Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies
Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segmen...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 814 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.
Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. |
---|---|
AbstractList | Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. |
ArticleNumber | 814 |
Author | Wang, Nan Yang, Xin Zhang, Xinxing |
Author_xml | – sequence: 1 givenname: Nan surname: Wang fullname: Wang, Nan organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University – sequence: 2 givenname: Xin surname: Yang fullname: Yang, Xin organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University – sequence: 3 givenname: Xinxing orcidid: 0000-0002-7468-3006 surname: Zhang fullname: Zhang, Xinxing email: xxzwwh@scu.edu.cn organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36781865$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxIVLILbjj1yQUMVHpZW40LP1bL_dzcqxFztB2v56vE0pbQ_1xdbzzHje87yuTkIMWFVvSfuRtEx9yh3phGxayhomOkGa_kV1RtuONERSdvLgfFpd5Lxry2I9UV33qjplQiqiBD-rVtd-SpCimfNU59ncYIr1FsGD8ViPMGEawOcaw7HganOo99Ef9lsM0dcBQmwgZxyNHzC_qV6uCxgv7vbz6vrb11-XP5rVz-9Xl19WjRWtmJp1ccWdgeKbut4pahij0nIpAZxCwqmSEtG11PTWIVOISph113NUzjHOzqurRddF2Ol9GkZIBx1h0LeFmDYa0jRYj5or3gtqibWAXRkYUADVW2msJMJYKFqfF639bEZ0FkOZh38k-vgmDFu9iX9031MuBS0CH-4EUvw9Y570OGSL3kPAOGdNpRSccNG1Bfr-CXQX5xTKqI4oXrpmLSmodw8d3Vv592kFQBeATTHnhOt7CGn1MRx6CYcu4dC34dB9IaknJDtMMA3x2NXgn6eyhZrLO2GD6b_tZ1h_AXzZzxU |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_147689 crossref_primary_10_1002_smll_202309313 crossref_primary_10_1002_sstr_202400423 crossref_primary_10_1021_acs_chemmater_3c01761 crossref_primary_10_1002_adma_202410572 crossref_primary_10_1016_j_jcis_2024_10_070 crossref_primary_10_1016_j_progpolymsci_2024_101890 crossref_primary_10_1021_acs_nanolett_4c02512 crossref_primary_10_1021_acssensors_3c01835 crossref_primary_10_1039_D3MH01812A crossref_primary_10_1039_D3SM00368J crossref_primary_10_1039_D3CC02158K crossref_primary_10_1002_adfm_202312019 crossref_primary_10_1002_adfm_202415530 crossref_primary_10_1016_j_cej_2024_157418 crossref_primary_10_1021_acsami_4c04583 crossref_primary_10_1016_j_cej_2025_160302 crossref_primary_10_1039_D4TC01732C crossref_primary_10_1016_j_progpolymsci_2024_101816 crossref_primary_10_1002_ange_202303446 crossref_primary_10_1039_D3TB02482B crossref_primary_10_1016_j_compscitech_2024_111014 crossref_primary_10_1021_acs_macromol_4c02464 crossref_primary_10_1002_advs_202309086 crossref_primary_10_1016_j_carbpol_2024_122271 crossref_primary_10_1002_advs_202402193 crossref_primary_10_1021_acsnano_3c12211 crossref_primary_10_1021_acsnano_3c12574 crossref_primary_10_1016_j_cej_2024_152110 crossref_primary_10_1021_acsanm_3c03718 crossref_primary_10_1002_adfm_202501706 crossref_primary_10_1039_D4TA02187H crossref_primary_10_1021_acsami_3c12384 crossref_primary_10_1002_smll_202306557 crossref_primary_10_3390_polym15214326 crossref_primary_10_1016_j_cej_2023_145247 crossref_primary_10_1016_j_ijbiomac_2023_124681 crossref_primary_10_1016_j_mtchem_2024_102365 crossref_primary_10_1002_sus2_248 crossref_primary_10_1039_D3MH01975F crossref_primary_10_1016_j_nantod_2024_102469 crossref_primary_10_1021_acs_chemmater_3c02790 crossref_primary_10_1039_D4MH00750F crossref_primary_10_1039_D5QM00003C crossref_primary_10_1021_acs_nanolett_4c03070 crossref_primary_10_1002_pol_20230496 crossref_primary_10_1021_acs_biomac_3c00805 crossref_primary_10_1016_j_cej_2023_143573 crossref_primary_10_1021_acsami_3c05848 crossref_primary_10_1021_acs_macromol_4c00983 crossref_primary_10_1002_marc_202300484 crossref_primary_10_1016_j_cej_2024_155047 crossref_primary_10_1038_s41467_024_53984_x crossref_primary_10_1002_cjoc_202300239 crossref_primary_10_1002_smll_202401580 crossref_primary_10_1002_adfm_202412313 crossref_primary_10_1002_adma_202401334 crossref_primary_10_1039_D3PY01255G crossref_primary_10_1016_j_nanoen_2024_109858 crossref_primary_10_1016_j_cej_2024_149179 crossref_primary_10_1007_s11426_024_2209_8 crossref_primary_10_1021_acs_nanolett_3c04069 crossref_primary_10_1016_j_indcrop_2024_118658 crossref_primary_10_1039_D4TC03990D crossref_primary_10_1002_adfm_202410659 crossref_primary_10_1016_j_cej_2023_144263 crossref_primary_10_1016_j_carbpol_2024_123179 crossref_primary_10_1038_s41467_024_49091_6 crossref_primary_10_1016_j_nanoen_2024_109561 crossref_primary_10_1002_admt_202301226 crossref_primary_10_1002_smll_202309231 crossref_primary_10_1002_ange_202313971 crossref_primary_10_1021_acsapm_3c01021 crossref_primary_10_1021_acsapm_4c02324 crossref_primary_10_1038_s41467_024_54083_7 crossref_primary_10_1002_smll_202411446 crossref_primary_10_1002_advs_202416318 crossref_primary_10_1016_j_colsurfa_2024_135359 crossref_primary_10_1002_apxr_202400165 crossref_primary_10_1016_j_nanoen_2024_109687 crossref_primary_10_1021_acs_macromol_3c00372 crossref_primary_10_1021_acs_macromol_4c02387 crossref_primary_10_1016_j_nanoen_2024_110144 crossref_primary_10_1016_j_cej_2024_152276 crossref_primary_10_1002_adom_202300861 crossref_primary_10_1002_adfm_202306208 crossref_primary_10_1002_advs_202410446 crossref_primary_10_1002_anie_202303446 crossref_primary_10_1039_D4TA05966B crossref_primary_10_1002_macp_202300264 crossref_primary_10_1002_smll_202311255 crossref_primary_10_1007_s10570_023_05623_9 crossref_primary_10_1021_acs_chemmater_3c02234 crossref_primary_10_1002_smll_202311131 crossref_primary_10_1002_admt_202400644 crossref_primary_10_1007_s42765_023_00331_2 crossref_primary_10_1002_smll_202311656 crossref_primary_10_1016_j_cej_2024_155253 crossref_primary_10_1016_j_eng_2024_12_030 crossref_primary_10_1002_adfm_202311502 crossref_primary_10_1007_s12598_024_02821_7 crossref_primary_10_1039_D3MH00325F crossref_primary_10_1002_ange_202404603 crossref_primary_10_1039_D3CC04161A crossref_primary_10_1016_j_jcis_2024_09_164 crossref_primary_10_1002_macp_202400188 crossref_primary_10_1016_j_eurpolymj_2023_112633 crossref_primary_10_1039_D3MH00040K crossref_primary_10_1039_D3CP05590F crossref_primary_10_1016_j_ceramint_2024_06_096 crossref_primary_10_31857_S0370274X24090215 crossref_primary_10_1002_anie_202313971 crossref_primary_10_1021_acs_nanolett_4c01418 crossref_primary_10_1002_adfm_202419308 crossref_primary_10_1002_adem_202401511 crossref_primary_10_1002_anie_202404603 crossref_primary_10_1039_D4QM00472H crossref_primary_10_1002_advs_202304776 crossref_primary_10_1021_acsapm_3c01251 crossref_primary_10_1002_adma_202413194 |
Cites_doi | 10.1002/adfm.202106673 10.1016/j.eurpolymj.2020.110047 10.1016/j.cej.2020.125593 10.1039/C5PY01818H 10.1016/j.compositesb.2019.107647 10.1039/D0TA00050G 10.1021/acsnano.2c03346 10.1016/j.cej.2021.130665 10.1016/0169-4332(96)00252-8 10.1002/sus2.1 10.1039/C9TA02054C 10.1002/adma.202008052 10.1002/adfm.201906198 10.1126/sciadv.abd2520 10.1002/adma.201901244 10.1021/acs.chemmater.9b04592 10.1016/j.synthmet.2019.116177 10.1002/adma.202105829 10.1016/j.apsusc.2007.09.063 10.1039/D0NA00282H 10.1002/adma.201601613 10.1002/anie.202017303 10.1016/j.eurpolymj.2018.11.005 10.1038/nchem.2492 10.1080/17425247.2017.1360865 10.1002/advs.201500169 10.1021/acsami.8b17440 10.1021/acs.chemmater.1c01242 10.1016/j.cej.2020.125547 10.1002/adma.201900042 10.1002/marc.201900038 10.1016/j.cej.2019.122925 10.1002/anie.201910002 10.1002/smll.202107164 10.1039/C5CP00264H 10.1021/acssuschemeng.6b02279 10.1002/sus2.11 10.1039/C7GC03163G 10.1039/C8MH01624K 10.1007/s40843-021-2018-y 10.1021/acs.nanolett.2c01375 10.1021/acsnano.2c05518 10.1038/s41467-021-24382-4 10.1038/s41467-020-20314-w 10.1038/s41467-019-13993-7 10.1038/s41565-022-01133-0 10.1073/pnas.2000001117 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36461-9 |
DatabaseName | Open Access Journals from Springer Nature CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca PMC9925762 36781865 10_1038_s41467_023_36461_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Sichuan Provincial Natural Science Fund for Distinguished Young Scholars (2021JDJQ0017); Program for Featured Directions of Engineering Multidisciplines of Sichuan University (No: 2020SCUNG203) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52173112; 51873123 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52173112 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51873123 – fundername: ; grantid: 52173112; 51873123 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-f1725dba3642d9d82b3327c577aad8e152877eed02b9cde38ee86bf495e8dd353 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:31 EDT 2025 Thu Aug 21 18:38:10 EDT 2025 Mon Jul 21 09:22:26 EDT 2025 Wed Aug 13 05:11:19 EDT 2025 Wed Feb 19 02:25:30 EST 2025 Tue Jul 01 00:58:40 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-f1725dba3642d9d82b3327c577aad8e152877eed02b9cde38ee86bf495e8dd353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7468-3006 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36461-9 |
PMID | 36781865 |
PQID | 2775877301 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925762 proquest_miscellaneous_2776515640 proquest_journals_2775877301 pubmed_primary_36781865 crossref_primary_10_1038_s41467_023_36461_9 crossref_citationtrail_10_1038_s41467_023_36461_9 springer_journals_10_1038_s41467_023_36461_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-13 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Krishnakumar (CR16) 2020; 184 Liu, Guo, Zhang, Gai, Zhang (CR27) 2021; 31 Guo, Han, Zhao, Yang, Zhang (CR9) 2020; 11 Guo (CR11) 2019; 6 Ozawa, Haga (CR28) 2015; 17 Krishnakumar (CR14) 2020; 2 Dai (CR17) 2019; 257 CR35 Li, Zhang, Chen, Su, He (CR23) 2021; 33 CR34 Zou, Chen (CR30) 2020; 59 Yamashita, Hayes (CR31) 2008; 254 Bhangu, Singla, Colombo, Ashokkumar, Cavalieri (CR26) 2018; 20 Wang, Adokoh, Narain (CR50) 2018; 15 Wu, Luo, Li, Wang, Yang (CR49) 2020; 398 Taylor, In Het Panhuis (CR52) 2016; 28 Yang (CR5) 2019; 11 Zhang (CR12) 2021; 1 Zhang, Li, Kang, Liu, Wang (CR36) 2021; 1 Liu (CR18) 2020; 382 CR4 Huang (CR39) 2022; 18 Cao (CR10) 2019; 31 He (CR8) 2022; 16 Wang (CR33) 2019; 29 Li, Chen, Fan, Zhang, He (CR44) 2020; 8 Chang, Jia, Gu (CR48) 2019; 112 Yin (CR42) 2019; 2 CR43 Graat, Somers (CR32) 1996; 101 CR41 CR40 Li (CR45) 2020; 32 Zhang (CR19) 2021; 425 Ekeocha (CR13) 2021; 33 Li (CR2) 2021; 8 Jiang, Bhaskaran, Aitken, Shackleford, Connal (CR25) 2019; 40 Wang, Huang, Zhang (CR38) 2021; 12 Ma (CR29) 2020; 6 Li (CR7) 2016; 8 Wang (CR47) 2019; 7 Song (CR46) 2020; 398 Neumann, Döhler, Ströhl, Binder (CR15) 2016; 7 Qiu (CR6) 2022; 18 Song, Wang (CR1) 2020; 32 Xu, Chen, Zhang, Liu, Fu (CR21) 2021; 60 Wang, Ma, Wang, Shao, Yan (CR22) 2021; 42 CR20 Li, Liu, Guo, Zhang, Tian (CR24) 2022; 18 Chen (CR53) 2020; 140 Lu (CR51) 2017; 5 Wang (CR3) 2015; 2 Liu (CR37) 2021; 33 X Qiu (36461_CR6) 2022; 18 Y Zhang (36461_CR19) 2021; 425 X Wang (36461_CR3) 2015; 2 W Yin (36461_CR42) 2019; 2 J Ekeocha (36461_CR13) 2021; 33 R Li (36461_CR45) 2020; 32 36461_CR40 36461_CR41 X Li (36461_CR2) 2021; 8 S Dai (36461_CR17) 2019; 257 H Ozawa (36461_CR28) 2015; 17 M Song (36461_CR46) 2020; 398 36461_CR35 36461_CR34 B Krishnakumar (36461_CR16) 2020; 184 B Lu (36461_CR51) 2017; 5 PCJ Graat (36461_CR32) 1996; 101 SK Bhangu (36461_CR26) 2018; 20 X Huang (36461_CR39) 2022; 18 R Li (36461_CR23) 2021; 33 K Chang (36461_CR48) 2019; 112 C Zhang (36461_CR36) 2021; 1 Z Wang (36461_CR47) 2019; 7 S Neumann (36461_CR15) 2016; 7 Z Jiang (36461_CR25) 2019; 40 Y Chen (36461_CR53) 2020; 140 36461_CR43 X Wu (36461_CR49) 2020; 398 J Liu (36461_CR27) 2021; 31 JH Xu (36461_CR21) 2021; 60 B Krishnakumar (36461_CR14) 2020; 2 X Zhang (36461_CR12) 2021; 1 C Zou (36461_CR30) 2020; 59 H Guo (36461_CR9) 2020; 11 Y Yang (36461_CR5) 2019; 11 DL Taylor (36461_CR52) 2016; 28 J Wang (36461_CR22) 2021; 42 Y Wang (36461_CR50) 2018; 15 Y Liu (36461_CR18) 2020; 382 Y Ma (36461_CR29) 2020; 6 X Li (36461_CR24) 2022; 18 CH Li (36461_CR7) 2016; 8 Y Wang (36461_CR38) 2021; 12 Y Wang (36461_CR33) 2019; 29 J Cao (36461_CR10) 2019; 31 C He (36461_CR8) 2022; 16 36461_CR20 L Liu (36461_CR37) 2021; 33 36461_CR4 T Yamashita (36461_CR31) 2008; 254 R Li (36461_CR44) 2020; 8 Q Guo (36461_CR11) 2019; 6 P Song (36461_CR1) 2020; 32 |
References_xml | – volume: 8 start-page: 1 year: 2021 end-page: 9 ident: CR2 article-title: Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities publication-title: Adv. Sci. – volume: 31 start-page: 1 year: 2021 end-page: 8 ident: CR27 article-title: Multistage responsive materials for real-time, reversible, and sustainable light-writing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106673 – ident: CR4 – volume: 140 start-page: 110047 year: 2020 ident: CR53 article-title: Highly swelling, tough intelligent self-healing hydrogel with body temperature-response publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.110047 – volume: 398 start-page: 125593 year: 2020 ident: CR49 article-title: Readily self-healing polymers at subzero temperature enabled by dual cooperative crosslink strategy for smart paint publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125593 – volume: 7 start-page: 2342 year: 2016 end-page: 2351 ident: CR15 article-title: Chelation-assisted CuAAC in star-shaped polymers enables fast self-healing at low temperatures publication-title: Polym. Chem. doi: 10.1039/C5PY01818H – volume: 42 start-page: 1 year: 2021 end-page: 5 ident: CR22 article-title: Ultra-stretchable, self-healing, conductive, and transparent PAA/DES ionic gel publication-title: Macromol. Rapid Commun. – volume: 184 start-page: 107647 year: 2020 ident: CR16 article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107647 – volume: 8 start-page: 5056 year: 2020 end-page: 5061 ident: CR44 article-title: Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00050G – ident: CR35 – volume: 16 start-page: 4981 year: 2022 end-page: 4988 ident: CR8 article-title: Nanotechnology in the Olympic winter games and beyond publication-title: ACS Nano doi: 10.1021/acsnano.2c03346 – volume: 425 start-page: 130665 year: 2021 ident: CR19 article-title: Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metal–ligand interactions tailored for functional energetic composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130665 – volume: 101 start-page: 36 year: 1996 end-page: 40 ident: CR32 article-title: Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2 spectra publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(96)00252-8 – volume: 1 start-page: 105 year: 2021 end-page: 126 ident: CR12 article-title: Recent advances in functional fiber electronics publication-title: SusMat doi: 10.1002/sus2.1 – volume: 7 start-page: 15933 year: 2019 end-page: 15943 ident: CR47 article-title: Dynamic covalent urea bonds and their potential for development of self-healing polymer materials publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02054C – volume: 33 start-page: 1 year: 2021 end-page: 37 ident: CR13 article-title: Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments publication-title: Adv. Mater. doi: 10.1002/adma.202008052 – volume: 29 start-page: 1 year: 2019 end-page: 8 ident: CR33 article-title: Hierarchically structured self-healing actuators with superfast light- and magnetic-response publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906198 – volume: 6 start-page: 1 year: 2020 end-page: 12 ident: CR29 article-title: Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil publication-title: Sci. Adv. doi: 10.1126/sciadv.abd2520 – volume: 32 start-page: 1 year: 2020 end-page: 12 ident: CR1 article-title: High-performance polymeric materials through hydrogen-bond cross-linking publication-title: Adv. Mater. doi: 10.1002/adma.201901244 – volume: 32 start-page: 874 year: 2020 end-page: 881 ident: CR45 article-title: Autonomous self-healing, antifreezing, and transparent conductive elastomers publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04592 – volume: 257 start-page: 116177 year: 2019 ident: CR17 article-title: Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion publication-title: Synth. Met. doi: 10.1016/j.synthmet.2019.116177 – volume: 33 start-page: 1 year: 2021 end-page: 11 ident: CR37 article-title: Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility publication-title: Adv. Mater. doi: 10.1002/adma.202105829 – volume: 254 start-page: 2441 year: 2008 end-page: 2449 ident: CR31 article-title: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.09.063 – volume: 18 start-page: 1 year: 2022 end-page: 10 ident: CR24 article-title: Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability publication-title: Small – volume: 2 start-page: 2726 year: 2020 end-page: 2730 ident: CR14 article-title: Disulfide exchange assisted self-healing epoxy/PDMS/graphene oxide nanocomposites publication-title: Nanoscale Adv. doi: 10.1039/D0NA00282H – ident: CR43 – volume: 28 start-page: 9060 year: 2016 end-page: 9093 ident: CR52 article-title: Self-healing hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201601613 – volume: 60 start-page: 7947 year: 2021 end-page: 7955 ident: CR21 article-title: A fast room-temperature self-healing glassy polyurethane publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/anie.202017303 – volume: 112 start-page: 822 year: 2019 end-page: 831 ident: CR48 article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.11.005 – volume: 8 start-page: 618 year: 2016 end-page: 624 ident: CR7 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nat. Chem. doi: 10.1038/nchem.2492 – volume: 15 start-page: 77 year: 2018 end-page: 91 ident: CR50 article-title: Recent development and biomedical applications of self-healing hydrogels publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2017.1360865 – volume: 2 start-page: 1 year: 2015 end-page: 21 ident: CR3 article-title: Recent progress in electronic skin publication-title: Adv. Sci. doi: 10.1002/advs.201500169 – volume: 11 start-page: 3428 year: 2019 end-page: 3437 ident: CR5 article-title: Conductive organohydrogels with ultrastretchability, antifreezing, self-healing, and adhesive properties for motion detection and signal transmission publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17440 – volume: 12 start-page: 1 year: 2021 end-page: 10 ident: CR38 article-title: Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure publication-title: Nat. Commun. – volume: 33 start-page: 5189 year: 2021 end-page: 5196 ident: CR23 article-title: Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c01242 – volume: 398 start-page: 125547 year: 2020 ident: CR46 article-title: Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125547 – ident: CR40 – volume: 31 start-page: 1 year: 2019 end-page: 8 ident: CR10 article-title: Arbitrarily 3D configurable hygroscopic robots with a covalent–noncovalent interpenetrating network and self-healing ability publication-title: Adv. Mater. doi: 10.1002/adma.201900042 – volume: 40 start-page: 1 year: 2019 end-page: 10 ident: CR25 article-title: Using synergistic multiple dynamic bonds to construct polymers with engineered properties publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900038 – volume: 382 start-page: 122925 year: 2020 ident: CR18 article-title: Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122925 – volume: 59 start-page: 395 year: 2020 end-page: 402 ident: CR30 article-title: Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/anie.201910002 – volume: 2 start-page: 82 year: 2019 end-page: 87 ident: CR42 article-title: Aging behavior and lifetime prediction of PMMA under tensile stress and liquid scintillator conditions publication-title: Adv. Ind. Eng. Polym. Res. – volume: 18 start-page: 1 year: 2022 end-page: 8 ident: CR6 article-title: Strong, healable, stimulus-responsive fluorescent elastomers based on assembled borate dynamic nanostructures publication-title: Small doi: 10.1002/smll.202107164 – volume: 17 start-page: 8609 year: 2015 end-page: 8613 ident: CR28 article-title: Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00264H – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: CR9 article-title: Universally autonomous self-healing elastomer with high stretchability publication-title: Nat. Commun. – volume: 18 start-page: 1 year: 2022 end-page: 9 ident: CR39 article-title: Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting publication-title: Small – volume: 5 start-page: 948 year: 2017 end-page: 956 ident: CR51 article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02279 – volume: 1 start-page: 127 year: 2021 end-page: 147 ident: CR36 article-title: Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices publication-title: SusMat doi: 10.1002/sus2.11 – ident: CR34 – volume: 20 start-page: 816 year: 2018 end-page: 821 ident: CR26 article-title: Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies publication-title: Green Chem. doi: 10.1039/C7GC03163G – ident: CR41 – volume: 6 start-page: 996 year: 2019 end-page: 1004 ident: CR11 article-title: A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties publication-title: Mater. Horiz. doi: 10.1039/C8MH01624K – ident: CR20 – ident: 36461_CR41 – volume: 31 start-page: 1 year: 2021 ident: 36461_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106673 – volume: 60 start-page: 7947 year: 2021 ident: 36461_CR21 publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/anie.202017303 – volume: 382 start-page: 122925 year: 2020 ident: 36461_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122925 – volume: 7 start-page: 15933 year: 2019 ident: 36461_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02054C – volume: 6 start-page: 1 year: 2020 ident: 36461_CR29 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd2520 – volume: 6 start-page: 996 year: 2019 ident: 36461_CR11 publication-title: Mater. Horiz. doi: 10.1039/C8MH01624K – volume: 1 start-page: 105 year: 2021 ident: 36461_CR12 publication-title: SusMat doi: 10.1002/sus2.1 – ident: 36461_CR4 doi: 10.1007/s40843-021-2018-y – volume: 2 start-page: 2726 year: 2020 ident: 36461_CR14 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00282H – ident: 36461_CR40 doi: 10.1021/acs.nanolett.2c01375 – volume: 8 start-page: 5056 year: 2020 ident: 36461_CR44 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00050G – volume: 101 start-page: 36 year: 1996 ident: 36461_CR32 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(96)00252-8 – volume: 18 start-page: 1 year: 2022 ident: 36461_CR39 publication-title: Small – volume: 1 start-page: 127 year: 2021 ident: 36461_CR36 publication-title: SusMat doi: 10.1002/sus2.11 – volume: 59 start-page: 395 year: 2020 ident: 36461_CR30 publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/anie.201910002 – ident: 36461_CR34 doi: 10.1021/acsnano.2c05518 – volume: 254 start-page: 2441 year: 2008 ident: 36461_CR31 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.09.063 – volume: 398 start-page: 125547 year: 2020 ident: 36461_CR46 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125547 – volume: 8 start-page: 1 year: 2021 ident: 36461_CR2 publication-title: Adv. Sci. – volume: 5 start-page: 948 year: 2017 ident: 36461_CR51 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02279 – volume: 40 start-page: 1 year: 2019 ident: 36461_CR25 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900038 – volume: 18 start-page: 1 year: 2022 ident: 36461_CR24 publication-title: Small – ident: 36461_CR43 doi: 10.1038/s41467-021-24382-4 – volume: 425 start-page: 130665 year: 2021 ident: 36461_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130665 – volume: 184 start-page: 107647 year: 2020 ident: 36461_CR16 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107647 – volume: 16 start-page: 4981 year: 2022 ident: 36461_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.2c03346 – volume: 33 start-page: 1 year: 2021 ident: 36461_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.202105829 – volume: 8 start-page: 618 year: 2016 ident: 36461_CR7 publication-title: Nat. Chem. doi: 10.1038/nchem.2492 – volume: 12 start-page: 1 year: 2021 ident: 36461_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 257 start-page: 116177 year: 2019 ident: 36461_CR17 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2019.116177 – volume: 17 start-page: 8609 year: 2015 ident: 36461_CR28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00264H – volume: 31 start-page: 1 year: 2019 ident: 36461_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201900042 – volume: 42 start-page: 1 year: 2021 ident: 36461_CR22 publication-title: Macromol. Rapid Commun. – volume: 28 start-page: 9060 year: 2016 ident: 36461_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.201601613 – volume: 11 start-page: 1 year: 2020 ident: 36461_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 29 start-page: 1 year: 2019 ident: 36461_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906198 – volume: 32 start-page: 874 year: 2020 ident: 36461_CR45 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04592 – volume: 398 start-page: 125593 year: 2020 ident: 36461_CR49 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125593 – volume: 11 start-page: 3428 year: 2019 ident: 36461_CR5 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17440 – volume: 2 start-page: 82 year: 2019 ident: 36461_CR42 publication-title: Adv. Ind. Eng. Polym. Res. – ident: 36461_CR35 doi: 10.1038/s41565-022-01133-0 – volume: 2 start-page: 1 year: 2015 ident: 36461_CR3 publication-title: Adv. Sci. doi: 10.1002/advs.201500169 – volume: 18 start-page: 1 year: 2022 ident: 36461_CR6 publication-title: Small doi: 10.1002/smll.202107164 – volume: 140 start-page: 110047 year: 2020 ident: 36461_CR53 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.110047 – volume: 20 start-page: 816 year: 2018 ident: 36461_CR26 publication-title: Green Chem. doi: 10.1039/C7GC03163G – volume: 15 start-page: 77 year: 2018 ident: 36461_CR50 publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2017.1360865 – ident: 36461_CR20 doi: 10.1073/pnas.2000001117 – volume: 7 start-page: 2342 year: 2016 ident: 36461_CR15 publication-title: Polym. Chem. doi: 10.1039/C5PY01818H – volume: 32 start-page: 1 year: 2020 ident: 36461_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201901244 – volume: 33 start-page: 1 year: 2021 ident: 36461_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.202008052 – volume: 33 start-page: 5189 year: 2021 ident: 36461_CR23 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c01242 – volume: 112 start-page: 822 year: 2019 ident: 36461_CR48 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.11.005 |
SSID | ssj0000391844 |
Score | 2.6717105 |
Snippet | Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing... Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 814 |
SubjectTerms | 140/125 140/133 140/146 147/143 147/3 639/301/1005/1009 639/301/1023/1025 639/301/357/341 639/301/357/354 Artificial muscles Assemblies Biomimetics Crosslinking Elastomers Electronics Humanities and Social Sciences Low temperature Mechanical properties multidisciplinary Muscles Polymerization Polymers Robots Science Science (multidisciplinary) Self healing materials Soft robotics Solvents Subzero temperature Wearable technology |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSki9IKAFQgsyUm9gNbGd2D4Coqoq2lNX6s3yVwTSklTN7mH59Z1xstsunxeusaM4z2PPe7JnhpBjzo0uWx9Y5arAZB1apqWPzHMMXBZRpRpjhy8um7OZPL-urx-U-sI7YWN64BG4E6CzpuGhgi8lkC7Kcee0CcoHYPo-ZGoEPu-BmMp7sDAgXeQUJVMKfTLIvCeAi2KikU3FzJYnygn7f8cyf70s-dOJaXZEp0_I44lB0g_jyJ-SndQ9I4_GmpKrffJlNsdI-t4vhwUdlv5Huu0p0kGMkaLAT0eToykHTUXqV_Smn6_wqlc_p53regZ8On33QE6HAzI7_Xz16YxNJRNYACWyYC3wkTp6B7_Io4maeyG4CrVSzkWdwFlrpcAtltybEJPQKenGt6CSko5R1OI52e36Lr0kFBOHBcF9iJJL3TotkCyWIH8qznVbF6Raw2fDlE8cy1rMbT7XFtqOkFuA3GbIrSnIu807N2M2jb_2_oizsumJmbDzA7APO9mH_Zd9FORoPad2Wp6D5QpkksLNrSBvN82wsPC0xHWpX-Y-WCa-kWVBXowmsBmJABdf6QYwUFvGsTXU7Zbu29ecvNsYlHi8IO_XZnQ_rD9D8ep_QHFI9jjaP5azEUdkd3G7TK-BUi38m7x67gDRwRzc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKs-GFhQkbmA1sZ3YOSFALBUCTqzUm-VXAGlJtpvdw_bXd8bxploevcaOZI9nPN94XoS8YqxRRWsdLU3pqKhcS5WwnlqGicvcy1Bh7vDXb_XZXHw-r87Tg9uQwip3d2K8qH3v8I38lElAthL58e3ygmLXKPSuphYat8mdEjQNhnSp2afpjQWrnyshUq5MwdXpIOLNAIqK8lrUJW329FEs2_8vrPl3yOQfftOojmaH5H7Ckfm78eAfkFuhe0jujp0lt4_Il_kC8-l7uxnW-bCxl2HV5wgKMVMqB5Q6Ml4eYuqUz-02X_aLLQZ89Yu8M11PAVWH3xYg6vCYzGcfv384o6lxAnVgj6xpC6ik8tbAFplvvGKWcyZdJaUxXgVQ2UBJUI4Fs43zgasQVG1bsJWC8p5X_Ak56PouHJEcy4c5zqzzggnVGsURMhZgBJWMqbbKSLkjn3apqjg2t1jo6N3mSo8k10ByHUmum4y8nv5ZjjU1bpz9Hk9lmon1sOOHfvVDJ_HSYPQ0NXMl8GMAA1caZoxqnLQO7EHrTEZOdmeqk5AO-pqlMvJyGgbxQp-J6UK_iXOwWXwtiow8HVlgWgkHRV-qGmgg95hjb6n7I92vn7GEd9Ogoccy8mbHRtfL-j8pnt28i2NyjyFnY7safkIO1qtNeA6QaW1fRLm4AqmyE5A priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4rfVUyr4psE2SZvkcRWPY1FfdOHeQr6qwl57bHcf1r_emfRDVk_B13YC08kk85sm8xtCXjKmVdE4T0tbeioq31AlXKCOYeEyDzJWWDv88VN9vhLLi-riiLCpFiZd2k-Ulmmbnm6HvelFWtIQYSivRV1SfYOcIFU7-PbJYrH8vJz_rCDnuRJirJApuLpm8EEUSmT91yHMPy9K_nZamoLQ2R1ye0SP-WLQ9y45iu09cnPoJ7m_Tz6s1lhF37ldv837nfsRN12OUBDro3LApoO75TEVTIXc7fOrbr3Ha17dOm9t21HA0vHSATDtH5DV2fsv787p2C6BeshCtrQBLFIFZ-ETWdBBMcc5k76S0tqgIgRqJSWExII57UPkKkZVuwYypKhC4BV_SI7bro2PSY6kYZ4z54NgQjVWcQSKBaQ-JWOqqTJSTuYzfuQSx5YWa5POtLkyg8kNmNwkkxudkVfzmKuBSeOf0m9xVmZJZMFOD7rNVzN6hYFUR9fMl-CFEdJaaZm1SnvpPGSBztuMnE5zasal2RsmIUWSuLFl5MX8GhYVnpTYNna7JIMt4mtRZOTR4AKzJhzCe6lqsIE8cI4DVQ_ftN-_JeJurTG9Yxl5PbnRL7X-boon_yf-lNxi6OnYtIafkuPtZhefAXDauufjSvkJh_4StQ priority: 102 providerName: Springer Nature |
Title | Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies |
URI | https://link.springer.com/article/10.1038/s41467-023-36461-9 https://www.ncbi.nlm.nih.gov/pubmed/36781865 https://www.proquest.com/docview/2775877301 https://www.proquest.com/docview/2776515640 https://pubmed.ncbi.nlm.nih.gov/PMC9925762 https://doaj.org/article/585962c1ccae4467a2aa89c7bc716bca |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC72geBFfBtdhwjetHXSnaS7DyKzw47L4C6iDswt9CsqxGSdBzj-eqs7ycjo6MlLAkkHOl-qUt-XTlUBPKVUimGpDUlUYkiamZKIVFuiqU9cZpa7zOcOX1zm57N0Os_mB9C3O-oAXO6Vdr6f1GxRvfj-bfMaHf5VmzIuXi7T4O4YfQjL0zwh8hCOMTJx39HgoqP74c3MJAqatMud2X_pTnwKZfz3cc8_f6H8bR01hKfJTbjR8cp41BrCLThw9W241naa3NyBt7PK59c3er1cxcu1_uEWTexJos-cipG1toYYu5BKZWO9ia-aauN_AGuquFZ1Q5Blu68aKevyLswmZx_H56RrpEAM6pMVKRGKzGqFt0ittIJqxig3GedKWeEwhAvOMVgOqZbGOiacE7kuUTs5YS3L2D04qpvaPYDYlxMzjGpjU5qKUgnmKeQQRVFCqSizCJIevsJ0VcZ9s4uqCKvdTBQt5AVCXgTICxnBs-01V22NjX-OPvVPZTvS18cOB5rFp6JztwJFkMypSdA-HQperqhSQhquDepDbVQEJ_0zLXqbKyhH8cT9Ky-CJ9vT6G5-DUXVrlmHMb55fJ4OI7jfmsB2JgwDfyJyxIDvGMfOVHfP1F8-h5LeUnrhRyN43pvRr2n9HYqH_wOKR3Cdevv3TW7YCRytFmv3GInWSg_gkM85bsXkzQCOR6PphynuT88u373Ho-N8PAifMAbBy34C0mAq6g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAgSDBCawmtpM4B4R4LVu67akr9Wb8CiAtybLZFVp-FL-RGSfZann01mvsKM7488w3tmeGkKeMlTKpjKWpTi0Vma2oFMZRwzBwmbvCZxg7fHScj6fi42l2ukN-DbEweK1y0IlBUbvG4h75PiuA2RaIx1fz7xSrRuHp6lBCo4PFoV__AJetfXnwDub3GWOj9ydvx7SvKkAtkPUlrcBkZ85oDszblU4ywzkrbFYUWjvpwZ7BZ8ByJMyU1nkuvZe5qcCR8NK5UCUCVP4lwcGSY2T66MNmTwezrUsh-tichMv9VgRNBIaRwvfylJZb9i-UCfgXt_37iuYf57TB_I2uk2s9b41fd0C7QXZ8fZNc7ipZrm-RyXSG8fuNWbXLuF2Zn37RxEhCMTIrBlbcAT32IVTLxWYdz5vZGi-YNbO41nVDgcX7bwYocXubTC9EpHfIbt3U_h6JMV2Z5cxYJ5iQlZYcKWoCTlfKmKyyiKSD-JTts5hjMY2ZCqfpXKpO5ApEroLIVRmR55t35l0Oj3N7v8FZ2fTE_NvhQbP4rPrlrMDJKnNmU8C_B4e60ExrWdrCWPA_jdUR2RvmVPVKoVVnEI7Ik00zLGc8o9G1b1ahDxanz0USkbsdBDYj4UAsUpmDDIotcGwNdbul_volpAwvS3QsWUReDDA6G9b_RXH__L94TK6MT44manJwfPiAXGWIciyVw_fI7nKx8g-Bri3No7BGYvLpohflb4ShUTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYIEJ7A2sfNwDghR2lVLy6pCrNSb8StQaZssm12h5afx65hxkq2WR2-9Jo7ijL-Z-Sb2zBDygrFCRKU2NFaxoUlqSioSbalmmLjMbe5SzB3-OM4OJsmH0_R0i_zqc2HwWGVvE72htrXBf-RDlgOzzRGPw7I7FnGyN3o7-06xgxTutPbtNFqIHLnVDwjfmjeHe7DWLxkb7X9-f0C7DgPUAHFf0BLcd2q14sDCbWEF05yz3KR5rpQVDnwbvBK8SMR0YazjwjmR6RKCCies9R0jwPxv5xgVDcj27v745NP6Dw_WXhdJ0mXqRFwMm8TbJXCTFN6YxbTY8Ia-acC_mO7fBzb_2LX1znB0i9zsWGz4roXdbbLlqjvkWtvXcnWXHE-mmM1f62WzCJul_unmdYiUFPO0QuDILexD5xO3bKhX4ayervC4WT0NK1XVFDi9O9dAkJt7ZHIlQr1PBlVduYckxOJlhjNtbMISUSrBkbBGEILFjIkyDUjci0-arqY5ttaYSr-3zoVsRS5B5NKLXBYBebV-ZtZW9Lh09C6uynokVuP2F-r5V9kpt4SQq8iYiUEbHITXuWJKicLk2kA0qo0KyE6_prIzEY28AHRAnq9vg3Ljjo2qXL30Y7BVfZZEAXnQQmA9Ew40IxYZyCDfAMfGVDfvVGfffAHxosAwkwXkdQ-ji2n9XxSPLv-KZ-Q6KKQ8PhwfPSY3GIIc--bwHTJYzJfuCXC3hX7aKUlIvly1Xv4G5xtWwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrarobust+subzero+healable+materials+enabled+by+polyphenol+nano-assemblies&rft.jtitle=Nature+communications&rft.au=Nan+Wang&rft.au=Xin+Yang&rft.au=Xinxing+Zhang&rft.date=2023-02-13&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-36461-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |