A novel network based linear model for prioritization of synergistic drug combinations

Drug combination therapies can improve drug efficacy, reduce drug dosage, and overcome drug resistance in cancer treatments. Current research strategies to determine which drug combinations have a synergistic effect rely mainly on clinical or empirical experience and screening predefined pools of dr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 4; p. e0266382
Main Authors Li, Jiaqi, Xu, Hongyan, McIndoe, Richard A
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.04.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drug combination therapies can improve drug efficacy, reduce drug dosage, and overcome drug resistance in cancer treatments. Current research strategies to determine which drug combinations have a synergistic effect rely mainly on clinical or empirical experience and screening predefined pools of drugs. Given the number of possible drug combinations, the speed, and scope to find new drug combinations are very limited using these methods. Due to the exponential growth in the number of drug combinations, it is difficult to test all possible combinations in the lab. There are several large-scale public genomic and phenotypic resources that provide data from single drug-treated cells as well as data from small molecule treated cells. These databases provide a wealth of information regarding cellular responses to drugs and offer an opportunity to overcome the limitations of the current methods. Developing a new advanced data processing and analysis strategy is imperative and a computational prediction algorithm is highly desirable. In this paper, we developed a computational algorithm for the enrichment of synergistic drug combinations using gene regulatory network knowledge and an operational module unit (OMU) system which we generate from single drug genomic and phenotypic data. As a proof of principle, we applied the pipeline to a group of anticancer drugs and demonstrate how the algorithm could help researchers efficiently find possible synergistic drug combinations using single drug data to evaluate all possible drug pairs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0266382