Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation
Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is ge...
Saved in:
Published in | Hippocampus Vol. 30; no. 6; pp. 545 - 564 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2‐weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA‐stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body‐like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols. |
---|---|
AbstractList | Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols. Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2‐weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA‐stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body‐like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols. Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a post-mortem dataset containing 9 specimens of subjects with and without dementia, which underwent a 9.4 tesla MRI and histological processing. Post-mortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark bank, a hypointense layer visible in T2-weighted MRI. Our main findings are that: 1) there is a consistent order of appearance of subfields in the hippocampal head, 2) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, 3) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, 4) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and 5) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols. |
Author | Pluta, John B. Trojanowski, John Q. Wolk, David A. Robinson, John L. Adler, Daniel H. Pickup, Stephen Berron, David Flores, Robin Wisse, Laura E. M. Grossman, Murray Yushkevich, Paul A. Das, Sandhitsu R. Xie, Long Ittyerah, Ranjit Liu, Weixia Schuck, Theresa Ding, Song‐Lin |
AuthorAffiliation | e Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China b Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 f Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 a Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 c Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104 g Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden d Allen Institute for Brain Science, Seattle, WA 98109 |
AuthorAffiliation_xml | – name: c Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104 – name: a Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 – name: g Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden – name: e Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China – name: d Allen Institute for Brain Science, Seattle, WA 98109 – name: b Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 – name: f Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104 |
Author_xml | – sequence: 1 givenname: Robin orcidid: 0000-0003-3953-3392 surname: Flores fullname: Flores, Robin email: robin.deflores@pennmedicine.upenn.edu organization: University of Pennsylvania – sequence: 2 givenname: David surname: Berron fullname: Berron, David organization: Lund University – sequence: 3 givenname: Song‐Lin surname: Ding fullname: Ding, Song‐Lin organization: Guangzhou Medical University – sequence: 4 givenname: Ranjit surname: Ittyerah fullname: Ittyerah, Ranjit organization: University of Pennsylvania – sequence: 5 givenname: John B. surname: Pluta fullname: Pluta, John B. organization: University of Pennsylvania – sequence: 6 givenname: Long orcidid: 0000-0002-7184-7028 surname: Xie fullname: Xie, Long organization: University of Pennsylvania – sequence: 7 givenname: Daniel H. surname: Adler fullname: Adler, Daniel H. organization: University of Pennsylvania – sequence: 8 givenname: John L. surname: Robinson fullname: Robinson, John L. organization: University of Pennsylvania – sequence: 9 givenname: Theresa surname: Schuck fullname: Schuck, Theresa organization: University of Pennsylvania – sequence: 10 givenname: John Q. surname: Trojanowski fullname: Trojanowski, John Q. organization: University of Pennsylvania – sequence: 11 givenname: Murray surname: Grossman fullname: Grossman, Murray organization: University of Pennsylvania – sequence: 12 givenname: Weixia surname: Liu fullname: Liu, Weixia organization: University of Pennsylvania – sequence: 13 givenname: Stephen surname: Pickup fullname: Pickup, Stephen organization: University of Pennsylvania – sequence: 14 givenname: Sandhitsu R. surname: Das fullname: Das, Sandhitsu R. organization: University of Pennsylvania – sequence: 15 givenname: David A. surname: Wolk fullname: Wolk, David A. organization: University of Pennsylvania – sequence: 16 givenname: Paul A. surname: Yushkevich fullname: Yushkevich, Paul A. organization: University of Pennsylvania – sequence: 17 givenname: Laura E. M. surname: Wisse fullname: Wisse, Laura E. M. organization: University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31675165$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/24d11f6d-ca9a-4cd7-99b5-6d6e3c536094$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/24d11f6d-ca9a-4cd7-99b5-6d6e3c536094$$DView record from Swedish Publication Index |
BookMark | eNqNkl2L1DAUhousuB964w-QgDcizJqkbTLxQpBB3YGRFdHrcCY9mcmSaWrSzrr-ejPTWXEXFS9KCn3Ok7fJe1octaHFonjK6DmjlL9auy6c85JJ_qA4YVRNJ4yK8mj3XtOJEiU7Lk5TuqKUsZrSR8VxyYSsmahPim62hgimx-h-QO9CS4IlWdgFA5sOPEnD0jr0TSJDcu2K4HeyddtAPn6eE2ibzKY--LC6IQ308JosMKXQJmJDJK4d2YSrDbb93v-4eGjBJ3xyWM-Kr-_ffZldTBaXH-azt4uJEVTyiZhKQYWFqRFQKeRUNpW1HJiaVnxpGG0M5crUSqC0jAsF1qqplKICViO35VkBozddYzcsdRfdBuKNDuB0F2IPXkdMCNGstR90Qp0p78w-ZNK8ahizotEGFOjKNFIrtay1aASWpi4FVVXeY_HXPfzQ5Wd5cP-n7s2oy64NNiYfWcwx7yS_86V1a70KWy2Z4lKyLHhxEMTwbcDU641LBr2HFsOQf6pkTJRS1Tv0-T30KgyxzTeSs-be5IJUMlPPfk_0K8ptfzJAR8DEkFJEq40b7zkHdF4zqncV1buK6n1F88jLeyO31j_CbISvncebf5D6Yv7pcpz5Ccmj-ZQ |
CitedBy_id | crossref_primary_10_1002_hipo_23251 crossref_primary_10_1016_j_neuroimage_2025_121125 crossref_primary_10_7554_eLife_76479 crossref_primary_10_1186_s40478_021_01225_3 crossref_primary_10_1002_cne_25604 crossref_primary_10_1016_j_nbd_2023_106127 crossref_primary_10_1002_jnr_24831 crossref_primary_10_1002_hbm_26062 crossref_primary_10_1186_s41747_021_00221_5 crossref_primary_10_3389_fnana_2023_1149674 crossref_primary_10_1212_WNL_0000000000207421 crossref_primary_10_1016_j_neuroimage_2023_120406 crossref_primary_10_1007_s00429_023_02725_9 crossref_primary_10_1002_hipo_23582 crossref_primary_10_1093_braincomms_fcae296 crossref_primary_10_1093_scan_nsaa162 crossref_primary_10_3389_fnana_2023_1114757 crossref_primary_10_1016_j_jneumeth_2024_110359 crossref_primary_10_1016_j_nicl_2021_102655 crossref_primary_10_1016_j_biopsych_2021_11_016 crossref_primary_10_3389_fninf_2023_1130845 crossref_primary_10_1093_braincomms_fcab127 crossref_primary_10_1002_hipo_23637 crossref_primary_10_7554_eLife_60673 crossref_primary_10_1002_hbm_70004 crossref_primary_10_1002_jmri_28311 crossref_primary_10_1038_s41598_023_32903_y crossref_primary_10_1016_j_tins_2021_06_005 crossref_primary_10_1186_s13195_023_01187_9 |
Cites_doi | 10.1016/j.neuroimage.2008.03.039 10.1007/s00429-005-0025-5 10.1016/j.cortex.2015.09.002 10.1093/cercor/8.8.710 10.1523/JNEUROSCI.3225-16.2017 10.1073/pnas.1801093115 10.1152/jn.00005.2017 10.1016/j.neuroimage.2012.03.023 10.1002/cne.24080 10.1038/nrn3085 10.1016/j.neurobiolaging.2017.08.001 10.1159/000365548 10.1523/JNEUROSCI.10-09-02897.1990 10.1002/hbm.22640 10.1016/j.neuroimage.2017.11.054 10.1016/S0306-4522(98)00311-X 10.1002/hipo.22517 10.1097/00005072-195312040-00008 10.1177/2398212817701448 10.1016/j.neuroimage.2010.03.040 10.3389/fnhum.2012.00290 10.1146/annurev.neuro.27.070203.144130 10.1212/WNL.0b013e3181f736a1 10.1016/j.neuroimage.2013.08.067 10.1016/j.conb.2006.03.013 10.1007/BF00308809 10.1016/j.jad.2014.12.052 10.1002/hbm.22627 10.1016/j.nicl.2017.05.022 10.1016/j.dadm.2019.04.001 10.1126/science.1152882 10.1523/JNEUROSCI.0518-16.2016 10.1007/s00401-006-0127-z 10.1038/sdata.2015.59 10.7554/eLife.10499 10.1002/cne.23786 10.1002/hipo.22153 10.3233/JAD-2012-111931 10.1016/j.tics.2013.03.005 10.1007/b138576 10.1016/j.neuroimage.2015.01.004 10.1016/j.neuroimage.2017.06.008 10.3174/ajnr.A3293 10.1002/hipo.22671 10.1111/j.1528-1167.2009.02010.x 10.1016/j.neuroimage.2006.01.015 10.1016/j.neuroimage.2010.06.024 10.1093/brain/awp059 10.1016/j.nicl.2013.08.007 10.1038/nmeth.2089 10.1002/cne.23416 10.1038/nrn.2015.24 10.1007/s10548-014-0415-1 10.1126/science.1077775 10.1016/j.legalmed.2008.04.001 10.1016/j.neuroimage.2009.09.042 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
CorporateAuthor | MultiPark: Multidisciplinary research focused on Parkinson's disease Profile areas and other strong research environments Lunds universitet Department of Clinical Sciences, Malmö Lund University Strategiska forskningsområden (SFO) Faculty of Medicine Strategic research areas (SRA) Clinical Memory Research Klinisk minnesforskning Medicinska fakulteten Profilområden och andra starka forskningsmiljöer Institutionen för kliniska vetenskaper, Malmö |
CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Strategiska forskningsområden (SFO) – name: Institutionen för kliniska vetenskaper, Malmö – name: Strategic research areas (SRA) – name: Clinical Memory Research – name: Lunds universitet – name: Klinisk minnesforskning – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Profile areas and other strong research environments – name: MultiPark: Multidisciplinary research focused on Parkinson's disease – name: Department of Clinical Sciences, Malmö |
DBID | AAYXX CITATION NPM 7QG 7TK K9. 7X8 5PM ADTPV AOWAS D95 |
DOI | 10.1002/hipo.23172 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1098-1063 |
EndPage | 564 |
ExternalDocumentID | oai_portal_research_lu_se_publications_24d11f6d_ca9a_4cd7_99b5_6d6e3c536094 oai_lup_lub_lu_se_24d11f6d_ca9a_4cd7_99b5_6d6e3c536094 PMC7192771 31675165 10_1002_hipo_23172 HIPO23172 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Fondation Philippe Chatrier – fundername: BrightFocus Foundation – fundername: National Institutes of Health funderid: P30 AG010124; R01 AG055005; R01 AG056014 – fundername: NIA NIH HHS grantid: R01 AG056014 – fundername: NIA NIH HHS grantid: R01 AG055005 – fundername: NIA NIH HHS grantid: P01 AG017586 – fundername: NIA NIH HHS grantid: P01 AG066597 – fundername: NIA NIH HHS grantid: P30 AG010124 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XJT XPP XSW XV2 ZZTAW ~IA ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QG 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c6072-687606fa8c6a49e207d4ff2a19842bc10dc029c596e7f1269aff987764a15e2f3 |
IEDL.DBID | DR2 |
ISSN | 1050-9631 1098-1063 |
IngestDate | Thu Aug 21 07:31:13 EDT 2025 Thu Jul 03 05:01:46 EDT 2025 Thu Aug 21 18:27:50 EDT 2025 Thu Jul 10 23:03:43 EDT 2025 Sun Jul 20 13:41:13 EDT 2025 Thu Apr 03 07:08:03 EDT 2025 Tue Jul 01 02:06:01 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Wed Jan 22 16:33:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | segmentation in vivo hippocampal subfields histology ex vivo MRI |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6072-687606fa8c6a49e207d4ff2a19842bc10dc029c596e7f1269aff987764a15e2f3 |
Notes | Funding information BrightFocus Foundation; Fondation Philippe Chatrier; National Institutes of Health, Grant/Award Numbers: P30 AG010124, R01 AG055005, R01 AG056014 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7184-7028 0000-0003-3953-3392 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7192771 |
PMID | 31675165 |
PQID | 2410516747 |
PQPubID | 996349 |
PageCount | 20 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_24d11f6d_ca9a_4cd7_99b5_6d6e3c536094 swepub_primary_oai_lup_lub_lu_se_24d11f6d_ca9a_4cd7_99b5_6d6e3c536094 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7192771 proquest_miscellaneous_2311637951 proquest_journals_2410516747 pubmed_primary_31675165 crossref_citationtrail_10_1002_hipo_23172 crossref_primary_10_1002_hipo_23172 wiley_primary_10_1002_hipo_23172_HIPO23172 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Boston |
PublicationTitle | Hippocampus |
PublicationTitleAlternate | Hippocampus |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2012; 61 1993; 9 2015; 36 2010; 53 1990; 10 2017; 1 2013; 3 2006; 31 2005; 210 2019; 11 2004; 27 2015; 73 2013; 23 2018; 167 1999; 89 2013; 521 2011; 12 2017; 157 2016; 36 2017; 117 2013; 17 2017; 37 2009; 50 2015; 175 2008; 319 1979; 20 2015; 2 2010; 75 2015; 4 2015; 523 2012 2017; 27 2006; 16 2009; 132 1991; 82 2008 2016; 524 2005 2008; 10 2014; 84 2016; 17 1953; 12 2003; 299 2006; 112 2012; 31 2015; 28 2010; 49 2017; 15 2017; 59 2013; 34 2015; 111 2018; 115 2014; 38 2008; 41 2012; 6 2016; 26 2010; 51 1998; 8 2012; 9 Insausti R. (e_1_2_8_23_1) 2012 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Wisse L. E. M. (e_1_2_8_52_1) 2017; 27 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Mai J. K. (e_1_2_8_33_1) 2008 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Mouritzen Dam A. (e_1_2_8_39_1) 1979; 20 e_1_2_8_48_1 Shen W. C. (e_1_2_8_47_1) 1993; 9 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 175 start-page: 1 year: 2015 end-page: 7 article-title: Major depressive episodes over the course of 7 years and hippocampal subfield volumes at 7 tesla MRI: The PREDICT‐MR study publication-title: Journal of Affective Disorders – volume: 36 start-page: 7569 year: 2016 end-page: 7579 article-title: Strong evidence for pattern separation in human dentate gyrus publication-title: The Journal of Neuroscience – volume: 17 start-page: 230 year: 2013 end-page: 240 article-title: Long‐axis specialization of the human hippocampus publication-title: Trends in Cognitive Sciences – volume: 524 start-page: 3127 year: 2016 end-page: 3481 article-title: Comprehensive cellular‐resolution atlas of the adult human brain publication-title: The Journal of Comparative Neurology – volume: 299 start-page: 577 year: 2003 end-page: 580 article-title: Dynamics of the hippocampus during encoding and retrieval of face‐name pairs publication-title: Science – volume: 3 start-page: 155 year: 2013 end-page: 162 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia publication-title: NeuroImage. Clinical – year: 2005 – volume: 51 start-page: 1242 year: 2010 end-page: 1252 article-title: High‐resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment publication-title: NeuroImage – volume: 50 start-page: 1474 year: 2009 end-page: 1483 article-title: Subfield atrophy pattern in temporal lobe epilepsy with and without mesial sclerosis detected by high‐resolution MRI at 4 tesla: Preliminary results publication-title: Epilepsia – volume: 23 start-page: 855 year: 2013 end-page: 860 article-title: Volumetric analysis of medial temporal lobe subregions in developmental amnesia using high‐resolution magnetic resonance imaging publication-title: Hippocampus – volume: 53 start-page: 506 year: 2010 end-page: 514 article-title: Differential effect of age on hippocampal subfields assessed using a new high‐resolution 3T MR sequence publication-title: NeuroImage – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage – volume: 20 start-page: 115 year: 1979 end-page: 119 article-title: Shrinkage of the brain during histological procedures with fixation in formaldehyde solutions of different concentrations publication-title: Journal für Hirnforschung – volume: 27 start-page: 5185 year: 2017 end-page: 5196 article-title: Comparison of in vivo and ex vivo MRI of the human hippocampal formation in the same subjects publication-title: Cerebral Cortex – volume: 59 start-page: 121 year: 2017 end-page: 134 article-title: Differential vulnerability of hippocampal subfields and antero‐posterior hippocampal subregions in healthy cognitive aging publication-title: Neurobiology of Aging – volume: 157 start-page: 219 year: 2017 end-page: 232 article-title: Development of a histologically validated segmentation protocol for the hippocampal body publication-title: NeuroImage – volume: 61 start-page: 1043 year: 2012 end-page: 1049 article-title: Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment publication-title: NeuroImage – volume: 26 start-page: 220 year: 2016 end-page: 228 article-title: Age differences in hippocampal subfield volumes from childhood to late adulthood publication-title: Hippocampus – volume: 112 start-page: 389 year: 2006 end-page: 404 article-title: Staging of Alzheimer disease‐associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathologica – volume: 17 start-page: 173 year: 2016 end-page: 182 article-title: Anterior hippocampus: The anatomy of perception, imagination and episodic memory publication-title: Nature Reviews. Neuroscience – volume: 117 start-page: 1785 year: 2017 end-page: 1796 article-title: The role of the hippocampus in navigation is memory publication-title: Journal of Neurophysiology – volume: 36 start-page: 258 year: 2015 end-page: 287 article-title: Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment publication-title: Human Brain Mapping – volume: 1 year: 2017 article-title: Segmenting subregions of the human hippocampus on structural magnetic resonance image scans: An illustrated tutorial publication-title: Brain and Neuroscience Advances – year: 2008 – volume: 2 start-page: 150059 year: 2015 article-title: Multi‐contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset publication-title: Scientific Data – volume: 115 start-page: 4252 year: 2018 end-page: 4257 article-title: Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 319 start-page: 1640 year: 2008 end-page: 1642 article-title: Pattern separation in the human hippocampal CA3 and dentate gyrus publication-title: Science – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 4 start-page: 1 year: 2015 end-page: 19 article-title: Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms publication-title: eLife – volume: 167 start-page: 408 year: 2018 end-page: 418 article-title: Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping publication-title: NeuroImage – volume: 36 start-page: 463 year: 2015 end-page: 474 article-title: Effects of age and Alzheimer's disease on hippocampal subfields: Comparison between manual and FreeSurfer volumetry publication-title: Human Brain Mapping – volume: 75 start-page: 1381 year: 2010 end-page: 1387 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7‐T MRI publication-title: Neurology – volume: 34 start-page: 747 year: 2013 end-page: 751 article-title: Automated segmentation of hippocampal subfields in drug‐naïve patients with Alzheimer disease publication-title: AJNR. American Journal of Neuroradiology – volume: 10 start-page: 293 year: 2008 end-page: 300 article-title: Intracranial volume, brain volume, reserve volume and morphological signs of increased intracranial pressure – A post‐mortem analysis publication-title: Leg Med – volume: 15 start-page: 466 year: 2017 end-page: 482 article-title: A protocol for manual segmentation of medial temporal lobe subregions in 7 tesla MRI publication-title: NeuroImage Clinical – volume: 10 start-page: 2897 year: 1990 end-page: 2902 article-title: Hippocampal damage associated with prolonged glucocorticoid exposure in primates publication-title: The Journal of Neuroscience – volume: 27 start-page: 3 year: 2017 end-page: 11 article-title: A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals? publication-title: Hippocampus – volume: 12 start-page: 585 year: 2011 end-page: 601 article-title: A pathophysiological framework of hippocampal dysfunction in ageing and disease publication-title: Nature Reviews. Neuroscience – volume: 210 start-page: 343 year: 2005 end-page: 352 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps publication-title: Anatomy and Embryology (Berlin) – volume: 8 start-page: 710 year: 1998 end-page: 718 article-title: Variation in hippocampal neuron number with age and brain volume publication-title: Cerebral Cortex – volume: 523 start-page: 2233 year: 2015 end-page: 2253 article-title: Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of Cyto‐ and chemoarchitecture publication-title: The Journal of Comparative Neurology – volume: 49 start-page: 1224 year: 2010 end-page: 1230 article-title: In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging publication-title: NeuroImage – volume: 89 start-page: 1079 year: 1999 end-page: 1087 article-title: Ligand and subfield specificity of corticoid‐induced neuronal loss in the rat hippocampal formation publication-title: Neuroscience – volume: 37 start-page: 3150 year: 2017 end-page: 3159 article-title: Ultra‐high‐field fMRI reveals a role for the subiculum in scene perceptual discrimination publication-title: The Journal of Neuroscience – start-page: 896 year: 2012 end-page: 942 – volume: 31 start-page: 85 year: 2012 end-page: 99 article-title: In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi‐automatic segmentation of T2‐weighted MRI publication-title: Journal of Alzheimer's Disease – volume: 9 start-page: 690 year: 1993 end-page: 697 article-title: [MRI of postmortem brains] publication-title: Gaoxiong Yi Xue Ke Xue Za Zhi – volume: 27 start-page: 279 year: 2004 end-page: 306 article-title: The medial temporal lobe publication-title: Annual Review of Neuroscience – volume: 111 start-page: 526 year: 2015 end-page: 541 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol publication-title: NeuroImage – volume: 16 start-page: 179 year: 2006 end-page: 190 article-title: The cognitive neuroscience of remote episodic, semantic and spatial memory publication-title: Current Opinion in Neurobiology – volume: 82 start-page: 239 year: 1991 end-page: 259 article-title: Neuropathological stageing of Alzheimer‐related changes publication-title: Acta Neuropathologica – volume: 41 start-page: 1177 year: 2008 end-page: 1183 article-title: Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers publication-title: NeuroImage – volume: 73 start-page: 240 year: 2015 end-page: 256 article-title: Investigating the functions of subregions within anterior hippocampus publication-title: Cortex – volume: 38 start-page: 375 year: 2014 end-page: 388 article-title: Patterns of hippocampal tau pathology differentiate neurodegenerative dementias publication-title: Dementia and Geriatric Cognitive Disorders – volume: 84 start-page: 505 year: 2014 end-page: 523 article-title: Histology‐derived volumetric annotation of the human hippocampal subfields in postmortem MRI publication-title: NeuroImage – volume: 521 start-page: 4145 year: 2013 end-page: 4162 article-title: Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent publication-title: The Journal of Comparative Neurology – volume: 132 start-page: 1324 year: 2009 end-page: 1334 article-title: Hippocampal tau pathology is related to neuroanatomical connections: An ageing population‐based study publication-title: Brain – volume: 6 start-page: 290 year: 2012 article-title: Multi‐voxel pattern analysis in human hippocampal subfields publication-title: Frontiers in Human Neuroscience – volume: 12 start-page: 400 year: 1953 end-page: 403 article-title: A method for the combined staining of cells and fibers in the nervous system publication-title: Journal of Neuropathology and Experimental Neurology – volume: 11 start-page: 439 year: 2019 end-page: 449 article-title: Progress update from the hippocampal subfields group publication-title: Alzheimer's & Dementia (Amsterdam, Netherlands) – volume: 28 start-page: 746 year: 2015 end-page: 759 article-title: Automated hippocampal subfield measures as predictors of conversion from mild cognitive impairment to Alzheimer's disease in two independent cohorts publication-title: Brain Topography – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2008.03.039 – ident: e_1_2_8_4_1 doi: 10.1007/s00429-005-0025-5 – ident: e_1_2_8_60_1 doi: 10.1016/j.cortex.2015.09.002 – ident: e_1_2_8_21_1 doi: 10.1093/cercor/8.8.710 – ident: e_1_2_8_22_1 doi: 10.1523/JNEUROSCI.3225-16.2017 – start-page: 896 volume-title: Hippocampal formation year: 2012 ident: e_1_2_8_23_1 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1801093115 – ident: e_1_2_8_20_1 doi: 10.1152/jn.00005.2017 – ident: e_1_2_8_55_1 doi: 10.1016/j.neuroimage.2012.03.023 – ident: e_1_2_8_17_1 doi: 10.1002/cne.24080 – ident: e_1_2_8_48_1 doi: 10.1038/nrn3085 – ident: e_1_2_8_34_1 doi: 10.1016/j.neurobiolaging.2017.08.001 – ident: e_1_2_8_37_1 doi: 10.1159/000365548 – ident: e_1_2_8_45_1 doi: 10.1523/JNEUROSCI.10-09-02897.1990 – ident: e_1_2_8_14_1 doi: 10.1002/hbm.22640 – volume-title: Atlas of the human brain year: 2008 ident: e_1_2_8_33_1 – ident: e_1_2_8_15_1 doi: 10.1016/j.neuroimage.2017.11.054 – ident: e_1_2_8_49_1 doi: 10.1016/S0306-4522(98)00311-X – ident: e_1_2_8_13_1 doi: 10.1002/hipo.22517 – ident: e_1_2_8_26_1 doi: 10.1097/00005072-195312040-00008 – ident: e_1_2_8_12_1 doi: 10.1177/2398212817701448 – ident: e_1_2_8_56_1 doi: 10.1016/j.neuroimage.2010.03.040 – ident: e_1_2_8_8_1 doi: 10.3389/fnhum.2012.00290 – ident: e_1_2_8_50_1 doi: 10.1146/annurev.neuro.27.070203.144130 – ident: e_1_2_8_24_1 doi: 10.1212/WNL.0b013e3181f736a1 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2013.08.067 – ident: e_1_2_8_38_1 doi: 10.1016/j.conb.2006.03.013 – ident: e_1_2_8_10_1 doi: 10.1007/BF00308809 – ident: e_1_2_8_53_1 doi: 10.1016/j.jad.2014.12.052 – ident: e_1_2_8_59_1 doi: 10.1002/hbm.22627 – ident: e_1_2_8_7_1 doi: 10.1016/j.nicl.2017.05.022 – ident: e_1_2_8_41_1 doi: 10.1016/j.dadm.2019.04.001 – ident: e_1_2_8_5_1 doi: 10.1126/science.1152882 – ident: e_1_2_8_6_1 doi: 10.1523/JNEUROSCI.0518-16.2016 – ident: e_1_2_8_9_1 doi: 10.1007/s00401-006-0127-z – ident: e_1_2_8_27_1 doi: 10.1038/sdata.2015.59 – ident: e_1_2_8_28_1 doi: 10.7554/eLife.10499 – ident: e_1_2_8_18_1 doi: 10.1002/cne.23786 – ident: e_1_2_8_42_1 doi: 10.1002/hipo.22153 – ident: e_1_2_8_43_1 doi: 10.3233/JAD-2012-111931 – ident: e_1_2_8_44_1 doi: 10.1016/j.tics.2013.03.005 – ident: e_1_2_8_19_1 doi: 10.1007/b138576 – ident: e_1_2_8_57_1 doi: 10.1016/j.neuroimage.2015.01.004 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2017.06.008 – volume: 20 start-page: 115 year: 1979 ident: e_1_2_8_39_1 article-title: Shrinkage of the brain during histological procedures with fixation in formaldehyde solutions of different concentrations publication-title: Journal für Hirnforschung – ident: e_1_2_8_32_1 doi: 10.3174/ajnr.A3293 – ident: e_1_2_8_54_1 doi: 10.1002/hipo.22671 – volume: 27 start-page: 5185 year: 2017 ident: e_1_2_8_52_1 article-title: Comparison of in vivo and ex vivo MRI of the human hippocampal formation in the same subjects publication-title: Cerebral Cortex – ident: e_1_2_8_40_1 doi: 10.1111/j.1528-1167.2009.02010.x – ident: e_1_2_8_58_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2010.06.024 – ident: e_1_2_8_31_1 doi: 10.1093/brain/awp059 – ident: e_1_2_8_30_1 doi: 10.1016/j.nicl.2013.08.007 – ident: e_1_2_8_46_1 doi: 10.1038/nmeth.2089 – volume: 9 start-page: 690 year: 1993 ident: e_1_2_8_47_1 article-title: [MRI of postmortem brains] publication-title: Gaoxiong Yi Xue Ke Xue Za Zhi – ident: e_1_2_8_16_1 doi: 10.1002/cne.23416 – ident: e_1_2_8_61_1 doi: 10.1038/nrn.2015.24 – ident: e_1_2_8_25_1 doi: 10.1007/s10548-014-0415-1 – ident: e_1_2_8_62_1 doi: 10.1126/science.1077775 – ident: e_1_2_8_36_1 doi: 10.1016/j.legalmed.2008.04.001 – ident: e_1_2_8_35_1 doi: 10.1016/j.neuroimage.2009.09.042 |
SSID | ssj0011500 |
Score | 2.4654186 |
Snippet | Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have... Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging and disease research. Extant subfield segmentation protocols have... |
SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 545 |
SubjectTerms | Aging Anatomy Autopsy Clinical Medicine Cognition Dementia disorders Dentate gyrus Engineering and Technology ex vivo hippocampal subfields Hippocampus histology Image processing in vivo Klinisk medicin Magnetic resonance imaging Medical and Health Sciences Medical Engineering Medical Image Processing Medical Imaging Medicin och hälsovetenskap Medicinsk bildbehandling Medicinsk bildvetenskap Medicinteknik MRI Radiologi och bildbehandling Radiology and Medical Imaging Radiology, Nuclear Medicine and Medical Imaging Segmentation Subiculum Tails Teknik |
Title | Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.23172 https://www.ncbi.nlm.nih.gov/pubmed/31675165 https://www.proquest.com/docview/2410516747 https://www.proquest.com/docview/2311637951 https://pubmed.ncbi.nlm.nih.gov/PMC7192771 https://lup.lub.lu.se/record/24d11f6d-ca9a-4cd7-99b5-6d6e3c536094 oai:portal.research.lu.se:publications/24d11f6d-ca9a-4cd7-99b5-6d6e3c536094 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KH8QXta2XaJURRVDINplNZnbEl1JatuKqFAtFkGGu3cVtNjS7Rf31npnJpq4toj4EAjlzspk9ly8nZ75B6DlkBK5LVqSF8aWbjPF0oBwEQ923fS0B4YY9I0fv6fC4eHtSnqyhN8u1MJEfoiu4ec8I8do7uFTNziVp6HhSz3qATpgPwL5ZyyOio447yiOdSEVQZilYWd5xk5Kdy6Gr2egKxLzaKdnyia5C2ZCLDm6jL8uniC0oX3uLuerpH78RPP7vY95Bt1qQinejVW2gNVttoq3dCl7Qz77jFzi0jYZ6_Ca6MWq_zm-heq9jf46LO_HMYdBcQ76EqDPFzUKFjrkG-3b7U2y_4YvJxQyPjg6xrAwO5MdeLfaNq6_xOwjD4BUYgDWeVFG2sadn7Xqp6i46Ptj_tDdM2x0dUk0zRlIKsTejTg40lQW3JGOmcI7InA8KonSeGZ0RsB1OLXM5oVw6xweM0ULmpSWufw-tV7PKPkCYOi6tVNTy3BbOEAm5uA_KDTdKgcYEvVz-s0K3dOd-142piETNRPiZFWFmE_Ssk60jyce1UttLAxGtozeC-DZZv5KDJehpdxlc1H93kZWdLRo_GlAvAyyboPvRnrrbeCICGF8miK1YWifg6b9Xr1STcaABZwDOGQOd-9EmV4ZMFzUcCg7RWPiVJs8dNUJLLkWhDROcq1JQQ8EjS5g3XiTo8zV64kugaJmnxq2--peS8l8qfxWM_A_TK4aHHz-Es4f_IvwI3SS-BBIKY9tofX6-sI8BJ87VkxAPfgJuV2gP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQkIAXPjY-AgOMQEggpUvcxK55m6ZNLbQDTZs08WI5_lgruiQi7QT89ZztLKNsQsBDpEo5X1P37vzz5fw7hF7BisBVzrI40y51kzAeDwoLwVD1TV9JQLi-Z-Rknw6PsvfH-XFbm-POwgR-iC7h5jzDx2vn4C4hvXXBGjqd1VUP4AmDCHzdtfT2O6qDjj3KYZ1ARpAnMdhZ2rGTkq2Lsavr0SWQeblWsmUUXQWzfjXauxNarjaexNAVoXzpLRdFT_34jeLxv3_oXXS7xal4OxjWPXTNlOtoY7uEPfrpd_wa-8pRn5JfRzcm7Qv6DVTvdATQ4XwnriwGzTUsmRB45rhZFr5orsGu4v4Em2_4bHZW4cnBCMtSY89_7NRiV7v6Do8hEoNjYMDWeFYG2cacnLZHpsr76Ghv93BnGLdNHWJFE0ZiCuE3oVYOFJUZNyRhOrOWyJQPMlKoNNEqIWA-nBpmU0K5tJYPGKOZTHNDbP8BWiur0jxCmFoujSyo4anJrCYSluM-KNdcFwVojNCb879WqJbx3DXemIvA1UyEm1nhZzZCLzvZOvB8XCm1eW4hovX1RhBXKesOc7AIvehug5e6Vy-yNNWycaMB-DKAsxF6GAyq-xrHRQDj8wixFVPrBBwD-Oqdcjb1TOAM8DljoHM3GOXKkPmyhquASzQGnlKnqaVaKMmlyJRmgvMiF1RTcMoc5o1nEfp8hZ6wDxQt-dS01Vf_klX-S-VvvZX_YXrFcPTpo__0-F-En6Obw8PJWIxH-x-eoFvEZUR8nmwTrS2-Ls1TgI2L4pkPDj8BobpsKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA9jwvCLL5sv1akRRVDorc21yUX8MrYdd7qbYzgYAwlpk-wOb22xd0P9632S9DrPDVE_FAp98vSae15-ffrkF4ReQkbgecqSMFG2dBMxHvYyA8Ew7-puLgHhuj0jRwd0cJy8P0lPVtC7xVoYzw_RFtysZ7h4bR28UmbrkjR0PKnKDqATBgH4RkKjnrXp3aOWPMpCHc9FkEYhmFnckpOSrcuxy-noCsa82irZEIouY1mXjPq30efFY_gelC-d-Szr5D9-Y3j83-e8g241KBVve7O6i1Z0sY42tgt4Qz__jl9h1zfqCvLraG3UfJ7fQNVOS__sV3fi0mDQXEHChLAzxfU8cy1zNbb99mdYf8MXk4sSj46GWBYKO_ZjqxbbztW3eB_iMLgFBmSNJ4WXrfXZebNgqriHjvt7n3YGYbOlQ5jTiJGQQvCNqJG9nMqEaxIxlRhDZMx7CcnyOFJ5RMB4ONXMxIRyaQzvMUYTGaeamO59tFqUhX6IMDVcaplRzWOdGEUkJOMuKFdcZRloDNDrxT8r8obv3G67MRWeqZkIO7PCzWyAXrSylWf5uFZqc2EgovH0WhDbJ2uXcrAAPW8vg4_aDy-y0OW8tqMB9jIAswF64O2pvY1lIoDxaYDYkqW1Apb_e_lKMRk7HnAG6Jwx0LnnbXJpyHRewZHBIWoNv1LFsaFK5JJLkeSKCc6zVFBFwSVTmDeeBOj0Gj3-LVA01FPjRl_1S035L5W_cUb-h-kVg-HhR3f26F-En6G1w92-2B8efHiMbhJbDnFFsk20Ovs6108AM86ypy40_AQ8Tmri |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+hippocampal+subfields+using+ex+vivo+MRI+and+histology+data%3A+lessons+for+in+vivo+segmentation&rft.jtitle=Hippocampus&rft.au=de+Flores%2C+R.&rft.au=Berron%2C+D.&rft.au=Ding%2C+S.-L.&rft.au=Ittyerah%2C+R.&rft.date=2020-06-01&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=30&rft.issue=6&rft.spage=545&rft.epage=564&rft_id=info:doi/10.1002%2Fhipo.23172&rft_id=info%3Apmid%2F31675165&rft.externalDocID=PMC7192771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon |