A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals
We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite‐sex, but not same‐sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives informati...
Saved in:
Published in | The European journal of neuroscience Vol. 29; no. 2; pp. 368 - 376 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/j.1460-9568.2008.06564.x |
Cover
Abstract | We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite‐sex, but not same‐sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite‐sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same‐ or opposite‐sex volatile urinary odours 1 week later. We found CTB‐labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co‐labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB‐injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co‐labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory–MeA–AOB signaling may motivate approach behaviour to opposite‐sex pheromonal signals that ensure successful reproduction. |
---|---|
AbstractList | We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1 week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory-MeA-AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1 week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory-MeA-AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction.We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1 week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory-MeA-AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ . We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer, cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours one week later. We found CTB- labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA), and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory - MeA -AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. AbstractWe previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory-MeA-AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. |
Author | Baum, Michael J. Martel, Kristine L. |
Author_xml | – sequence: 1 givenname: Kristine L. surname: Martel fullname: Martel, Kristine L. organization: Department of Biology, Boston University, Boston, MA 02215, USA – sequence: 2 givenname: Michael J. surname: Baum fullname: Baum, Michael J. organization: Department of Biology, Boston University, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19077123$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4B84pbgxIntHECqqtIFrUqRysdt5DiTXS_ZeBtnt5t_wM_G6Zbl41J8GUszz-vXM3NCjlrXIiE0YXESzutlnGSCRUUuVJwypmImcpHFuydkckgckQkrch6pRHw7JifeL1moFFn-jBwnBZMySfmE_DijBtu-s_Vmrhu61v3iTg-0d7RfIF25jUeqjUHvXTdQ19Ta9OOt3DQlrTu32tdhZQOtV8O80o2mxrVbHDydY1thF_k1GltbQ7eu0b1tkK4XGFjXBsjbeQj-OXlah4AvHuIp-fzu4uZ8Gs0-Xr4_P5tFRjCZRYniVZHllVSKK8M5M0wlqZR1Zco8LQ2qNGOyLCslSoXGKJ0oUxaVyHQlNRb8lLzd6643ZbB9_3ndwLqzK90N4LSFvzOtXcDcbSGVeZYKHgRePQh07naDvoeV9QabRrcY2gVCFCw0XjxamDLOM6WyUPjyT0sHL7-m9Nuz6Zz3HdZgbB8a6UaHtoGEwbgWsIRx-jBOH8a1gPu1gF0QUP8IHN54HH2zR-_C3Ib_5uDiw9V4C3y0563vcXfgdfcdhOQyh69Xl3AznV1_4Z-mcM1_AkEC40w |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2010_11_003 crossref_primary_10_1038_npp_2010_211 crossref_primary_10_1111_j_1749_6632_2009_05047_x crossref_primary_10_1016_j_bbr_2009_01_020 crossref_primary_10_1016_j_bbr_2009_08_013 crossref_primary_10_1016_j_brainres_2013_10_046 crossref_primary_10_1016_j_yhbeh_2009_02_008 crossref_primary_10_1038_srep36063 crossref_primary_10_1016_j_brainres_2015_01_048 crossref_primary_10_3389_fnana_2017_00010 crossref_primary_10_1093_chemse_bjx045 crossref_primary_10_1210_en_2015_1062 crossref_primary_10_3389_fevo_2015_00034 crossref_primary_10_1002_cne_24248 crossref_primary_10_1016_j_neuroscience_2009_03_065 crossref_primary_10_1016_j_yhbeh_2024_105527 crossref_primary_10_1523_ENEURO_0078_15_2015 crossref_primary_10_1016_j_bbr_2017_11_034 crossref_primary_10_1016_j_applanim_2015_09_001 crossref_primary_10_1523_ENEURO_0010_17_2017 crossref_primary_10_1007_s00429_017_1432_0 crossref_primary_10_1007_s10519_011_9523_9 crossref_primary_10_1016_j_yhbeh_2013_03_011 crossref_primary_10_1097_WNR_0b013e3283557eea crossref_primary_10_1073_pnas_2305950120 crossref_primary_10_1016_j_cub_2014_12_048 crossref_primary_10_1016_j_yfrne_2017_12_006 crossref_primary_10_1111_ejn_13636 crossref_primary_10_1016_j_neuroscience_2009_09_030 crossref_primary_10_1002_cne_22635 crossref_primary_10_1111_j_1460_9568_2010_07289_x crossref_primary_10_1016_j_brainres_2009_01_048 crossref_primary_10_3389_fncir_2022_944895 crossref_primary_10_1016_j_brainres_2013_06_005 crossref_primary_10_1111_j_1460_9568_2010_07141_x crossref_primary_10_1155_2014_497657 crossref_primary_10_1016_j_psyneuen_2012_09_018 crossref_primary_10_1016_j_yfrne_2013_07_007 crossref_primary_10_3389_fncel_2023_1157577 crossref_primary_10_1016_j_neuroscience_2011_02_030 crossref_primary_10_1016_j_yfrne_2013_07_004 crossref_primary_10_1002_cne_25236 crossref_primary_10_7554_eLife_21012 crossref_primary_10_1016_j_yhbeh_2014_06_003 crossref_primary_10_1146_annurev_neuro_080317_061916 crossref_primary_10_1016_j_neuroscience_2009_11_024 crossref_primary_10_1016_j_neuroscience_2010_06_075 crossref_primary_10_3390_ijms22158311 crossref_primary_10_1016_j_neures_2018_11_008 crossref_primary_10_1111_j_1460_9568_2009_06638_x |
Cites_doi | 10.1093/chemse/bjh069 10.1126/science.1082133 10.1016/j.neuroscience.2006.04.026 10.1002/cne.20652 10.1037/0735-7044.120.4.925 10.1111/j.1460-9568.2007.05651.x 10.1002/cne.21790 10.1523/JNEUROSCI.4939-05.2006 10.1016/0006-8993(85)90537-2 10.1101/SQB.1992.057.01.056 10.1038/nature05404 10.1016/j.cub.2003.12.052 10.1002/cne.902850305 10.1073/pnas.83.12.4576 10.1111/j.1749-6632.1998.tb10592.x 10.1006/hbeh.2001.1749 10.1038/439149a 10.1016/0092-8674(91)90418-X 10.1111/j.1460-9568.2001.01382.x 10.1038/35084137 10.1042/BST0310117 10.1098/rspb.1999.0880 10.1016/S0031-9384(98)00259-5 10.1126/science.7355286 10.1093/chemse/bjj035 10.1111/j.1460-9568.2005.04589.x 10.1016/j.physbeh.2007.10.005 10.1523/JNEUROSCI.21-07-02481.2001 10.1016/0092-8674(95)90161-2 10.1016/0031-9384(82)90022-1 10.1038/nn.2154 10.1016/0006-8993(82)90803-4 10.1016/j.yhbeh.2005.05.007 10.1002/cne.901970107 10.1016/j.neuron.2006.04.033 10.1038/nature03414 10.1038/nn1039 10.1046/j.1460-9568.2002.02303.x 10.1016/S0169-328X(00)00194-7 10.1016/S0301-0082(03)00103-5 |
ContentType | Journal Article |
Copyright | The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd |
Copyright_xml | – notice: The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QR 7TK 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1111/j.1460-9568.2008.06564.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 376 |
ExternalDocumentID | PMC2754263 19077123 10_1111_j_1460_9568_2008_06564_x EJN6564 ark_67375_WNG_THLPV3QH_P |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: HD 044897 – fundername: NICHD NIH HHS grantid: R01 HD044897 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c6074-183d945d78838c330c081277fdcb52bce82407bbd86b8ecc8a18cb9d64ad7ae93 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 14:13:38 EDT 2025 Thu Jul 10 19:33:15 EDT 2025 Fri Jul 11 03:25:09 EDT 2025 Fri May 30 11:00:28 EDT 2025 Tue Jul 01 04:00:24 EDT 2025 Thu Apr 24 23:44:09 EDT 2025 Wed Jan 22 16:23:50 EST 2025 Wed Oct 30 09:50:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6074-183d945d78838c330c081277fdcb52bce82407bbd86b8ecc8a18cb9d64ad7ae93 |
Notes | ArticleID:EJN6564 ark:/67375/WNG-THLPV3QH-P istex:1CFF333B93ADF2285240F5A7917A9433A686A97E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/j.1460-9568.2008.06564.x |
PMID | 19077123 |
PQID | 20334884 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2754263 proquest_miscellaneous_66900956 proquest_miscellaneous_20334884 pubmed_primary_19077123 crossref_citationtrail_10_1111_j_1460_9568_2008_06564_x crossref_primary_10_1111_j_1460_9568_2008_06564_x wiley_primary_10_1111_j_1460_9568_2008_06564_x_EJN6564 istex_primary_ark_67375_WNG_THLPV3QH_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2009 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: January 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Buck, L. & Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65, 175-187. Jemiolo, B., Harvey, S. & Novotny, M. (1986) Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc. Natl Acad. Sci., 83, 4576-4579. Luo, M., Fee, M.S. & Katz, L.C. (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science, 299, 1196-1201. Pankevich, D.E., Cherry, J.A. & Baum, M.J. (2006) Effect of vomeronasal organ removal from male mice on their preference for and neural Fos responses to female urinary odors. Behav. Neurosci., 120, 925-936. Novotny, M.V., Weidong, M., Wiesler, D. & Zidek, L. (1999) Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B Biol. Sci., 266, 2017-2022. Paxinos, G. & Franklin, K.B.J. (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, San Diego, CA. Shepherd, G.M. (2006) Behaviour: smells, brains, and hormones. Nature, 439, 149-151. Sam, M., Vora, S., Malnic, B., Ma, W., Novotny, M.V. & Buck, L.B. (2001) Neuropharmacology. Odorants may arouse instinctive behaviours. Nature, 412, 142. McLean, J.H., Shipley, M.T., Nickell, W.T., Aston-Jones, G. & Reyher, C.K. (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol., 285, 339-349. Brennan, P.A. & Keverne, E.B. (2004) Something in the air? New insights into mammalian pheromones. Curr. Biol., 14, R81-R89. Trinh, K. & Storm, D.R. (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci., 6, 519-525. Barber, P.C. (1982) Adjacent laminar terminations of two centrifugal afferent pathways to the accessory olfactory bulb in the mouse. Brain Res., 245, 215-221. Jakupovic, J., Kang, N. & Baum, M.J. (2008) Effect of bilateral olfactory bulb lesions on volatile urinary odor discrimination and investigation as well as mating behavior in mice. Physiol. Behav., 93, 467-473. Wagner, S., Gresser, A.L., Torello, A.T. & Dulac, C. (2006) A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron, 50, 697-709. Muroi, Y., Ishii, T., Komori, S., Kitamura, N. & Nishimura, M. (2006) Volatile female odors activate the accessory olfactory system of male mice without physical contact. Neuroscience, 141, 551-558. Larriva-Sahd, J. (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J. Comp. Neurol., 510, 309-350. Spehr, M., Kelliher, K.R., Li, X.H., Boehm, T., Leinders-Zufall, T. & Zufall, F. (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci., 26, 1961-1970. Keller, M., Douhard, Q., Baum, M.J. & Bakker, J. (2006a) Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice. Chem. Senses, 31, 315-323. Shipley, M.T., Halloran, F.J. & De La Torre, J. (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res., 329, 294-299. Kang, N., Baum, M.J. & Cherry, J.A. (2008) Opposite-Sex Volatile Pheromones Activate a Novel Main Olfactory Bulb-Medial Amygdala Projection and Downstream Forebrain Targets in Mice. Society for Neuroscience Annual Meeting, Washington DC, p. 866.24. Serguera, C., Triaca, V., Kelly-Barrett, J., Banchaabouchi, M.A. & Minichiello, L. (2008) Increased dopamine after mating impairs olfaction and prevents odor interference with pregnancy. Nat. Neurosci., 11, 949-956. Meredith, M., Marques, D.M., O'Connell, R.O. & Stern, F.L. (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science, 207, 1224-1226. Ma, D., Allen, N.D., Van Bergen, Y.C., Jones, C.M., Baum, M.J., Keverne, E.B. & Brennan, P.A. (2002) Selective ablation of olfactory receptor neurons without functional impairment of vomeronasal receptor neurons in OMP-ntr transgenic mice. Eur. J. Neurosci., 16, 2317-2323. Martel, K.L. & Baum, M.J. (2007) Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles. Eur. J. Neurosci., 26, 463-475. Brennan, P.A. & Zufall, F. (2006) Pheromonal communication in vertebrates. Nature, 444, 308-315. Halem, H.A., Cherry, J.A. & Baum, M.J. (2001) Central forebrain Fos responses to familiar male odours are attenuated in recently mated female mice. Eur. J. Neurosci., 13, 389-399. Halpern, M. & Martinez-Marcos, A. (2003) Structure and function of the vomeronasal system: an update. Prog. Neurobiol., 70, 245-318. Novotny, M.V. (2003) Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans., 31, 117-122. Pankevich, D.E., Baum, M.J. & Cherry, J.A. (2004) Olfactory sex discrimination persists, whereas the preference for urinary odorants from estrous females disappears in male mice after vomeronasal organ removal. J. Neurosci., 24, 9451-9457. Xu, F., Schaefer, M., Kida, I., Schafer, J., Liu, N., Rothman, D.L., Hyder, F., Restrepo, D. & Shepherd, G.M. (2005) Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol., 489, 491-500. Dulac, C. & Axel, R. (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell, 83, 195-206. Chess, A., Buck, L., Dowling, M.M., Axel, R. & Ngai, J. (1992) Molecular biology of smell: expression of the multigene family encoding putative odorant receptors. Cold Spring Harb. Symp. Quant. Biol., 57, 505-516. Petrulis, A., Peng, M. & Johnston, R.E. (1999) Effects of vomeronasal organ removal on individual odor discrimination, sex-odor preference, and scent marking by female hamsters. Physiol. Behav., 66, 73-83. Woodley, S.K., Cloe, A.L., Waters, P. & Baum, M.J. (2004) Effects of vomeronasal organ removal on olfactory sex-discrimination and odor preferences in female ferrets. Chem. Senses, 29, 659-669. Schaefer, M.L., Young, D.A. & Restrepo, D. (2001) Olfactory fingerprints for major histocompatibility complex-determined body odors. J. Neurosci., 21, 2481-2487. Lin, D.Y., Zhang, S.Z., Block, E. & Katz, L.C. (2005) Encoding social signals in the mouse main olfactory bulb. Nature, 434, 470-477. Baum, M.J. & Keverne, E.B. (2002) Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Horm. Behav., 41, 213-219. Keller, M., Pierman, S., Douhard, Q., Baum, M.J. & Bakker, J. (2006b) The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female mice. Eur. J. Neurosci., 23, 521-530. Pierman, S., Douhard, Q., Balthazart, J., Baum, M.J. & Bakker, J. (2006) Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice. Horm. Behav., 49, 96-104. Kevetter, G.A. & Winans, S.S. (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the "vomeronasal amygdala". J. Comp. Neurol., 197, 81-98. Beauchamp, G.K., Martin, I.G., Wysocki, C.J. & Wellington, J.L. (1982) Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal. Physiol. Behav., 29, 329-336. 2002; 16 2006b; 23 2006; 439 2006; 50 1985; 329 2004; 29 2005; 434 2004; 24 2008 1999; 66 1992; 57 2008; 11 1982; 245 1999; 266 2006a; 31 2008; 93 2003; 299 2003; 31 2001; 21 1995; 83 1980; 207 1982; 29 1986; 83 2003; 70 2002; 41 2001 1991; 65 2004; 14 1981; 197 2006; 49 2003; 6 1989; 285 2005; 489 2006; 26 2006; 141 2006; 120 2008; 510 2001; 13 2001; 412 2006; 444 2007; 26 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Schaefer M.L. (e_1_2_9_34_1) 2001; 21 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Kang N. (e_1_2_9_14_1) 2008 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Jemiolo, B., Harvey, S. & Novotny, M. (1986) Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc. Natl Acad. Sci., 83, 4576-4579. – reference: Shepherd, G.M. (2006) Behaviour: smells, brains, and hormones. Nature, 439, 149-151. – reference: Jakupovic, J., Kang, N. & Baum, M.J. (2008) Effect of bilateral olfactory bulb lesions on volatile urinary odor discrimination and investigation as well as mating behavior in mice. Physiol. Behav., 93, 467-473. – reference: Schaefer, M.L., Young, D.A. & Restrepo, D. (2001) Olfactory fingerprints for major histocompatibility complex-determined body odors. J. Neurosci., 21, 2481-2487. – reference: Meredith, M., Marques, D.M., O'Connell, R.O. & Stern, F.L. (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science, 207, 1224-1226. – reference: Dulac, C. & Axel, R. (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell, 83, 195-206. – reference: Keller, M., Douhard, Q., Baum, M.J. & Bakker, J. (2006a) Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice. Chem. Senses, 31, 315-323. – reference: Shipley, M.T., Halloran, F.J. & De La Torre, J. (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res., 329, 294-299. – reference: Pankevich, D.E., Baum, M.J. & Cherry, J.A. (2004) Olfactory sex discrimination persists, whereas the preference for urinary odorants from estrous females disappears in male mice after vomeronasal organ removal. J. Neurosci., 24, 9451-9457. – reference: Kevetter, G.A. & Winans, S.S. (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the "vomeronasal amygdala". J. Comp. Neurol., 197, 81-98. – reference: Larriva-Sahd, J. (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J. Comp. Neurol., 510, 309-350. – reference: Petrulis, A., Peng, M. & Johnston, R.E. (1999) Effects of vomeronasal organ removal on individual odor discrimination, sex-odor preference, and scent marking by female hamsters. Physiol. Behav., 66, 73-83. – reference: Barber, P.C. (1982) Adjacent laminar terminations of two centrifugal afferent pathways to the accessory olfactory bulb in the mouse. Brain Res., 245, 215-221. – reference: Baum, M.J. & Keverne, E.B. (2002) Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Horm. Behav., 41, 213-219. – reference: Halem, H.A., Cherry, J.A. & Baum, M.J. (2001) Central forebrain Fos responses to familiar male odours are attenuated in recently mated female mice. Eur. J. Neurosci., 13, 389-399. – reference: Pankevich, D.E., Cherry, J.A. & Baum, M.J. (2006) Effect of vomeronasal organ removal from male mice on their preference for and neural Fos responses to female urinary odors. Behav. Neurosci., 120, 925-936. – reference: Chess, A., Buck, L., Dowling, M.M., Axel, R. & Ngai, J. (1992) Molecular biology of smell: expression of the multigene family encoding putative odorant receptors. Cold Spring Harb. Symp. Quant. Biol., 57, 505-516. – reference: Trinh, K. & Storm, D.R. (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci., 6, 519-525. – reference: McLean, J.H., Shipley, M.T., Nickell, W.T., Aston-Jones, G. & Reyher, C.K. (1989) Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol., 285, 339-349. – reference: Muroi, Y., Ishii, T., Komori, S., Kitamura, N. & Nishimura, M. (2006) Volatile female odors activate the accessory olfactory system of male mice without physical contact. Neuroscience, 141, 551-558. – reference: Buck, L. & Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65, 175-187. – reference: Ma, D., Allen, N.D., Van Bergen, Y.C., Jones, C.M., Baum, M.J., Keverne, E.B. & Brennan, P.A. (2002) Selective ablation of olfactory receptor neurons without functional impairment of vomeronasal receptor neurons in OMP-ntr transgenic mice. Eur. J. Neurosci., 16, 2317-2323. – reference: Keller, M., Pierman, S., Douhard, Q., Baum, M.J. & Bakker, J. (2006b) The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female mice. Eur. J. Neurosci., 23, 521-530. – reference: Serguera, C., Triaca, V., Kelly-Barrett, J., Banchaabouchi, M.A. & Minichiello, L. (2008) Increased dopamine after mating impairs olfaction and prevents odor interference with pregnancy. Nat. Neurosci., 11, 949-956. – reference: Kang, N., Baum, M.J. & Cherry, J.A. (2008) Opposite-Sex Volatile Pheromones Activate a Novel Main Olfactory Bulb-Medial Amygdala Projection and Downstream Forebrain Targets in Mice. Society for Neuroscience Annual Meeting, Washington DC, p. 866.24. – reference: Woodley, S.K., Cloe, A.L., Waters, P. & Baum, M.J. (2004) Effects of vomeronasal organ removal on olfactory sex-discrimination and odor preferences in female ferrets. Chem. Senses, 29, 659-669. – reference: Halpern, M. & Martinez-Marcos, A. (2003) Structure and function of the vomeronasal system: an update. Prog. Neurobiol., 70, 245-318. – reference: Novotny, M.V. (2003) Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans., 31, 117-122. – reference: Lin, D.Y., Zhang, S.Z., Block, E. & Katz, L.C. (2005) Encoding social signals in the mouse main olfactory bulb. Nature, 434, 470-477. – reference: Xu, F., Schaefer, M., Kida, I., Schafer, J., Liu, N., Rothman, D.L., Hyder, F., Restrepo, D. & Shepherd, G.M. (2005) Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol., 489, 491-500. – reference: Beauchamp, G.K., Martin, I.G., Wysocki, C.J. & Wellington, J.L. (1982) Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal. Physiol. Behav., 29, 329-336. – reference: Wagner, S., Gresser, A.L., Torello, A.T. & Dulac, C. (2006) A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron, 50, 697-709. – reference: Luo, M., Fee, M.S. & Katz, L.C. (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science, 299, 1196-1201. – reference: Martel, K.L. & Baum, M.J. (2007) Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles. Eur. J. Neurosci., 26, 463-475. – reference: Spehr, M., Kelliher, K.R., Li, X.H., Boehm, T., Leinders-Zufall, T. & Zufall, F. (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci., 26, 1961-1970. – reference: Brennan, P.A. & Keverne, E.B. (2004) Something in the air? New insights into mammalian pheromones. Curr. Biol., 14, R81-R89. – reference: Paxinos, G. & Franklin, K.B.J. (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, San Diego, CA. – reference: Sam, M., Vora, S., Malnic, B., Ma, W., Novotny, M.V. & Buck, L.B. (2001) Neuropharmacology. Odorants may arouse instinctive behaviours. Nature, 412, 142. – reference: Novotny, M.V., Weidong, M., Wiesler, D. & Zidek, L. (1999) Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B Biol. Sci., 266, 2017-2022. – reference: Brennan, P.A. & Zufall, F. (2006) Pheromonal communication in vertebrates. Nature, 444, 308-315. – reference: Pierman, S., Douhard, Q., Balthazart, J., Baum, M.J. & Bakker, J. (2006) Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice. Horm. Behav., 49, 96-104. – volume: 285 start-page: 339 year: 1989 end-page: 349 article-title: Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat publication-title: J. Comp. Neurol. – volume: 299 start-page: 1196 year: 2003 end-page: 1201 article-title: Encoding pheromonal signals in the accessory olfactory bulb of behaving mice publication-title: Science – volume: 24 start-page: 9451 year: 2004 end-page: 9457 article-title: Olfactory sex discrimination persists, whereas the preference for urinary odorants from estrous females disappears in male mice after vomeronasal organ removal publication-title: J. Neurosci. – volume: 266 start-page: 2017 year: 1999 end-page: 2022 article-title: Positive identification of the puberty‐accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 83 start-page: 195 year: 1995 end-page: 206 article-title: A novel family of genes encoding putative pheromone receptors in mammals publication-title: Cell – volume: 23 start-page: 521 year: 2006b end-page: 530 article-title: The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female mice publication-title: Eur. J. Neurosci. – volume: 93 start-page: 467 year: 2008 end-page: 473 article-title: Effect of bilateral olfactory bulb lesions on volatile urinary odor discrimination and investigation as well as mating behavior in mice publication-title: Physiol. Behav. – year: 2001 – volume: 29 start-page: 659 year: 2004 end-page: 669 article-title: Effects of vomeronasal organ removal on olfactory sex‐discrimination and odor preferences in female ferrets publication-title: Chem. Senses – volume: 245 start-page: 215 year: 1982 end-page: 221 article-title: Adjacent laminar terminations of two centrifugal afferent pathways to the accessory olfactory bulb in the mouse publication-title: Brain Res. – volume: 57 start-page: 505 year: 1992 end-page: 516 article-title: Molecular biology of smell: expression of the multigene family encoding putative odorant receptors publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 29 start-page: 329 year: 1982 end-page: 336 article-title: Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal publication-title: Physiol. Behav. – volume: 434 start-page: 470 year: 2005 end-page: 477 article-title: Encoding social signals in the mouse main olfactory bulb publication-title: Nature – volume: 21 start-page: 2481 year: 2001 end-page: 2487 article-title: Olfactory fingerprints for major histocompatibility complex‐determined body odors publication-title: J. Neurosci. – volume: 16 start-page: 2317 year: 2002 end-page: 2323 article-title: Selective ablation of olfactory receptor neurons without functional impairment of vomeronasal receptor neurons in OMP‐ntr transgenic mice publication-title: Eur. J. Neurosci. – volume: 31 start-page: 315 year: 2006a end-page: 323 article-title: Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice publication-title: Chem. Senses – volume: 41 start-page: 213 year: 2002 end-page: 219 article-title: Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine publication-title: Horm. Behav. – volume: 510 start-page: 309 year: 2008 end-page: 350 article-title: The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system publication-title: J. Comp. Neurol. – volume: 489 start-page: 491 year: 2005 end-page: 500 article-title: Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones publication-title: J. Comp. Neurol. – volume: 83 start-page: 4576 year: 1986 end-page: 4579 article-title: Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents publication-title: Proc. Natl Acad. Sci. – volume: 141 start-page: 551 year: 2006 end-page: 558 article-title: Volatile female odors activate the accessory olfactory system of male mice without physical contact publication-title: Neuroscience – volume: 14 start-page: R81 year: 2004 end-page: R89 article-title: Something in the air? New insights into mammalian pheromones publication-title: Curr. Biol. – volume: 50 start-page: 697 year: 2006 end-page: 709 article-title: A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb publication-title: Neuron – volume: 11 start-page: 949 year: 2008 end-page: 956 article-title: Increased dopamine after mating impairs olfaction and prevents odor interference with pregnancy publication-title: Nat. Neurosci. – volume: 329 start-page: 294 year: 1985 end-page: 299 article-title: Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat publication-title: Brain Res. – volume: 6 start-page: 519 year: 2003 end-page: 525 article-title: Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium publication-title: Nat. Neurosci. – volume: 26 start-page: 1961 year: 2006 end-page: 1970 article-title: Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands publication-title: J. Neurosci. – volume: 197 start-page: 81 year: 1981 end-page: 98 article-title: Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala” publication-title: J. Comp. Neurol. – volume: 66 start-page: 73 year: 1999 end-page: 83 article-title: Effects of vomeronasal organ removal on individual odor discrimination, sex‐odor preference, and scent marking by female hamsters publication-title: Physiol. Behav. – year: 2008 – volume: 49 start-page: 96 year: 2006 end-page: 104 article-title: Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice publication-title: Horm. Behav. – volume: 13 start-page: 389 year: 2001 end-page: 399 article-title: Central forebrain Fos responses to familiar male odours are attenuated in recently mated female mice publication-title: Eur. J. Neurosci. – volume: 412 start-page: 142 year: 2001 article-title: Neuropharmacology. Odorants may arouse instinctive behaviours publication-title: Nature – volume: 65 start-page: 175 year: 1991 end-page: 187 article-title: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition publication-title: Cell – volume: 207 start-page: 1224 year: 1980 end-page: 1226 article-title: Vomeronasal pump: significance for male hamster sexual behavior publication-title: Science – volume: 444 start-page: 308 year: 2006 end-page: 315 article-title: Pheromonal communication in vertebrates publication-title: Nature – volume: 26 start-page: 463 year: 2007 end-page: 475 article-title: Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles publication-title: Eur. J. Neurosci. – volume: 31 start-page: 117 year: 2003 end-page: 122 article-title: Pheromones, binding proteins and receptor responses in rodents publication-title: Biochem. Soc. Trans. – volume: 120 start-page: 925 year: 2006 end-page: 936 article-title: Effect of vomeronasal organ removal from male mice on their preference for and neural Fos responses to female urinary odors publication-title: Behav. Neurosci. – volume: 70 start-page: 245 year: 2003 end-page: 318 article-title: Structure and function of the vomeronasal system: an update publication-title: Prog. Neurobiol. – volume: 439 start-page: 149 year: 2006 end-page: 151 article-title: Behaviour: smells, brains, and hormones publication-title: Nature – ident: e_1_2_9_41_1 doi: 10.1093/chemse/bjh069 – ident: e_1_2_9_20_1 doi: 10.1126/science.1082133 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroscience.2006.04.026 – ident: e_1_2_9_42_1 doi: 10.1002/cne.20652 – ident: e_1_2_9_29_1 doi: 10.1037/0735-7044.120.4.925 – ident: e_1_2_9_22_1 doi: 10.1111/j.1460-9568.2007.05651.x – ident: e_1_2_9_18_1 doi: 10.1002/cne.21790 – ident: e_1_2_9_38_1 doi: 10.1523/JNEUROSCI.4939-05.2006 – ident: e_1_2_9_37_1 doi: 10.1016/0006-8993(85)90537-2 – ident: e_1_2_9_8_1 doi: 10.1101/SQB.1992.057.01.056 – ident: e_1_2_9_6_1 doi: 10.1038/nature05404 – ident: e_1_2_9_5_1 doi: 10.1016/j.cub.2003.12.052 – ident: e_1_2_9_23_1 doi: 10.1002/cne.902850305 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.83.12.4576 – ident: e_1_2_9_28_1 doi: 10.1111/j.1749-6632.1998.tb10592.x – ident: e_1_2_9_3_1 doi: 10.1006/hbeh.2001.1749 – volume-title: Opposite‐Sex Volatile Pheromones Activate a Novel Main Olfactory Bulb‐Medial Amygdala Projection and Downstream Forebrain Targets in Mice year: 2008 ident: e_1_2_9_14_1 – ident: e_1_2_9_36_1 doi: 10.1038/439149a – ident: e_1_2_9_7_1 doi: 10.1016/0092-8674(91)90418-X – ident: e_1_2_9_10_1 doi: 10.1111/j.1460-9568.2001.01382.x – ident: e_1_2_9_33_1 doi: 10.1038/35084137 – ident: e_1_2_9_26_1 doi: 10.1042/BST0310117 – ident: e_1_2_9_27_1 doi: 10.1098/rspb.1999.0880 – ident: e_1_2_9_31_1 doi: 10.1016/S0031-9384(98)00259-5 – ident: e_1_2_9_24_1 doi: 10.1126/science.7355286 – ident: e_1_2_9_15_1 doi: 10.1093/chemse/bjj035 – ident: e_1_2_9_16_1 doi: 10.1111/j.1460-9568.2005.04589.x – ident: e_1_2_9_12_1 doi: 10.1016/j.physbeh.2007.10.005 – volume: 21 start-page: 2481 year: 2001 ident: e_1_2_9_34_1 article-title: Olfactory fingerprints for major histocompatibility complex‐determined body odors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-07-02481.2001 – ident: e_1_2_9_9_1 doi: 10.1016/0092-8674(95)90161-2 – ident: e_1_2_9_4_1 doi: 10.1016/0031-9384(82)90022-1 – ident: e_1_2_9_35_1 doi: 10.1038/nn.2154 – ident: e_1_2_9_2_1 doi: 10.1016/0006-8993(82)90803-4 – ident: e_1_2_9_32_1 doi: 10.1016/j.yhbeh.2005.05.007 – ident: e_1_2_9_17_1 doi: 10.1002/cne.901970107 – ident: e_1_2_9_40_1 doi: 10.1016/j.neuron.2006.04.033 – ident: e_1_2_9_19_1 doi: 10.1038/nature03414 – ident: e_1_2_9_39_1 doi: 10.1038/nn1039 – ident: e_1_2_9_21_1 doi: 10.1046/j.1460-9568.2002.02303.x – ident: e_1_2_9_30_1 doi: 10.1016/S0169-328X(00)00194-7 – ident: e_1_2_9_11_1 doi: 10.1016/S0301-0082(03)00103-5 |
SSID | ssj0008645 |
Score | 2.200738 |
Snippet | We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite‐sex, but not same‐sex,... We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex,... AbstractWe previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not... We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex,... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 368 |
SubjectTerms | Amygdala - cytology Amygdala - physiology Animals Brain Mapping Cholera Toxin Efferent Pathways - cytology Efferent Pathways - physiology Female Fos Male Mice Neurons - metabolism Odorants Olfactory Bulb - cytology Olfactory Bulb - physiology Olfactory Pathways - cytology Olfactory Pathways - physiology ovariectomy pheromone Proto-Oncogene Proteins c-fos - metabolism retrograde Sex Attractants - physiology Sex Characteristics Sexual Behavior, Animal - physiology Signal Transduction - physiology Smell - physiology Staining and Labeling volatile |
Title | A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals |
URI | https://api.istex.fr/ark:/67375/WNG-THLPV3QH-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2008.06564.x https://www.ncbi.nlm.nih.gov/pubmed/19077123 https://www.proquest.com/docview/20334884 https://www.proquest.com/docview/66900956 https://pubmed.ncbi.nlm.nih.gov/PMC2754263 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLbQOMCFj42PwoD3gHZLlU_HPlZjo5qgGmiD3iI7cbapaYK6ViycOHPab9wv2fs6aUfGkCbErVLsqI5f24_t530ext7m5BmiOHfI1d0J4zx3tKdDx9MR4tdI-cKSMT-O-PAw3BtH45b_RLkwjT7E6sCNRoadr2mAK316fZC7DqW7tZRIhCZhn_CkF3CS0X_3-UpJSnDrV0zqao7w-LhL6rnxRZ2V6i599LObYOifbMrfUa5dpnYfssmygQ07ZdJfzHU__XFN-_H_fIFH7EGLZmHQhN9jdseU62xjUOJOflrDFlh-qT24X2f3tpfechvs1wBsO07yBa5QQLbI31UN8woQjwKdRhhQ1sqxmtVQFY0rUA16UWigjJimnM16ATWtjzJVKLAM-voUjqw93sXPc0ojJSoU4ByMEVgYIBGFakq7DyDmCo69J-xwd-dge-i0rhBOyok8inNQJsMow717INIgcFNENX4c51mqI1-nRtAmVetMcC0wQIXyRKplxkOVxcrI4ClbK6vSPGeQZ9gUElwLc7oZx5KuNBxnKC21NL7ssXgZAUnaSqaTc0eRdLZObkJd0Bp6UhckZz3mrWp-a2RDblFnywbZqoKaTYh2F0fJ19H75GD4Yf9L8GmY7PfYm2UUJthvdMOjSoNdg6-jxGoR_r0E55JQNe-xZ03UXv096cYx4hhsdCeeVwVIiLz7pDw5toLkPtkoc6zJbbjeusXJzt6Ifr3414ov2f3mdo-OxDbZ2ny2MK8QJM71azv8LwHvhFxd |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQeygXHi3Q5VUfUG9Z5eE4znFVWkLZrgrawt4sO3FK1WyCll3RcOLMid_IL2HGyW5JKVKFuK0UO1rHY_ub8TfzEfIiR80QxbmDqu4Oi_Lc0Z5mjqdDwK-h8oUlYx6NeHLCDifhpJUDwlyYpj7EKuCGK8Pu17jAMSB9dZW7Dua7tZxIwCasD4BynQHuQE_s5bvLWlKCW8VirK_mCI9PurSea9_UOavW8bNfXAdE_-RT_o5z7UF1cJcUyyE2_JTz_mKu--nXK9Uf_9M3uEfutICWDhoLvE9umXKTbA1KcOanNd2llmJqY_ebZGNvKS-3Rb4PqB3IWb6AQ4qiMvIXVdN5RQGSUgxIGKqsmmM1q2lVNMJANdWLQlNMimna2cQXqqb1aaYKRS2Jvv5MT61C3s9vPzCTFNlQFLZhMMLCUKyjUE3RAaFIXoHl94CcHOyP9xKnFYZwUo78UdiGspiFGbjvgUiDwE0B2PhRlGepDn2dGoF-qtaZ4FqAjQrliVTHGWcqi5SJg4dkraxKs01onsFQsOYay_FyHFq6seGwSelYx8aPeyRamoBM26rpKN5RyI735EqcglbTE6dAXvSIt-r5qakccoM-u9bKVh3U7ByZd1EoP4xeyXEyPH4fvE3kcY_sLM1QwrzhJY8qDUwNvA5zqwX7ewvOYwTWvEceNWZ7-fdiN4oAysCgOwa9aoC1yLtPyrOPtia5j0rKHHpya683HrHcPxzhr8f_2nGHbCTjo6Ecvh69eUJuN5d9GCF7Stbms4V5Bphxrp_bveAXmfdgfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQJgGXARuM8ms-oN1S5adjH6uxUsaoCtqgN8tOnDE1TaauFQsnzpz4G_lLeM9JOzKGNCFuVWtHffGz_T37e-8j5GWGmiGKMQdV3Z0wzjJHezp0PB0Bfo2Uzy0Z892QDY7Dg3E0bvhPmAtT14dYHbjhzLDrNU7wszS7OsldB9PdGkokQJOwC3hyHb7nNrz6cFlKijMrWIzl1RzusXGb1XPtk1pb1Tq-9YvrcOifdMrfYa7dp_r3yGRpYU1PmXQXc91Nvl4p_vh_XsF9stHAWdqr_e8BuWWKTbLVKyCUn1Z0l1qCqT253yR39pbiclvke49aO06zBWxRFHWRv6iKzksKgJTicYShymo5lrOKlnktC1RRvcg1xZSYup1Ne6FqWp2kKlfUUuirc3pi9fF-fvuBeaTIhaKwCIML5oZiFYVyiuEHReoKTL6H5Li_f7Q3cBpZCCdhyB6FRSgVYZRC8B7wJAjcBGCNH8dZmujI14nhGKVqnXKmOXgoVx5PtEhZqNJYGRE8ImtFWZjHhGYpmIIV18IMr8ahpSsMgyVKCy2MLzokXnqATJqa6SjdkctW7ORKHIJG0ROHQF50iLfqeVbXDblBn13rZKsOajZB3l0cyU_D1_JocDj6GLwfyFGH7Cy9UMK44RWPKgwMDTwOM6t5-PcWjAmE1axDtmuvvfx7wo1jADJgdMufVw2wEnn7l-L0s61I7qOOMoOezLrrjS2W-wdD_PTkXzvukNujV315-Gb49im5W9_04fHYM7I2ny3McwCMc_3CrgS_ACYxXys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+centrifugal+pathway+to+the+mouse+accessory+olfactory+bulb+from+the+medial+amygdala+conveys+gender-specific+volatile+pheromonal+signals&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Martel%2C+Kristine+L&rft.au=Baum%2C+Michael+J&rft.date=2009-01-01&rft.eissn=1460-9568&rft.volume=29&rft.issue=2&rft.spage=368&rft_id=info:doi/10.1111%2Fj.1460-9568.2008.06564.x&rft_id=info%3Apmid%2F19077123&rft.externalDocID=19077123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |