Observation of edge solitons in photonic graphene

Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1902 - 7
Main Authors Zhang, Zhaoyang, Wang, Rong, Zhang, Yiqi, Kartashov, Yaroslav V., Li, Feng, Zhong, Hua, Guan, Hua, Gao, Kelin, Li, Fuli, Zhang, Yanpeng, Xiao, Min
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.04.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform. Edge states are excitations existing at the boundary of truncated periodic materials with specific spectral degeneracies, and their properties are enriched when materials possess a nonlinear response. Here, the authors provide experimental evidence of edge soliton formation in a nonlinear photonic graphene lattice induced in an atomic vapour cell.
AbstractList Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform.
Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform. Edge states are excitations existing at the boundary of truncated periodic materials with specific spectral degeneracies, and their properties are enriched when materials possess a nonlinear response. Here, the authors provide experimental evidence of edge soliton formation in a nonlinear photonic graphene lattice induced in an atomic vapour cell.
Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform.Edge states are excitations existing at the boundary of truncated periodic materials with specific spectral degeneracies, and their properties are enriched when materials possess a nonlinear response. Here, the authors provide experimental evidence of edge soliton formation in a nonlinear photonic graphene lattice induced in an atomic vapour cell.
Edge states are excitations existing at the boundary of truncated periodic materials with specific spectral degeneracies, and their properties are enriched when materials possess a nonlinear response. Here, the authors provide experimental evidence of edge soliton formation in a nonlinear photonic graphene lattice induced in an atomic vapour cell.
Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform.Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and light propagation control in acoustics and photonics. Previous experiments on edge states in photonics were carried out mostly in linear regimes, but the current belief is that nonlinearity introduces more striking features into physics of edge states, leading to the formation of edge solitons, optical isolation, making possible stable lasing in such states, to name a few. Here we report the observation of edge solitons at the zigzag edge of a reconfigurable photonic graphene lattice created via the effect of electromagnetically induced transparency in an atomic vapor cell with controllable nonlinearity. To obtain edge solitons, Raman gain is introduced to compensate strong absorption experienced by the edge state during propagation. Our observations may open the way for future experimental exploration of topological photonics on this nonlinear, reconfigurable platform.
ArticleNumber 1902
Author Kartashov, Yaroslav V.
Gao, Kelin
Guan, Hua
Zhang, Yanpeng
Zhang, Zhaoyang
Wang, Rong
Zhang, Yiqi
Li, Feng
Zhong, Hua
Li, Fuli
Xiao, Min
Author_xml – sequence: 1
  givenname: Zhaoyang
  orcidid: 0000-0001-9207-0927
  surname: Zhang
  fullname: Zhang, Zhaoyang
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Rong
  surname: Wang
  fullname: Wang, Rong
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Yiqi
  orcidid: 0000-0002-5715-2182
  surname: Zhang
  fullname: Zhang, Yiqi
  email: zhangyiqi@xjtu.edu.cn
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Department of Applied Physics, School of Science, Xi’an Jiaotong University
– sequence: 4
  givenname: Yaroslav V.
  surname: Kartashov
  fullname: Kartashov, Yaroslav V.
  organization: Institute of Spectroscopy, Russian Academy of Sciences
– sequence: 5
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
– sequence: 6
  givenname: Hua
  surname: Zhong
  fullname: Zhong, Hua
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
– sequence: 7
  givenname: Hua
  surname: Guan
  fullname: Guan, Hua
  organization: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
– sequence: 8
  givenname: Kelin
  surname: Gao
  fullname: Gao, Kelin
  organization: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
– sequence: 9
  givenname: Fuli
  surname: Li
  fullname: Li, Fuli
  organization: Department of Applied Physics, School of Science, Xi’an Jiaotong University
– sequence: 10
  givenname: Yanpeng
  orcidid: 0000-0003-3827-8983
  surname: Zhang
  fullname: Zhang, Yanpeng
  email: ypzhang@xjtu.edu.cn
  organization: Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University
– sequence: 11
  givenname: Min
  orcidid: 0000-0002-0718-9518
  surname: Xiao
  fullname: Xiao, Min
  email: mxiao@uark.edu
  organization: Department of Physics, University of Arkansas, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32312996$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWhSdP8gRyCoZde3Go0smxdCiX0IxDIJT0L2R57tXilreQN9N9Xu07aJIfoIA2j9x6PmfeOHfngibEL4J-AY_M5SZCqLrngJVQKq1K_YaeCSyihFnj0pD5h5ymteT6ooZHyLTtBgSC0VqcMbttE8d7OLvgiDAX1IxUpTG4OPhXOF9tVyKXrijHa7Yo8vWfHg50SnT-8Z-zX9293Vz_Lm9sf11dfb8pOcTWXAw49COAACATUkG7bxjYwKMGtJCRptdI4iLqvWiUV2ka0qu95A62teINn7HrR7YNdm210Gxv_mGCdOTRCHI2Ns-smMkMlpKosYk0oedvbfPd5SEpA23Ww1_qyaG137Yb6jvwc7fRM9PmPdyszhntTQw2g9wIfHwRi-L2jNJuNSx1Nk_UUdskI1MixlogZ-uEFdB120edR7VFCQgWaZ9TlU0f_rDxuJgOaBdDFkFKkwXRuPqwpG3STAW72OTBLDkzOgTnkwOhMFS-oj-qvknAhpQz2I8X_tl9h_QVtWMJ7
CitedBy_id crossref_primary_10_1002_adom_202202045
crossref_primary_10_1016_j_chaos_2022_112364
crossref_primary_10_1016_j_rinp_2023_107000
crossref_primary_10_1103_PhysRevA_103_053507
crossref_primary_10_1103_PhysRevLett_130_083801
crossref_primary_10_3390_photonics9060422
crossref_primary_10_1088_1367_2630_abc1f9
crossref_primary_10_1016_j_chaos_2024_115239
crossref_primary_10_1103_PhysRevA_108_043711
crossref_primary_10_1103_PhysRevLett_131_013802
crossref_primary_10_1002_apxr_202400082
crossref_primary_10_1016_j_chaos_2022_112631
crossref_primary_10_1364_OE_457232
crossref_primary_10_1515_nanoph_2021_0385
crossref_primary_10_1038_s42005_021_00719_9
crossref_primary_10_1364_OL_478293
crossref_primary_10_1002_adpr_202300280
crossref_primary_10_3390_nano12183222
crossref_primary_10_1016_j_chaos_2024_115188
crossref_primary_10_1038_s41598_020_72256_4
crossref_primary_10_1364_OL_474808
crossref_primary_10_1364_OE_400618
crossref_primary_10_3390_app10175740
crossref_primary_10_1364_OE_483371
crossref_primary_10_1016_j_chaos_2023_113869
crossref_primary_10_1364_OE_412554
crossref_primary_10_1103_PhysRevResearch_6_043146
crossref_primary_10_1515_nanoph_2023_0443
crossref_primary_10_1103_PhysRevResearch_4_023211
crossref_primary_10_1002_lpor_202100398
crossref_primary_10_1063_1_5142397
crossref_primary_10_1002_advs_202408460
crossref_primary_10_1364_OE_451038
crossref_primary_10_1088_1367_2630_acce5a
crossref_primary_10_3390_photonics11121098
crossref_primary_10_1002_andp_202200288
crossref_primary_10_1016_j_chaos_2025_116268
crossref_primary_10_1016_j_chaos_2025_116302
crossref_primary_10_1016_j_optlastec_2023_110484
crossref_primary_10_1088_1555_6611_acc022
crossref_primary_10_1364_JOSAB_488925
crossref_primary_10_1038_s41467_024_55237_3
crossref_primary_10_1117_1_AP_5_6_066007
crossref_primary_10_1007_s11467_022_1153_6
crossref_primary_10_1364_OE_428311
crossref_primary_10_1016_j_chaos_2022_112010
crossref_primary_10_1007_s10773_020_04535_9
crossref_primary_10_1103_PhysRevResearch_4_L012043
crossref_primary_10_1038_s42005_022_01058_z
crossref_primary_10_1016_j_fmre_2021_08_019
crossref_primary_10_3367_UFNe_2024_08_039740
crossref_primary_10_1088_1361_6455_ac9204
crossref_primary_10_59277_RomRepPhys_2024_76_402
crossref_primary_10_1016_j_ijleo_2021_166948
crossref_primary_10_1103_PhysRevB_104_L020303
crossref_primary_10_1126_sciadv_adp0377
crossref_primary_10_3367_UFNr_2024_08_039740
crossref_primary_10_1364_OE_538371
crossref_primary_10_1016_j_chaos_2022_113010
crossref_primary_10_1364_PRJ_447404
crossref_primary_10_1364_PRJ_534857
crossref_primary_10_1364_OL_462005
crossref_primary_10_1016_j_chaos_2024_114461
crossref_primary_10_1103_PhysRevB_106_195423
crossref_primary_10_1364_OE_418000
crossref_primary_10_1063_5_0096841
crossref_primary_10_1038_s41598_024_79219_z
crossref_primary_10_1016_j_chaos_2024_115831
crossref_primary_10_1364_OE_413350
crossref_primary_10_1515_nanoph_2022_0290
crossref_primary_10_1364_OL_432036
crossref_primary_10_1364_OE_468904
crossref_primary_10_1126_sciadv_abe1398
crossref_primary_10_7498_aps_70_20202147
crossref_primary_10_3390_sym14091780
crossref_primary_10_1364_OE_482116
crossref_primary_10_1364_OL_423666
crossref_primary_10_1002_lpor_202200667
crossref_primary_10_1016_j_infrared_2022_104449
crossref_primary_10_1088_1367_2630_ad4c90
crossref_primary_10_1364_OL_481692
crossref_primary_10_1103_PhysRevB_108_184301
crossref_primary_10_1103_PhysRevA_103_063516
crossref_primary_10_1016_j_cnsns_2021_105911
crossref_primary_10_1007_s11071_021_07193_6
crossref_primary_10_1364_OL_527186
crossref_primary_10_1103_PhysRevB_108_014310
crossref_primary_10_1134_S0021364021100040
crossref_primary_10_1007_s11467_023_1294_2
crossref_primary_10_1063_5_0197212
crossref_primary_10_1364_OE_476336
crossref_primary_10_1016_j_optlastec_2024_111892
crossref_primary_10_1007_s11467_020_0984_2
crossref_primary_10_1364_OL_529646
crossref_primary_10_1364_PRJ_524824
crossref_primary_10_1364_OE_409850
crossref_primary_10_1016_j_cjph_2025_01_011
crossref_primary_10_1103_PhysRevApplied_21_044043
crossref_primary_10_1103_PhysRevB_105_L201111
crossref_primary_10_1103_PhysRevLett_132_263801
crossref_primary_10_1364_OL_434164
crossref_primary_10_1364_OL_438489
crossref_primary_10_1364_OL_461485
crossref_primary_10_1103_PhysRevLett_128_093901
crossref_primary_10_1103_PhysRevLett_129_233901
crossref_primary_10_1038_s41598_020_73825_3
crossref_primary_10_3390_cryst12111507
crossref_primary_10_1016_j_physleta_2023_129135
crossref_primary_10_1103_PhysRevA_107_043504
crossref_primary_10_1007_s11467_021_1149_7
crossref_primary_10_1016_j_ijleo_2023_171500
Cites_doi 10.1103/PhysRevLett.98.173903
10.1103/PhysRevLett.87.073601
10.1126/science.aar4003
10.1016/j.physrep.2008.04.004
10.1103/PhysRevB.93.020502
10.1103/PhysRevLett.74.666
10.1103/PhysRevLett.113.123004
10.1038/nature10871
10.1103/PhysRevLett.117.143901
10.1103/RevModPhys.91.015006
10.1103/PhysRevLett.110.083604
10.1103/PhysRevLett.99.143601
10.1103/PhysRevLett.96.063901
10.1364/OL.35.002895
10.1103/PhysRevA.90.023813
10.1364/OPTICA.3.001228
10.1038/nmat3783
10.1364/OL.30.002466
10.1103/PhysRevLett.117.123601
10.1103/PhysRevLett.122.083902
10.1126/science.aao4551
10.1103/PhysRevLett.111.243905
10.1103/PhysRevLett.120.063902
10.1088/1367-2630/aa7cb5
10.1103/PhysRevLett.121.163901
10.1103/PhysRevLett.119.253904
10.1126/science.aar4005
10.1038/nphoton.2014.248
10.1103/PhysRevLett.98.123903
10.1038/ncomms7272
10.1016/S0079-6638(08)00004-8
10.1364/OL.34.001633
10.1103/PhysRevLett.98.103901
10.1103/PhysRevA.88.013850
10.1103/PhysRevA.94.021801
10.1103/PhysRevLett.96.023903
10.1103/PhysRevLett.122.233905
10.1038/nature01452
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-15635-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ, Directory of open access journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_f52465a337e340bda340d038621bcc18
PMC7171198
32312996
10_1038_s41467_020_15635_9
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-f3fd12101131e1e8e9bb8a81f620a4e3e4a9693f27d5b6463a82b6dd081ba5083
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:33 EDT 2025
Thu Aug 21 14:01:29 EDT 2025
Thu Jul 10 23:25:09 EDT 2025
Wed Aug 13 06:43:38 EDT 2025
Wed Feb 19 02:11:50 EST 2025
Tue Jul 01 04:08:54 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f3fd12101131e1e8e9bb8a81f620a4e3e4a9693f27d5b6463a82b6dd081ba5083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9207-0927
0000-0003-3827-8983
0000-0002-5715-2182
0000-0002-0718-9518
OpenAccessLink https://www.nature.com/articles/s41467-020-15635-9
PMID 32312996
PQID 2392415190
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_f52465a337e340bda340d038621bcc18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7171198
proquest_miscellaneous_2393037433
proquest_journals_2392415190
pubmed_primary_32312996
crossref_citationtrail_10_1038_s41467_020_15635_9
crossref_primary_10_1038_s41467_020_15635_9
springer_journals_10_1038_s41467_020_15635_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-20
PublicationDateYYYYMMDD 2020-04-20
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Szameit (CR34) 2007; 98
Bahari (CR8) 2017; 358
Kartashov, Vysloukh, Torner (CR36) 2009; 52
Kartashov, Skryabin (CR15) 2016; 3
Lu, Joannopoulos, Soljačić (CR2) 2014; 8
Fleischer, Segev, Efremidis, Christodoulides (CR37) 2003; 422
Kartashov, Skryabin (CR11) 2019; 122
Boyer, McCormick, Arimondo, Lett (CR29) 2007; 99
Ablowitz, Curtis, Zhu (CR12) 2013; 88
Xiao, Li, Jin, Gea-Banacloche (CR18) 1995; 74
Lumer, Plotnik, Rechtsman, Segev (CR4) 2013; 111
Suntsov (CR31) 2006; 96
Lederer (CR35) 2008; 463
Bardyn, Karzig, Refael, Liew (CR7) 2016; 93
Wu, Artoni, La Rocca (CR27) 2014; 113
Leykam, Chong (CR3) 2016; 117
Zhang (CR24) 2016; 117
Lumer, Rechtsman, Plotnik, Segev (CR14) 2016; 94
Molina, Kivshar (CR13) 2010; 35
Wang (CR33) 2007; 98
Kartashov, Skryabin (CR17) 2017; 119
Peleg (CR23) 2007; 98
Harari (CR9) 2018; 359
Hang, Huang, Konotop (CR28) 2013; 110
Zhang (CR19) 2019; 122
Plotnik (CR21) 2014; 13
Makris, Suntsov, Christodoulides, Stegeman, Hache (CR32) 2005; 30
Song (CR22) 2015; 6
Ozawa (CR1) 2019; 91
Dobrykh, Yulin, Slobozhanyuk, Poddubny, Kivshar (CR6) 2018; 121
Zhou, Wang, Leykam, Chong (CR5) 2017; 19
Wang, Goorskey, Xiao (CR25) 2001; 87
Michinel, Paz-Alonso, Pérez-García (CR26) 2006; 96
Noh, Huang, Chen, Rechtsman (CR30) 2018; 120
Bandres (CR10) 2018; 359
Ablowitz, Curtis, Ma (CR16) 2014; 90
Tarruell, Greif, Uehlinger, Jotzu, Esslinger (CR20) 2012; 483
Malkova, Hromada, Wang, Bryant, Chen (CR38) 2009; 34
Y Lumer (15635_CR4) 2013; 111
M Xiao (15635_CR18) 1995; 74
O Peleg (15635_CR23) 2007; 98
J Noh (15635_CR30) 2018; 120
G Harari (15635_CR9) 2018; 359
C Hang (15635_CR28) 2013; 110
YV Kartashov (15635_CR11) 2019; 122
L Lu (15635_CR2) 2014; 8
D Leykam (15635_CR3) 2016; 117
MJ Ablowitz (15635_CR12) 2013; 88
Z Zhang (15635_CR24) 2016; 117
MJ Ablowitz (15635_CR16) 2014; 90
DH Song (15635_CR22) 2015; 6
X Zhou (15635_CR5) 2017; 19
Y Lumer (15635_CR14) 2016; 94
L Tarruell (15635_CR20) 2012; 483
N Malkova (15635_CR38) 2009; 34
Y Plotnik (15635_CR21) 2014; 13
JH Wu (15635_CR27) 2014; 113
J Fleischer (15635_CR37) 2003; 422
V Boyer (15635_CR29) 2007; 99
DA Dobrykh (15635_CR6) 2018; 121
C-E Bardyn (15635_CR7) 2016; 93
YV Kartashov (15635_CR17) 2017; 119
MI Molina (15635_CR13) 2010; 35
F Lederer (15635_CR35) 2008; 463
MA Bandres (15635_CR10) 2018; 359
H Wang (15635_CR25) 2001; 87
YV Kartashov (15635_CR36) 2009; 52
T Ozawa (15635_CR1) 2019; 91
YV Kartashov (15635_CR15) 2016; 3
X Wang (15635_CR33) 2007; 98
Z Zhang (15635_CR19) 2019; 122
Suntsov (15635_CR31) 2006; 96
KG Makris (15635_CR32) 2005; 30
A Szameit (15635_CR34) 2007; 98
B Bahari (15635_CR8) 2017; 358
H Michinel (15635_CR26) 2006; 96
References_xml – volume: 98
  start-page: 173903
  year: 2007
  ident: CR34
  article-title: Observation of two-dimensional surface solitons in asymmetric waveguide arrays
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.173903
– volume: 87
  start-page: 073601
  year: 2001
  ident: CR25
  article-title: Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.073601
– volume: 359
  start-page: eaar4003
  year: 2018
  ident: CR9
  article-title: Topological insulator laser: theory
  publication-title: Science
  doi: 10.1126/science.aar4003
– volume: 463
  start-page: 1
  year: 2008
  ident: CR35
  article-title: Discrete solitons in optics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2008.04.004
– volume: 93
  start-page: 020502(R)
  year: 2016
  ident: CR7
  article-title: Chiral Bogoliubov excitations in nonlinear bosonic systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.020502
– volume: 74
  start-page: 666
  year: 1995
  end-page: 669
  ident: CR18
  article-title: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.666
– volume: 113
  start-page: 123004
  year: 2014
  ident: CR27
  article-title: Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.123004
– volume: 483
  start-page: 302
  year: 2012
  end-page: 305
  ident: CR20
  article-title: Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
  publication-title: Nature
  doi: 10.1038/nature10871
– volume: 117
  start-page: 143901
  year: 2016
  ident: CR3
  article-title: Edge solitons in nonlinear-photonic topological insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.143901
– volume: 91
  start-page: 015006
  year: 2019
  ident: CR1
  article-title: Topological photonics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.015006
– volume: 110
  start-page: 083604
  year: 2013
  ident: CR28
  article-title: PT symmetry with a system of three-level atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.083604
– volume: 99
  start-page: 143601
  year: 2007
  ident: CR29
  article-title: Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.143601
– volume: 96
  start-page: 063901
  year: 2006
  ident: CR31
  article-title: Observation of discrete surface solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.063901
– volume: 35
  start-page: 2895
  year: 2010
  end-page: 2897
  ident: CR13
  article-title: Discrete and surface solitons in photonic graphene nanoribbons
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.002895
– volume: 90
  start-page: 023813
  year: 2014
  ident: CR16
  article-title: Linear and nonlinear traveling edge waves in optical honeycomb lattices
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.023813
– volume: 3
  start-page: 1228
  year: 2016
  end-page: 1236
  ident: CR15
  article-title: Modulational instability and solitary waves in polariton topological insulators
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001228
– volume: 13
  start-page: 57
  year: 2014
  end-page: 62
  ident: CR21
  article-title: Observation of unconventional edge states in ‘photonic graphene’
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3783
– volume: 30
  start-page: 2466
  year: 2005
  ident: CR32
  article-title: Discrete surface solitons
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.002466
– volume: 117
  start-page: 123601
  year: 2016
  ident: CR24
  article-title: Observation of parity-time symmetry in optically induced atomic lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.123601
– volume: 122
  start-page: 083902
  year: 2019
  ident: CR11
  article-title: Two-Dimensional topological polariton laser
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.083902
– volume: 358
  start-page: 636
  year: 2017
  end-page: 640
  ident: CR8
  article-title: Nonreciprocal lasing in topological cavities of arbitrary geometries
  publication-title: Science
  doi: 10.1126/science.aao4551
– volume: 111
  start-page: 243905
  year: 2013
  ident: CR4
  article-title: Self-localized states in photonic topological insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.243905
– volume: 120
  start-page: 063902
  year: 2018
  ident: CR30
  article-title: Observation of photonic topological valley Hall edge states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.063902
– volume: 19
  start-page: 095002
  year: 2017
  ident: CR5
  article-title: Optical isolation with nonlinear topological photonics
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa7cb5
– volume: 121
  start-page: 163901
  year: 2018
  ident: CR6
  article-title: Nonlinear control of electromagnetic topological edge states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.163901
– volume: 119
  start-page: 253904
  year: 2017
  ident: CR17
  article-title: Bistable topological insulator with exciton-polaritons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.253904
– volume: 359
  start-page: eaar4005
  year: 2018
  ident: CR10
  article-title: Topological insulator laser: experiment
  publication-title: Science
  doi: 10.1126/science.aar4005
– volume: 8
  start-page: 821
  year: 2014
  end-page: 829
  ident: CR2
  article-title: Topological photonics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.248
– volume: 98
  start-page: 123903
  year: 2007
  ident: CR33
  article-title: Observation of two-dimensional surface solitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.123903
– volume: 6
  year: 2015
  ident: CR22
  article-title: Unveiling pseudospin and angular momentum in photonic graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7272
– volume: 52
  start-page: 63
  year: 2009
  ident: CR36
  article-title: Soliton shape and mobility control in optical lattices
  publication-title: Prog. Opt.
  doi: 10.1016/S0079-6638(08)00004-8
– volume: 34
  start-page: 1633
  year: 2009
  ident: CR38
  article-title: Observation of optical Shockley-like surface states in photonic superlattices
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001633
– volume: 98
  start-page: 103901
  year: 2007
  ident: CR23
  article-title: Conical diffraction and gap solitons in honeycomb photonic lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.103901
– volume: 88
  start-page: 013850
  year: 2013
  ident: CR12
  article-title: Localized nonlinear edge states in honeycomb lattices
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.013850
– volume: 94
  start-page: 021801(R)
  year: 2016
  ident: CR14
  article-title: Instability of bosonic topological edge states in the presence of interactions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.021801
– volume: 96
  start-page: 023903
  year: 2006
  ident: CR26
  article-title: Turning light into a liquid via atomic coherence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.023903
– volume: 122
  start-page: 233905
  year: 2019
  ident: CR19
  article-title: Particle-like behavior of topological defects in linear wave packets in photonic graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.233905
– volume: 422
  start-page: 147
  year: 2003
  ident: CR37
  article-title: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices
  publication-title: Nature
  doi: 10.1038/nature01452
– volume: 13
  start-page: 57
  year: 2014
  ident: 15635_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3783
– volume: 19
  start-page: 095002
  year: 2017
  ident: 15635_CR5
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa7cb5
– volume: 8
  start-page: 821
  year: 2014
  ident: 15635_CR2
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.248
– volume: 98
  start-page: 173903
  year: 2007
  ident: 15635_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.173903
– volume: 121
  start-page: 163901
  year: 2018
  ident: 15635_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.163901
– volume: 93
  start-page: 020502(R)
  year: 2016
  ident: 15635_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.020502
– volume: 359
  start-page: eaar4005
  year: 2018
  ident: 15635_CR10
  publication-title: Science
  doi: 10.1126/science.aar4005
– volume: 483
  start-page: 302
  year: 2012
  ident: 15635_CR20
  publication-title: Nature
  doi: 10.1038/nature10871
– volume: 122
  start-page: 083902
  year: 2019
  ident: 15635_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.083902
– volume: 52
  start-page: 63
  year: 2009
  ident: 15635_CR36
  publication-title: Prog. Opt.
  doi: 10.1016/S0079-6638(08)00004-8
– volume: 91
  start-page: 015006
  year: 2019
  ident: 15635_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.015006
– volume: 117
  start-page: 123601
  year: 2016
  ident: 15635_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.123601
– volume: 90
  start-page: 023813
  year: 2014
  ident: 15635_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.023813
– volume: 94
  start-page: 021801(R)
  year: 2016
  ident: 15635_CR14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.021801
– volume: 99
  start-page: 143601
  year: 2007
  ident: 15635_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.143601
– volume: 98
  start-page: 103901
  year: 2007
  ident: 15635_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.103901
– volume: 96
  start-page: 023903
  year: 2006
  ident: 15635_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.023903
– volume: 358
  start-page: 636
  year: 2017
  ident: 15635_CR8
  publication-title: Science
  doi: 10.1126/science.aao4551
– volume: 113
  start-page: 123004
  year: 2014
  ident: 15635_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.123004
– volume: 88
  start-page: 013850
  year: 2013
  ident: 15635_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.013850
– volume: 74
  start-page: 666
  year: 1995
  ident: 15635_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.666
– volume: 98
  start-page: 123903
  year: 2007
  ident: 15635_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.123903
– volume: 111
  start-page: 243905
  year: 2013
  ident: 15635_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.243905
– volume: 87
  start-page: 073601
  year: 2001
  ident: 15635_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.073601
– volume: 359
  start-page: eaar4003
  year: 2018
  ident: 15635_CR9
  publication-title: Science
  doi: 10.1126/science.aar4003
– volume: 120
  start-page: 063902
  year: 2018
  ident: 15635_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.063902
– volume: 117
  start-page: 143901
  year: 2016
  ident: 15635_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.143901
– volume: 463
  start-page: 1
  year: 2008
  ident: 15635_CR35
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2008.04.004
– volume: 96
  start-page: 063901
  year: 2006
  ident: 15635_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.063901
– volume: 3
  start-page: 1228
  year: 2016
  ident: 15635_CR15
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001228
– volume: 110
  start-page: 083604
  year: 2013
  ident: 15635_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.083604
– volume: 30
  start-page: 2466
  year: 2005
  ident: 15635_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.002466
– volume: 422
  start-page: 147
  year: 2003
  ident: 15635_CR37
  publication-title: Nature
  doi: 10.1038/nature01452
– volume: 34
  start-page: 1633
  year: 2009
  ident: 15635_CR38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001633
– volume: 122
  start-page: 233905
  year: 2019
  ident: 15635_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.233905
– volume: 119
  start-page: 253904
  year: 2017
  ident: 15635_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.253904
– volume: 6
  year: 2015
  ident: 15635_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7272
– volume: 35
  start-page: 2895
  year: 2010
  ident: 15635_CR13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.002895
SSID ssj0000391844
Score 2.626523
Snippet Edge states emerge in diverse areas of science, offering promising opportunities for the development of future electronic or optoelectronic devices, sound and...
Edge states are excitations existing at the boundary of truncated periodic materials with specific spectral degeneracies, and their properties are enriched...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1902
SubjectTerms 639/624/400/1100
639/624/400/1118
Acoustics
Electronic devices
Graphene
Humanities and Social Sciences
multidisciplinary
Nonlinear response
Nonlinear systems
Nonlinearity
Optoelectronic devices
Photonics
Reconfiguration
Science
Science (multidisciplinary)
Solitary waves
Sound propagation
Stability
SummonAdditionalLinks – databaseName: DOAJ, Directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSEi9VOXRNgWqVOLWRsQZx46PgEAIiXIpEjfLTmyBVGURuxz675lxsoHt88Ilh2SSjMbjmW_8-AywL5wLtY5UllQtk2o3rvDR6CLqVjB7OyUh3px88U2dXcnz6_r62VFfvCZsoAceDHcQ60qq2iHqgLL0naNrVyIBceFb-h5HX8p5z4qpFIPR0K_kuEuGxA_mMsUErpaoZMG6MCuZKBH2_wll_r5Y8pcZ05SITt_CmxFB5oeD5hvwKvSbsD6cKflzC8SlnwZa81nMebwsn_MqN_Kv_LbP725mC-bDzRNXNYW6bbg6Pfl-fFaM5yIULZUbiyJi7Jj3SwgUQYQmGO8b14ioqtLJgEE6owzGSne1V1Khayqvuo6yv3dM__4O1vpZHz5AbtoOa6WdEDrKSmrvvBRlqDuJzMQnMxBLG9l2JA3nsyt-2DR5jY0d7GrJrjbZ1ZoMvkzv3A2UGf-UPmLTT5JMd51ukBPY0Qns_5wgg91lw9mxD85tRdCP4Akhngw-T4-p9_CUiOvD7CHJIDPwIGbwfmjnSRMk6EvJWmWgVzxgRdXVJ_3tTWLophpZCENqfV36ypNafzfFx5cwxQ68rtjJS0kBcBfWFvcPYY9w08J_Sl3kEbcUDs0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIX1PJMHyhI3CBq_IidnBAgqgoJuFBpb5Yd27RSlSzd7YF_3xnHm2p59JJD4kTOeDxvfwPwhlkbGh3RLeE9gWq3tnKx01XUPSP0dlRCdDj56zd1eia_LJpFDritclnlRiYmQe3HnmLkxxwVOSob1F_vl78q6hpF2dXcQuM-PCDoMirp0gs9x1gI_byVMp-VqUV7vJJJMpDPhI6LaKpuSx8l2P5_2Zp_l0z-kTdN6uhkFx5nO7L8MC38HtwLwxN4OHWW_P0U2Hc3h1vLMZYUNStXVOuGXFZeDOXyfFwTKm6ZEKtR4D2Ds5PPPz6dVrk7QtWj07Guooie0L8YEyyw0IbOuda2LCpeWxlEkLZTnYhc-8YpqYRtuVPeow3gLIHAP4edYRzCSyi73otGacuYjpJL7ayTrA6Nl4Lw-GQBbEMj02focOpgcWlSClu0ZqKrQbqaRFfTFfB2fmc5AWfcOfojkX4eSaDX6cZ49dPkPWRiw6VqrBA6CFk7b_Hq8XuKM9cjaxVwuFk4k3fiytzyTQGv58e4hygxYocwXqcxgnB4hCjgxbTO80wEGsCoslUBeosDtqa6_WS4OE843egpI1fitN5teOV2Wv8nxf7df3EAjzixby1RwB3CzvrqOhyhXbR2rxLz3wCkMwcW
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqDybtqAgcYPA-hE7PlQIEFWFVLiwUm-Wndi0UpWU3a3U_vvOOA-0sCBxySGxo9F4xvONH98AvGLOhVJHTEt4TaTalSt8NLqIumbE3o5BiC4nn3xVx3P55bQ83YKx3NGgwOXG1I7qSc0XF2-vf968R4c_7K-MV--WMrk7JUKYjYiyMHfgLkYmTY56MsD9NDMLgwLI4e7M5q5r8SnR-G_Cnn8eofxtHzWFp6MdeDDgyvxDbwgPYSu0j-BeX2ny5jGwb35afs27mNMqWr6ks29odfl5m1-edStiyc0TgzVOgE9gfvT5-6fjYqiWUNSYhKyKKGJDbGCMCRZYqILxvnIVi4rPnAwiSGeUEZHrpvRKKuEq7lXTICbwjkjhn8J227VhF3JTN6JU2jGmo-RSe-clm4WykYL4-WQGbNSRrQcqcapocWHTlraobK9Xi3q1Sa_WZPB66nPZE2n8s_VHUv3Ukkiw04tu8cMOPmVjyaUqnRA6CDnzjcNng_9TnPkaTS2Dg3Hg7GhYliMgRNCCOCiDl9Nn9CnaKHFt6K5SG0G8PEJk8Kwf50kSgYAYQ7jKQK9ZwJqo61_a87PE242ZM2MGxXoz2sovsf6uir3_a74P9zmZ80ziBHgA26vFVXiOuGnlXyRnuAXu6A6K
  priority: 102
  providerName: Scholars Portal
Title Observation of edge solitons in photonic graphene
URI https://link.springer.com/article/10.1038/s41467-020-15635-9
https://www.ncbi.nlm.nih.gov/pubmed/32312996
https://www.proquest.com/docview/2392415190
https://www.proquest.com/docview/2393037433
https://pubmed.ncbi.nlm.nih.gov/PMC7171198
https://doaj.org/article/f52465a337e340bda340d038621bcc18
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLSd9O0sWF3lpT62FJPm6WbMJC0tI2sDch2VISKHbIbg799xnJj7JtWshFBmtshtGM5iHpE8AHYowrpMe0hFYBVFuZzPpSZl5WJKC3oxMKh5PPzsXpBV8si-UW0OEsTNy0HyEt4zQ97A77vOLRpEOygxkHK7JyG3YDdHvQ6pmYjXWVgHiuOO_Px-RMPfDphg-KUP0PxZd_b5P8Y600uqD5HjzrY8d02nH7HLZc8wKedLdJ_noJ5IsdS6xp69NQKUtXYX8balZ63aQ3V-06IOGmEaUaJ7lXcDE__jE7zfobEbIKE4115pmvA-IXIYw44pQrrVVGES9obrhjjptSlMxTWRdWcMGMolbUNfp9awLw-2vYadrGvYW0rGpWCGkIkZ5TLq2xnOSuqDkLGHw8ATLISFc9XHi4teKnjsvWTOlOrhrlqqNcdZnAx_Gbmw4s47_UR0H0I2UAuo4v2ttL3Q-89gXlojCMScd4bmuDbY3_E5TYCtUpgcNh4HRvfStNMejDwARjnQTej91oN2ExxDSuvYs0LGDvMJbAm26cR04YBr3opkUCckMDNljd7GmuryI2N2bHhJTI1qdBV36z9W9R7D-O_ACe0qDOOcdJ7hB21rd37h3GRms7gW25lNiq-ckEdqfTxfcFPo-Oz79-m0RDmcSqA7ZnXN0DSN4Lrg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguqOyBAkGCE0SNl8TJoUJs1ZQuXFppbsZObFoJJUNnKtQ_1d_Y95ylGpbeeskhdizn-e22vwfwmhnjMuUxLOEVgWoXJrG-VIlXFSP0djRCdDl5bz-fHMqv02y6AufDXRg6VjnoxKCo67aiHPkGR0OOxgbt1_vZr4SqRtHu6lBCo2OLHXf2G0O2-eb2Z1zfN5xvfTn4NEn6qgJJhc76IvHC14SaxZhgjrnCldYWpmA-56mRTjhpyrwUnqs6s7nMhSm4zesabac1BJ6O496Am2h4U5IoNVVjTofQ1gsp-7s5qSg25jJoIorRMFASWVIu2b9QJuBfvu3fRzT_2KcN5m9rDe72fmv8oWO0e7Dimvtwq6tkefYA2Dc7pnfj1seUpYvndLYOuTo-buLZUbsgFN44IGSjgn0Ih9dCt0ew2rSNewJxWdUiy5VhTHnJpbLGSpa6rJaC8P9kBGygka56qHKqmPFThy1zUeiOrhrpqgNddRnB2_GbWQfUcWXvj0T6sSeBbIcX7ckP3cus9hmXeWaEUE7I1NYGnzWOl3NmK2TlCNaHhdO95M_1JZ9G8GpsRpmljRjTuPY09BGE-yNEBI-7dR5nItDhRhchj0AtccDSVJdbmuOjgAuOkTljJU7r3cArl9P6PymeXv0XL-H25GBvV-9u7-88gzucWDmVqFzXYXVxcuqeo0-2sC-CIMTw_bol7wK8v0M1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaKNH4mTA0JAWbUUCgcq7c21E5tWqpJtdyvUv8avY8Z5VMujt15yiB3LGc_b9jcAL5gxLlMewxJeEah2YRLrS5V4VTFCb0cjRJeTv-zmW3vy0yybrcGv4S4MHascdGJQ1HVbUY58wtGQo7FB-zXx_bGIb5vTt_PjhCpI0U7rUE6jY5Edd_YTw7fFm-1NXOuXnE8_fv-wlfQVBpIKHfdl4oWvCUGLMcEcc4UrrS1MwXzOUyOdcNKUeSk8V3Vmc5kLU3Cb1zXaUWsISB3HvQJXlcgYyZiaqTG_Q8jrhZT9PZ1UFJOFDFqJ4jUMmkSWlCu2MJQM-Jef-_dxzT_2bIMpnN6Cm70PG7_rmO42rLnmDlzrqlqe3QX21Y6p3rj1MWXs4gWds0MOjw-beH7QLgmRNw5o2ahs78HepdDtPqw3beMeQlxWtchyZRhTXnKprLGSpS6rpSAsQBkBG2ikqx62nKpnHOmwfS4K3dFVI111oKsuI3g1fjPvQDsu7P2eSD_2JMDt8KI9-aF7-dU-4zLPjBDKCZna2uCzxvFyzmyFbB3BxrBwutcCC33OsxE8H5tRfmlTxjSuPQ19BGEACRHBg26dx5kIdL7RXcgjUCscsDLV1Zbm8CBghGOUzliJ03o98Mr5tP5PikcX_8UzuI4ypz9v7-48hhucODmVqGc3YH15cuqeoHu2tE-DHMSwf9mC9xsKbUdr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+edge+solitons+in+photonic+graphene&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Zhaoyang&rft.au=Wang%2C+Rong&rft.au=Zhang%2C+Yiqi&rft.au=Kartashov%2C+Yaroslav+V.&rft.date=2020-04-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15635-9&rft.externalDocID=10_1038_s41467_020_15635_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon