10_1088_1757_899X_774_1_012039
crossref_primary_10_1186_s11671_019_3070_3
crossref_primary_10_1002_chem_201904594
crossref_primary_10_3934_matersci_2023049
crossref_primary_10_1016_j_jallcom_2016_10_240
crossref_primary_10_1016_j_apcatb_2020_119157
crossref_primary_10_1016_j_apsusc_2025_162447
crossref_primary_10_1016_j_jcis_2017_02_069
crossref_primary_10_1016_j_wen_2020_03_008
crossref_primary_10_3390_catal11020205
crossref_primary_10_1002_tcr_202400202
crossref_primary_10_1016_j_jallcom_2015_07_124
crossref_primary_10_1016_j_apcatb_2019_117856
crossref_primary_10_1016_j_apcatb_2019_117855
crossref_primary_10_1039_D0DT02309D
crossref_primary_10_1016_j_ceramint_2019_08_092
crossref_primary_10_1016_j_jallcom_2016_12_069
crossref_primary_10_1016_j_jallcom_2020_154953
crossref_primary_10_1002_solr_201900059
crossref_primary_10_1016_j_colsurfa_2020_125198
crossref_primary_10_1007_s42114_017_0001_6
crossref_primary_10_1016_j_jallcom_2019_06_331
crossref_primary_10_1039_C8CS00607E
crossref_primary_10_1016_S1872_2067_19_63383_8
crossref_primary_10_1016_j_jallcom_2019_07_319
crossref_primary_10_1002_adma_201806808
crossref_primary_10_1016_j_mtadv_2022_100249
crossref_primary_10_1039_C5RA14889H
crossref_primary_10_1016_j_optmat_2020_110500
crossref_primary_10_1016_j_apsusc_2019_04_230
crossref_primary_10_1021_acs_langmuir_2c02903
crossref_primary_10_1088_1361_6528_ab4e2c
crossref_primary_10_1016_j_apsusc_2020_146943
crossref_primary_10_1021_acsaem_0c02252
crossref_primary_10_1039_D4TA09139F
crossref_primary_10_1016_j_scitotenv_2020_138144
crossref_primary_10_1134_S0036024419040307
crossref_primary_10_3390_molecules27030833
crossref_primary_10_1002_ange_201708645
crossref_primary_10_1016_j_ijhydene_2024_10_308
crossref_primary_10_1007_s42864_020_00031_z
crossref_primary_10_1016_j_cattod_2024_115092
crossref_primary_10_1063_1_5124856
crossref_primary_10_1088_1674_4926_41_1_011701
crossref_primary_10_1007_s13391_018_0055_9
crossref_primary_10_1039_C5DT01560J
crossref_primary_10_1002_pssb_202100309
crossref_primary_10_1016_j_jmst_2016_11_017
crossref_primary_10_1002_ange_202210849
crossref_primary_10_1039_D4MH01316F
crossref_primary_10_1039_C7CY01134B
crossref_primary_10_1039_C5CY01857A
crossref_primary_10_1016_j_matt_2020_02_006
crossref_primary_10_1002_smll_202402219
crossref_primary_10_1007_s10562_019_02718_6
crossref_primary_10_1021_acsomega_9b00493
crossref_primary_10_1002_cptc_201700163
crossref_primary_10_1021_acsanm_3c04213
crossref_primary_10_1002_chem_201706164
crossref_primary_10_1021_acs_inorgchem_0c03342
crossref_primary_10_1016_j_apmate_2024_100204
crossref_primary_10_1021_acs_energyfuels_3c00672
crossref_primary_10_1016_j_ijhydene_2020_04_160
crossref_primary_10_1007_s10853_019_03634_1
crossref_primary_10_1039_C5TA10194H
crossref_primary_10_1002_cphc_201900632
crossref_primary_10_1007_s10853_020_05528_z
crossref_primary_10_1039_D0QI00506A
crossref_primary_10_1016_j_apcatb_2016_07_022
crossref_primary_10_1016_j_jcis_2016_06_007
crossref_primary_10_1016_j_apcatb_2019_117948
crossref_primary_10_1016_j_apsusc_2019_03_333
crossref_primary_10_1039_D0TA05485B
crossref_primary_10_1039_D0TA09059J
crossref_primary_10_1007_s11051_019_4525_2
crossref_primary_10_1021_acsenergylett_9b01150
crossref_primary_10_1039_D0RA08358E
crossref_primary_10_1002_advs_201500389
crossref_primary_10_1016_j_apcatb_2023_122688
crossref_primary_10_1016_j_seppur_2023_126066
crossref_primary_10_1039_D1NJ02247D
crossref_primary_10_1016_j_apt_2019_08_035
crossref_primary_10_1016_j_ceramint_2018_05_017
crossref_primary_10_1016_j_apsusc_2021_152206
crossref_primary_10_1016_j_nanoen_2019_03_004
crossref_primary_10_1039_C7RA06462D
crossref_primary_10_1016_j_nanoen_2017_09_021
crossref_primary_10_1016_j_cattod_2018_02_006
crossref_primary_10_1016_j_jallcom_2018_09_097
crossref_primary_10_3390_molecules28227500
crossref_primary_10_1016_j_jcis_2024_03_066
crossref_primary_10_1134_S1063782624602760
crossref_primary_10_1186_s11671_016_1246_7
crossref_primary_10_1039_C6TA10728A
crossref_primary_10_1016_j_bios_2019_03_028
crossref_primary_10_1016_j_envres_2024_120487
crossref_primary_10_1049_mnl_2018_5682
crossref_primary_10_1016_j_chemosphere_2020_129148
crossref_primary_10_3390_nano7010022
crossref_primary_10_1039_D0TA05621A
crossref_primary_10_1021_acs_langmuir_3c02458
crossref_primary_10_1016_j_nanoen_2016_08_054
crossref_primary_10_1016_j_materresbull_2019_110571
crossref_primary_10_1016_j_apcatb_2017_08_016
crossref_primary_10_1002_ange_201912439
crossref_primary_10_1016_j_cap_2015_11_002
crossref_primary_10_1016_j_jallcom_2016_03_249
crossref_primary_10_1016_S1872_2067_17_62962_0
crossref_primary_10_1016_S1872_2067_20_63700_7
crossref_primary_10_1016_j_ceramint_2023_09_149
crossref_primary_10_1070_RCR5004
crossref_primary_10_1039_C9TA06407A
crossref_primary_10_1007_s00604_021_04999_4
crossref_primary_10_1039_D0TA04068A
crossref_primary_10_1016_j_apcatb_2017_02_027
crossref_primary_10_1016_j_jwpe_2023_104032
crossref_primary_10_1021_acsami_3c01255
crossref_primary_10_1007_s00216_019_01765_7
crossref_primary_10_2139_ssrn_4149302
crossref_primary_10_1016_j_colsurfa_2023_131755
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_apsusc_2017_01_069
crossref_primary_10_1016_j_jece_2019_103209
crossref_primary_10_1063_1_4980011
crossref_primary_10_1002_adfm_201801983
crossref_primary_10_3389_fchem_2019_00713
crossref_primary_10_1016_j_seppur_2024_129870
crossref_primary_10_1088_1674_4926_41_9_091709
crossref_primary_10_1002_adma_201808185
crossref_primary_10_1016_j_jphotochem_2020_112755
crossref_primary_10_1002_cptc_202200017
crossref_primary_10_1007_s10563_021_09349_1
crossref_primary_10_1016_j_jwpe_2023_104384
crossref_primary_10_1039_C5EE02650D
crossref_primary_10_1142_S021798492050339X
crossref_primary_10_1021_acscombsci_7b00077
crossref_primary_10_1016_j_apcatb_2017_09_020
crossref_primary_10_1016_j_nanoen_2019_01_095
crossref_primary_10_1016_j_cej_2023_144569
crossref_primary_10_1016_j_physb_2024_416230
crossref_primary_10_1007_s40789_024_00681_1
crossref_primary_10_1016_j_apcatb_2018_05_070
crossref_primary_10_1016_j_jhazmat_2018_08_074
crossref_primary_10_1002_nano_202000010
crossref_primary_10_1088_2053_1591_ab1b8c
crossref_primary_10_1002_anie_201708645
crossref_primary_10_1016_j_apcatb_2019_05_003
crossref_primary_10_1039_C7QM00055C
crossref_primary_10_1007_s10854_018_9629_4
crossref_primary_10_1016_j_jechem_2021_03_033
crossref_primary_10_1016_j_materresbull_2016_01_039
crossref_primary_10_1039_D0QI00339E
crossref_primary_10_1016_j_catcom_2022_106556
crossref_primary_10_1002_cctc_201800750
crossref_primary_10_1016_j_jphotochem_2020_112625
crossref_primary_10_3390_nano10040619
crossref_primary_10_1016_j_ceramint_2025_03_074
crossref_primary_10_1039_C6CE01948J
crossref_primary_10_1039_C6RA22674D
crossref_primary_10_1039_D3CP06143D
crossref_primary_10_1016_j_apcatb_2017_09_028
crossref_primary_10_1016_j_ijhydene_2017_04_283
crossref_primary_10_1002_aenm_201700171
crossref_primary_10_1016_j_jallcom_2025_178464
crossref_primary_10_1038_srep41253
crossref_primary_10_1021_acsami_5b11973
crossref_primary_10_1039_D4CY01334D
crossref_primary_10_1088_1361_6528_ab7888
crossref_primary_10_1039_C6RA13060G
crossref_primary_10_1016_j_mattod_2019_09_003
crossref_primary_10_1039_C6RA03420A
crossref_primary_10_1016_j_apmate_2024_100178
crossref_primary_10_1016_j_ceramint_2022_12_231
crossref_primary_10_1016_j_jpowsour_2017_01_050
crossref_primary_10_1021_acs_iecr_7b02671
crossref_primary_10_1021_acs_inorgchem_9b00834
crossref_primary_10_1016_j_renene_2022_03_073
crossref_primary_10_1016_j_watres_2020_115798
crossref_primary_10_1051_e3sconf_201911801043
crossref_primary_10_1021_acs_inorgchem_4c04552
crossref_primary_10_1002_solr_202301002
crossref_primary_10_3390_catal10091046
crossref_primary_10_1002_nano_202000127
crossref_primary_10_1007_s13391_020_00200_9
crossref_primary_10_1016_j_jiec_2024_03_054
crossref_primary_10_3390_catal9050439
crossref_primary_10_1021_acsami_1c04130
crossref_primary_10_1016_j_cej_2020_125662
crossref_primary_10_1021_acssuschemeng_6b02902
crossref_primary_10_1007_s12274_016_1311_7
crossref_primary_10_1016_j_envpol_2020_115605
crossref_primary_10_3390_catal12020153
crossref_primary_10_1016_j_molcata_2016_07_032
crossref_primary_10_1016_j_apsusc_2019_03_246
crossref_primary_10_1016_j_jcis_2017_04_057
crossref_primary_10_1016_j_jechem_2021_04_050
crossref_primary_10_1016_j_optmat_2023_114670
crossref_primary_10_1039_C6TA07420K
crossref_primary_10_1039_D0RA06596J
crossref_primary_10_1016_j_cej_2021_133573
crossref_primary_10_1039_C5RA15821D
crossref_primary_10_1002_admi_201701694
crossref_primary_10_1039_C7CE01260H
crossref_primary_10_1039_D3NR04270G
crossref_primary_10_1039_D3TA00079F
crossref_primary_10_1002_asia_201700540
crossref_primary_10_1016_j_jallcom_2021_158810
crossref_primary_10_1016_j_jphotochemrev_2015_08_003
crossref_primary_10_1021_acs_langmuir_9b03015
crossref_primary_10_1039_C5RA27427C
crossref_primary_10_1007_s10854_023_11057_7
crossref_primary_10_3390_nano10071387
crossref_primary_10_1002_aenm_202200435
crossref_primary_10_3390_molecules28186502
crossref_primary_10_1039_C7CY00466D
crossref_primary_10_1016_j_apcatb_2015_09_050
crossref_primary_10_1039_C7RA01201B
crossref_primary_10_1002_smll_202405551
crossref_primary_10_1021_acsnano_9b03649
crossref_primary_10_1016_j_apsusc_2021_151852
crossref_primary_10_1039_D0RA06226J
crossref_primary_10_1016_j_isci_2018_01_002
crossref_primary_10_1039_C7TA02379K
crossref_primary_10_1002_cssc_202402106
crossref_primary_10_1016_j_snb_2022_132777
crossref_primary_10_1007_s40097_020_00363_9
crossref_primary_10_1002_smll_201503611
crossref_primary_10_1142_S1793604719500061
crossref_primary_10_1016_S1872_2067_17_62821_3
crossref_primary_10_1016_j_apcatb_2018_03_040
crossref_primary_10_1021_acscatal_9b00313
crossref_primary_10_1021_acsami_6b01850
crossref_primary_10_1007_s10895_025_04136_x
crossref_primary_10_1039_C7RA05175A
crossref_primary_10_1016_j_jcat_2024_115670
crossref_primary_10_1021_acs_jpcc_7b11567
crossref_primary_10_1021_acsaem_1c03713
crossref_primary_10_1016_j_jallcom_2021_159847
crossref_primary_10_1021_acs_chemrev_0c01328
crossref_primary_10_1039_D2MA00947A
crossref_primary_10_1016_j_jcis_2019_11_100
crossref_primary_10_1038_s41598_024_58751_y
crossref_primary_10_1016_j_jcat_2024_115429
crossref_primary_10_1016_j_jallcom_2023_171075
crossref_primary_10_1002_cctc_201800959
crossref_primary_10_1016_j_inoche_2023_111559
crossref_primary_10_1016_j_ijhydene_2024_12_300
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_1016_j_psep_2019_08_001
crossref_primary_10_1016_j_cej_2020_126567
crossref_primary_10_1002_anie_201900046
crossref_primary_10_1002_asia_202100392
crossref_primary_10_1038_s41598_017_12625_8
crossref_primary_10_1016_j_apcatb_2019_117788
crossref_primary_10_1021_acs_inorgchem_4c04472
crossref_primary_10_1016_j_seppur_2023_125011
crossref_primary_10_1002_cey2_179
crossref_primary_10_1016_j_surfin_2021_101246
crossref_primary_10_1021_acs_inorgchem_4c03268
crossref_primary_10_1142_S1793292021500971
crossref_primary_10_1002_cnma_202000170
crossref_primary_10_1016_j_inoche_2019_107576
crossref_primary_10_1021_acs_jpclett_9b01436
crossref_primary_10_1007_s40097_018_0278_1
crossref_primary_10_1016_j_eti_2020_101060
crossref_primary_10_1016_j_jallcom_2021_159830
crossref_primary_10_1039_D1MA00748C
crossref_primary_10_3762_bjnano_9_123
crossref_primary_10_1002_advs_201800244
crossref_primary_10_1007_s11356_024_33893_8
crossref_primary_10_1039_C9EE00717B
crossref_primary_10_1016_j_jallcom_2023_172132
crossref_primary_10_1016_j_apcatb_2016_09_021
crossref_primary_10_1021_acsanm_8b01693
crossref_primary_10_1016_j_jcis_2020_06_014
crossref_primary_10_1039_D0QM00216J
crossref_primary_10_1002_slct_201902612
crossref_primary_10_1002_slct_201800908
crossref_primary_10_1016_j_apcatb_2020_118702
crossref_primary_10_1038_nenergy_2016_151
crossref_primary_10_1039_C5RA10771G
crossref_primary_10_1016_j_jhazmat_2016_05_080
crossref_primary_10_3390_molecules23112947
crossref_primary_10_1039_C6CY00298F
crossref_primary_10_1016_j_jcis_2018_10_027
crossref_primary_10_1016_j_jcis_2020_12_009
crossref_primary_10_1002_adma_202205782
crossref_primary_10_1016_j_cej_2021_128915
crossref_primary_10_1039_D2CC05660G
crossref_primary_10_1016_j_apsusc_2017_08_149
crossref_primary_10_1039_C8MH00110C
crossref_primary_10_1016_j_apcatb_2023_122614
crossref_primary_10_1039_D0NJ01026J
crossref_primary_10_1002_adma_202206516
crossref_primary_10_1016_j_jallcom_2021_158734
crossref_primary_10_1021_acsaem_9b00150
crossref_primary_10_1016_S1872_2067_21_63978_5
crossref_primary_10_1016_j_apcatb_2018_03_014
crossref_primary_10_1007_s11144_020_01916_3
crossref_primary_10_1039_C7GC03731G
crossref_primary_10_1039_D1EE02359D
crossref_primary_10_1016_j_diamond_2024_111398
crossref_primary_10_1016_S1872_2067_16_62449_X
crossref_primary_10_1002_adfm_202406549
crossref_primary_10_1002_adhm_202200360
crossref_primary_10_1016_j_jclepro_2024_140568
crossref_primary_10_1002_smll_202100961
crossref_primary_10_1016_j_mcat_2017_03_027
crossref_primary_10_1021_acs_est_5b03758
crossref_primary_10_1021_acsami_0c10531
crossref_primary_10_1016_j_apcatb_2017_05_080
crossref_primary_10_1039_C6RA03268K
crossref_primary_10_1016_j_ijhydene_2021_10_221
crossref_primary_10_1016_j_apmt_2020_100741
crossref_primary_10_1016_j_jallcom_2023_170335
crossref_primary_10_1016_j_jcis_2019_03_092
crossref_primary_10_1002_sstr_202300142
crossref_primary_10_1016_j_cclet_2024_109727
crossref_primary_10_1039_D1TA05365E
crossref_primary_10_1016_j_jssc_2018_07_026
crossref_primary_10_1002_ange_201700286
crossref_primary_10_1016_j_colsurfa_2024_134229
crossref_primary_10_1007_s10854_019_02662_6
crossref_primary_10_1007_s42768_024_00198_y
crossref_primary_10_1021_acs_jpclett_3c02038
crossref_primary_10_1002_slct_201600855
crossref_primary_10_1016_j_apt_2018_02_006
crossref_primary_10_1002_adma_201502755
crossref_primary_10_1080_10408436_2018_1485549
crossref_primary_10_1016_j_ijhydene_2018_11_014
crossref_primary_10_1002_eem2_12171
crossref_primary_10_1002_adfm_202006883
crossref_primary_10_1039_C5CC09222A
crossref_primary_10_1007_s40820_025_01695_3
crossref_primary_10_1021_jacs_5b05926
crossref_primary_10_1007_s11356_023_27141_8
crossref_primary_10_1016_j_apcatb_2016_09_005
crossref_primary_10_1039_C6TA02764D
crossref_primary_10_1021_acs_nanolett_5b03871
crossref_primary_10_1016_j_jpcs_2019_109100
crossref_primary_10_1021_acsomega_8b03267
crossref_primary_10_1039_C8DT02708K
crossref_primary_10_1002_advs_201700194
crossref_primary_10_1016_j_jcis_2018_07_130
crossref_primary_10_1016_j_materresbull_2018_10_009
crossref_primary_10_1038_s41929_018_0128_z
crossref_primary_10_20964_2016_08_44
crossref_primary_10_1039_C7CY01638G
crossref_primary_10_1016_j_surfin_2025_105808
crossref_primary_10_1039_D0CY00256A
crossref_primary_10_1016_j_scitotenv_2022_153790
crossref_primary_10_1016_j_trechm_2022_08_010
crossref_primary_10_1039_C6DT03449G
crossref_primary_10_30723_ijp_v20i3_1001
crossref_primary_10_3390_photochem2030041
crossref_primary_10_1016_j_seppur_2024_129331
crossref_primary_10_1039_C8RA09403A
crossref_primary_10_3390_coatings8110374
crossref_primary_10_1002_advs_202412459
crossref_primary_10_1016_j_apsusc_2017_12_219
crossref_primary_10_1016_j_apsusc_2019_143840
crossref_primary_10_1016_j_jece_2018_04_003
crossref_primary_10_1002_cplu_201700527
crossref_primary_10_1002_adma_201503730
crossref_primary_10_1016_j_colsurfa_2019_124079
crossref_primary_10_1021_acs_analchem_1c04820
crossref_primary_10_1002_cssc_201601799
crossref_primary_10_1039_C8QM00537K
crossref_primary_10_1016_j_matre_2021_100019
crossref_primary_10_1039_C6RA19365J
crossref_primary_10_1088_2053_1591_aadb7c
crossref_primary_10_1149_2_0221704jes
crossref_primary_10_1021_acsami_7b05302
crossref_primary_10_1039_C7CC07636C
crossref_primary_10_1016_j_jtice_2023_104679
crossref_primary_10_1039_D3TA01479G
crossref_primary_10_1002_smtd_201700080
crossref_primary_10_1016_j_jechem_2020_06_024
crossref_primary_10_1016_j_physe_2021_114767
crossref_primary_10_1002_bkcs_12125
crossref_primary_10_1007_s12274_016_1292_6
crossref_primary_10_1016_j_cclet_2022_05_037
crossref_primary_10_1039_D2QM00892K
crossref_primary_10_1002_adfm_201903490
crossref_primary_10_1016_j_colsurfa_2019_124183
crossref_primary_10_1016_j_jtice_2018_07_037
crossref_primary_10_1016_j_solener_2019_03_040
crossref_primary_10_3390_catal10101126
crossref_primary_10_3390_ijms241915021
crossref_primary_10_1016_j_apcatb_2016_02_060
crossref_primary_10_1016_j_chemosphere_2021_132126
crossref_primary_10_1016_j_cclet_2020_11_065
crossref_primary_10_1016_j_inoche_2024_112247
crossref_primary_10_2139_ssrn_4073644
crossref_primary_10_1016_j_jhazmat_2018_01_010
crossref_primary_10_1016_j_jhazmat_2018_09_055
crossref_primary_10_1039_C8CE00700D
crossref_primary_10_1016_j_cej_2023_143174
crossref_primary_10_1557_jmr_2016_128
crossref_primary_10_1016_j_jcis_2020_03_111
crossref_primary_10_1039_C8TA03462A
crossref_primary_10_1016_j_apcatb_2019_118222
crossref_primary_10_1016_j_catcom_2019_03_023
crossref_primary_10_1039_C9CY02435B
crossref_primary_10_1016_j_jece_2018_11_024
crossref_primary_10_1039_D1DT02853G
crossref_primary_10_1021_acsami_5b06009
crossref_primary_10_1021_acs_jpcc_4c06027
crossref_primary_10_1039_C7NR09244J
crossref_primary_10_3390_catal10020227
crossref_primary_10_1016_j_jphotochem_2016_06_012
crossref_primary_10_1016_j_ijhydene_2024_09_006
crossref_primary_10_1016_j_jece_2021_105563
crossref_primary_10_1088_1361_6641_aa5246
crossref_primary_10_1016_j_apsusc_2020_147002
crossref_primary_10_1016_j_inoche_2021_108786
crossref_primary_10_3390_catal9080667
crossref_primary_10_1039_D1TC00014D
crossref_primary_10_1016_j_ceramint_2024_07_260
crossref_primary_10_1007_s10853_018_2810_6
crossref_primary_10_1007_s12274_023_6014_2
crossref_primary_10_1016_j_apcatb_2019_118470
crossref_primary_10_1016_j_seppur_2020_118251
crossref_primary_10_1016_j_ceramint_2016_11_102
crossref_primary_10_1039_D2CY02177C
crossref_primary_10_1002_anie_201912439
crossref_primary_10_1039_C5SC03249K
crossref_primary_10_1016_j_snb_2019_127210
crossref_primary_10_1016_j_apsusc_2017_05_147
crossref_primary_10_1039_C9NA00634F
crossref_primary_10_1016_j_ceramint_2018_08_320
crossref_primary_10_1142_S1793292018500996
crossref_primary_10_1002_cnma_202000125
crossref_primary_10_1016_j_cej_2019_123020
crossref_primary_10_1021_acsami_4c10831
crossref_primary_10_1016_j_cclet_2023_108306
crossref_primary_10_1021_acs_langmuir_7b02403
crossref_primary_10_1039_D0TA00901F
crossref_primary_10_1002_anie_201700286
crossref_primary_10_1021_acsami_4c07664
crossref_primary_10_1007_s11356_018_1767_y
crossref_primary_10_1016_j_apcatb_2017_05_049
crossref_primary_10_1016_j_apcatb_2018_07_057
crossref_primary_10_1021_acs_nanolett_8b04768
crossref_primary_10_1016_j_ceramint_2023_11_013
crossref_primary_10_1021_acssuschemeng_7b01386
crossref_primary_10_1016_j_jcis_2021_05_130
crossref_primary_10_1016_j_jece_2024_115147
crossref_primary_10_1016_j_apcatb_2020_119626
crossref_primary_10_1039_C9NR01732A
crossref_primary_10_1007_s10854_019_02149_4
crossref_primary_10_1016_j_jcis_2022_08_152
crossref_primary_10_1039_C5RA14374H
crossref_primary_10_1016_j_cej_2019_123352
crossref_primary_10_1016_j_ijhydene_2021_04_131
crossref_primary_10_1039_C8CC09371G
crossref_primary_10_1039_D4EY00245H
crossref_primary_10_1039_C8CS00479J
crossref_primary_10_1007_s10562_018_2525_y
crossref_primary_10_1016_j_apsusc_2017_05_012
crossref_primary_10_1021_acs_iecr_5b01993
crossref_primary_10_1039_D4CY00645C
crossref_primary_10_1016_j_jpcs_2018_03_032
crossref_primary_10_1002_admi_201701304
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_1016_j_cej_2019_122264
crossref_primary_10_1016_j_chemosphere_2023_140381
crossref_primary_10_1021_acssuschemeng_6b01852
crossref_primary_10_1016_j_apcatb_2021_120902
crossref_primary_10_1016_j_cej_2022_137197
crossref_primary_10_1016_j_jpcs_2021_110063
crossref_primary_10_1016_j_nanoen_2017_04_002
crossref_primary_10_1016_j_enchem_2022_100094
crossref_primary_10_1016_j_jssc_2021_122737
crossref_primary_10_1039_C5NR08624H
crossref_primary_10_1002_adfm_201801585
crossref_primary_10_1016_j_envres_2023_116000
crossref_primary_10_1007_s10562_025_04968_z
crossref_primary_10_1016_j_apcatb_2016_02_015
crossref_primary_10_1002_adfm_201801214
crossref_primary_10_1021_acsami_1c01108
crossref_primary_10_1016_j_apsusc_2021_149731
crossref_primary_10_1016_j_apsusc_2020_147016
crossref_primary_10_1016_j_apsusc_2020_147379
crossref_primary_10_1016_j_rser_2025_115490
crossref_primary_10_1142_S1793292018500893
crossref_primary_10_1002_smtd_201900586
crossref_primary_10_1016_j_nanoen_2017_05_046
crossref_primary_10_1002_cssc_201600773
crossref_primary_10_1016_j_apcatb_2016_10_086
crossref_primary_10_1016_j_cej_2018_09_102
crossref_primary_10_1038_ncomms9340
crossref_primary_10_1038_s42004_021_00589_w
crossref_primary_10_1016_j_ijhydene_2024_08_403
crossref_primary_10_1021_acs_est_7b04503
crossref_primary_10_1002_adfm_202213901
crossref_primary_10_1007_s10971_024_06608_1
crossref_primary_10_1016_j_cej_2021_128766
crossref_primary_10_1016_j_optmat_2022_112681
crossref_primary_10_1016_j_apcatb_2018_09_096
crossref_primary_10_1016_j_apsusc_2021_151140
crossref_primary_10_1016_j_molstruc_2021_131329
crossref_primary_10_1039_D2NR03924A
crossref_primary_10_1039_C7SC03920D
crossref_primary_10_1016_j_jece_2017_07_009
crossref_primary_10_1007_s11164_020_04312_7
crossref_primary_10_1016_j_cej_2018_11_229
crossref_primary_10_1016_j_ceramint_2019_06_093
crossref_primary_10_1016_j_inoche_2022_110319
crossref_primary_10_1515_revic_2022_0015
crossref_primary_10_1016_j_mssp_2022_106805
crossref_primary_10_1016_j_colsurfa_2020_125580
crossref_primary_10_1016_j_jece_2021_105922
crossref_primary_10_1007_s11356_023_27113_y
crossref_primary_10_1002_adma_201606688
crossref_primary_10_1039_C7NJ01278K
crossref_primary_10_3390_molecules28114520
crossref_primary_10_1002_aelm_202000240
crossref_primary_10_1016_j_apsusc_2022_155575
crossref_primary_10_1016_j_jcis_2018_08_008
crossref_primary_10_1016_j_apcatb_2017_07_076
crossref_primary_10_1039_D3SE00499F
crossref_primary_10_1007_s10854_018_00602_4
crossref_primary_10_1039_D1CS00684C
crossref_primary_10_1016_j_molcata_2016_03_021
crossref_primary_10_1016_j_rser_2021_111864
crossref_primary_10_2139_ssrn_4167648
crossref_primary_10_3390_catal10070804
crossref_primary_10_1038_srep39973
crossref_primary_10_1016_j_coco_2017_07_003
crossref_primary_10_1021_acs_inorgchem_0c00277
crossref_primary_10_1002_chem_202000821
crossref_primary_10_1016_j_apcatb_2016_12_019
crossref_primary_10_1007_s13762_017_1401_4
crossref_primary_10_1016_j_apcatb_2018_12_016
crossref_primary_10_1002_cplu_201900103
crossref_primary_10_1039_C7SE00344G
crossref_primary_10_1016_j_bioactmat_2020_07_005
crossref_primary_10_1039_C8NJ04849E
crossref_primary_10_1016_j_ccr_2023_215489
crossref_primary_10_1039_C8TA10606A
crossref_primary_10_1016_j_apcatb_2019_118085
crossref_primary_10_1039_C5RA26250J
crossref_primary_10_1039_D1NJ00812A
crossref_primary_10_1002_anie_202210849
crossref_primary_10_1016_j_apcatb_2019_117908
crossref_primary_10_1016_j_ces_2019_115266
crossref_primary_10_1039_D4TA06179A
crossref_primary_10_1016_j_seppur_2022_121490
crossref_primary_10_1039_C7RA12236E
crossref_primary_10_1039_C7EN01031A
crossref_primary_10_1016_j_apcatb_2015_11_043
crossref_primary_10_1371_journal_pone_0309389
crossref_primary_10_1016_j_cattod_2018_11_068
crossref_primary_10_1016_j_seppur_2019_03_040
crossref_primary_10_1016_j_apsusc_2016_11_081
crossref_primary_10_1021_acs_iecr_0c02397
crossref_primary_10_1039_C5TA02337H
crossref_primary_10_1007_s40097_021_00411_y
crossref_primary_10_1016_j_apsusc_2017_05_058
crossref_primary_10_1039_C7RA02026K
crossref_primary_10_1016_j_carbon_2024_119153
crossref_primary_10_1021_acs_jpclett_3c02792
crossref_primary_10_1039_D0TA06442D
crossref_primary_10_1016_j_apsusc_2021_152003
crossref_primary_10_1016_j_envpol_2020_116018
crossref_primary_10_1016_j_ijhydene_2018_10_145
crossref_primary_10_1016_j_jcis_2017_07_017
crossref_primary_10_1016_j_jcis_2022_07_031
crossref_primary_10_1016_j_jhazmat_2021_126567
crossref_primary_10_1142_S2810922822300069
crossref_primary_10_1039_C8TA03398F
crossref_primary_10_1039_D4TC00972J
crossref_primary_10_1016_j_apsusc_2016_10_172
crossref_primary_10_1016_j_cattod_2017_04_030
crossref_primary_10_1016_j_nxener_2024_100222
crossref_primary_10_1016_j_mssp_2022_106600
crossref_primary_10_1016_j_apcatb_2017_06_055
crossref_primary_10_1016_j_biomaterials_2025_123258
crossref_primary_10_1039_C8NR08292H
crossref_primary_10_1016_j_jmst_2021_12_064
crossref_primary_10_1016_j_ijhydene_2024_11_051
crossref_primary_10_1039_C8TA06783J
crossref_primary_10_1002_chem_201804922
crossref_primary_10_1021_acs_jpcc_7b03001
crossref_primary_10_3390_nano10020321
crossref_primary_10_1016_j_apt_2021_11_009
crossref_primary_10_1039_C8CY00930A
crossref_primary_10_1039_D0RA05779G
crossref_primary_10_1016_j_cogsc_2021_100465
crossref_primary_10_1021_acs_energyfuels_4c00160
crossref_primary_10_1016_j_nanoen_2020_104688
crossref_primary_10_1007_s10853_019_03417_8
crossref_primary_10_1016_j_cattod_2020_06_015
crossref_primary_10_1039_C7TA02626A
crossref_primary_10_1016_j_jcis_2021_11_070
crossref_primary_10_1039_D4EN00715H
crossref_primary_10_1002_cctc_202000546
crossref_primary_10_1016_j_jcat_2019_02_019
crossref_primary_10_1021_acsami_8b04855
crossref_primary_10_1007_s10853_019_03900_2
crossref_primary_10_1186_s11671_017_2428_7
crossref_primary_10_1039_C5RA21339H
crossref_primary_10_1016_j_apcatb_2016_11_024
crossref_primary_10_1016_j_colsurfa_2023_131150
crossref_primary_10_1039_C6RA27388B
crossref_primary_10_3390_chemengineering6060089
crossref_primary_10_1016_j_cej_2024_153099
crossref_primary_10_1016_j_ceramint_2020_11_127
crossref_primary_10_1039_C6RA07589D
crossref_primary_10_1016_j_cej_2017_07_049
crossref_primary_10_1007_s11356_021_18332_2
crossref_primary_10_1002_adma_202418138
crossref_primary_10_1007_s00339_017_1133_9
crossref_primary_10_1016_j_apsusc_2018_04_116
crossref_primary_10_1021_acsami_9b09290
crossref_primary_10_1002_adma_202413931
crossref_primary_10_1002_ijch_202100084
crossref_primary_10_1002_adma_202203836
crossref_primary_10_1016_j_jallcom_2021_162338
crossref_primary_10_1002_solr_202200493
crossref_primary_10_1016_j_apcata_2017_04_009
crossref_primary_10_1088_2053_1591_ab20b1
crossref_primary_10_1088_1361_6463_abfb18
crossref_primary_10_1002_cctc_201700786
crossref_primary_10_1016_j_nanoen_2021_105936
crossref_primary_10_1021_acsomega_1c06239
crossref_primary_10_1016_j_jiec_2023_10_055
crossref_primary_10_1039_C9TA07569K
crossref_primary_10_3390_catal10080901
crossref_primary_10_1039_D1GC02307A
crossref_primary_10_1016_j_apsusc_2022_155400
crossref_primary_10_1039_C7CY00529F
crossref_primary_10_1002_slct_202401038
crossref_primary_10_1002_adfm_202106982
crossref_primary_10_1016_j_ijhydene_2024_02_002
crossref_primary_10_1039_C9TA12870K
crossref_primary_10_1007_s10854_019_02569_2
crossref_primary_10_1016_j_scib_2018_02_008
crossref_primary_10_1016_j_ijhydene_2017_09_128
crossref_primary_10_3390_catal13030522
crossref_primary_10_1002_cctc_201701965
crossref_primary_10_3390_ma15062221
crossref_primary_10_1016_j_jcis_2022_04_105
crossref_primary_10_1016_j_apcatb_2016_05_056
crossref_primary_10_1016_j_materresbull_2018_02_041
crossref_primary_10_1186_s11671_019_3066_z
crossref_primary_10_1039_C6EE02265K
crossref_primary_10_1021_acs_energyfuels_2c01364
crossref_primary_10_1016_j_apcatb_2016_06_071
crossref_primary_10_1021_acsanm_3c02571
crossref_primary_10_1016_j_jobe_2024_111077
crossref_primary_10_1016_j_jcis_2017_06_018
crossref_primary_10_1016_j_apsusc_2021_151096
crossref_primary_10_1002_ejic_201600646
crossref_primary_10_1007_s11356_021_14308_4
crossref_primary_10_1039_D2EE00050D
crossref_primary_10_1039_C7MH00557A
crossref_primary_10_1016_j_apcatb_2017_06_018
crossref_primary_10_1021_acsami_7b12386
crossref_primary_10_1016_j_ijhydene_2024_01_315
crossref_primary_10_1039_C6DT04079A
Cites_doi 10.1021/jp308921s
10.1021/am400964c
10.1021/nn1001547
10.1039/c3cp53131g
10.1039/c2nr32797j
10.1021/jp063441z
10.1021/jp311532s
10.1021/jp902866b
10.1002/adma.201104110
10.1039/c3ta12803b
10.1021/jp3083419
10.1002/adma.201200330
10.1021/ja106710m
10.1007/s10832-006-9073-3
10.1002/adfm.201103074
10.1021/cr900056b
10.1016/j.cej.2012.09.084
10.1021/jp410692y
10.1002/adma.201002290
10.1002/anie.201001827
10.1021/nl101010m
10.1149/1.3328177
10.1021/cs400156m
10.1021/ja8007825
10.1021/ja308723w
10.1039/b904668b
10.1021/jp400010z
10.1021/jp4009652
10.1021/ja203296z
10.1021/am400851q
10.1016/S1003-9953(10)60212-5
10.1016/j.jallcom.2012.02.043
10.1021/jp075605x
10.1021/ja212032q
10.1016/j.elecom.2011.09.023
10.1021/jp2037476
10.1002/anie.201205333
10.1016/j.jallcom.2012.10.038
10.1021/ja0361749
10.1021/cr00035a013
10.1002/anie.200603148
10.1016/j.elecom.2010.07.035
10.1039/c0jm03818k
10.1021/ja300319g
10.1002/adma.201400288
10.1016/j.jhazmat.2011.09.051
10.1021/am201343q
10.1002/adfm.200901435
10.1021/nn200088x
10.1021/jp804699c
10.1016/j.jphotochem.2004.02.006
10.1039/c2ce25563d
10.1016/j.ijhydene.2010.01.008
10.1016/j.jcis.2010.12.034
10.1002/anie.201207554
10.1038/ncomms3195
10.1039/c3cy00055a
10.1039/c3ce40446c
10.1038/238037a0
10.1021/jp112259p
10.1021/la2000975
10.1016/j.cattod.2012.11.011
10.1021/jp209353j
10.1021/am3011516
10.1246/cl.2004.1348
10.1021/cm303206s
10.1021/jp107531h
10.1021/am401746b
10.1016/S1010-6030(02)00070-9
10.1039/b302418k
10.1021/jp209258r
10.1021/jp904320d
10.1039/c2jm32660d
10.1002/smll.201301276
10.1039/c0cc04985a
10.1021/am302136y
10.1039/C2CP41153A
10.1021/cr1002326
10.1038/414625a
10.1039/C2CS35367A
10.1039/c2cp41629h
10.1021/cs4002089
10.1021/cr0500535
10.1021/ie402437k
10.1021/nn100229x
10.1021/jp301904s
10.1021/nn2006738
10.1126/science.1103755
10.1021/jp400014j
10.1021/cm902516f
10.1039/c2cy20202f
10.1016/j.catcom.2010.05.010
10.1039/c3nr03493c
10.1002/adfm.200902390
10.1021/jp301355q
10.1039/c3ta01476b
10.1002/adfm.201203547
10.1021/jp303307r
10.1038/nmat1734
10.1021/jp204747w
10.1016/0047-2670(79)80037-4
10.1021/jp201901b
10.1039/c0ee00604a
10.1021/ja0777741
10.1557/mrs.2010.3
10.1016/j.cattod.2011.02.055
10.1039/c3cs60176e
10.1021/am100605a
10.1039/c2jm31589k
10.1021/ja311541a
10.1039/C3CS60370A
10.1021/am100618h
10.1039/c3cp51722e
10.1016/j.apcatb.2012.11.019
10.1021/jp0729112
10.1021/jp303255f
10.1039/C4CS00126E
10.1021/nl903217w
10.1038/ncomms2401
10.1039/C2CS35355E
10.1021/am300812n
10.1021/jp104208z
10.1021/cm903260f
10.1038/nature04165
10.1002/smll.200800841
10.1002/anie.201301306
10.1039/C1CS15172J
10.1021/am3008533
10.1021/jp2078117
10.1021/jp405989z
10.1021/am403264q
10.1002/adfm.201202349
10.1039/b822385h
10.1038/srep02720
10.1021/jp3031754
10.1002/adma.201302014
10.1039/c3ta12207g
10.1002/adfm.201000931
10.1021/jz2013193
10.1002/anie.200453728
10.1021/am201499r
10.1111/jace.12071
10.1038/ncomms3278
10.1021/jp110190a
10.1007/s10971-010-2179-8
10.1002/adfm.200900891
10.1016/j.apcatb.2013.07.048
10.1021/ja204881d
10.1016/j.molcata.2012.09.031
10.1039/C2CS35241A
10.1021/nn100684q
10.1021/ja1025112
10.1039/C2NR33109H
10.1088/0957-4484/17/18/006
10.1016/j.enconman.2011.02.014
10.1039/C4CS00180J
10.1039/c3ce26672a
10.1021/ja506386e
10.1039/c2cp43524a
10.1103/PhysRevB.81.165303
10.1021/jp203414q
10.1021/ja1068596
10.1016/j.apsusc.2007.04.077
10.1021/cm070754d
10.1021/jp200274k
10.1021/ja806370s
10.1002/anie.201207199
10.1002/adfm.201102566
10.1021/nn901087c
10.1021/ac3028799
10.1021/am302074p
10.1021/jp210033y
10.1016/j.jpowsour.2012.01.154
10.1063/1.2266237
10.1021/cm901762h
10.1021/am402929d
10.1021/cm802282t
10.1021/nl025596y
10.1002/chem.201300579
10.1021/jp806645c
10.1021/la104195v
10.1002/adfm.201303214
10.1002/anie.201400966
10.1021/es903087w
10.1021/jz4013504
10.1021/jp310495j
10.1039/c3nr03998f
10.1039/C3CS60437C
10.1039/c3dt50699a
10.1021/jp305388c
10.1016/j.ijhydene.2009.12.091
10.1002/adfm.200400184
10.1039/c3ra41782d
10.1021/cs300724r
10.1021/nl100250z
10.1016/j.catcom.2010.11.027
10.1039/c3nr01577g
10.1557/mrs.2011.238
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201401636
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 1013
ExternalDocumentID 10_1002_adfm_201401636
ADFM201401636
ark_67375_WNG_N6XZ7KZT_6
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c6076-b237fe480b24c4731ca7971432ca52fa08e501966726d9cdcb213634451603693
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 09:17:49 EDT 2025
Tue Jul 01 01:30:17 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Jan 22 16:47:17 EST 2025
Wed Oct 30 09:49:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6076-b237fe480b24c4731ca7971432ca52fa08e501966726d9cdcb213634451603693
Notes ArticleID:ADFM201401636
istex:BCD6B36B97714B843B140B56AA2858E06803EC62
ark:/67375/WNG-N6XZ7KZT-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669871010
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1669871010
crossref_citationtrail_10_1002_adfm_201401636
crossref_primary_10_1002_adfm_201401636
wiley_primary_10_1002_adfm_201401636_ADFM201401636
istex_primary_ark_67375_WNG_N6XZ7KZT_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 18, 2015
PublicationDateYYYYMMDD 2015-02-18
PublicationDate_xml – month: 02
  year: 2015
  text: February 18, 2015
  day: 18
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Y. L. Liao, H. W. Zhang, Z. Y. Zhong, L. J. Jia, F. M. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 11022.
P. Xiong, J. w. Zhu, X. Wang, Ind. Eng. Chem. Res. 2013, 52, 17126.
W. G. Tu, Y. Zhou, Q. Liu, S. C. Yan, S. S. Bao, X. Y. Wang, M. Xiao, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 1743.
K. E. deKrafft, C. Wang, W. B. Lin, Adv. Mater. 2012, 24, 2014.
H. Wang, Y. S. Bai, H. Zhang, Z. H. Zhang, J. H. Li, L. Guo, J. Phys. Chem. C 2010, 114, 16451.
N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718.
L. X. Sang, H. Y. Tan, X. M. Zhang, Y. T. Wu, C. F. Ma, C. Burda, J. Phys. Chem. C 2012, 116, 18633.
H. M. Zhu, N. H. Song, T. Q. Lian, J. Am. Chem. Soc. 2010, 132, 15038.
J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425.
T. Teranishi, M. Sakamoto, J. Phys. Chem. Lett. 2013, 4, 2867.
A. Fujishima, K. Honda, Nature 1972, 238, 37.
Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 2012, 116, 12958.
B. M. Rajbongshi, S. K. Samdarshi, Appl. Catal. B Environ. 2014, 144, 435.
V. Luca, M. G. Blackford, K. S. Finnie, P. J. Evans, M. James, M. J. Lindsay, M. Skyllas-Kazacos, P. R. F. Barnes, J. Phys. Chem. C 2007, 111, 18479.
J. S. Lee, K. H. You, C. B. Park, Adv. Mater. 2012, 24, 1084.
Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Catal. Sci. Technol. 2013, 3, 1750.
A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energ. Convers. Manag. 2011, 52, 2800.
L. Li, Y. L. Zhang, A. M. Schultz, X. Liu, P. A. Salvador, G. S. Rohrer, Catal. Sci. Technol. 2012, 2, 1945.
X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 2011, 115, 14648.
W. Fan, Q. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 2013, 15, 2632.
L. G. Gai, X. Q. Duan, H. H. Jiang, Q. H. Mei, G. W. Zhou, Y. Tian, H. Liu, CrystEngComm 2012, 14, 7662.
J. Zhang, X. H. Tang, D. Y. Li, J. Phys. Chem. C 2011, 115, 21529.
N. N. Hewa-Kasakarage, P. Z. El-Khoury, A. N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov, ACS Nano 2010, 4, 1837.
L. Q. Jing, W. Zhou, G. H. Tian, H. G. Fu, Chem. Soc. Rev. 2013, 42, 9509.
X. Li, J. T. Chen, H. L. Li, J. T. Li, Y. T. Xu, Y. J. Liu, J. R. Zhou, J. Nat. Gas. Chem. 2011, 20, 413.
X. W. Zhang, T. Zhang, J. Ng, D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731.
W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 1215.
Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968.
J. S. Luo, L. Ma, T. C. He, C. F. Ng, S. J. Wang, H. D. Sun, H. J. Fan, J. Phys. Chem. C 2012, 116, 11956.
J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, H. Liu, Adv. Mater. 2013, 25, 5075.
P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2002, 2, 781.
X. N. Wang, H. J. Zhu, Y. M. Xu, H. Wang, Y. Tao, S. Hark, X. D. Xiao, Q. A. Li, ACS Nano 2010, 4, 3302.
J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630.
R. Zamani, R. Fiz, J. Pan, T. Fischer, S. Mathur, J. R. Morante, J. Arbiol, CrystEngComm 2013, 15, 4532.
H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 2009, 38, 1849.
P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920.
J. T. Carneiro, T. J. Savenije, J. A. Moulijn, G. Mul, J. Phys. Chem. C 2011, 115, 2211.
J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, M. G. Bawendi, Angew. Chem. Int. Ed. 2004, 43, 2154.
D. A. Chen, F. Zhao, H. Qi, M. Rutherford, X. G. Peng, Chem. Mater. 2010, 22, 1437.
L. H. Yu, Y. Huang, G. C. Xiao, D. Z. Li, J. Mater. Chem. A 2013, 1, 9637.
L. C. K. Liau, C. C. Lin, Appl. Surf. Sci. 2007, 253, 8798.
W. W. Zhao, Z. Y. Ma, D. Y. Yan, J. J. Xu, H. Y. Chen, Anal. Chem. 2012, 84, 10518.
J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064.
H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 2006, 5, 782.
P. Dhanasekaran, H. G. Salunke, N. M. Gupta, J. Phys. Chem. C 2012, 116, 12156.
R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664.
J. Ng, S. P. Xu, X. W. Zhang, H. Y. Yang, D. D. Sun, Adv. Funct. Mater. 2010, 20, 4287.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda, J. L. Gole, Adv. Funct. Mater. 2005, 15, 41.
J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C 2008, 112, 17200.
Y. L. Lee, C. F. Chi, S. Y. Liau, Chem. Mater. 2010, 22, 922.
L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 2013, 5, 588.
J. Pan, S. M. Huhne, H. Shen, L. S. Xiao, P. Born, W. Mader, S. Mathur, J. Phys. Chem. C 2011, 115, 17265.
S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011, 23, 180.
S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 2011, 133, 15240.
Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949.
D. H. Son, S. M. Hughes, Y. D. Yin, A. P. Alivisatos, Science 2004, 306, 1009.
S. L. Cheng, W. Y. Fu, B. Y. Hai, L. N. Zhang, J. W. Ma, H. Zhao, M. L. Sun, L. H. Yang, J. Phys. Chem. C 2012, 116, 2615.
Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2010, 2, 2915.
W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, H. Zhang, J. Hazard. Mater. 2011, 197, 19.
D. Perera, R. Lorek, R. S. Khnayzer, P. Moroz, T. O'Connor, D. Khon, G. Diederich, E. Kinder, S. Lambright, F. N. Castellano, M. Zamkov, J. Phys. Chem. C 2012, 116, 22786.
K. Maeda, D. L. Lu, K. Domen, ACS Catal. 2013, 3, 1026.
X. W. Wang, G. Liu, Z. G. Chen, F. Li, L. Z. Wang, G. Q. Lu, H. M. Cheng, Chem. Commun. 2009, 3452.
Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turner, G. Van Tendeloo, J. Mater. Chem. 2012, 22, 11739.
V. Etacheri, M. K. Seery, S. J. Hinder, S. C. Pillai, Chem. Mater. 2010, 22, 3843.
G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088.
Y. Q. Qu, X. F. Duan, Chem. Soc. Rev. 2013, 42, 2568.
F. F. Abdi, L. H. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195.
X. B. Cao, P. Chen, Y. Guo, J. Phys. Chem. C 2008, 112, 20560.
J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883.
J. Zhang, J. H. Bang, C. C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387.
D. Liu, Z. Z. Zheng, C. Q. Wang, Y. Q. Yin, S. Q. Liu, B. Yang, Z. H. Jiang, J. Phys. Chem. C 2013, 117, 26529.
X. Yang, J. Xu, T. Wong, Q. Yang, C. S. Lee, Phys. Chem. Chem. Phys. 2013, 15, 12688.
S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Chem. Mater. 2008, 20, 6784.
S. J. Ding, X. Yin, X. J. Lu, Y. M. Wang, F. Q. Huang, D. Y. Wan, ACS Appl. Mater. Interfaces 2012, 4, 306.
K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photoch. Photobio. A 2002, 148, 71.
Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano 2010, 4, 3789.
H. X. Li, C. W. Cheng, X. L. Li, J. P. Liu, C. Guan, Y. Y. Tay, H. J. Fan, J. Phys. Chem. C 2012, 116, 3802.
Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li, L. H. Zhou, Appl. Catal. B Environ. 2013, 130, 277.
S. A. K. Leghari, S. Sajjad, J. L. Zhang, RSC Adv. 2013, 3, 15354.
H. W. Bai, Z. Y. Liu, D. D. Sun, J. Am. Ceram. Soc. 2013, 96, 942.
X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, L. M. Peng, J. Phys. Chem. C 2009, 113, 20481.
L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Environ. Sci. Technol. 2010, 44, 1392.
Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165.
Y. Q. Qu, L. Liao, R. Cheng, Y. Wang, Y. C. Lin, Y. Huang, X. F. Duan, Nano Lett. 2010, 10, 1941.
Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968.
H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A 2013, 1, 12327.
M. C. Liu, D. W. Jing, Z. H. Zhou, L. J. Guo, Nat. Commun. 2013, 4, 2278.
K. H. Lin, C. Y. Chuang, Y. Y. Lee, F. C. Li, Y. M. Chang, I. P. Liu, S. C. Chou, Y. L. Lee, J. Phys. Chem. C 2012, 116, 1550.
X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13089.
X. Y. Li, Y. Hou, Q. D. Zhao, G. H. Chen, Langmuir 2011, 27, 3113.
X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
L. Huang, J. H. Yang, X. l. Wang, J. Han, H. X. Han, C. Li, Phys. Chem. Chem. Phys. 2013, 15, 553.
B. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759.
C. M. McShane, K. S. Choi, J. Am. Chem. Soc. 2009, 131, 2561.
Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625.
C. Z. Yao, B. H. Wei, L. X. Meng, H. Li, Q. J. Gong, H. Sun, H. X. Ma, X. H. Hu, J. Power. Sources 2012, 207, 222.
Y. C. Chen, Y. C. Pu, Y. J. Hsu, J. Phys. Chem. C 2012, 116, 2967.
S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372.
R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, C. Li, Nat. Commun. 2013, 4, 1432.
J. X. Wang, H. Ruan, W. J. Li, D. Z. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, J. Phys. Chem. C 2012, 116, 13935.
T. K. Sung, J. H. Kang, D. M. Jang, Y. Myung, G. B. Jung, H. S. Kim, C. S. Jung, Y. J. Cho, J. Park, C. L. Lee, J. Mater. Chem. 2011, 21, 4553.
M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, J. Mater. Chem. 2012, 22, 17055.
M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu, X. Z. Li, Catal. Today. 2011, 175, 256.
J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C. L. Shao, Y. C. Liu, ACS Appl. Mater. Interfaces 2012, 4, 424.
L. Huang, X. L. Wang, J. H. Yang, G. Liu, J. F. Han, C. Li, J. Phys. Chem. C 2013, 117, 11584.
Y. Wang, S. C. Li, H. Shi, K. Yu, Nanoscale 2012, 4, 7817.
H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Chem. Soc. Rev. 2014, 43, 4281.
Z. B. Yu, Y
2010; 12
2011; 115
2010; 11
2010; 10
2011; 356
2013; 3
2007; 107
2013; 4
2013; 1
2004; 163
2011; 52
2014; 26
2013; 367
2014; 24
2009; 113
2012; 14
2013; 5
2014; 136
2012; 527
2013; 9
2011; 197
2010; 22
2004; 33
2010; 20
2012; 134
2010; 114
2013; 52
2013; 117
2010; 110
2002; 148
2008; 20
2008; 112
2012; 24
2009; 19
2010; 2
2012; 22
2010; 4
2001; 414
2004; 43
2011; 2
2010; 35
2002; 2
2006; 110
2011; 4
2004; 306
2011; 5
1979; 10
2011; 133
2014; 43
2010; 44
2010; 49
2005; 15
2014; 144
2012; 116
2008; 130
2012; 41
2010; 54
2013; 25
2013; 23
2013; 209
2011; 13
2011; 12
2012; 207
2012; 51
2013; 19
2013; 15
2012; 211
2007; 253
2013; 96
2010; 157
2011; 20
2011; 22
2013; 553
2011; 21
2011; 23
2003; 125
2011; 27
2014; 6
2014; 53
1995; 95
2006; 17
2013; 42
2005; 437
2009
2006; 5
2003
2011; 36
2009; 131
2010; 81
1972; 238
2011; 175
2012; 2
2006; 89
2007; 111
2010; 132
2013; 135
2013; 130
2009; 5
2011; 47
2012; 4
2009; 38
2007; 46
2012; 84
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_152_1
e_1_2_6_175_1
e_1_2_6_198_1
Jung S. (e_1_2_6_144_1) 2011; 22
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_148_1
e_1_2_6_41_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_102_1
e_1_2_6_186_1
e_1_2_6_200_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_26_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_92_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_113_1
e_1_2_6_197_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_185_1
e_1_2_6_6_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_158_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_196_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_108_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_119_1
e_1_2_6_90_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_195_1
e_1_2_6_134_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_183_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_205_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_194_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_57_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_9_1
e_1_2_6_193_1
e_1_2_6_170_1
e_1_2_6_1_1
e_1_2_6_22_1
e_1_2_6_204_1
e_1_2_6_45_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_155_1
e_1_2_6_181_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_189_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_192_1
Liau L. C. K. (e_1_2_6_169_1) 2013; 1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_203_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_142_1
e_1_2_6_188_1
e_1_2_6_165_1
e_1_2_6_191_1
e_1_2_6_7_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_202_1
e_1_2_6_115_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_153_1
e_1_2_6_199_1
e_1_2_6_130_1
e_1_2_6_176_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_21_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_190_1
e_1_2_6_8_1
e_1_2_6_201_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: H. X. Li, C. W. Cheng, X. L. Li, J. P. Liu, C. Guan, Y. Y. Tay, H. J. Fan, J. Phys. Chem. C 2012, 116, 3802.
– reference: S. S. K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, Chem. Eur. J. 2013, 19, 7480.
– reference: J. S. Luo, L. Ma, T. C. He, C. F. Ng, S. J. Wang, H. D. Sun, H. J. Fan, J. Phys. Chem. C 2012, 116, 11956.
– reference: J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064.
– reference: D. Liu, Z. Z. Zheng, C. Q. Wang, Y. Q. Yin, S. Q. Liu, B. Yang, Z. H. Jiang, J. Phys. Chem. C 2013, 117, 26529.
– reference: H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348.
– reference: J. B. Rivest, P. K. Jain, Chem. Soc. Rev. 2013, 42, 89.
– reference: D. J. Martin, P. J. Reardon, S. J. Moniz, J. Tang, J. Am. Chem. Soc. 2014, 136, 12568.
– reference: H. M. Zhu, N. H. Song, T. Q. Lian, J. Am. Chem. Soc. 2010, 132, 15038.
– reference: T. Zewdu, J. N. Clifford, E. Palomares, Phys. Chem. Chem. Phys. 2012, 14, 13076.
– reference: J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 4630.
– reference: J. Pan, S. M. Huhne, H. Shen, L. S. Xiao, P. Born, W. Mader, S. Mathur, J. Phys. Chem. C 2011, 115, 17265.
– reference: Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625.
– reference: Y. L. Lee, C. F. Chi, S. Y. Liau, Chem. Mater. 2010, 22, 922.
– reference: S. Kim, B. Fisher, H. J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466.
– reference: C. T. Dinh, H. Yen, F. Kleitz, T. O. Do, Angew. Chem. 2014, 53, 6618.
– reference: H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.
– reference: S. Jung, K. Yong, Chem. Commun. 2011, 47, 2643.
– reference: J. Ng, S. P. Xu, X. W. Zhang, H. Y. Yang, D. D. Sun, Adv. Funct. Mater. 2010, 20, 4287.
– reference: H. Kato, Y. Sasaki, N. Shirakura, A. Kudo, J. Mater. Chem. A 2013, 1, 12327.
– reference: N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718.
– reference: Z. B. Jiao, T. Chen, J. Y. Xiong, T. Wang, G. X. Lu, J. H. Ye, Y. P. Bi, Sci. Rep. 2013, 3, 2720.
– reference: W. G. Tu, Y. Zhou, Q. Liu, Z. P. Tian, J. Gao, X. Y. Chen, H. T. Zhang, J. G. Liu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 1215.
– reference: L. Li, Y. L. Zhang, A. M. Schultz, X. Liu, P. A. Salvador, G. S. Rohrer, Catal. Sci. Technol. 2012, 2, 1945.
– reference: T. K. Sung, J. H. Kang, D. M. Jang, Y. Myung, G. B. Jung, H. S. Kim, C. S. Jung, Y. J. Cho, J. Park, C. L. Lee, J. Mater. Chem. 2011, 21, 4553.
– reference: X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 2008, 130, 7176.
– reference: J. C. Yu, L. Wu, J. Lin, P. S. Li, Q. Li, Chem. Commun. 2003, 1552.
– reference: K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2013, 135, 4596.
– reference: M. Miyauchi, Y. Nukui, D. Atarashi, E. Sakai, ACS Appl. Mater. Interfaces 2013, 5, 9770.
– reference: R. Zamani, R. Fiz, J. Pan, T. Fischer, S. Mathur, J. R. Morante, J. Arbiol, CrystEngComm 2013, 15, 4532.
– reference: Y. Q. Qu, L. Liao, R. Cheng, Y. Wang, Y. C. Lin, Y. Huang, X. F. Duan, Nano Lett. 2010, 10, 1941.
– reference: P. Xiong, J. w. Zhu, X. Wang, Ind. Eng. Chem. Res. 2013, 52, 17126.
– reference: K. Maeda, D. L. Lu, K. Domen, ACS Catal. 2013, 3, 1026.
– reference: J. Zhang, X. H. Tang, D. Y. Li, J. Phys. Chem. C 2011, 115, 21529.
– reference: J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C 2008, 112, 17200.
– reference: K. K. Manga, Y. Zhou, Y. L. Yan, K. P. Loh, Adv. Funct. Mater. 2009, 19, 3638.
– reference: H. Tang, C. M. Hessel, J. Wang, N. Yang, R. Yu, H. Zhao, D. Wang, Chem. Soc. Rev. 2014, 43, 4281.
– reference: S. Jung, S. Jeon, K. Yong, Nanotechnology 2011, 22.
– reference: S. F. Chen, X. L. Yu, H. Y. Zhang, W. Liu, J. Electrochem. Soc. 2010, 157, K96.
– reference: W. Zhu, X. Liu, H. Q. Liu, D. L. Tong, J. Y. Yang, J. Y. Peng, J. Am. Chem. Soc. 2010, 132, 12619.
– reference: Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2010, 2, 2915.
– reference: K. E. deKrafft, C. Wang, W. B. Lin, Adv. Mater. 2012, 24, 2014.
– reference: J. Y. Wang, Z. H. Liu, Q. Zheng, Z. K. He, R. X. Cai, Nanotechnology 2006, 17, 4561.
– reference: A. Kudo, MRS Bull. 2011, 36, 32.
– reference: Z. Fang, Y. F. Liu, Y. T. Fan, Y. H. Ni, X. W. Wei, K. B. Tang, J. M. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968.
– reference: P. Dhanasekaran, H. G. Salunke, N. M. Gupta, J. Phys. Chem. C 2012, 116, 12156.
– reference: Y. Shi, H. Y. Li, L. Wang, W. Shen, H. Z. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4800.
– reference: S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, J. Phys. Chem. C 2013, 117, 5558.
– reference: K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photoch. Photobio. A 2002, 148, 71.
– reference: H. M. Wei, H. B. Gong, L. Chen, M. Zi, B. Q. Cao, J. Phys. Chem. C 2012, 116, 10510.
– reference: K. Maeda, D. Lu, K. Domen, ACS Catal. 2013, 3, 1026.
– reference: M. C. Liu, L. Z. Wang, G. Q. Lu, X. D. Yao, L. J. Guo, Energ. Environ. Sci. 2011, 4, 1372.
– reference: H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu, J. Yi, ACS Nano 2011, 5, 4084.
– reference: Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turner, G. Van Tendeloo, J. Mater. Chem. 2012, 22, 11739.
– reference: H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 2009, 38, 1849.
– reference: E. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J. W. Jang, H. Jun, J. Kubota, K. Domen, J. S. Lee, J. Am. Chem. Soc. 2013, 135, 5375.
– reference: F. F. Abdi, L. H. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195.
– reference: Y. Y. Bu, Z. Y. Chen, W. B. Li, J. Q. Yu, ACS Appl. Mater. Interfaces 2013, 5, 5097.
– reference: H. J. Chen, L. Shao, Q. Li, J. F. Wang, Chem. Soc. Rev. 2013, 42, 2679.
– reference: S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, Chem. Mater. 2008, 20, 6784.
– reference: Y. Y. Sun, W. Z. Wang, L. Zhang, Z. J. Zhang, Chem. Eng. J. 2012, 211, 161.
– reference: S. Y. Qin, F. Xin, Y. D. Liu, X. H. Yin, W. Ma, J. Colloid. Interf. Sci. 2011, 356, 257.
– reference: W. W. Zhao, Z. Y. Ma, D. Y. Yan, J. J. Xu, H. Y. Chen, Anal. Chem. 2012, 84, 10518.
– reference: L. Wang, H. W. Wei, Y. J. Fan, X. Gu, J. H. Zhan, J. Phys. Chem. C 2009, 113, 14119.
– reference: M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, J. Mater. Chem. 2012, 22, 17055.
– reference: T. Teranishi, M. Sakamoto, J. Phys. Chem. Lett. 2013, 4, 2867.
– reference: X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed. 2012, 51, 13089.
– reference: Y. Luo, X. Y. Liu, J. G. Huang, CrystEngComm 2013, 15, 5586.
– reference: L. C. K. Liau, Y. C. Lin, Y. J. Peng, J. Phys. Chem. C 2013, 1, 1.
– reference: P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920.
– reference: Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 2012, 134, 5508.
– reference: J. X. Wang, H. Ruan, W. J. Li, D. Z. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, J. Phys. Chem. C 2012, 116, 13935.
– reference: S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton. Trans. 2013, 42, 10759.
– reference: H. L. Meng, C. Cui, H. L. Shen, D. Y. Liang, Y. Z. Xue, P. G. Li, W. H. Tang, J. Alloy. Compd. 2012, 527, 30.
– reference: Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 2013, 5, 8326.
– reference: M. Wang, J. G. Jiang, J. W. Shi, L. J. Guo, Acs Appl. Mater. Interfaces 2013, 5, 4021.
– reference: L. Li, P. A. Salvador, G. S. Rohrer, Nanoscale Res. Lett. 2014, 6, 24.
– reference: S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, G. D. Scholes, Adv. Mater. 2011, 23, 180.
– reference: L. Lin, Y. Yang, L. Men, X. Wang, D. He, Y. Chai, B. Zhao, S. Ghoshroy, Q. Tang, Nanoscale 2013, 5, 588.
– reference: G. N. Parsons, S. M. George, M. Knez, MRS Bull. 2011, 36, 865.
– reference: L. X. Sang, H. Y. Tan, X. M. Zhang, Y. T. Wu, C. F. Ma, C. Burda, J. Phys. Chem. C 2012, 116, 18633.
– reference: G. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M. H. Whangbo, Angew. Chem. Int. Ed. 2013, 52, 4810.
– reference: A. Fujishima, K. Honda, Nature 1972, 238, 37.
– reference: L. L. Xu, J. G. Guan, L. A. Gao, Z. G. Sun, Catal. Commun. 2011, 12, 548.
– reference: S. F. Chen, W. Liu, S. J. Zhang, Y. H. Chen, J. Sol-Gel Sci. Technol. 2010, 54, 258.
– reference: H. W. Bai, Z. Y. Liu, D. D. Sun, J. Am. Ceram. Soc. 2013, 96, 942.
– reference: M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211.
– reference: L. C. K. Liau, C. C. Lin, Appl. Surf. Sci. 2007, 253, 8798.
– reference: Y. Q. Qu, X. F. Duan, Chem. Soc. Rev. 2013, 42, 2568.
– reference: H. J. Li, Y. Zhou, L. Chen, W. J. Luo, Q. F. Xu, X. Y. Wang, M. Xiao, Z. G. Zou, Nanoscale 2013, 5, 11933.
– reference: L. Huang, X. L. Wang, J. H. Yang, G. Liu, J. F. Han, C. Li, J. Phys. Chem. C 2013, 117, 11584.
– reference: Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782.
– reference: X. W. Zhang, T. Zhang, J. Ng, D. D. Sun, Adv. Funct. Mater. 2009, 19, 3731.
– reference: Y. G. Wang, B. Li, C. L. Zhang, L. F. Cui, S. F. Kang, X. Li, L. H. Zhou, Appl. Catal. B Environ. 2013, 130, 277.
– reference: R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
– reference: S. Y. Chai, Y. J. Kim, W. I. Lee, J. Electroceram. 2006, 17, 909.
– reference: C. L. Li, J. A. Yuan, B. Y. Han, L. Jiang, W. F. Shangguan, Int. J. Hydrogen. Energ. 2010, 35, 7073.
– reference: A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
– reference: Y. Yin, A. P. Alivisatos, Nature 2005, 437, 664.
– reference: Y. Bessekhouad, D. Robert, J. Weber, J. Photoch. Photobio. A 2004, 163, 569.
– reference: Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Adv. Funct. Mater. 2010, 20, 2165.
– reference: Y. Liu, Y. X. Yu, W. D. Zhang, J. Phys. Chem. C 2013, 117, 12949.
– reference: H. M. Chen, C. K. Chen, Y. C. Chang, C. W. Tsai, R. S. Liu, S. F. Hu, W. S. Chang, K. H. Chen, Angew. Chem. Int. Ed. 2010, 49, 5966.
– reference: V. Etacheri, M. K. Seery, S. J. Hinder, S. C. Pillai, Chem. Mater. 2010, 22, 3843.
– reference: J. T. Carneiro, T. J. Savenije, J. A. Moulijn, G. Mul, J. Phys. Chem. C 2011, 115, 2211.
– reference: A. J. Bard, J. Photochem. 1979, 10, 59.
– reference: Y. Myung, D. M. Jang, T. K. Sung, Y. J. Sohn, G. B. Jung, Y. J. Cho, H. S. Kim, J. Park, ACS Nano 2010, 4, 3789.
– reference: S. M. George, Chem. Rev. 2010, 110, 111.
– reference: H. H. Yang, W. G. Fan, A. Vaneski, A. S. Susha, W. Y. Teoh, A. L. Rogach, Adv. Funct. Mater. 2012, 22, 2821.
– reference: L. G. Gai, X. Q. Duan, H. H. Jiang, Q. H. Mei, G. W. Zhou, Y. Tian, H. Liu, CrystEngComm 2012, 14, 7662.
– reference: Y. J. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. W. Wang, J. Am. Chem. Soc. 2012, 134, 5508.
– reference: J. Hensel, G. M. Wang, Y. Li, J. Z. Zhang, Nano Lett. 2010, 10, 478.
– reference: N. A. Ramos-Delgado, L. Hinojosa-Reyes, I. L. Guzman-Mar, M. A. Gracia-Pinilla, A. Hernandez-Ramirez, Catal. Today. 2013, 209, 35.
– reference: R. G. Li, F. X. Zhang, D. G. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, C. Li, Nat. Commun. 2013, 4, 1432.
– reference: N. N. Hewa-Kasakarage, P. Z. El-Khoury, A. N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov, ACS Nano 2010, 4, 1837.
– reference: W. Zhou, G. Du, P. Hu, Y. Yin, J. Li, J. Yu, G. Wang, J. Wang, H. Liu, J. Wang, H. Zhang, J. Hazard. Mater. 2011, 197, 19.
– reference: X. Li, J. T. Chen, H. L. Li, J. T. Li, Y. T. Xu, Y. J. Liu, J. R. Zhou, J. Nat. Gas. Chem. 2011, 20, 413.
– reference: X. B. Chen, Y. B. Lou, A. C. S. Samia, C. Burda, J. L. Gole, Adv. Funct. Mater. 2005, 15, 41.
– reference: L. Huang, J. H. Yang, X. l. Wang, J. Han, H. X. Han, C. Li, Phys. Chem. Chem. Phys. 2013, 15, 553.
– reference: M. S. Zhu, P. L. Chen, M. H. Liu, ACS Nano 2011, 5, 4529.
– reference: L. S. Zhang, K. H. Wong, H. Y. Yip, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Environ. Sci. Technol. 2010, 44, 1392.
– reference: X. W. Wang, G. Liu, Z. G. Chen, F. Li, L. Z. Wang, G. Q. Lu, H. M. Cheng, Chem. Commun. 2009, 3452.
– reference: A. Thibert, F. A. Frame, E. Busby, M. A. Holmes, F. E. Osterloh, D. S. Larsen, J. Phys. Chem. Lett. 2011, 2, 2688.
– reference: T. P. Cao, Y. J. Li, C. H. Wang, C. L. Shao, Y. C. Liu, Langmuir 2011, 27, 2946.
– reference: M. Seol, J. W. Jang, S. Cho, J. S. Lee, K. Yong, Chem. Mater. 2013, 25, 184.
– reference: F. Y. Shen, W. X. Que, Y. C. He, Y. Yuan, X. T. Yin, G. F. Wang, Acs Appl. Mater. Inter. 2012, 4, 4087.
– reference: W. Fan, Q. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 2013, 15, 2632.
– reference: W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 4996.
– reference: S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 2011, 133, 15240.
– reference: S. J. Ding, X. Yin, X. J. Lu, Y. M. Wang, F. Q. Huang, D. Y. Wan, ACS Appl. Mater. Interfaces 2012, 4, 306.
– reference: S. Verma, S. Kaniyankandy, H. N. Ghosh, J. Phys. Chem. C 2013, 117, 10901.
– reference: Y. Xie, G. Ali, S. H. Yoo, S. O. Cho, ACS Appl. Mater. Interfaces 2010, 2, 2910.
– reference: S. Kaniyankandy, S. Rawalekar, S. Verma, H. N. Ghosh, J. Phys. Chem. C 2011, 115, 1428.
– reference: S. L. Cheng, W. Y. Fu, B. Y. Hai, L. N. Zhang, J. W. Ma, H. Zhao, M. L. Sun, L. H. Yang, J. Phys. Chem. C 2012, 116, 2615.
– reference: S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, J. Phys. Chem. C 2012, 116, 23653.
– reference: L. Q. Jing, W. Zhou, G. H. Tian, H. G. Fu, Chem. Soc. Rev. 2013, 42, 9509.
– reference: J. S. Yang, W. P. Liao, J. J. Wu, ACS Appl. Mater. Interfaces 2013, 5, 7425.
– reference: X. W. Wang, G. Liu, G. Q. Lu, H. M. Cheng, Int. J. Hydrogen. Energ. 2010, 35, 8199.
– reference: S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372.
– reference: Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou, J. Am. Chem. Soc. 2010, 132, 14385.
– reference: J. S. Lee, K. H. You, C. B. Park, Adv. Mater. 2012, 24, 1084.
– reference: W. K. Bae, K. Char, H. Hur, S. Lee, Chem. Mater. 2008, 20, 531.
– reference: C. Z. Yao, B. H. Wei, L. X. Meng, H. Li, Q. J. Gong, H. Sun, H. X. Ma, X. H. Hu, J. Power. Sources 2012, 207, 222.
– reference: M. Abou Asi, C. He, M. H. Su, D. H. Xia, L. Lin, H. Q. Deng, Y. Xiong, R. L. Qiu, X. Z. Li, Catal. Today. 2011, 175, 256.
– reference: T. Wang, Z. Luo, C. Li, J. Gong, Chem. Soc. Rev. 2014, 43,7469.
– reference: M. A. Ahmed, E. E. El-Katori, Z. H. Gharni, J. Alloy. Compd. 2013, 553, 19.
– reference: X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
– reference: C. Li, P. Zhang, R. Lv, J. Lu, T. Wang, S. Wang, H. Wang, J. Gong, Small 2013, 9, 3951.
– reference: S. A. K. Leghari, S. Sajjad, J. L. Zhang, RSC Adv. 2013, 3, 15354.
– reference: Z. K. Cui, D. W. Zeng, T. T. Tang, J. Liu, C. S. Xie, Catal. Commun. 2010, 11, 1054.
– reference: X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C 2011, 115, 14648.
– reference: B. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759.
– reference: J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulovic, M. G. Bawendi, Angew. Chem. Int. Ed. 2004, 43, 2154.
– reference: K. Li, B. Chai, T. Y. Peng, J. Mao, L. Zan, ACS Catal. 2013, 3, 170.
– reference: Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, Y. Chen, J. Phys. Chem. C 2011, 115, 13968.
– reference: T. F. Jiang, T. F. Xie, W. S. Yang, L. P. Chen, H. M. Fan, D. J. Wang, J. Phys. Chem. C 2013, 117, 4619.
– reference: D. H. Son, S. M. Hughes, Y. D. Yin, A. P. Alivisatos, Science 2004, 306, 1009.
– reference: A. Kezzim, N. Nasrallah, A. Abdi, M. Trari, Energ. Convers. Manag. 2011, 52, 2800.
– reference: X. Yang, J. Xu, T. Wong, Q. Yang, C. S. Lee, Phys. Chem. Chem. Phys. 2013, 15, 12688.
– reference: J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, H. Liu, Adv. Mater. 2013, 25, 5075.
– reference: J. Zhang, J. H. Bang, C. C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387.
– reference: J. Zhang, M. Zhang, R. Q. Sun, X. Wang, Angew. Chem. Int. Ed. 2012, 51, 10145.
– reference: P. Reiss, M. Protiere, L. Li, Small 2009, 5, 154.
– reference: V. Luca, M. G. Blackford, K. S. Finnie, P. J. Evans, M. James, M. J. Lindsay, M. Skyllas-Kazacos, P. R. F. Barnes, J. Phys. Chem. C 2007, 111, 18479.
– reference: Y. Ghosh, B. D. Mangum, J. L. Casson, D. J. Williams, H. Htoon, J. A. Hollingsworth, J. Am. Chem. Soc. 2012, 134, 9634.
– reference: M. C. Liu, D. W. Jing, Z. H. Zhou, L. J. Guo, Nat. Commun. 2013, 4, 2278.
– reference: D. Perera, R. Lorek, R. S. Khnayzer, P. Moroz, T. O'Connor, D. Khon, G. Diederich, E. Kinder, S. Lambright, F. N. Castellano, M. Zamkov, J. Phys. Chem. C 2012, 116, 22786.
– reference: X. N. Wang, H. J. Zhu, Y. M. Xu, H. Wang, Y. Tao, S. Hark, X. D. Xiao, Q. A. Li, ACS Nano 2010, 4, 3302.
– reference: W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc. 2008, 130, 1124.
– reference: Z. B. Yu, Y. P. Xie, G. Liu, G. Q. Lu, X. L. Ma, H. M. Cheng, J. Mater. Chem. A 2013, 1, 2773.
– reference: J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, H. Liu, Chem. Soc. Rev. 2014, 43,6920.
– reference: D. Sarkar, C. K. Ghosh, S. Mukherjee, K. K. Chattopadhyay, ACS Appl. Mater. Interfaces 2013, 5, 331.
– reference: X. B. Cao, P. Chen, Y. Guo, J. Phys. Chem. C 2008, 112, 20560.
– reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
– reference: A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 2011, 133, 11054.
– reference: L. H. Yu, Y. Huang, G. C. Xiao, D. Z. Li, J. Mater. Chem. A 2013, 1, 9637.
– reference: Y. Miseki, S. Fujiyoshi, T. Gunji, K. Sayama, Catal. Sci. Technol. 2013, 3, 1750.
– reference: K. P. Xie, Q. Wu, Y. Y. Wang, W. X. Guo, M. Y. Wang, L. Sun, C. J. Lin, Electrochem. Commun. 2011, 13, 1469.
– reference: H. G. Kim, E. D. Jeong, P. H. Borse, S. Jeon, K. J. Yong, J. S. Lee, W. Li, S. H. Oh, Appl. Phys. Lett. 2006, 89, 064103.
– reference: D. A. Chen, F. Zhao, H. Qi, M. Rutherford, X. G. Peng, Chem. Mater. 2010, 22, 1437.
– reference: J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C. L. Shao, Y. C. Liu, ACS Appl. Mater. Interfaces 2012, 4, 424.
– reference: W. G. Tu, Y. Zhou, Q. Liu, S. C. Yan, S. S. Bao, X. Y. Wang, M. Xiao, Z. G. Zou, Adv. Funct. Mater. 2013, 23, 1743.
– reference: H. Wang, Y. S. Bai, H. Zhang, Z. H. Zhang, J. H. Li, L. Guo, J. Phys. Chem. C 2010, 114, 16451.
– reference: C. D. Donega, Phys. Rev. B 2010, 81, 165303.
– reference: M. Seol, H. Kim, W. Kim, K. Yong, Electrochem. Commun. 2010, 12, 1416.
– reference: D. Q. Bi, Y. M. Xu, J. Mol. Catal. A Chem. 2013, 367, 103.
– reference: K. Maeda, ACS Catal. 2013, 3, 1486.
– reference: S. Q. Liu, N. Zhang, Z. R. Tang, Y. J. Xu, ACS Appl. Mater. Interfaces 2012, 4, 6378
– reference: J. G. Yu, S. H. Wang, J. X. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883.
– reference: Y. C. Chen, Y. C. Pu, Y. J. Hsu, J. Phys. Chem. C 2012, 116, 2967.
– reference: Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 2012, 116, 12958.
– reference: B. M. Rajbongshi, S. K. Samdarshi, Appl. Catal. B Environ. 2014, 144, 435.
– reference: X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, L. M. Peng, J. Phys. Chem. C 2009, 113, 20481.
– reference: M. C. Long, W. M. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548.
– reference: C. M. McShane, K. S. Choi, J. Am. Chem. Soc. 2009, 131, 2561.
– reference: Y. Wang, S. C. Li, H. Shi, K. Yu, Nanoscale 2012, 4, 7817.
– reference: G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088.
– reference: P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2002, 2, 781.
– reference: Y. L. Liao, H. W. Zhang, Z. Y. Zhong, L. J. Jia, F. M. Bai, J. Li, P. Zhong, H. Chen, J. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 11022.
– reference: X. Y. Li, Y. Hou, Q. D. Zhao, G. H. Chen, Langmuir 2011, 27, 3113.
– reference: H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 2006, 5, 782.
– reference: Z. B. Shao, W. Zhu, Z. Li, Q. H. Yang, G. Z. Wang, J. Phys. Chem. C 2012, 116, 2438.
– reference: K. H. Lin, C. Y. Chuang, Y. Y. Lee, F. C. Li, Y. M. Chang, I. P. Liu, S. C. Chou, Y. L. Lee, J. Phys. Chem. C 2012, 116, 1550.
– volume: 15
  start-page: 41
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 306
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 4529
  year: 2011
  publication-title: ACS Nano
– volume: 116
  start-page: 18633
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 38
  start-page: 1849
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 7480
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 1392
  year: 2010
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 11739
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 130
  start-page: 7176
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 4561
  year: 2006
  publication-title: Nanotechnology
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 306
  start-page: 1009
  year: 2004
  publication-title: Science
– volume: 2
  start-page: 781
  year: 2002
  publication-title: Nano Lett.
– volume: 95
  start-page: 735
  year: 1995
  publication-title: Chem. Rev.
– volume: 15
  start-page: 12688
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 10901
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 144
  start-page: 435
  year: 2014
  publication-title: Appl. Catal. B Environ.
– volume: 115
  start-page: 13968
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 588
  year: 2013
  publication-title: Nanoscale
– volume: 42
  start-page: 10759
  year: 2013
  publication-title: Dalton. Trans.
– volume: 116
  start-page: 3802
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 2720
  year: 2013
  publication-title: Sci. Rep.
– volume: 4
  start-page: 2278
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 1437
  year: 2010
  publication-title: Chem. Mater.
– volume: 23
  start-page: 4996
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 548
  year: 2011
  publication-title: Catal. Commun.
– volume: 3
  start-page: 1486
  year: 2013
  publication-title: ACS Catal.
– volume: 134
  start-page: 5508
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 865
  year: 2011
  publication-title: MRS Bull.
– volume: 117
  start-page: 5558
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 9770
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 7817
  year: 2012
  publication-title: Nanoscale
– volume: 115
  start-page: 17265
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 115
  start-page: 1428
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 14119
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 130
  start-page: 1124
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3113
  year: 2011
  publication-title: Langmuir
– volume: 131
  start-page: 2561
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 4532
  year: 2013
  publication-title: CrystEngComm
– volume: 5
  start-page: 8326
  year: 2013
  publication-title: Nanoscale
– volume: 96
  start-page: 942
  year: 2013
  publication-title: J. Am. Ceram. Soc.
– volume: 52
  start-page: 2800
  year: 2011
  publication-title: Energ. Convers. Manag.
– volume: 3
  start-page: 170
  year: 2013
  publication-title: ACS Catal.
– volume: 35
  start-page: 7073
  year: 2010
  publication-title: Int. J. Hydrogen. Energ.
– volume: 49
  start-page: 5966
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 89
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 132
  start-page: 15038
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 548
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 4084
  year: 2011
  publication-title: ACS Nano
– volume: 4
  start-page: 4087
  year: 2012
  publication-title: Acs Appl. Mater. Inter.
– volume: 5
  start-page: 782
  year: 2006
  publication-title: Nat. Mater.
– volume: 113
  start-page: 20481
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 2615
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 11054
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 157
  start-page: K96
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 12568
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 4630
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 2821
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 115
  start-page: 14648
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 13076
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 2632
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 1750
  year: 2013
  publication-title: Catal. Sci. Technol.
– volume: 27
  start-page: 2946
  year: 2011
  publication-title: Langmuir
– volume: 437
  start-page: 664
  year: 2005
  publication-title: Nature
– volume: 25
  start-page: 184
  year: 2013
  publication-title: Chem. Mater.
– volume: 107
  start-page: 2891
  year: 2007
  publication-title: Chem. Rev.
– volume: 117
  start-page: 19759
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 4287
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2165
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 116
  start-page: 2438
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 387
  year: 2010
  publication-title: ACS Nano
– volume: 9
  start-page: 3951
  year: 2013
  publication-title: Small
– volume: 47
  start-page: 2643
  year: 2011
  publication-title: Chem. Commun.
– volume: 117
  start-page: 12949
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 6784
  year: 2008
  publication-title: Chem. Mater.
– volume: 25
  start-page: 5075
  year: 2013
  publication-title: Adv. Mater.
– volume: 116
  start-page: 13935
  year: 2012
  publication-title: J. Phys. Chem. C
– start-page: 3452
  year: 2009
  publication-title: Chem. Commun.
– volume: 110
  start-page: 20211
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 15
  start-page: 553
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 16883
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 1215
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 414
  start-page: 625
  year: 2001
  publication-title: Nature
– volume: 116
  start-page: 23653
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 4553
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 33
  start-page: 1348
  year: 2004
  publication-title: Chem. Lett.
– volume: 207
  start-page: 222
  year: 2012
  publication-title: J. Power. Sources
– volume: 116
  start-page: 22786
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 115
  start-page: 8064
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 89
  start-page: 064103
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 1550
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 14385
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4021
  year: 2013
  publication-title: Acs Appl. Mater. Interfaces
– volume: 26
  start-page: 4920
  year: 2014
  publication-title: Adv. Mater.
– volume: 41
  start-page: 782
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1372
  year: 2011
  publication-title: Energ. Environ. Sci.
– volume: 1
  start-page: 2773
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 12958
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 9637
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 16451
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 180
  year: 2011
  publication-title: Adv. Mater.
– volume: 52
  start-page: 17126
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 130
  start-page: 277
  year: 2013
  publication-title: Appl. Catal. B Environ.
– volume: 22
  start-page: 17055
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 5234
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 9634
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 22
  year: 2011
  publication-title: Nanotechnology
– volume: 19
  start-page: 3638
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1088
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 2195
  year: 2013
  publication-title: Nat. Commun.
– volume: 3
  start-page: 15354
  year: 2013
  publication-title: RSC Adv.
– volume: 6
  start-page: 24
  year: 2014
  publication-title: Nanoscale Res. Lett.
– volume: 22
  start-page: 922
  year: 2010
  publication-title: Chem. Mater.
– volume: 135
  start-page: 4596
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 4281
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1469
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 10
  start-page: 1941
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  start-page: 424
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 1743
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 81
  start-page: 165303
  year: 2010
  publication-title: Phys. Rev. B
– volume: 133
  start-page: 15240
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2915
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 209
  start-page: 35
  year: 2013
  publication-title: Catal. Today.
– volume: 35
  start-page: 8199
  year: 2010
  publication-title: Int. J. Hydrogen. Energ.
– volume: 117
  start-page: 4619
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 2967
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 4810
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 909
  year: 2006
  publication-title: J. Electroceram.
– volume: 553
  start-page: 19
  year: 2013
  publication-title: J. Alloy. Compd.
– volume: 116
  start-page: 12156
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 211
  start-page: 161
  year: 2012
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 2688
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 7372
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 11466
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3731
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2910
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 2014
  year: 2012
  publication-title: Adv. Mater.
– volume: 115
  start-page: 21529
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 356
  start-page: 257
  year: 2011
  publication-title: J. Colloid. Interf. Sci.
– volume: 12
  start-page: 1416
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 6378
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 478
  year: 2010
  publication-title: Nano Lett.
– volume: 163
  start-page: 569
  year: 2004
  publication-title: J. Photoch. Photobio. A
– volume: 148
  start-page: 71
  year: 2002
  publication-title: J. Photoch. Photobio. A
– volume: 111
  start-page: 18479
  year: 2007
  publication-title: J. Phys. Chem. C
– start-page: 1552
  year: 2003
  publication-title: Chem. Commun.
– volume: 117
  start-page: 26529
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 59
  year: 1979
  publication-title: J. Photochem.
– volume: 24
  start-page: 1084
  year: 2012
  publication-title: Adv. Mater.
– volume: 197
  start-page: 19
  year: 2011
  publication-title: J. Hazard. Mater.
– volume: 51
  start-page: 13089
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 367
  start-page: 103
  year: 2013
  publication-title: J. Mol. Catal. A Chem.
– volume: 117
  start-page: 11584
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 253
  start-page: 8798
  year: 2007
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 1026
  year: 2013
  publication-title: ACS Catal.
– volume: 5
  start-page: 11933
  year: 2013
  publication-title: Nanoscale
– volume: 53
  start-page: 6618
  year: 2014
  publication-title: Angew. Chem.
– volume: 1
  start-page: 1
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 135
  start-page: 5375
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3789
  year: 2010
  publication-title: ACS Nano
– volume: 110
  start-page: 111
  year: 2010
  publication-title: Chem. Rev.
– volume: 42
  start-page: 2568
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1432
  year: 2013
  publication-title: Nat. Commun.
– volume: 115
  start-page: 2211
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 2867
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1945
  year: 2012
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 154
  year: 2009
  publication-title: Small
– volume: 14
  start-page: 7662
  year: 2012
  publication-title: CrystEngComm
– volume: 132
  start-page: 12619
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3302
  year: 2010
  publication-title: ACS Nano
– volume: 116
  start-page: 10510
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 54
  start-page: 258
  year: 2010
  publication-title: J. Sol–Gel Sci. Technol.
– volume: 22
  start-page: 3843
  year: 2010
  publication-title: Chem. Mater.
– volume: 116
  start-page: 11956
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 7425
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 2154
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 5586
  year: 2013
  publication-title: CrystEngComm
– volume: 20
  start-page: 531
  year: 2008
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1054
  year: 2010
  publication-title: Catal. Commun.
– volume: 5
  start-page: 5097
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 12327
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1837
  year: 2010
  publication-title: ACS Nano
– volume: 43
  start-page: 7469
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 527
  start-page: 30
  year: 2012
  publication-title: J. Alloy. Compd.
– volume: 4
  start-page: 4800
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 17200
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 42
  start-page: 9509
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 36
  start-page: 32
  year: 2011
  publication-title: MRS Bull.
– volume: 42
  start-page: 2679
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 413
  year: 2011
  publication-title: J. Nat. Gas. Chem.
– volume: 175
  start-page: 256
  year: 2011
  publication-title: Catal. Today.
– volume: 5
  start-page: 331
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 112
  start-page: 20560
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 11022
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 6920
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 3718
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 2421
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 10145
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 84
  start-page: 10518
  year: 2012
  publication-title: Anal. Chem.
– ident: e_1_2_6_88_1
  doi: 10.1021/jp308921s
– ident: e_1_2_6_119_1
  doi: 10.1021/am400964c
– ident: e_1_2_6_120_1
  doi: 10.1021/nn1001547
– ident: e_1_2_6_187_1
  doi: 10.1039/c3cp53131g
– ident: e_1_2_6_148_1
  doi: 10.1039/c2nr32797j
– ident: e_1_2_6_152_1
  doi: 10.1021/jp063441z
– ident: e_1_2_6_170_1
  doi: 10.1021/jp311532s
– ident: e_1_2_6_103_1
  doi: 10.1021/jp902866b
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.201104110
– ident: e_1_2_6_184_1
  doi: 10.1039/c3ta12803b
– ident: e_1_2_6_117_1
  doi: 10.1021/jp3083419
– ident: e_1_2_6_77_1
  doi: 10.1002/adma.201200330
– ident: e_1_2_6_44_1
  doi: 10.1021/ja106710m
– ident: e_1_2_6_74_1
  doi: 10.1007/s10832-006-9073-3
– ident: e_1_2_6_115_1
  doi: 10.1002/adfm.201103074
– ident: e_1_2_6_33_1
  doi: 10.1021/cr900056b
– ident: e_1_2_6_164_1
  doi: 10.1016/j.cej.2012.09.084
– ident: e_1_2_6_121_1
  doi: 10.1021/jp410692y
– ident: e_1_2_6_66_1
  doi: 10.1002/adma.201002290
– ident: e_1_2_6_123_1
  doi: 10.1002/anie.201001827
– ident: e_1_2_6_174_1
  doi: 10.1021/nl101010m
– ident: e_1_2_6_160_1
  doi: 10.1149/1.3328177
– ident: e_1_2_6_182_1
  doi: 10.1021/cs400156m
– ident: e_1_2_6_205_1
  doi: 10.1021/ja8007825
– ident: e_1_2_6_154_1
  doi: 10.1021/ja308723w
– ident: e_1_2_6_202_1
  doi: 10.1039/b904668b
– ident: e_1_2_6_41_1
  doi: 10.1021/jp400010z
– ident: e_1_2_6_149_1
  doi: 10.1021/jp4009652
– ident: e_1_2_6_179_1
  doi: 10.1021/ja203296z
– ident: e_1_2_6_124_1
  doi: 10.1021/am400851q
– ident: e_1_2_6_61_1
  doi: 10.1016/S1003-9953(10)60212-5
– ident: e_1_2_6_72_1
  doi: 10.1016/j.jallcom.2012.02.043
– ident: e_1_2_6_151_1
  doi: 10.1021/jp075605x
– ident: e_1_2_6_45_1
  doi: 10.1021/ja212032q
– ident: e_1_2_6_195_1
  doi: 10.1016/j.elecom.2011.09.023
– ident: e_1_2_6_193_1
  doi: 10.1021/jp2037476
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201205333
– ident: e_1_2_6_76_1
  doi: 10.1016/j.jallcom.2012.10.038
– ident: e_1_2_6_90_1
  doi: 10.1021/ja0361749
– ident: e_1_2_6_57_1
  doi: 10.1021/cr00035a013
– ident: e_1_2_6_35_1
  doi: 10.1002/anie.200603148
– ident: e_1_2_6_130_1
  doi: 10.1016/j.elecom.2010.07.035
– ident: e_1_2_6_133_1
  doi: 10.1039/c0jm03818k
– ident: e_1_2_6_168_1
  doi: 10.1021/ja300319g
– ident: e_1_2_6_199_1
  doi: 10.1002/adma.201400288
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jhazmat.2011.09.051
– ident: e_1_2_6_69_1
  doi: 10.1021/am201343q
– ident: e_1_2_6_14_1
  doi: 10.1002/adfm.200901435
– ident: e_1_2_6_7_1
  doi: 10.1021/nn200088x
– ident: e_1_2_6_70_1
  doi: 10.1021/jp804699c
– ident: e_1_2_6_67_1
  doi: 10.1016/j.jphotochem.2004.02.006
– ident: e_1_2_6_157_1
  doi: 10.1039/c2ce25563d
– ident: e_1_2_6_99_1
  doi: 10.1016/j.ijhydene.2010.01.008
– ident: e_1_2_6_203_1
  doi: 10.1016/j.jcis.2010.12.034
– ident: e_1_2_6_165_1
  doi: 10.1002/anie.201207554
– ident: e_1_2_6_173_1
  doi: 10.1038/ncomms3195
– ident: e_1_2_6_180_1
  doi: 10.1039/c3cy00055a
– ident: e_1_2_6_201_1
  doi: 10.1021/ja203296z
– ident: e_1_2_6_159_1
  doi: 10.1039/c3ce40446c
– ident: e_1_2_6_10_1
  doi: 10.1038/238037a0
– ident: e_1_2_6_62_1
  doi: 10.1021/jp112259p
– ident: e_1_2_6_116_1
  doi: 10.1021/la2000975
– ident: e_1_2_6_73_1
  doi: 10.1016/j.cattod.2012.11.011
– ident: e_1_2_6_127_1
  doi: 10.1021/jp209353j
– ident: e_1_2_6_102_1
  doi: 10.1021/am3011516
– ident: e_1_2_6_191_1
  doi: 10.1246/cl.2004.1348
– ident: e_1_2_6_131_1
  doi: 10.1021/cm303206s
– ident: e_1_2_6_92_1
  doi: 10.1021/jp107531h
– ident: e_1_2_6_158_1
  doi: 10.1021/am401746b
– ident: e_1_2_6_189_1
  doi: 10.1016/S1010-6030(02)00070-9
– ident: e_1_2_6_68_1
  doi: 10.1039/b302418k
– ident: e_1_2_6_126_1
  doi: 10.1021/jp209258r
– ident: e_1_2_6_107_1
  doi: 10.1021/jp904320d
– ident: e_1_2_6_147_1
  doi: 10.1039/c2jm32660d
– ident: e_1_2_6_153_1
  doi: 10.1002/smll.201301276
– ident: e_1_2_6_146_1
  doi: 10.1039/c0cc04985a
– ident: e_1_2_6_138_1
  doi: 10.1021/am302136y
– ident: e_1_2_6_63_1
  doi: 10.1039/C2CP41153A
– ident: e_1_2_6_2_1
  doi: 10.1021/cr1002326
– ident: e_1_2_6_1_1
  doi: 10.1038/414625a
– ident: e_1_2_6_22_1
  doi: 10.1039/C2CS35367A
– ident: e_1_2_6_128_1
  doi: 10.1039/c2cp41629h
– ident: e_1_2_6_181_1
  doi: 10.1021/cs4002089
– ident: e_1_2_6_94_1
  doi: 10.1021/cr0500535
– ident: e_1_2_6_86_1
  doi: 10.1021/ie402437k
– ident: e_1_2_6_38_1
  doi: 10.1021/nn100229x
– ident: e_1_2_6_172_1
  doi: 10.1021/jp301904s
– ident: e_1_2_6_194_1
  doi: 10.1021/nn2006738
– ident: e_1_2_6_49_1
  doi: 10.1126/science.1103755
– ident: e_1_2_6_89_1
  doi: 10.1021/jp400014j
– ident: e_1_2_6_43_1
  doi: 10.1021/cm902516f
– ident: e_1_2_6_54_1
  doi: 10.1039/c2cy20202f
– ident: e_1_2_6_167_1
  doi: 10.1016/j.catcom.2010.05.010
– ident: e_1_2_6_27_1
  doi: 10.1039/c3nr03493c
– ident: e_1_2_6_139_1
  doi: 10.1002/adfm.200902390
– ident: e_1_2_6_85_1
  doi: 10.1021/jp301355q
– ident: e_1_2_6_200_1
  doi: 10.1039/c3ta01476b
– ident: e_1_2_6_19_1
  doi: 10.1002/adfm.201203547
– ident: e_1_2_6_87_1
  doi: 10.1021/jp303307r
– ident: e_1_2_6_196_1
  doi: 10.1038/nmat1734
– ident: e_1_2_6_135_1
  doi: 10.1021/jp204747w
– ident: e_1_2_6_177_1
  doi: 10.1016/0047-2670(79)80037-4
– ident: e_1_2_6_29_1
  doi: 10.1021/jp201901b
– ident: e_1_2_6_176_1
  doi: 10.1039/c0ee00604a
– ident: e_1_2_6_108_1
  doi: 10.1021/ja0777741
– ident: e_1_2_6_178_1
  doi: 10.1557/mrs.2010.3
– ident: e_1_2_6_78_1
  doi: 10.1016/j.cattod.2011.02.055
– ident: e_1_2_6_18_1
  doi: 10.1039/c3cs60176e
– ident: e_1_2_6_112_1
  doi: 10.1021/am100605a
– ident: e_1_2_6_145_1
  doi: 10.1039/c2jm31589k
– ident: e_1_2_6_185_1
  doi: 10.1021/ja311541a
– ident: e_1_2_6_32_1
  doi: 10.1039/C3CS60370A
– ident: e_1_2_6_142_1
  doi: 10.1021/am100618h
– ident: e_1_2_6_46_1
  doi: 10.1039/c3cp51722e
– ident: e_1_2_6_79_1
  doi: 10.1016/j.apcatb.2012.11.019
– ident: e_1_2_6_55_1
  doi: 10.1021/jp0729112
– ident: e_1_2_6_93_1
  doi: 10.1021/jp303255f
– ident: e_1_2_6_137_1
  doi: 10.1039/C4CS00126E
– ident: e_1_2_6_114_1
  doi: 10.1021/nl903217w
– ident: e_1_2_6_12_1
  doi: 10.1038/ncomms2401
– ident: e_1_2_6_9_1
  doi: 10.1039/C2CS35355E
– ident: e_1_2_6_83_1
  doi: 10.1021/am300812n
– ident: e_1_2_6_109_1
  doi: 10.1021/jp104208z
– ident: e_1_2_6_53_1
  doi: 10.1021/cm903260f
– ident: e_1_2_6_36_1
  doi: 10.1038/nature04165
– ident: e_1_2_6_37_1
  doi: 10.1002/smll.200800841
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201301306
– ident: e_1_2_6_25_1
  doi: 10.1039/C1CS15172J
– ident: e_1_2_6_143_1
  doi: 10.1021/am3008533
– ident: e_1_2_6_111_1
  doi: 10.1021/jp2078117
– ident: e_1_2_6_31_1
  doi: 10.1021/ja300319g
– ident: e_1_2_6_51_1
  doi: 10.1021/jp405989z
– ident: e_1_2_6_140_1
  doi: 10.1021/am403264q
– ident: e_1_2_6_5_1
  doi: 10.1002/adfm.201202349
– ident: e_1_2_6_23_1
  doi: 10.1039/b822385h
– ident: e_1_2_6_104_1
  doi: 10.1038/srep02720
– ident: e_1_2_6_132_1
  doi: 10.1021/jp3031754
– ident: e_1_2_6_82_1
  doi: 10.1002/adma.201302014
– ident: e_1_2_6_150_1
  doi: 10.1039/c3ta12207g
– ident: e_1_2_6_97_1
  doi: 10.1002/adfm.201000931
– ident: e_1_2_6_64_1
  doi: 10.1021/jz2013193
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.200453728
– ident: e_1_2_6_100_1
  doi: 10.1021/am201499r
– ident: e_1_2_6_98_1
  doi: 10.1111/jace.12071
– ident: e_1_2_6_175_1
  doi: 10.1038/ncomms3278
– volume: 22
  year: 2011
  ident: e_1_2_6_144_1
  publication-title: Nanotechnology
– ident: e_1_2_6_163_1
  doi: 10.1021/jp110190a
– volume: 1
  start-page: 1
  year: 2013
  ident: e_1_2_6_169_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_6_161_1
  doi: 10.1007/s10971-010-2179-8
– ident: e_1_2_6_26_1
  doi: 10.1002/adfm.200900891
– ident: e_1_2_6_166_1
  doi: 10.1016/j.apcatb.2013.07.048
– ident: e_1_2_6_186_1
  doi: 10.1021/ja204881d
– ident: e_1_2_6_81_1
  doi: 10.1016/j.molcata.2012.09.031
– ident: e_1_2_6_50_1
  doi: 10.1039/C2CS35241A
– ident: e_1_2_6_134_1
  doi: 10.1021/nn100684q
– ident: e_1_2_6_105_1
  doi: 10.1021/ja1025112
– ident: e_1_2_6_155_1
  doi: 10.1039/C2NR33109H
– ident: e_1_2_6_71_1
  doi: 10.1088/0957-4484/17/18/006
– ident: e_1_2_6_141_1
  doi: 10.1016/j.enconman.2011.02.014
– ident: e_1_2_6_15_1
  doi: 10.1039/C4CS00180J
– ident: e_1_2_6_30_1
  doi: 10.1039/c3ce26672a
– ident: e_1_2_6_192_1
  doi: 10.1021/ja506386e
– ident: e_1_2_6_8_1
  doi: 10.1039/c2cp43524a
– ident: e_1_2_6_91_1
  doi: 10.1103/PhysRevB.81.165303
– ident: e_1_2_6_156_1
  doi: 10.1021/jp203414q
– ident: e_1_2_6_4_1
  doi: 10.1021/ja1068596
– ident: e_1_2_6_162_1
  doi: 10.1016/j.apsusc.2007.04.077
– ident: e_1_2_6_47_1
  doi: 10.1021/jp112259p
– ident: e_1_2_6_39_1
  doi: 10.1021/cm070754d
– ident: e_1_2_6_60_1
  doi: 10.1021/jp200274k
– ident: e_1_2_6_171_1
  doi: 10.1021/ja806370s
– ident: e_1_2_6_3_1
  doi: 10.1002/anie.201207199
– ident: e_1_2_6_21_1
  doi: 10.1002/adfm.201102566
– ident: e_1_2_6_96_1
  doi: 10.1021/nn901087c
– ident: e_1_2_6_106_1
  doi: 10.1021/ac3028799
– ident: e_1_2_6_48_1
  doi: 10.1021/am302074p
– ident: e_1_2_6_101_1
  doi: 10.1021/jp210033y
– ident: e_1_2_6_56_1
  doi: 10.1016/j.jpowsour.2012.01.154
– ident: e_1_2_6_197_1
  doi: 10.1063/1.2266237
– ident: e_1_2_6_125_1
  doi: 10.1021/cm901762h
– ident: e_1_2_6_204_1
  doi: 10.1021/am402929d
– ident: e_1_2_6_28_1
  doi: 10.1021/nn100684q
– ident: e_1_2_6_113_1
  doi: 10.1021/cm802282t
– ident: e_1_2_6_40_1
  doi: 10.1021/nl025596y
– ident: e_1_2_6_183_1
  doi: 10.1002/chem.201300579
– ident: e_1_2_6_122_1
  doi: 10.1021/jp806645c
– ident: e_1_2_6_95_1
  doi: 10.1021/la104195v
– ident: e_1_2_6_65_1
  doi: 10.1002/adfm.201303214
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201400966
– ident: e_1_2_6_198_1
  doi: 10.1021/es903087w
– ident: e_1_2_6_59_1
  doi: 10.1021/jz4013504
– ident: e_1_2_6_52_1
  doi: 10.1021/jp310495j
– ident: e_1_2_6_136_1
  doi: 10.1039/c3nr03998f
– ident: e_1_2_6_24_1
  doi: 10.1039/C3CS60437C
– ident: e_1_2_6_188_1
  doi: 10.1039/c3dt50699a
– ident: e_1_2_6_110_1
  doi: 10.1021/jp305388c
– ident: e_1_2_6_118_1
  doi: 10.1016/j.ijhydene.2009.12.091
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.200400184
– ident: e_1_2_6_75_1
  doi: 10.1039/c3ra41782d
– ident: e_1_2_6_84_1
  doi: 10.1021/cs300724r
– ident: e_1_2_6_190_1
  doi: 10.1021/cs400156m
– ident: e_1_2_6_129_1
  doi: 10.1021/nl100250z
– ident: e_1_2_6_80_1
  doi: 10.1016/j.catcom.2010.11.027
– ident: e_1_2_6_58_1
  doi: 10.1039/c3nr01577g
– ident: e_1_2_6_34_1
  doi: 10.1557/mrs.2011.238
SSID ssj0017734
Score 2.6456485
Snippet Semiconductor photocatalysts have received much attention in recent years due to their great potentials for the development of renewable energy technologies,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 998
SubjectTerms band alignment
Charge
charge carriers
Heterojunctions
heterostructures
Photocatalysis
Photocatalysts
Promotion
Semiconductors
Separation
State of the art
Title State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance
URI https://api.istex.fr/ark:/67375/WNG-N6XZ7KZT-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201401636
https://www.proquest.com/docview/1669871010
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQ9gIPsDEQZWMyEoKnbImT2MljRekqoFU1NlHtxXL8sU1DCVrTadvTfgK_kV_CvU6btUgICV6iRLl2HH-eax8fE_JGWc6YsS5IMmuDxCQuUC6NAsCuXJjMAcTGecjhiA-Ok4-TdLK0i7_Rh2gn3LBl-P4aG7gqpvv3oqHKONxJjg4Cj1FzGwlbiIoOW_2oSIhmWZlHSPCKJgvVxpDtrwZfGZXWMYOvVyDnMnD1I0__CVGLNDeEk4u9WV3s6dvf5Bz_56c2yOM5LKXdph5tkge2fEoeLYkVbpErj0t_3v2oHFwAN8IV7OkYGV7QX9LzkvY8y8PSAZJsqkabdnZpDR2fVXXlp4pupvWU1p6si0GRC1ieLr-HFNDx_XaGZ-S4_-Ho_SCYn9oQaB4KHhQsFs4mWViwRCcijrQSOZ6yzrRKmVNhZlMU5eGCcZNrowsGJRejUBqH4TSPn5O1sirtC0ITA96R5pyBowgxuczkYWyM1lHuCoiyQ4JFqUk9lzTHkzW-yUaMmUnMT9nmZ4e8a-2_N2Ief7R86ytBa6YuL5ACJ1L5dXQgR3xyIj6dHEkwfL2oJRIaJq62qNJWs6mMOM_BGwV_t0OYL_O_fFN2e_1h-_TyXwJtk4dw77fcR9kOWYNitq8ANNXFLlnv9oafv-z6BvILPi0TQg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaq9gAc-Eds-amR-DmlXTuJkxw4VGyXLdtdrdBWrHpxE_9A1SqpulmgnHgEXoVX4RF4EmacTbqLhJCQeuASKcnYcTxje8b-_JmQp6kRnGtjvSA2xgt0YL3UhswD31VEOrbgYuM85GAoevvBm0k4WSHf670wFT9EM-GGLcP119jAcUJ664I1NNUWt5JjhCB8McdV9s35J4japi93O6DiZ5x3d8avet78YAFPCYjbvYz7kTVB3M54oILIZyqNEjwInKs05DZtxyZE3hgRcaETpVXGmS985PIS0OMj_xL0-mt4jDjS9XfeNoxVLIqqhWzBEFLGJjVPZJtvLZd3aRxcQ5V-XnJyF11lN9Z1b5AfdS1VEJfjzVmZbaovvxFI_lfVeJNcn3vedLtqKrfIislvk2sLfIx3yEfnev_8-q2wcAHXGK4gT0cIYoMhgR7ltOOALIb2EEdUVPS7szOj6ehDURZuNux8Wk5p6fDImBThjvn7xfdQAjq62LFxl-xfyo_fI6t5kZv7hAYaAkAlBIdYGHKysU7avtZKscRmkGWLeLWZSDVnbcfDQ05kxTfNJepPNvprkReN_GnFV_JHyefO6hqx9OwYUX5RKN8NX8uhmBxE_YOxBMEntVlK6HtwQSnNTTGbSiZEAgE3hPQtwp2R_eWbcrvTHTR36_-SaINc6Y0He3Jvd9h_QK7Cc8cwwOKHZBVUbh6Bj1hmj12rpOTwsu33F1QGauY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqVkJw4B-x5c9I_JzSxk7iJAcOFWHZsnS1Qq1Y9eIm_oGqKKm6WaCceAQehVfhFXgSZpxNuouEkJB64BIpydhxPGN7xv78mZBHuRGca2O9MDHGC3VovdxGzAPfVcQ6seBi4zzkzkgM9sJXk2iyQr63e2Eafohuwg1bhuuvsYEfa7t5Rhqaa4s7yTFAEIGYwyqH5vQTBG3TZ9sZaPgx5_0Xu88H3vxcAU8JCNu9ggexNWHiFzxUYRwwlccpngPOVR5xm_uJiZA2RsRc6FRpVXAWiACpvAR0-Ei_BJ3-Wij8FA-LyN50hFUsjpt1bMEQUcYmLU2kzzeXy7s0DK6hRj8v-biLnrIb6vpXyI-2khqEy9HGrC421Jff-CP_p1q8Si7P_W661TSUa2TFlNfJpQU2xhvko3O8f379Vlm4gGMMV5CnY4SwwYBAD0uaORiLoQNEEVUN-e7sxGg6fl_VlZsLO53WU1o7NDImRbBj-W7xPZSAjs_2a9wke-fy47fIalmV5jahoYbwTwnBIRKGnGyiUz_QWimW2gKy7BGvtRKp5pzteHTIB9mwTXOJ-pOd_nrkaSd_3LCV_FHyiTO6Tiw_OUKMXxzJt6OXciQm-_Fwf1eC4MPWKiX0PLiclJemmk0lEyKFcBsC-h7hzsb-8k25lfV3urv1f0n0gFwYZ335ens0vEMuwmNHL8CSu2QVNG7ugYNYF_ddm6Tk4LzN9xeFg2mV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State%E2%80%90of%E2%80%90the%E2%80%90Art+Progress+in+Diverse+Heterostructured+Photocatalysts+toward+Promoting+Photocatalytic+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Haijin&rft.au=Zhou%2C+Yong&rft.au=Tu%2C+Wenguang&rft.au=Ye%2C+Jinhua&rft.date=2015-02-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=7&rft.spage=998&rft.epage=1013&rft_id=info:doi/10.1002%2Fadfm.201401636&rft.externalDBID=10.1002%252Fadfm.201401636&rft.externalDocID=ADFM201401636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon