Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase

UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 7015 - 14
Main Authors Carney, Sean P., Ma, Wen, Whitley, Kevin D., Jia, Haifeng, Lohman, Timothy M., Luthey-Schulten, Zaida, Chemla, Yann R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-27304-6

Cover

Loading…
Abstract UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases. UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD along a DNA hairpin, and propose a mechanism in which UvrD moves one base pair at a time, but sequesters the nascent single strands, releasing them after a variable number of ATP hydrolysis cycles.
AbstractList UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.
UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD along a DNA hairpin, and propose a mechanism in which UvrD moves one base pair at a time, but sequesters the nascent single strands, releasing them after a variable number of ATP hydrolysis cycles.
UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases. UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD along a DNA hairpin, and propose a mechanism in which UvrD moves one base pair at a time, but sequesters the nascent single strands, releasing them after a variable number of ATP hydrolysis cycles.
UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.
UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD along a DNA hairpin, and propose a mechanism in which UvrD moves one base pair at a time, but sequesters the nascent single strands, releasing them after a variable number of ATP hydrolysis cycles.
ArticleNumber 7015
Author Whitley, Kevin D.
Jia, Haifeng
Lohman, Timothy M.
Carney, Sean P.
Ma, Wen
Luthey-Schulten, Zaida
Chemla, Yann R.
Author_xml – sequence: 1
  givenname: Sean P.
  surname: Carney
  fullname: Carney, Sean P.
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Wen
  orcidid: 0000-0002-1123-5273
  surname: Ma
  fullname: Ma, Wen
  organization: Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, University of California
– sequence: 3
  givenname: Kevin D.
  surname: Whitley
  fullname: Whitley, Kevin D.
  organization: Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Newcastle University
– sequence: 4
  givenname: Haifeng
  surname: Jia
  fullname: Jia, Haifeng
  organization: Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine
– sequence: 5
  givenname: Timothy M.
  surname: Lohman
  fullname: Lohman, Timothy M.
  organization: Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine
– sequence: 6
  givenname: Zaida
  orcidid: 0000-0001-9749-8367
  surname: Luthey-Schulten
  fullname: Luthey-Schulten, Zaida
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign
– sequence: 7
  givenname: Yann R.
  orcidid: 0000-0001-9167-0234
  surname: Chemla
  fullname: Chemla, Yann R.
  email: ychemla@illinois.edu
  organization: Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Department of Physics, University of Illinois at Urbana-Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34853304$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CAInHhEvC_2M4FqSoFKqpygbM1cca7XiV2sRNovz3ebgttD_XFlv1-T2_G87LaCzFgVb2m5D0lXH_IggqpGsJowxQnopHPqgNGBG2oYnzv3nm_Osp5Q8riHdVCvKj2udAtL9BBdfHNB5y9rSEMdZ7TYuclwVhPaNcQfJ5qF1P96eK4XsIfHwYfVnV_XUNd4jRrvIIJU6HXOHoLGV9Vzx2MGY9u98Pq5-fTHydfm_PvX85Ojs8bK4mcG6e4QEt66mwnFWN8cER1uu2J4ozSnslBdoAAqiMMKTghrWPQg3CuJ53gh9XZzneIsDGXyU-Qrk0Eb24uYloZSKWsEY3SagBOUVkuBeq-c62zRCg9WNlp3hevjzuvy6WfcLAY5tKBB6YPX4Jfm1X8bbTkUpK2GLy7NUjx14J5NpPPFscRAsYlG1ZEkpBW0yJ9-0i6iUsKpVVbleg0bfW2ujf3E_2LcvdtRaB3AptizgmdsX6G2cdtQD8aSsx2SMxuSEwZEnMzJEYWlD1C79yfhPgOykUcVpj-x36C-guhJ83H
CitedBy_id crossref_primary_10_1021_acsami_4c01836
crossref_primary_10_1021_acs_jpcb_3c00778
crossref_primary_10_3390_polym15030787
crossref_primary_10_1038_s42003_023_04751_z
crossref_primary_10_1016_j_dnarep_2023_103542
crossref_primary_10_1093_nar_gkae897
crossref_primary_10_2142_biophysico_bppb_v19_0006
crossref_primary_10_1021_acs_jpcb_5c00508
crossref_primary_10_1093_nar_gkac949
crossref_primary_10_1073_pnas_2422330122
crossref_primary_10_1016_j_bpj_2022_07_030
crossref_primary_10_1515_hsz_2023_0154
Cites_doi 10.1038/ncomms2882
10.1126/science.1144130
10.1021/bi00053a028
10.1016/S0022-2836(02)01277-9
10.1046/j.1365-2958.2000.01700.x
10.1126/science.aaa0130
10.1103/PhysRevLett.119.138102
10.1016/j.sbi.2010.03.011
10.1021/bi992105o
10.1021/ct300400x
10.1021/jp204407d
10.1073/pnas.1712882114
10.1126/science.275.5298.377
10.1093/nar/gkv186
10.1038/nature04331
10.1146/annurev.biochem.76.052305.115300
10.1016/S0021-9258(18)67506-4
10.1074/jbc.M604412200
10.1074/jbc.273.15.9197
10.1016/j.jmb.2011.06.019
10.1002/bies.201800009
10.7554/eLife.00334
10.1016/j.cpc.2015.08.030
10.1038/nsmb1055
10.1016/j.celrep.2014.02.022
10.1073/pnas.0502886102
10.1038/emboj.2008.240
10.1016/j.bpj.2009.07.048
10.1017/S0033583510000107
10.1016/j.jmb.2018.08.022
10.1016/j.cell.2006.10.049
10.1016/S0022-2836(02)01067-7
10.1073/pnas.1711282114
10.1016/0263-7855(96)00018-5
10.1016/S0092-8674(00)80716-3
10.1093/nar/gkq273
10.1007/978-1-4939-6421-5_8
10.1021/acs.jctc.5b00436
10.1038/sj.embor.7400262
10.1093/nar/gkw445
10.1038/nature07637
10.1073/pnas.0306713101
10.1073/pnas.1905513116
10.1016/j.jmb.2012.02.013
10.1002/jcc.20289
10.1038/nature04928
10.1186/1471-2105-7-382
10.1073/pnas.82.20.6774
10.1016/j.molcel.2007.03.024
10.1007/978-1-4614-5037-5_2
10.1038/nrm2394
10.1126/science.1206023
10.1073/pnas.0702315104
10.1088/0953-8984/17/47/012
10.1038/sj.emboj.7600485
10.1074/jbc.M006268200
10.1016/j.jmb.2004.10.005
10.1021/jp076153r
10.1038/nature12928
10.1021/acs.jctc.5b00967
10.1002/prot.20033
10.1093/nar/gkz023
10.7554/eLife.34186
10.7554/eLife.45909
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-27304-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_787da31e7c364e8b9f5fc0478dc6983b
PMC8636605
34853304
10_1038_s41467_021_27304_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: R01 GM45948; R35 GM136632; R01 GM120353
  funderid: https://doi.org/10.13039/100000002
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
– fundername: National Science Foundation (NSF)
  grantid: PHY 1430124; PHY 1430124
  funderid: https://doi.org/10.13039/100000001
– fundername: NIGMS NIH HHS
  grantid: R01 GM045948
– fundername: NIGMS NIH HHS
  grantid: R01 GM120353
– fundername: NIGMS NIH HHS
  grantid: R35 GM136632
– fundername: ;
  grantid: R01 GM45948; R35 GM136632; R01 GM120353
– fundername: ;
– fundername: ;
  grantid: PHY 1430124; PHY 1430124
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-f734ec0b1fc967223df07985b073211b26d69aeaa7902e1af46cf2aba4ffb0943
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:57:12 EDT 2025
Thu Aug 21 17:49:55 EDT 2025
Fri Jul 11 05:44:26 EDT 2025
Wed Aug 13 10:57:27 EDT 2025
Thu Apr 03 07:03:43 EDT 2025
Tue Jul 01 04:17:40 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f734ec0b1fc967223df07985b073211b26d69aeaa7902e1af46cf2aba4ffb0943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9167-0234
0000-0002-1123-5273
0000-0001-9749-8367
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-27304-6
PMID 34853304
PQID 2604981584
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_787da31e7c364e8b9f5fc0478dc6983b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636605
proquest_miscellaneous_2605600581
proquest_journals_2604981584
pubmed_primary_34853304
crossref_citationtrail_10_1038_s41467_021_27304_6
crossref_primary_10_1038_s41467_021_27304_6
springer_journals_10_1038_s41467_021_27304_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Petrova (CR16) 2015; 43
Neuman (CR31) 2005; 17
Sikora, Eoff, Matson, Raney (CR34) 2006; 281
Fairman-Williams, Guenther, Jankowsky (CR8) 2010; 20
Makurath, Whitley, Nguyen, Lohman, Chemla (CR52) 2019; 47
Qi, Pugh, Spies, Chemla (CR35) 2013; 2
Maluf, Fischer, Lohman (CR27) 2003; 325
CR38
Syed, Pandey, Patel, Ha (CR44) 2014; 6
Phillips (CR57) 2005; 26
Dessinges, Lionnet, Xi, Bensimon, Croquette (CR7) 2004; 101
Carter (CR46) 2016; 44
Dumont (CR39) 2006; 439
Jo, Wei (CR62) 2015; 197
Flores, Bidnenko, Michel (CR13) 2004; 5
Jia (CR18) 2011; 411
Tomko, Fischer, Niedziela-Majka, Lohman (CR23) 2007; 26
Chemla, Moffitt, Bustamante (CR51) 2008; 112
Lin (CR36) 2017; 119
Dillingham, Wigley, Webb (CR21) 2000; 39
Matson (CR5) 1986; 261
Sun (CR24) 2008; 27
Nguyen, Ordabayev, Sokoloski, Weiland, Lohman (CR25) 2017; 114
Craig (CR37) 2017; 114
CR47
Lee, Yang (CR17) 2006; 127
Ordabayev, Nguyen, Kozlov, Jia, Lohman (CR30) 2019; 116
Raney, Byrd, Aarattuthodiyil (CR4) 2013; 767
Lucius (CR32) 2002; 324
Roberts, Eargle, Wright, Luthey-Schulten (CR65) 2006; 7
Manosas, Xi, Bensimon, Croquette (CR43) 2010; 38
Epshtein (CR14) 2014; 505
Ordabayev, Nguyen, Niedziela-Majka, Lohman (CR29) 2018; 430
Humphrey, Dalke, Schulten (CR64) 1996; 14
Cheng, Dumont, Tinoco, Bustamante (CR42) 2007; 104
Miao, Feher, McCammon (CR60) 2015; 11
Cheng, Arunajadai, Moffitt, Tinoco, Bustamante (CR41) 2011; 333
Yoo, Aksimentiev (CR59) 2016; 12
Yodh, Schlierf, Ha (CR3) 2010; 43
Bruand, Ehrlich (CR12) 2000; 35
Kerssemakers (CR50) 2006; 442
CR54
Singleton, Dillingham, Wigley (CR1) 2007; 76
Fischer, Maluf, Lohman (CR22) 2004; 344
Myong, Bruno, Pyle, Ha (CR40) 2007; 317
Wang, Friesner, Berne (CR61) 2011; 115
Yamaguchi, Dao, Modrich (CR9) 1998; 273
Mechanic, Frankel, Matson (CR10) 2000; 275
Moffitt (CR53) 2009; 457
Lohman, Tomko, Wu (CR2) 2008; 9
Runyon, Wong, Lohman (CR48) 1993; 32
Husain, Van Houten, Thomas, Abdel-Monem, Sancar (CR11) 1985; 82
Comstock (CR28) 2015; 348
Lohman, Fazio (CR45) 2018; 40
Whitley, Comstock, Chemla (CR49) 2017; 1486
Best (CR58) 2012; 8
Veaute (CR15) 2005; 24
Ali, Lohman (CR6) 1997; 275
Eoff, Raney (CR33) 2006; 13
Lee, Balci, Jia, Lohman, Ha (CR26) 2013; 4
Brendza (CR55) 2005; 102
Onufriev, Bashford, Case (CR63) 2004; 55
Landry, McCall, Qi, Chemla (CR56) 2009; 97
Velankar, Soultanas, Dillingham, Subramanya, Wigley (CR19) 1999; 97
Tomko, Fischer, Lohman (CR20) 2012; 418
ME Fairman-Williams (27304_CR8) 2010; 20
MP Landry (27304_CR56) 2009; 97
LE Mechanic (27304_CR10) 2000; 275
27304_CR38
JC Phillips (27304_CR57) 2005; 26
X Veaute (27304_CR15) 2005; 24
YR Chemla (27304_CR51) 2008; 112
RB Best (27304_CR58) 2012; 8
YA Ordabayev (27304_CR29) 2018; 430
JM Craig (27304_CR37) 2017; 114
MA Makurath (27304_CR52) 2019; 47
V Petrova (27304_CR16) 2015; 43
27304_CR47
W Cheng (27304_CR41) 2011; 333
W Humphrey (27304_CR64) 1996; 14
W Cheng (27304_CR42) 2007; 104
H Jia (27304_CR18) 2011; 411
MS Dillingham (27304_CR21) 2000; 39
C Bruand (27304_CR12) 2000; 35
M Manosas (27304_CR43) 2010; 38
S Myong (27304_CR40) 2007; 317
MJ Flores (27304_CR13) 2004; 5
EJ Tomko (27304_CR20) 2012; 418
MR Singleton (27304_CR1) 2007; 76
SS Velankar (27304_CR19) 1999; 97
NK Maluf (27304_CR27) 2003; 325
MN Dessinges (27304_CR7) 2004; 101
E Roberts (27304_CR65) 2006; 7
RL Eoff (27304_CR33) 2006; 13
B Sikora (27304_CR34) 2006; 281
YA Ordabayev (27304_CR30) 2019; 116
KS Lee (27304_CR26) 2013; 4
KC Neuman (27304_CR31) 2005; 17
SW Matson (27304_CR5) 1986; 261
JA Ali (27304_CR6) 1997; 275
B Sun (27304_CR24) 2008; 27
AL Lucius (27304_CR32) 2002; 324
B Nguyen (27304_CR25) 2017; 114
MJ Comstock (27304_CR28) 2015; 348
KD Whitley (27304_CR49) 2017; 1486
V Epshtein (27304_CR14) 2014; 505
JY Lee (27304_CR17) 2006; 127
GT Runyon (27304_CR48) 1993; 32
S Syed (27304_CR44) 2014; 6
J Yoo (27304_CR59) 2016; 12
Z Qi (27304_CR35) 2013; 2
TM Lohman (27304_CR45) 2018; 40
TM Lohman (27304_CR2) 2008; 9
S Dumont (27304_CR39) 2006; 439
JR Moffitt (27304_CR53) 2009; 457
EJ Tomko (27304_CR23) 2007; 26
JG Yodh (27304_CR3) 2010; 43
CJ Fischer (27304_CR22) 2004; 344
JW Kerssemakers (27304_CR50) 2006; 442
W Lin (27304_CR36) 2017; 119
L Wang (27304_CR61) 2011; 115
27304_CR54
KM Brendza (27304_CR55) 2005; 102
SJ Jo (27304_CR62) 2015; 197
Y Miao (27304_CR60) 2015; 11
KD Raney (27304_CR4) 2013; 767
AR Carter (27304_CR46) 2016; 44
I Husain (27304_CR11) 1985; 82
M Yamaguchi (27304_CR9) 1998; 273
A Onufriev (27304_CR63) 2004; 55
References_xml – volume: 4
  year: 2013
  ident: CR26
  article-title: Direct imaging of single UvrD helicase dynamics on long single-stranded DNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2882
– volume: 317
  start-page: 513
  year: 2007
  end-page: 516
  ident: CR40
  article-title: Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase
  publication-title: Science
  doi: 10.1126/science.1144130
– volume: 32
  start-page: 602
  year: 1993
  end-page: 612
  ident: CR48
  article-title: Overexpression, purification, DNA binding, and dimerization of the Escherichia coli uvrD gene product (helicase II)
  publication-title: Biochemistry
  doi: 10.1021/bi00053a028
– volume: 325
  start-page: 913
  year: 2003
  end-page: 935
  ident: CR27
  article-title: A dimer of Escherichia coli UvrD is the active form of the helicase in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 35
  start-page: 204
  year: 2000
  end-page: 210
  ident: CR12
  article-title: UvrD-dependent replication of rolling-circle plasmids in Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01700.x
– volume: 348
  start-page: 352
  year: 2015
  end-page: 354
  ident: CR28
  article-title: Direct observation of structure-function relationship in a nucleic acid-processing enzyme
  publication-title: Science
  doi: 10.1126/science.aaa0130
– volume: 119
  start-page: 138102
  year: 2017
  ident: CR36
  article-title: Helicase Stepping Investigated with One-Nucleotide Resolution Fluorescence Resonance Energy Transfer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.138102
– volume: 20
  start-page: 313
  year: 2010
  end-page: 324
  ident: CR8
  article-title: SF1 and SF2 helicases: family matters
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.03.011
– volume: 39
  start-page: 205
  year: 2000
  end-page: 212
  ident: CR21
  article-title: Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed
  publication-title: Biochemistry
  doi: 10.1021/bi992105o
– volume: 8
  start-page: 3257
  year: 2012
  end-page: 3273
  ident: CR58
  article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300400x
– volume: 115
  start-page: 9431
  year: 2011
  end-page: 9438
  ident: CR61
  article-title: Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp204407d
– ident: CR54
– volume: 114
  start-page: 12178
  year: 2017
  end-page: 12183
  ident: CR25
  article-title: Large domain movements upon UvrD dimerization and helicase activation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1712882114
– volume: 275
  start-page: 377
  year: 1997
  end-page: 380
  ident: CR6
  article-title: Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase
  publication-title: Science
  doi: 10.1126/science.275.5298.377
– volume: 43
  start-page: 4133
  year: 2015
  end-page: 4149
  ident: CR16
  article-title: Active displacement of RecA filaments by UvrD translocase activity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv186
– volume: 439
  start-page: 105
  year: 2006
  end-page: 108
  ident: CR39
  article-title: RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP
  publication-title: Nature
  doi: 10.1038/nature04331
– volume: 76
  start-page: 23
  year: 2007
  end-page: 50
  ident: CR1
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 261
  start-page: 10169
  year: 1986
  end-page: 10175
  ident: CR5
  article-title: Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3′ to 5′ direction
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)67506-4
– volume: 281
  start-page: 36110
  year: 2006
  end-page: 36116
  ident: CR34
  article-title: DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604412200
– volume: 273
  start-page: 9197
  year: 1998
  end-page: 9201
  ident: CR9
  article-title: MutS and MutL activate DNA helicase II in a mismatch-dependent manner
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.15.9197
– volume: 411
  start-page: 633
  year: 2011
  end-page: 648
  ident: CR18
  article-title: Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.06.019
– volume: 40
  start-page: e1800009
  year: 2018
  ident: CR45
  article-title: How Does a Helicase Unwind DNA? Insights from RecBCD Helicase
  publication-title: Bioessays
  doi: 10.1002/bies.201800009
– volume: 2
  start-page: e00334
  year: 2013
  ident: CR35
  article-title: Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
  publication-title: Elife
  doi: 10.7554/eLife.00334
– volume: 197
  start-page: 304
  year: 2015
  end-page: 311
  ident: CR62
  article-title: A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.08.030
– volume: 13
  start-page: 242
  year: 2006
  end-page: 249
  ident: CR33
  article-title: Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1055
– volume: 6
  start-page: 1037
  year: 2014
  end-page: 1045
  ident: CR44
  article-title: Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.022
– volume: 102
  start-page: 10076
  year: 2005
  end-page: 10081
  ident: CR55
  article-title: Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502886102
– volume: 27
  start-page: 3279
  year: 2008
  end-page: 3287
  ident: CR24
  article-title: Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.240
– volume: 97
  start-page: 2128
  year: 2009
  end-page: 2136
  ident: CR56
  article-title: Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.07.048
– volume: 43
  start-page: 185
  year: 2010
  end-page: 217
  ident: CR3
  article-title: Insight into helicase mechanism and function revealed through single-molecule approaches
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583510000107
– volume: 430
  start-page: 4260
  year: 2018
  end-page: 4274
  ident: CR29
  article-title: Regulation of UvrD Helicase Activity by MutL
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.08.022
– volume: 127
  start-page: 1349
  year: 2006
  end-page: 1360
  ident: CR17
  article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.049
– volume: 324
  start-page: 409
  year: 2002
  end-page: 428
  ident: CR32
  article-title: DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01067-7
– volume: 114
  start-page: 11932
  year: 2017
  end-page: 11937
  ident: CR37
  article-title: Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711282114
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR64
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph
  doi: 10.1016/0263-7855(96)00018-5
– volume: 97
  start-page: 75
  year: 1999
  end-page: 84
  ident: CR19
  article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 38
  start-page: 5518
  year: 2010
  end-page: 5526
  ident: CR43
  article-title: Active and passive mechanisms of helicases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq273
– ident: CR47
– volume: 1486
  start-page: 183
  year: 2017
  end-page: 256
  ident: CR49
  article-title: High-resolution “fleezers”: dual-trap optical tweezers combined with single-molecule fluorescence detection
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6421-5_8
– volume: 11
  start-page: 3584
  year: 2015
  end-page: 3595
  ident: CR60
  article-title: Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00436
– volume: 5
  start-page: 983
  year: 2004
  end-page: 988
  ident: CR13
  article-title: The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400262
– volume: 44
  start-page: 5849
  year: 2016
  end-page: 5860
  ident: CR46
  article-title: Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw445
– volume: 457
  start-page: 446
  year: 2009
  end-page: 450
  ident: CR53
  article-title: Intersubunit coordination in a homomeric ring ATPase
  publication-title: Nature
  doi: 10.1038/nature07637
– volume: 101
  start-page: 6439
  year: 2004
  end-page: 6444
  ident: CR7
  article-title: Single-molecule assay reveals strand switching and enhanced processivity of UvrD
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0306713101
– volume: 116
  start-page: 16320
  year: 2019
  end-page: 16325
  ident: CR30
  article-title: UvrD helicase activation by MutL involves rotation of its 2B subdomain
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1905513116
– volume: 418
  start-page: 32
  year: 2012
  end-page: 46
  ident: CR20
  article-title: Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.02.013
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: CR57
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 442
  start-page: 709
  year: 2006
  end-page: 712
  ident: CR50
  article-title: Assembly dynamics of microtubules at molecular resolution
  publication-title: Nature
  doi: 10.1038/nature04928
– volume: 7
  year: 2006
  ident: CR65
  article-title: MultiSeq: unifying sequence and structure data for evolutionary analysis
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-382
– volume: 82
  start-page: 6774
  year: 1985
  end-page: 6778
  ident: CR11
  article-title: Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.20.6774
– volume: 26
  start-page: 335
  year: 2007
  end-page: 347
  ident: CR23
  article-title: A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.03.024
– volume: 767
  start-page: 17
  year: 2013
  end-page: 46
  ident: CR4
  article-title: Structure and mechanisms of SF1 DNA helicases
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-5037-5_2
– volume: 9
  start-page: 391
  year: 2008
  end-page: 401
  ident: CR2
  article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2394
– volume: 333
  start-page: 1746
  year: 2011
  end-page: 1749
  ident: CR41
  article-title: Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase
  publication-title: Science
  doi: 10.1126/science.1206023
– ident: CR38
– volume: 104
  start-page: 13954
  year: 2007
  end-page: 13959
  ident: CR42
  article-title: NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0702315104
– volume: 17
  start-page: S3811
  year: 2005
  end-page: S3820
  ident: CR31
  article-title: Statistical determination of the step size of molecular motors
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/17/47/012
– volume: 24
  start-page: 180
  year: 2005
  end-page: 189
  ident: CR15
  article-title: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600485
– volume: 275
  start-page: 38337
  year: 2000
  end-page: 38346
  ident: CR10
  article-title: Escherichia coli MutL loads DNA helicase II onto DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006268200
– volume: 344
  start-page: 1287
  year: 2004
  end-page: 1309
  ident: CR22
  article-title: Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.10.005
– volume: 112
  start-page: 6025
  year: 2008
  end-page: 6044
  ident: CR51
  article-title: Exact solutions for kinetic models of macromolecular dynamics
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076153r
– volume: 505
  start-page: 372
  year: 2014
  end-page: 377
  ident: CR14
  article-title: UvrD facilitates DNA repair by pulling RNA polymerase backwards
  publication-title: Nature
  doi: 10.1038/nature12928
– volume: 12
  start-page: 430
  year: 2016
  end-page: 443
  ident: CR59
  article-title: Improved parameterization of amine-carboxylate and amine-phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00967
– volume: 55
  start-page: 383
  year: 2004
  end-page: 394
  ident: CR63
  article-title: Exploring protein native states and large-scale conformational changes with a modified generalized born model
  publication-title: Proteins
  doi: 10.1002/prot.20033
– volume: 47
  start-page: 2523
  year: 2019
  end-page: 2532
  ident: CR52
  article-title: Regulation of Rep helicase unwinding by an auto-inhibitory subdomain
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz023
– volume: 275
  start-page: 38337
  year: 2000
  ident: 27304_CR10
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006268200
– volume: 8
  start-page: 3257
  year: 2012
  ident: 27304_CR58
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300400x
– volume: 505
  start-page: 372
  year: 2014
  ident: 27304_CR14
  publication-title: Nature
  doi: 10.1038/nature12928
– volume: 127
  start-page: 1349
  year: 2006
  ident: 27304_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.049
– volume: 26
  start-page: 335
  year: 2007
  ident: 27304_CR23
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.03.024
– volume: 13
  start-page: 242
  year: 2006
  ident: 27304_CR33
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1055
– volume: 102
  start-page: 10076
  year: 2005
  ident: 27304_CR55
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502886102
– volume: 17
  start-page: S3811
  year: 2005
  ident: 27304_CR31
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/17/47/012
– volume: 1486
  start-page: 183
  year: 2017
  ident: 27304_CR49
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6421-5_8
– volume: 55
  start-page: 383
  year: 2004
  ident: 27304_CR63
  publication-title: Proteins
  doi: 10.1002/prot.20033
– volume: 9
  start-page: 391
  year: 2008
  ident: 27304_CR2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2394
– volume: 114
  start-page: 11932
  year: 2017
  ident: 27304_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711282114
– volume: 32
  start-page: 602
  year: 1993
  ident: 27304_CR48
  publication-title: Biochemistry
  doi: 10.1021/bi00053a028
– volume: 197
  start-page: 304
  year: 2015
  ident: 27304_CR62
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.08.030
– volume: 317
  start-page: 513
  year: 2007
  ident: 27304_CR40
  publication-title: Science
  doi: 10.1126/science.1144130
– volume: 439
  start-page: 105
  year: 2006
  ident: 27304_CR39
  publication-title: Nature
  doi: 10.1038/nature04331
– volume: 101
  start-page: 6439
  year: 2004
  ident: 27304_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0306713101
– volume: 82
  start-page: 6774
  year: 1985
  ident: 27304_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.82.20.6774
– volume: 119
  start-page: 138102
  year: 2017
  ident: 27304_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.138102
– volume: 418
  start-page: 32
  year: 2012
  ident: 27304_CR20
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.02.013
– volume: 40
  start-page: e1800009
  year: 2018
  ident: 27304_CR45
  publication-title: Bioessays
  doi: 10.1002/bies.201800009
– volume: 333
  start-page: 1746
  year: 2011
  ident: 27304_CR41
  publication-title: Science
  doi: 10.1126/science.1206023
– volume: 47
  start-page: 2523
  year: 2019
  ident: 27304_CR52
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz023
– volume: 97
  start-page: 2128
  year: 2009
  ident: 27304_CR56
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.07.048
– volume: 24
  start-page: 180
  year: 2005
  ident: 27304_CR15
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600485
– volume: 442
  start-page: 709
  year: 2006
  ident: 27304_CR50
  publication-title: Nature
  doi: 10.1038/nature04928
– ident: 27304_CR47
– ident: 27304_CR54
  doi: 10.7554/eLife.34186
– volume: 97
  start-page: 75
  year: 1999
  ident: 27304_CR19
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 43
  start-page: 185
  year: 2010
  ident: 27304_CR3
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583510000107
– volume: 26
  start-page: 1781
  year: 2005
  ident: 27304_CR57
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 14
  start-page: 33
  year: 1996
  ident: 27304_CR64
  publication-title: J. Mol. Graph
  doi: 10.1016/0263-7855(96)00018-5
– volume: 35
  start-page: 204
  year: 2000
  ident: 27304_CR12
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01700.x
– volume: 20
  start-page: 313
  year: 2010
  ident: 27304_CR8
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.03.011
– volume: 344
  start-page: 1287
  year: 2004
  ident: 27304_CR22
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.10.005
– volume: 4
  year: 2013
  ident: 27304_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2882
– volume: 324
  start-page: 409
  year: 2002
  ident: 27304_CR32
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01067-7
– volume: 112
  start-page: 6025
  year: 2008
  ident: 27304_CR51
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076153r
– volume: 104
  start-page: 13954
  year: 2007
  ident: 27304_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0702315104
– volume: 44
  start-page: 5849
  year: 2016
  ident: 27304_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw445
– volume: 261
  start-page: 10169
  year: 1986
  ident: 27304_CR5
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)67506-4
– volume: 5
  start-page: 983
  year: 2004
  ident: 27304_CR13
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400262
– volume: 430
  start-page: 4260
  year: 2018
  ident: 27304_CR29
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.08.022
– volume: 11
  start-page: 3584
  year: 2015
  ident: 27304_CR60
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00436
– volume: 27
  start-page: 3279
  year: 2008
  ident: 27304_CR24
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.240
– volume: 76
  start-page: 23
  year: 2007
  ident: 27304_CR1
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 767
  start-page: 17
  year: 2013
  ident: 27304_CR4
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-5037-5_2
– volume: 325
  start-page: 913
  year: 2003
  ident: 27304_CR27
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 39
  start-page: 205
  year: 2000
  ident: 27304_CR21
  publication-title: Biochemistry
  doi: 10.1021/bi992105o
– volume: 12
  start-page: 430
  year: 2016
  ident: 27304_CR59
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00967
– volume: 7
  year: 2006
  ident: 27304_CR65
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-7-382
– volume: 275
  start-page: 377
  year: 1997
  ident: 27304_CR6
  publication-title: Science
  doi: 10.1126/science.275.5298.377
– volume: 6
  start-page: 1037
  year: 2014
  ident: 27304_CR44
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.022
– volume: 2
  start-page: e00334
  year: 2013
  ident: 27304_CR35
  publication-title: Elife
  doi: 10.7554/eLife.00334
– volume: 115
  start-page: 9431
  year: 2011
  ident: 27304_CR61
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp204407d
– volume: 348
  start-page: 352
  year: 2015
  ident: 27304_CR28
  publication-title: Science
  doi: 10.1126/science.aaa0130
– volume: 114
  start-page: 12178
  year: 2017
  ident: 27304_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1712882114
– volume: 273
  start-page: 9197
  year: 1998
  ident: 27304_CR9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.15.9197
– volume: 411
  start-page: 633
  year: 2011
  ident: 27304_CR18
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.06.019
– volume: 457
  start-page: 446
  year: 2009
  ident: 27304_CR53
  publication-title: Nature
  doi: 10.1038/nature07637
– volume: 281
  start-page: 36110
  year: 2006
  ident: 27304_CR34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604412200
– volume: 43
  start-page: 4133
  year: 2015
  ident: 27304_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv186
– ident: 27304_CR38
  doi: 10.7554/eLife.45909
– volume: 38
  start-page: 5518
  year: 2010
  ident: 27304_CR43
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq273
– volume: 116
  start-page: 16320
  year: 2019
  ident: 27304_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1905513116
SSID ssj0000391844
Score 2.4466763
Snippet UvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex....
UvrD is a model helicase from the non-hexameric Superfamily 1. Here, the authors use optical tweezers to measure directly the stepwise translocation of UvrD...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7015
SubjectTerms 631/1647/2204/2112
631/45/612/1229
631/535/1267
631/57/2265
631/57/2266
Biophysics
Catalysis
Conserved sequence
Deoxyribonucleic acid
DNA
DNA helicase
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA, Single-Stranded
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Estimates
Humanities and Social Sciences
Hydrolysis
Kinetics
Molecular dynamics
Molecular Dynamics Simulation
multidisciplinary
Nucleotide sequence
Optical Tweezers
Science
Science (multidisciplinary)
Simulation
Single-stranded DNA
Strands
Translocation
Unwinding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLfQJCReEOOzMFCQeINqaZNLk8fxMU0g7olJe4uc1NGdxLpJtwn2389Je8eOzxde66S1HDu2a-cXgFe2i7kZQbKloaw1mlDb2GFNIUkdKDVo8uHkz3NzdKw_nsxOblz1lXvCRnjgUXD7rFA9qoa6qIwmG1yapZghZfponFUh777s824kU2UPVo5TFz2dkpHK7q902RNyRwJ7bKlrs-WJCmD_76LMX5slf6qYFkd0eA_uThGkOBg534VbNNyH2-OdklcPYP6J40YmCRx6MaLDZmQNcUr5jO9ydSo4TBXv5wficvi2LGdaRLgSKIazoV7QdywlHLGg_DdvRQ_h-PDDl3dH9XRpQh05F7moU6c0RRmaFJ3p2Pn3SXbOzgLbMid7oTW9cUiInZMtNZi0ianFgDqlkNsMH8EOf5CegOBkzBImFxQxVSWWveoJ-TNtjzK2FTRrAfo4IYrniy2--lLZVtaPQvcsdF-E7k0Frzdzzkc8jb-OfpvXZTMyY2GXB6whftIQ_y8NqWBvvap-MtCV5zROO9tw-FXByw2ZTSvXS3Cgs8syJseDM9tU8HhUgg0nStvcl8uzuy312GJ1mzIsFwW-2xpl-M0VvFkr0g-2_iyKp_9DFM_gTpstoLTj7MEOKyE956DqIrwo9nMNGnAdyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbxQhECdaY-JL47er1WDim5KyCwfsk6kfTaPxnmxybwRY8C6xe9VtU_vfO8Ny25wffV1glx1mhoGZ-Q0hr4wOGIzAQdIcZ9Ipz0zQjkWfuPQx1U5hcvKXuTo6lp8Ws0W5cBtKWOVGJ2ZF3a0D3pHvg90tW1PDfvn29AfDqlHoXS0lNG6SWwhdhiFdeqGnOxZEPzdSllwZLsz-ILNmwLgE2Le5ZGprP8qw_f-yNf8OmfzDb5q3o8O7ZLfYkfRgXPh75Ebs75PbY2XJywdk_hmsR2iiru_oiBGL-Br0JGKm72o4oWCs0g_zA3reX6xyZgv1l9TRft2zZfzlsiOHLiPe6Q3xITk-_Pj1_RErpRNYgBPJGUtayBi4r1NolQYToEtct2bmQaLhyOcb1anWRed0y5tYuyRVSI3zTqbkMdjwEdmBD8YnhMKRzESXWi8itIrk2yS66OAzTed4aCpSbwhoQ8EVx_IW3232bwtjR6JbILrNRLeqIq-nMacjqsa1vd_hukw9ERE7P1j__GaLgFlQPJ0TddRBKBkNzHKWAkIPdUG1RviK7G1W1RYxHewVU1Xk5dQMAoZeE9fH9Xnug1bhzNQVeTwywTQTIQ1G58JovcUeW1PdbulXywzibZRQ8OaKvNkw0tW0_k-Kp9f_xTNyp0HezuE2e2QH2Cs-B6PpzL_IkvEbs3QVCA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGEBIviG_KBgoSb1DRNrk0fRw3pgnEPTFpb1GSOtxJrIe4TbD_fnb6MR0MJF4bp7EcO3YS-xeA16YOnIxQkKW5IldO-9yE2uXoY6E8xtJpLk7-vNDHJ-rj6ex0B6qxFiYl7SdIy7RMj9lh7zYqmTQnFJDDLVSub8Fthm5nrZ7r-XSuwojnRqmhPqaQ5oauWz4oQfXfFF_-mSb5211pckFH9-HeEDuKg57bB7CD3UO4078mefkIFp8oYqQm4bpW9LiwjKkhzpCre1ebM0EBqjhcHIiL7ucqVbMIfymc6NZdvsRfLl3eiCXyOd4GH8PJ0Ycv8-N8eC4hD7QLOc9jLRWGwpcxNLomt9_Gom7MzJMV0zbPV7rVjUPn6qaosHRR6RAr552K0XOC4RPYpQHxGQjahhl0sfESqVVG30TZoqNhqtYVocqgHAVow4Alzk9afLPpTlsa2wvdktBtErrVGbyZ-nzvkTT-Sf2e52WiZBTs9GH946sdtMLSYtM6WWIdpFZoiMtZDAw31AbdGOkz2B9n1Q6mubG0gVONKSnwyuDV1ExGxTclrsP1RaLhSHBmygye9kowcSKV4Yxc6l1vqccWq9st3WqZgLuNlpr-nMHbUZGu2fq7KJ7_H_ke3K1Y11PKzT7skrrhCwqczv3LZClX5o8SvA
  priority: 102
  providerName: Springer Nature
Title Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase
URI https://link.springer.com/article/10.1038/s41467-021-27304-6
https://www.ncbi.nlm.nih.gov/pubmed/34853304
https://www.proquest.com/docview/2604981584
https://www.proquest.com/docview/2605600581
https://pubmed.ncbi.nlm.nih.gov/PMC8636605
https://doaj.org/article/787da31e7c364e8b9f5fc0478dc6983b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9oPG5wFYZiTcIJLFrOw8IdWVlKlqFgEp9i2zHppW2dKybWP97zk5SVOh4SaTYjk-XO_t38X0AvJLCeGeEBDVNJTFTXMfSCBVb7RKmrUsV98HJZyN-OmbDSXeyBW25o4aBi42mna8nNb46f3v7c_kBFf59HTIu3y1YUHfvbICbccJivg27uDMJr6hnDdwPKzPN0aBhTezM5qF7cJ8y6X0u2dpWFTL6b4Kh_3pT_nWkGnaqwT48aCAm6dUy8RC2bPUI7tVFJ5ePYfQZgSU2EVWVpE4f61NvkAvrg4BniwuCOJZ8HPXITfVrFoJeiF4SRap5FU_trQpnPGRq_e--hX0C48HJ9_5p3FRViA0aK9exE5RZk-jUmZwLRAelS0QuuxqVHa1BnfGS58oqJfIks6lyjBuXKa2Yc9r7IT6FHZzQHgBBa01a5XJNLbZSp3NHS6twmqxUickiSFsGFqZJOe4rX5wX4eibyqLmf4H8LwL_Cx7B69WYyzrhxn97H_vvsurpk2WHB_OrH0WjewWuSaWiqRWGcmYlUtl1xmclKg3PJdURHLZftWgFsEA7j-UyRXwWwctVM-qeP1BRlZ3fhD4eMHZlGsGzWghWlLRCFIFYE481Utdbqtk05PeWnHJ8cwRvWkH6Q9bdrHh-JwkvYC_zEh6ccA5hByXLHiGUutYd2BYTgVc5-NSB3V5v-G2I9-OT0Zev-LTP-53wk6IT9Og3Bjwetw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImsddxDggVSrVl2z21Um_Gdmx2JZotbKuyf4rfyIyTbLU8eut17STe8TcPe14Ar1TpKBghQ04zWSqMtKlypUm9DZmwPuRGUnLy_lgOD8Xno8HRGvzqc2EorLKXiVFQ1zNHd-SbaHeLSuWoL9-ffE-paxR5V_sWGi0sRn5xjke2-bvdbdzf10Wx8-ng4zDtugqkDo310zSUXHiX2Ty4SpaoHeuQlZUaWAQ7noZsIWtZGW9MWWWFz00Q0oXCWCNCsBSHh--9BtdR8WbEUeVRubzToWrrSoguNyfjanMuoiSiOAi0EzKRyhX9F9sE_Mu2_TtE8w8_bVR_O3fgdme3sq0WaHdhzTf34EbbyXJxH8YjtFZxiJmmZm1NWqrnwY49ZRZP58cMjWO2Pd5iZ835NGbSMLtghjWzJp34nyY6jtjE0x3i3D-Awysh6kNYxw_6x8DwCKi8CZXlHkd5sFXgtTf4maI2mSsSyHsCatfVMad2Gt909KdzpVuiayS6jkTXMoE3y2dO2ioel87-QPuynEkVuOMPsx9fdcfQGgVdbXjuS8el8ApXOQiOSh3VTlaK2wQ2-l3VnViY6wsQJ_ByOYwMTV4a0_jZWZxDVuhA5Qk8akGwXAkXiqKB8elyBR4rS10daaaTWDRcSS7xzQm87YF0saz_k-LJ5f_iBdwcHuzv6b3d8egp3CoI5zHUZwPWEWr-GRpsp_Z55BIGX66aLX8DGJhSTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNYq_tHBAqLKuWhRUHKu3N2I7NrkSzhbQq-9f4dYydZKvl0VuvsZ0442_GY88L4JkUNjgjZMhpOkuZ5iaVVujUGZ8x43yueQhO_jjlewfs_Ww424JffSxMcKvsZWIU1NXShjvyAerdrJQ57pcD37lFfBqNXx99T0MFqWBp7ctptBCZuNUpHt-aV_sjXOvnRTF-9_ntXtpVGEgtKu7HqReUOZuZ3NuSC9wpK5-JUg4NAh9PRqbgFS-101qUWeFy7Rm3vtBGM-9N8MnD916Cy4IO88BjYibW9zsh87pkrIvTyagcNCxKpeATgTpDxlK-sRfGkgH_0nP_dtf8w2Ybt8LxDbje6bBktwXdTdhy9S240la1XN2G6QQ1V2wiuq5Im5825PYghy5EGS-aQ4KKMhlNd8lJfbqIUTXErIgm9bJO5-6njkYkMnfhPrFxd-DgQoh6F7bxg-4-EDwOSqd9aajDVupN6WnlNH6mqHRmiwTynoDKdjnNQ2mNbyra1qlULdEVEl1FoiuewIv1mKM2o8e5vd-EdVn3DNm444Plj6-qY26FQq_SNHfCUs6cxFkOvQ1pjyrLS0lNAjv9qqpORDTqDNAJPF03I3MHi42u3fIk9gka6VDmCdxrQbCeCWUyeAbjaLEBj42pbrbUi3lMIC455fjmBF72QDqb1v9J8eD8v3gCV5Eh1Yf96eQhXCsCzKPXzw5sI9LcI9Tdjs3jyCQEvlw0V_4G679Wgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+and+structural+mechanism+for+DNA+unwinding+by+a+non-hexameric+helicase&rft.jtitle=Nature+communications&rft.au=Carney%2C+Sean+P&rft.au=Ma%2C+Wen&rft.au=Whitley%2C+Kevin+D&rft.au=Jia%2C+Haifeng&rft.date=2021-12-01&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=7015&rft_id=info:doi/10.1038%2Fs41467-021-27304-6&rft_id=info%3Apmid%2F34853304&rft.externalDocID=34853304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon