Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model

With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced in...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroinflammation Vol. 12; no. 1; p. 105
Main Authors Zuo, Wen-Qi, Hu, Yu-Juan, Yang, Yang, Zhao, Xue-Yan, Zhang, Yuan-Yuan, Kong, Wen, Kong, Wei-Jia
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 29.05.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
AbstractList With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley[R] (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 [mu]g/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 [mu]g/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 [mu]g/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 [mu]g/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 [mu]g/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 [mu]g/ml) exposure, and H.sub.2O.sub.2 groups (P < 0.05, 0.01). Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase.BACKGROUNDWith the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase.Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay.METHODSSpiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay.LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01).RESULTSLPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01).Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.CONCLUSIONSShort-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Background With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Methods Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley[R] (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 [mu]g/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. Results LPS (100 [mu]g/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 [mu]g/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 [mu]g/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 [mu]g/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 [mu]g/ml) exposure, and H.sub.2O.sub.2 groups (P < 0.05, 0.01). Conclusions Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model. Keywords: Lipopolysaccharide, Spiral ganglion neurons, Sensitivity, Damage, Radiofrequency electromagnetic radiation
ArticleNumber 105
Audience Academic
Author Hu, Yu-Juan
Kong, Wen
Zhao, Xue-Yan
Kong, Wei-Jia
Zuo, Wen-Qi
Zhang, Yuan-Yuan
Yang, Yang
Author_xml – sequence: 1
  givenname: Wen-Qi
  surname: Zuo
  fullname: Zuo, Wen-Qi
– sequence: 2
  givenname: Yu-Juan
  surname: Hu
  fullname: Hu, Yu-Juan
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 4
  givenname: Xue-Yan
  surname: Zhao
  fullname: Zhao, Xue-Yan
– sequence: 5
  givenname: Yuan-Yuan
  surname: Zhang
  fullname: Zhang, Yuan-Yuan
– sequence: 6
  givenname: Wen
  surname: Kong
  fullname: Kong, Wen
– sequence: 7
  givenname: Wei-Jia
  surname: Kong
  fullname: Kong, Wei-Jia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26022358$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1rFTEUhgep2A_9AW4k4MbN1CST-doIpWgVCi7UdTg3OXNvJJOMyUzl_iT_ped2WmlFySIH8rxvztdpcRRiwKJ4Kfi5EF3zNgvZt6rkoi55xXkpnhQnolWylLxXRw_i4-I05--cV7Ju5LPiWDZcyqruTopfXzBkN7sbN-9ZHFieXALPthC23sXAAi4phszmyCyMsEVmYMlo2WbPxrhxHtm0o6wYejRzioQEnJ1hCayD-WDx03nPXDAJISMFzLspTtHvMxizg-Qsli7YxZCrC4OHcVyFhFJaKdJHFv3z4ukAPuOLu_us-Pbh_dfLj-X156tPlxfXpWl4M5dDL8xguOiwtS2gANHX0DXNhurdiMHUFrjqoG2HzlrVSaTAVNyCaI2Sqq_Oiner77RsRrQGw0wd0VNyI6S9juD045fgdnobb7RSdcdlQwZv7gxS_LFgnvXoskHvIWBcshZN1_S9qvgBfb2iW_CoqfhIjuaA64taiVqKiiuizv9B0bE4OkPNH2gMjwWvHpbwJ_f7sRPQroBJMeeEgzZuvm06OTuvBdeHBdPrgmlaMH1YMC1IKf5S3pv_X_MbIxXXQQ
CitedBy_id crossref_primary_10_1016_j_envint_2024_109104
crossref_primary_10_1016_j_heliyon_2024_e36140
crossref_primary_10_1186_s42826_020_00055_z
crossref_primary_10_1016_j_neuroscience_2018_06_002
crossref_primary_10_1016_j_phymed_2024_156245
crossref_primary_10_3390_ijms22073772
crossref_primary_10_3390_ijms23158414
crossref_primary_10_3892_ijmm_2018_3539
crossref_primary_10_1016_j_freeradbiomed_2018_04_575
crossref_primary_10_2139_ssrn_3548385
crossref_primary_10_1002_bem_22388
crossref_primary_10_1080_15548627_2021_1905466
crossref_primary_10_1371_journal_pone_0201022
crossref_primary_10_1080_09553002_2018_1432913
crossref_primary_10_1016_j_heliyon_2024_e37223
crossref_primary_10_1016_j_mrgentox_2017_08_001
crossref_primary_10_1042_BSR20212584
crossref_primary_10_1002_bem_22032
crossref_primary_10_1016_j_envres_2018_01_034
crossref_primary_10_1002_bem_22255
crossref_primary_10_1080_15548627_2019_1569926
crossref_primary_10_3389_fpubh_2021_771508
crossref_primary_10_3390_ijms23020658
crossref_primary_10_1007_s12192_018_0945_7
crossref_primary_10_1016_j_mrgentox_2018_11_014
crossref_primary_10_3389_fpubh_2024_1419525
Cites_doi 10.1093/jjco/hyt160
10.1111/j.1365-2249.2010.04292.x
10.1002/pmic.200600234
10.1167/iovs.07-1333
10.2307/3579911
10.1007/s00420-003-0446-5
10.1016/j.toxlet.2014.05.004
10.1016/S0731-7085(01)00492-7
10.1186/s12866-014-0236-0
10.3109/09553002.2012.711504
10.1016/j.mrgentox.2006.03.002
10.1371/journal.pone.0054906
10.4161/auto.25399
10.1016/j.biopha.2007.12.004
10.1093/mutage/ger034
10.3342/ceo.2008.1.3.117
10.1667/RR3127
10.1017/S0022215114000723
10.1099/jmm.0.015792-0
10.1289/ehp.6039
10.1016/j.pathophys.2012.11.001
10.1016/j.mrfmmm.2009.10.004
10.1042/BJ20061653
10.1186/1748-717X-7-61
10.1093/toxsci/kfh184
10.1080/09553000802460123
10.1038/cddis.2013.217
10.1016/j.fertnstert.2008.08.022
10.1093/mutage/ges018
10.1002/bem.20127
10.1523/JNEUROSCI.1014-14.2014
10.1016/j.tiv.2009.06.019
10.1523/JNEUROSCI.1735-05.2005
10.1016/j.mrfmmm.2009.10.012
10.1371/journal.pone.0109630
10.1002/bem.20580
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Zuo et al. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Zuo et al. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1186/s12974-015-0300-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1742-2094
ExternalDocumentID PMC4458026
A541521304
26022358
10_1186_s12974_015_0300_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29L
2WC
4.4
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
7X8
5PM
ID FETCH-LOGICAL-c606t-f91cfc018e7d7ae1a195a866b235b1fc5da048a77f8dd482e7f8c30da17c42493
IEDL.DBID M48
ISSN 1742-2094
IngestDate Thu Aug 21 17:17:50 EDT 2025
Mon Jul 21 10:00:22 EDT 2025
Tue Jun 17 22:07:11 EDT 2025
Tue Jun 10 21:10:16 EDT 2025
Mon Jul 21 06:02:48 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 02:54:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f91cfc018e7d7ae1a195a866b235b1fc5da048a77f8dd482e7f8c30da17c42493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12974-015-0300-1
PMID 26022358
PQID 1686994306
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4458026
proquest_miscellaneous_1686994306
gale_infotracmisc_A541521304
gale_infotracacademiconefile_A541521304
pubmed_primary_26022358
crossref_citationtrail_10_1186_s12974_015_0300_1
crossref_primary_10_1186_s12974_015_0300_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-29
PublicationDateYYYYMMDD 2015-05-29
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-29
  day: 29
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroinflammation
PublicationTitleAlternate J Neuroinflammation
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References YM Moustafa (300_CR35) 2001; 26
B Avci (300_CR14) 2012; 88
Y Al Dhaheri (300_CR17) 2014; 9
S Xu (300_CR25) 2013; 8
A Agarwal (300_CR2) 2009; 92
S Ivancsits (300_CR38) 2003; 76
F Focke (300_CR39) 2010; 683
KK Kesari (300_CR1) 2013; 51
LG Salford (300_CR3) 2003; 111
ID Kim (300_CR32) 2009; 23
M Eguchi (300_CR33) 2011; 163
P Vecchia (300_CR37) 2007; 43
Q Zeng (300_CR26) 2006; 6
C Seidel (300_CR21) 2012; 7
P Galloni (300_CR8) 2005; 26
J Luukkonen (300_CR10) 2010; 31
K Liu (300_CR27) 2014; 228
AD Garg (300_CR16) 2013; 9
E Lee (300_CR28) 2004; 81
K Yao (300_CR5) 2008; 49
GJ Hook (300_CR7) 2004; 161
Z Zhou (300_CR19) 2005; 25
C Ersson (300_CR22) 2011; 26
TQ Huang (300_CR9) 2008; 84
S Franzellitti (300_CR24) 2010; 683
E Seckin (300_CR30) 2014; 128
EM Bailey (300_CR29) 2014; 34
SK Juhn (300_CR12) 2008; 1
YS Lu (300_CR15) 2012; 2012
VK Wong (300_CR34) 2013; 4
AL Smit (300_CR11) 2010; 59
TS Kumaravel (300_CR23) 2006; 605
RS Malyapa (300_CR6) 1998; 149
Q Deng (300_CR18) 2013; 43
M Kruszewski (300_CR20) 2012; 27
J Friedman (300_CR13) 2007; 405
L Hardell (300_CR36) 2008; 62
L Hardell (300_CR4) 2013; 20
EA Britta (300_CR31) 2014; 14
18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15
20093374 - J Med Microbiol. 2010 Apr;59(Pt 4):377-83
24813634 - Toxicol Lett. 2014 Aug 4;228(3):216-24
19896957 - Mutat Res. 2010 Jan 5;683(1-2):74-83
9611103 - Radiat Res. 1998 Jun;149(6):637-45
22511614 - Mutagenesis. 2012 Sep;27(5):551-8
12802592 - Int Arch Occup Environ Health. 2003 Jul;76(6):431-6
19822160 - Mutat Res. 2010 Jan 5;683(1-2):35-42
16037958 - Bioelectromagnetics. 2005 Oct;26(7):536-47
20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24
16888767 - Proteomics. 2006 Sep;6(17):4732-8
16107643 - J Neurosci. 2005 Aug 17;25(33):7558-66
22520045 - Radiat Oncol. 2012;7:61
23678539 - Indian J Exp Biol. 2013 Mar;51(3):187-200
17938457 - Ann Ist Super Sanita. 2007;43(3):260-7
22788526 - Int J Radiat Biol. 2012 Nov;88(11):799-805
11516912 - J Pharm Biomed Anal. 2001 Nov;26(4):605-8
23800749 - Autophagy. 2013 Sep;9(9):1292-307
15178808 - Toxicol Sci. 2004 Sep;81(1):121-32
16621680 - Mutat Res. 2006 Jun 16;605(1-2):7-16
22778799 - Oxid Med Cell Longev. 2012;2012:740280
24784924 - J Laryngol Otol. 2014 May;128(5):400-5
14731070 - Radiat Res. 2004 Feb;161(2):193-200
23355902 - PLoS One. 2013;8(1):e54906
23846222 - Cell Death Dis. 2013;4:e720
21778357 - Mutagenesis. 2011 Nov;26(6):689-95
18242044 - Biomed Pharmacother. 2008 Feb;62(2):104-9
17456048 - Biochem J. 2007 Aug 1;405(3):559-68
18804757 - Fertil Steril. 2009 Oct;92(4):1318-25
24186908 - Jpn J Clin Oncol. 2013 Dec;43(12):1261-8
19540912 - Toxicol In Vitro. 2009 Sep;23(6):1014-9
12782486 - Environ Health Perspect. 2003 Jun;111(7):881-3; discussion A408
23261330 - Pathophysiology. 2013 Apr;20(2):85-110
25253283 - BMC Microbiol. 2014;14:236
21166666 - Clin Exp Immunol. 2011 Feb;163(2):260-9
25253857 - J Neurosci. 2014 Sep 24;34(39):13110-26
19016139 - Int J Radiat Biol. 2008 Nov;84(11):909-15
25299698 - PLoS One. 2014;9(10):e109630
19434244 - Clin Exp Otorhinolaryngol. 2008 Sep;1(3):117-38
References_xml – volume: 2012
  start-page: 740280
  year: 2012
  ident: 300_CR15
  publication-title: Oxid Med Cell Longev
– volume: 43
  start-page: 1261
  year: 2013
  ident: 300_CR18
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyt160
– volume: 163
  start-page: 260
  year: 2011
  ident: 300_CR33
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2010.04292.x
– volume: 51
  start-page: 187
  year: 2013
  ident: 300_CR1
  publication-title: Indian J Exp Biol
– volume: 6
  start-page: 4732
  year: 2006
  ident: 300_CR26
  publication-title: Proteomics
  doi: 10.1002/pmic.200600234
– volume: 49
  start-page: 2009
  year: 2008
  ident: 300_CR5
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.07-1333
– volume: 149
  start-page: 637
  year: 1998
  ident: 300_CR6
  publication-title: Radiat Res
  doi: 10.2307/3579911
– volume: 76
  start-page: 431
  year: 2003
  ident: 300_CR38
  publication-title: Int Arch Occup Environ Health
  doi: 10.1007/s00420-003-0446-5
– volume: 228
  start-page: 216
  year: 2014
  ident: 300_CR27
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2014.05.004
– volume: 26
  start-page: 605
  year: 2001
  ident: 300_CR35
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/S0731-7085(01)00492-7
– volume: 14
  start-page: 236
  year: 2014
  ident: 300_CR31
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-014-0236-0
– volume: 88
  start-page: 799
  year: 2012
  ident: 300_CR14
  publication-title: Int J Radiat Biol
  doi: 10.3109/09553002.2012.711504
– volume: 605
  start-page: 7
  year: 2006
  ident: 300_CR23
  publication-title: Mutat Res
  doi: 10.1016/j.mrgentox.2006.03.002
– volume: 8
  start-page: e54906
  year: 2013
  ident: 300_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054906
– volume: 9
  start-page: 1292
  year: 2013
  ident: 300_CR16
  publication-title: Autophagy
  doi: 10.4161/auto.25399
– volume: 62
  start-page: 104
  year: 2008
  ident: 300_CR36
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2007.12.004
– volume: 26
  start-page: 689
  year: 2011
  ident: 300_CR22
  publication-title: Mutagenesis
  doi: 10.1093/mutage/ger034
– volume: 1
  start-page: 117
  year: 2008
  ident: 300_CR12
  publication-title: Clin Exp Otorhinolaryngol
  doi: 10.3342/ceo.2008.1.3.117
– volume: 161
  start-page: 193
  year: 2004
  ident: 300_CR7
  publication-title: Radiat Res
  doi: 10.1667/RR3127
– volume: 128
  start-page: 400
  year: 2014
  ident: 300_CR30
  publication-title: J Laryngol Otol
  doi: 10.1017/S0022215114000723
– volume: 59
  start-page: 377
  year: 2010
  ident: 300_CR11
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.015792-0
– volume: 111
  start-page: 881
  year: 2003
  ident: 300_CR3
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.6039
– volume: 20
  start-page: 85
  year: 2013
  ident: 300_CR4
  publication-title: Pathophysiology
  doi: 10.1016/j.pathophys.2012.11.001
– volume: 683
  start-page: 35
  year: 2010
  ident: 300_CR24
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2009.10.004
– volume: 405
  start-page: 559
  year: 2007
  ident: 300_CR13
  publication-title: Biochem J
  doi: 10.1042/BJ20061653
– volume: 7
  start-page: 61
  year: 2012
  ident: 300_CR21
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-7-61
– volume: 81
  start-page: 121
  year: 2004
  ident: 300_CR28
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfh184
– volume: 84
  start-page: 909
  year: 2008
  ident: 300_CR9
  publication-title: Int J Radiat Biol
  doi: 10.1080/09553000802460123
– volume: 4
  start-page: e720
  year: 2013
  ident: 300_CR34
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2013.217
– volume: 92
  start-page: 1318
  year: 2009
  ident: 300_CR2
  publication-title: Fertil Steril
  doi: 10.1016/j.fertnstert.2008.08.022
– volume: 27
  start-page: 551
  year: 2012
  ident: 300_CR20
  publication-title: Mutagenesis
  doi: 10.1093/mutage/ges018
– volume: 43
  start-page: 260
  year: 2007
  ident: 300_CR37
  publication-title: Ann Ist Super Sanita
– volume: 26
  start-page: 536
  year: 2005
  ident: 300_CR8
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20127
– volume: 34
  start-page: 13110
  year: 2014
  ident: 300_CR29
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1014-14.2014
– volume: 23
  start-page: 1014
  year: 2009
  ident: 300_CR32
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2009.06.019
– volume: 25
  start-page: 7558
  year: 2005
  ident: 300_CR19
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1735-05.2005
– volume: 683
  start-page: 74
  year: 2010
  ident: 300_CR39
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2009.10.012
– volume: 9
  start-page: e109630
  year: 2014
  ident: 300_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109630
– volume: 31
  start-page: 417
  year: 2010
  ident: 300_CR10
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20580
– reference: 16888767 - Proteomics. 2006 Sep;6(17):4732-8
– reference: 22788526 - Int J Radiat Biol. 2012 Nov;88(11):799-805
– reference: 18804757 - Fertil Steril. 2009 Oct;92(4):1318-25
– reference: 19016139 - Int J Radiat Biol. 2008 Nov;84(11):909-15
– reference: 16621680 - Mutat Res. 2006 Jun 16;605(1-2):7-16
– reference: 25253857 - J Neurosci. 2014 Sep 24;34(39):13110-26
– reference: 22511614 - Mutagenesis. 2012 Sep;27(5):551-8
– reference: 11516912 - J Pharm Biomed Anal. 2001 Nov;26(4):605-8
– reference: 17938457 - Ann Ist Super Sanita. 2007;43(3):260-7
– reference: 12802592 - Int Arch Occup Environ Health. 2003 Jul;76(6):431-6
– reference: 24186908 - Jpn J Clin Oncol. 2013 Dec;43(12):1261-8
– reference: 22778799 - Oxid Med Cell Longev. 2012;2012:740280
– reference: 23355902 - PLoS One. 2013;8(1):e54906
– reference: 23800749 - Autophagy. 2013 Sep;9(9):1292-307
– reference: 12782486 - Environ Health Perspect. 2003 Jun;111(7):881-3; discussion A408
– reference: 20564172 - Bioelectromagnetics. 2010 Sep;31(6):417-24
– reference: 24813634 - Toxicol Lett. 2014 Aug 4;228(3):216-24
– reference: 25253283 - BMC Microbiol. 2014;14:236
– reference: 22520045 - Radiat Oncol. 2012;7:61
– reference: 16107643 - J Neurosci. 2005 Aug 17;25(33):7558-66
– reference: 23846222 - Cell Death Dis. 2013;4:e720
– reference: 23261330 - Pathophysiology. 2013 Apr;20(2):85-110
– reference: 25299698 - PLoS One. 2014;9(10):e109630
– reference: 24784924 - J Laryngol Otol. 2014 May;128(5):400-5
– reference: 19434244 - Clin Exp Otorhinolaryngol. 2008 Sep;1(3):117-38
– reference: 18436834 - Invest Ophthalmol Vis Sci. 2008 May;49(5):2009-15
– reference: 20093374 - J Med Microbiol. 2010 Apr;59(Pt 4):377-83
– reference: 9611103 - Radiat Res. 1998 Jun;149(6):637-45
– reference: 18242044 - Biomed Pharmacother. 2008 Feb;62(2):104-9
– reference: 17456048 - Biochem J. 2007 Aug 1;405(3):559-68
– reference: 21166666 - Clin Exp Immunol. 2011 Feb;163(2):260-9
– reference: 15178808 - Toxicol Sci. 2004 Sep;81(1):121-32
– reference: 16037958 - Bioelectromagnetics. 2005 Oct;26(7):536-47
– reference: 21778357 - Mutagenesis. 2011 Nov;26(6):689-95
– reference: 19896957 - Mutat Res. 2010 Jan 5;683(1-2):74-83
– reference: 14731070 - Radiat Res. 2004 Feb;161(2):193-200
– reference: 19540912 - Toxicol In Vitro. 2009 Sep;23(6):1014-9
– reference: 23678539 - Indian J Exp Biol. 2013 Mar;51(3):187-200
– reference: 19822160 - Mutat Res. 2010 Jan 5;683(1-2):35-42
SSID ssj0032562
Score 2.2750807
Snippet With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain...
Background With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 105
SubjectTerms Analysis
Animals
Animals, Newborn
Apoptosis Regulatory Proteins - metabolism
Beclin-1
Care and treatment
Cell Phone
Cells, Cultured
Disease Models, Animal
DNA Damage - drug effects
Dose-Response Relationship, Drug
Electric waves
Electromagnetic Phenomena
Electromagnetic radiation
Electromagnetic waves
Electromagnetism
Ganglion
Health aspects
In Vitro Techniques
Inflammation
Inflammation - etiology
Inflammation - metabolism
Inflammation - physiopathology
Lipopolysaccharides - adverse effects
Lipopolysaccharides - pharmacology
Microtubule-Associated Proteins - metabolism
Mitogens
Neurons
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
Risk factors
Spiral Ganglion - cytology
Spiral Ganglion - drug effects
Spiral Ganglion - physiology
Time Factors
Title Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model
URI https://www.ncbi.nlm.nih.gov/pubmed/26022358
https://www.proquest.com/docview/1686994306
https://pubmed.ncbi.nlm.nih.gov/PMC4458026
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7rLogv4t3qOkQQBCHaS5qkDyKr7LIIs4g6MG8hzWUd6LbrdAacn-S_9Jy2M0xl9a2Q05L2fOfWnAshr4xJlA-5YWANHONpcMxkwjGR2hjnFebc4_-O6YU4n_HP83x-QLbjrYYP2N4Y2uE8qdmyevvr5-YDCPz7TuCVeNeCzZKYS5EzgGzMIBg6AsMkUU6nfHeokIF1T4eDzRtvw8bAAmxahvPf96zU37p6z1iNEyn3LNPZPXJ3cCnpSY-B--TA1w_I7elwaP6Q_P6GSer9lAjaBNqdrVf00mAFb1PTrqVl3dJVQ525Av1CrVm33tFyQ6-aEtQGxQR2T4eROUBSY-kjXWJfA2QsBYe7oosaPdDWwwWtFtc4fWHTGot1XQvnGQT_ACMHqwFQ2FdMIilsa9nQbiLPIzI7O_3-6ZwNExqYhcBnxUKR2GBjYLd00vjEJEVulBAlfMMyCTZ3BjSEkTIo57hKPVzYLHYmkZZD4Jc9Joc1vMBTQr3gRemKwiYhcDCZZabyYJwqpQMdYeKIxFuOaDu0L8cpGpXuwhgldM9PDfzUyE-dROTN7pbrvnfH_4hfI5s1Ig2ea81QngC7ww5Z-iTvXJ0s5hE5HlGCPNrR8sstUDQuYRJb7Zt1qxOhRIHt7kVEnvTA2e1rC7yIyBGkdgTYBny8Ui9-dO3AOc8VRNLP_vnM5-RO2qE8Z2lxTA5Xy7V_Aa7UqpyQW3IuJ-To4-nFl6-T7ofEpBOaP7ROIZ8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+spiral+ganglion+neurons+to+damage+caused+by+mobile+phone+electromagnetic+radiation+will+increase+in+lipopolysaccharide-induced+inflammation+in+vitro+model&rft.jtitle=Journal+of+neuroinflammation&rft.au=Zuo%2C+Wen-Qi&rft.au=Hu%2C+Yu-Juan&rft.au=Yang%2C+Yang&rft.au=Zhao%2C+Xue-Yan&rft.date=2015-05-29&rft.eissn=1742-2094&rft.volume=12&rft.spage=105&rft_id=info:doi/10.1186%2Fs12974-015-0300-1&rft_id=info%3Apmid%2F26022358&rft.externalDocID=26022358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2094&client=summon