基于GHM多小波算法的功耗分析攻击

功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法。该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率。在MEGA16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析。实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 9; pp. 2777 - 2781
Main Author 段晓毅 佘高健 高献伟 方华威 何斯曼 陈东
Format Journal Article
LanguageChinese
Published 北京电子科技学院,北京,100070 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.09.047

Cover

Abstract 功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法。该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率。在MEGA16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析。实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性。
AbstractList 功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法。该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率。在MEGA16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析。实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性。
TP309.2; 功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法.该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率.在MEGA 16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析.实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性.
Abstract_FL In power analysis,key acquisition for power analysis was based on the collected power signal,and one of the most important factors impacting the success rate of key analysis was the signal to noise ratio of real power consumption.So the noise could be effectively removed was the key to improve the success rate of power analysis.To solve this problem,this paper introduced the preprocessing method based on GHM multiwavelet.This method was to denoise power traced by GHM multiwavelet thresholding,with an aim to remove irrelevant noise from the power traces as far as possible,and raise the signal to noise ratio of real signal in the power traces.It collected power traces of AES algorithm in MEGA16 micro controller hardware platform for the same key with different plaintexts and performed correlation power analysis with original power traces and the denoised power traces.Experimental results show that the power traces required for correlation power analysis performed with the denoised power traces is reduced by 89.5%,and the correlation coefficient is raised by 107.9% on average.This verifies the effectiveness of the new method.
Author 段晓毅 佘高健 高献伟 方华威 何斯曼 陈东
AuthorAffiliation 北京电子科技学院,北京100070
AuthorAffiliation_xml – name: 北京电子科技学院,北京,100070
Author_FL He Siman
Fang Huawei
Gao Xianwei
She Gaojian
Duan Xiaoyi
Chen Dong
Author_FL_xml – sequence: 1
  fullname: Duan Xiaoyi
– sequence: 2
  fullname: She Gaojian
– sequence: 3
  fullname: Gao Xianwei
– sequence: 4
  fullname: Fang Huawei
– sequence: 5
  fullname: He Siman
– sequence: 6
  fullname: Chen Dong
Author_xml – sequence: 1
  fullname: 段晓毅 佘高健 高献伟 方华威 何斯曼 陈东
BookMark eNo9jzFLw0AcxW-oYFv9EuLgkvi_u9xdbpSirVBx6V4u11xN0IsmiGRzEJUO6qAUOlgQZxG6tV_HpH4MIxWnHzx-vMdroJpNbIjQNgaXSi53YzfKMutiAOxQLplLAAsXpAueqKH6f76OGlkWA3gES6gjp5jOv-YP7c5R8T4pPh_L2dvyY1zOXpaTm2I0_b4eF_e35etT-bwo7hYbaM2o0yzc_GMT9Q72e62O0z1uH7b2uo7mIJyQq8AfAMGK-gHjgZaDAJgxLCDcGEOAE8015RVVqEnINBc-8TRlHhXa-LSJdla1V8oaZYf9OLlMbTXYj7M4z_P49xvI6lmlbq1UfZLY4UVUyedpdKbSvM8F8QUw7tEfWrZiXw
ClassificationCodes TP309.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.09.047
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Power analysis attack based on GHM muhiwavelet algorithm
DocumentTitle_FL Power analysis attack based on GHM multiwavelet algorithm
EndPage 2781
ExternalDocumentID jsjyyyj201709047
672870564
GrantInformation_xml – fundername: 北京电子科技学院基金资助项目; 北京市自然科学基金资助项目
  funderid: (328201505,328201508); (4163076)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c607-e6ab8d021a38b56bc9db05ff5b26fff2062c6c36062aec2e5c67824c35437cf83
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:57:50 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords correlation power analysis
denoising
相关功耗分析
去噪
AES algorithm
multiwavelet
多小波
AES算法
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c607-e6ab8d021a38b56bc9db05ff5b26fff2062c6c36062aec2e5c67824c35437cf83
Notes 51-1196/TP
Duan Xiaoyi, She Gaojian, Gao Xianwei, Fang Huawei, He Siman, Chen Dong (Beijing Electronic & Technology Institute, Beifing 100070, China)
In power analysis, key acquisition for power analysis was based on the collected power signal, and one of the most important factors impacting the success rate of key analysis was the signal to noise ratio of real power consumption. So the noise could be effectively removed was the key to improve the success rate of power analysis. To solve this problem, this paper introduced the preprocessing method based on GHM muhiwavelet. This method was to denoise power traced by GHM muhiwavelet thresholding, with an aim to remove irrelevant noise from the power traces as far as possible, and raise the signal to noise ratio of real signal in the power traces. It collected power traces of AES algorithm in MEGA16 micro controller hardware platform for the same key with different plaintexts and performed correlation power analysis with original power traces and the denoised powe
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201709047
chongqing_primary_672870564
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 北京电子科技学院,北京,100070
Publisher_xml – name: 北京电子科技学院,北京,100070
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0607347
Snippet ...
TP309.2;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2777
SubjectTerms AES算法
去噪
多小波
相关功耗分析
Title 基于GHM多小波算法的功耗分析攻击
URI http://lib.cqvip.com/qk/93231X/201709/672870564.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201709047
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NTxUxsEFIjBe_jYgaTOiJLO5HP4_dxz6JiZ4w4fay27cL4fBQgQOcPBg1HtSDhoSDJMazMeEGf8f38OJ_cKZbltUYol6avtmZaWdm33TabTuEzEhczq_CMNCsUgGDCUGQF5YHfVZwWfZlHudug-xDsfCI3V_iS2NjP1q7ljY3ijm7_cdzJf9jVYCBXfGU7D9YtmEKAKiDfaEEC0P5VzamGae6S1NDM4alyu4tPECgYVQbrKQhVV2aCZom1MQ0k9RkVEsP0RwhgKkYIiuD3DLldj9IB4G6QGQNVKGrQEOpeySh0g5tkRCYm-iXVnTHdY9jCbTYHKNGOZzQQ4ymabNAiERAnXJHralOHKRLFZ91Ys5TDeSamtRVoCcRNfisAUmqOsgDsTsg0qxjBRJrhz4PenJKAuGihif3SMapS6dA6nhCF0ALiKRAmPYiSX0a1Ht03DOWiDqT57HL9-un9aut2_5b-qQypf9Z55P5fZxJtNBunMEm5pomcKegdNfmMnkyvja7HoXEr8pcsDNkAhqK-DiZMOl82j2JXyHca99nGONVQSfzRbzsX7QcNGYghBGncdA8SiR36QzqUITBw_o6Dt_Bs2TG9_7uaX3He0ZW1gbLTyB6cofZBlU-WG7FXYsXyXk_YZo29dt_iYxtr1wmF46TkUz7sekKCYZ7B98O3sAfYPh5d_j17Wj_09GXndH-h6Pd58PXe9-f7QxfvRh9fDd6fzh8eXiVLHazxc5C4HOBBFaEMihFXqg-CJsnquCisLoP4lYVL2JRVVUcitgKm8BsPM5LG5fcQhAWM5twlkhbqeQaGR-sDcrrZDoSqh8lkQBXJBggF1YIbeNQ921lI1lMkqlG-N7j-sqXXmO6SXLHq6PnHcF6b3V9dWtraxUVGGpQ341TOUyRc4hZL-PdJOMbTzfLWxDYbhS3_evwEweWdh0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGHM%E5%A4%9A%E5%B0%8F%E6%B3%A2%E7%AE%97%E6%B3%95%E7%9A%84%E5%8A%9F%E8%80%97%E5%88%86%E6%9E%90%E6%94%BB%E5%87%BB&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%AE%B5%E6%99%93%E6%AF%85+%E4%BD%98%E9%AB%98%E5%81%A5+%E9%AB%98%E7%8C%AE%E4%BC%9F+%E6%96%B9%E5%8D%8E%E5%A8%81+%E4%BD%95%E6%96%AF%E6%9B%BC+%E9%99%88%E4%B8%9C&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=9&rft.spage=2777&rft.epage=2781&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.09.047&rft.externalDocID=672870564
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg