Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies

Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segmen...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 814 - 10
Main Authors Wang, Nan, Yang, Xin, Zhang, Xinxing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers.
AbstractList Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.
Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at -20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.
Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.
Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles.Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers.
Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers.
Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers.
ArticleNumber 814
Author Wang, Nan
Yang, Xin
Zhang, Xinxing
Author_xml – sequence: 1
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University
– sequence: 2
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University
– sequence: 3
  givenname: Xinxing
  orcidid: 0000-0002-7468-3006
  surname: Zhang
  fullname: Zhang, Xinxing
  email: xxzwwh@scu.edu.cn
  organization: State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36781865$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOKxIVLILbjj1yQUMVHpZW40LP1bL_dzcqxFztB2v56vE0pbQ_1xdbzzHje87yuTkIMWFVvSfuRtEx9yh3phGxayhomOkGa_kV1RtuONERSdvLgfFpd5Lxry2I9UV33qjplQiqiBD-rVtd-SpCimfNU59ncYIr1FsGD8ViPMGEawOcaw7HganOo99Ef9lsM0dcBQmwgZxyNHzC_qV6uCxgv7vbz6vrb11-XP5rVz-9Xl19WjRWtmJp1ccWdgeKbut4pahij0nIpAZxCwqmSEtG11PTWIVOISph113NUzjHOzqurRddF2Ol9GkZIBx1h0LeFmDYa0jRYj5or3gtqibWAXRkYUADVW2msJMJYKFqfF639bEZ0FkOZh38k-vgmDFu9iX9031MuBS0CH-4EUvw9Y570OGSL3kPAOGdNpRSccNG1Bfr-CXQX5xTKqI4oXrpmLSmodw8d3Vv592kFQBeATTHnhOt7CGn1MRx6CYcu4dC34dB9IaknJDtMMA3x2NXgn6eyhZrLO2GD6b_tZ1h_AXzZzxU
CitedBy_id crossref_primary_10_1016_j_cej_2023_147689
crossref_primary_10_1002_smll_202309313
crossref_primary_10_1002_sstr_202400423
crossref_primary_10_1021_acs_chemmater_3c01761
crossref_primary_10_1002_adma_202410572
crossref_primary_10_1016_j_jcis_2024_10_070
crossref_primary_10_1016_j_progpolymsci_2024_101890
crossref_primary_10_1021_acs_nanolett_4c02512
crossref_primary_10_1021_acssensors_3c01835
crossref_primary_10_1039_D3MH01812A
crossref_primary_10_1039_D3SM00368J
crossref_primary_10_1039_D3CC02158K
crossref_primary_10_1002_adfm_202312019
crossref_primary_10_1002_adfm_202415530
crossref_primary_10_1016_j_cej_2024_157418
crossref_primary_10_1021_acsami_4c04583
crossref_primary_10_1016_j_cej_2025_160302
crossref_primary_10_1039_D4TC01732C
crossref_primary_10_1016_j_progpolymsci_2024_101816
crossref_primary_10_1002_ange_202303446
crossref_primary_10_1039_D3TB02482B
crossref_primary_10_1016_j_compscitech_2024_111014
crossref_primary_10_1021_acs_macromol_4c02464
crossref_primary_10_1002_advs_202309086
crossref_primary_10_1016_j_carbpol_2024_122271
crossref_primary_10_1002_advs_202402193
crossref_primary_10_1021_acsnano_3c12211
crossref_primary_10_1021_acsnano_3c12574
crossref_primary_10_1016_j_cej_2024_152110
crossref_primary_10_1021_acsanm_3c03718
crossref_primary_10_1002_adfm_202501706
crossref_primary_10_1039_D4TA02187H
crossref_primary_10_1021_acsami_3c12384
crossref_primary_10_1002_smll_202306557
crossref_primary_10_3390_polym15214326
crossref_primary_10_1016_j_cej_2023_145247
crossref_primary_10_1016_j_ijbiomac_2023_124681
crossref_primary_10_1016_j_mtchem_2024_102365
crossref_primary_10_1002_sus2_248
crossref_primary_10_1039_D3MH01975F
crossref_primary_10_1016_j_nantod_2024_102469
crossref_primary_10_1021_acs_chemmater_3c02790
crossref_primary_10_1039_D4MH00750F
crossref_primary_10_1039_D5QM00003C
crossref_primary_10_1021_acs_nanolett_4c03070
crossref_primary_10_1002_pol_20230496
crossref_primary_10_1021_acs_biomac_3c00805
crossref_primary_10_1016_j_cej_2023_143573
crossref_primary_10_1021_acsami_3c05848
crossref_primary_10_1021_acs_macromol_4c00983
crossref_primary_10_1002_marc_202300484
crossref_primary_10_1016_j_cej_2024_155047
crossref_primary_10_1038_s41467_024_53984_x
crossref_primary_10_1002_cjoc_202300239
crossref_primary_10_1002_smll_202401580
crossref_primary_10_1002_adfm_202412313
crossref_primary_10_1002_adma_202401334
crossref_primary_10_1039_D3PY01255G
crossref_primary_10_1016_j_nanoen_2024_109858
crossref_primary_10_1016_j_cej_2024_149179
crossref_primary_10_1007_s11426_024_2209_8
crossref_primary_10_1021_acs_nanolett_3c04069
crossref_primary_10_1016_j_indcrop_2024_118658
crossref_primary_10_1039_D4TC03990D
crossref_primary_10_1002_adfm_202410659
crossref_primary_10_1016_j_cej_2023_144263
crossref_primary_10_1016_j_carbpol_2024_123179
crossref_primary_10_1038_s41467_024_49091_6
crossref_primary_10_1016_j_nanoen_2024_109561
crossref_primary_10_1002_admt_202301226
crossref_primary_10_1002_smll_202309231
crossref_primary_10_1002_ange_202313971
crossref_primary_10_1021_acsapm_3c01021
crossref_primary_10_1021_acsapm_4c02324
crossref_primary_10_1038_s41467_024_54083_7
crossref_primary_10_1002_smll_202411446
crossref_primary_10_1002_advs_202416318
crossref_primary_10_1016_j_colsurfa_2024_135359
crossref_primary_10_1002_apxr_202400165
crossref_primary_10_1016_j_nanoen_2024_109687
crossref_primary_10_1021_acs_macromol_3c00372
crossref_primary_10_1021_acs_macromol_4c02387
crossref_primary_10_1016_j_nanoen_2024_110144
crossref_primary_10_1016_j_cej_2024_152276
crossref_primary_10_1002_adom_202300861
crossref_primary_10_1002_adfm_202306208
crossref_primary_10_1002_advs_202410446
crossref_primary_10_1002_anie_202303446
crossref_primary_10_1039_D4TA05966B
crossref_primary_10_1002_macp_202300264
crossref_primary_10_1002_smll_202311255
crossref_primary_10_1007_s10570_023_05623_9
crossref_primary_10_1021_acs_chemmater_3c02234
crossref_primary_10_1002_smll_202311131
crossref_primary_10_1002_admt_202400644
crossref_primary_10_1007_s42765_023_00331_2
crossref_primary_10_1002_smll_202311656
crossref_primary_10_1016_j_cej_2024_155253
crossref_primary_10_1016_j_eng_2024_12_030
crossref_primary_10_1002_adfm_202311502
crossref_primary_10_1007_s12598_024_02821_7
crossref_primary_10_1039_D3MH00325F
crossref_primary_10_1002_ange_202404603
crossref_primary_10_1039_D3CC04161A
crossref_primary_10_1016_j_jcis_2024_09_164
crossref_primary_10_1002_macp_202400188
crossref_primary_10_1016_j_eurpolymj_2023_112633
crossref_primary_10_1039_D3MH00040K
crossref_primary_10_1039_D3CP05590F
crossref_primary_10_1016_j_ceramint_2024_06_096
crossref_primary_10_31857_S0370274X24090215
crossref_primary_10_1002_anie_202313971
crossref_primary_10_1021_acs_nanolett_4c01418
crossref_primary_10_1002_adfm_202419308
crossref_primary_10_1002_adem_202401511
crossref_primary_10_1002_anie_202404603
crossref_primary_10_1039_D4QM00472H
crossref_primary_10_1002_advs_202304776
crossref_primary_10_1021_acsapm_3c01251
crossref_primary_10_1002_adma_202413194
Cites_doi 10.1002/adfm.202106673
10.1016/j.eurpolymj.2020.110047
10.1016/j.cej.2020.125593
10.1039/C5PY01818H
10.1016/j.compositesb.2019.107647
10.1039/D0TA00050G
10.1021/acsnano.2c03346
10.1016/j.cej.2021.130665
10.1016/0169-4332(96)00252-8
10.1002/sus2.1
10.1039/C9TA02054C
10.1002/adma.202008052
10.1002/adfm.201906198
10.1126/sciadv.abd2520
10.1002/adma.201901244
10.1021/acs.chemmater.9b04592
10.1016/j.synthmet.2019.116177
10.1002/adma.202105829
10.1016/j.apsusc.2007.09.063
10.1039/D0NA00282H
10.1002/adma.201601613
10.1002/anie.202017303
10.1016/j.eurpolymj.2018.11.005
10.1038/nchem.2492
10.1080/17425247.2017.1360865
10.1002/advs.201500169
10.1021/acsami.8b17440
10.1021/acs.chemmater.1c01242
10.1016/j.cej.2020.125547
10.1002/adma.201900042
10.1002/marc.201900038
10.1016/j.cej.2019.122925
10.1002/anie.201910002
10.1002/smll.202107164
10.1039/C5CP00264H
10.1021/acssuschemeng.6b02279
10.1002/sus2.11
10.1039/C7GC03163G
10.1039/C8MH01624K
10.1007/s40843-021-2018-y
10.1021/acs.nanolett.2c01375
10.1021/acsnano.2c05518
10.1038/s41467-021-24382-4
10.1038/s41467-020-20314-w
10.1038/s41467-019-13993-7
10.1038/s41565-022-01133-0
10.1073/pnas.2000001117
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36461-9
DatabaseName Open Access Journals from Springer Nature
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca
PMC9925762
36781865
10_1038_s41467_023_36461_9
Genre Journal Article
GrantInformation_xml – fundername: Sichuan Provincial Natural Science Fund for Distinguished Young Scholars (2021JDJQ0017); Program for Featured Directions of Engineering Multidisciplines of Sichuan University (No: 2020SCUNG203)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52173112; 51873123
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52173112
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51873123
– fundername: ;
  grantid: 52173112; 51873123
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-f1725dba3642d9d82b3327c577aad8e152877eed02b9cde38ee86bf495e8dd353
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:20:31 EDT 2025
Thu Aug 21 18:38:10 EDT 2025
Mon Jul 21 09:22:26 EDT 2025
Wed Aug 13 05:11:19 EDT 2025
Wed Feb 19 02:25:30 EST 2025
Tue Jul 01 00:58:40 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f1725dba3642d9d82b3327c577aad8e152877eed02b9cde38ee86bf495e8dd353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7468-3006
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36461-9
PMID 36781865
PQID 2775877301
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925762
proquest_miscellaneous_2776515640
proquest_journals_2775877301
pubmed_primary_36781865
crossref_primary_10_1038_s41467_023_36461_9
crossref_citationtrail_10_1038_s41467_023_36461_9
springer_journals_10_1038_s41467_023_36461_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Krishnakumar (CR16) 2020; 184
Liu, Guo, Zhang, Gai, Zhang (CR27) 2021; 31
Guo, Han, Zhao, Yang, Zhang (CR9) 2020; 11
Guo (CR11) 2019; 6
Ozawa, Haga (CR28) 2015; 17
Krishnakumar (CR14) 2020; 2
Dai (CR17) 2019; 257
CR35
Li, Zhang, Chen, Su, He (CR23) 2021; 33
CR34
Zou, Chen (CR30) 2020; 59
Yamashita, Hayes (CR31) 2008; 254
Bhangu, Singla, Colombo, Ashokkumar, Cavalieri (CR26) 2018; 20
Wang, Adokoh, Narain (CR50) 2018; 15
Wu, Luo, Li, Wang, Yang (CR49) 2020; 398
Taylor, In Het Panhuis (CR52) 2016; 28
Yang (CR5) 2019; 11
Zhang (CR12) 2021; 1
Zhang, Li, Kang, Liu, Wang (CR36) 2021; 1
Liu (CR18) 2020; 382
CR4
Huang (CR39) 2022; 18
Cao (CR10) 2019; 31
He (CR8) 2022; 16
Wang (CR33) 2019; 29
Li, Chen, Fan, Zhang, He (CR44) 2020; 8
Chang, Jia, Gu (CR48) 2019; 112
Yin (CR42) 2019; 2
CR43
Graat, Somers (CR32) 1996; 101
CR41
CR40
Li (CR45) 2020; 32
Zhang (CR19) 2021; 425
Ekeocha (CR13) 2021; 33
Li (CR2) 2021; 8
Jiang, Bhaskaran, Aitken, Shackleford, Connal (CR25) 2019; 40
Wang, Huang, Zhang (CR38) 2021; 12
Ma (CR29) 2020; 6
Li (CR7) 2016; 8
Wang (CR47) 2019; 7
Song (CR46) 2020; 398
Neumann, Döhler, Ströhl, Binder (CR15) 2016; 7
Qiu (CR6) 2022; 18
Song, Wang (CR1) 2020; 32
Xu, Chen, Zhang, Liu, Fu (CR21) 2021; 60
Wang, Ma, Wang, Shao, Yan (CR22) 2021; 42
CR20
Li, Liu, Guo, Zhang, Tian (CR24) 2022; 18
Chen (CR53) 2020; 140
Lu (CR51) 2017; 5
Wang (CR3) 2015; 2
Liu (CR37) 2021; 33
X Qiu (36461_CR6) 2022; 18
Y Zhang (36461_CR19) 2021; 425
X Wang (36461_CR3) 2015; 2
W Yin (36461_CR42) 2019; 2
J Ekeocha (36461_CR13) 2021; 33
R Li (36461_CR45) 2020; 32
36461_CR40
36461_CR41
X Li (36461_CR2) 2021; 8
S Dai (36461_CR17) 2019; 257
H Ozawa (36461_CR28) 2015; 17
M Song (36461_CR46) 2020; 398
36461_CR35
36461_CR34
B Krishnakumar (36461_CR16) 2020; 184
B Lu (36461_CR51) 2017; 5
PCJ Graat (36461_CR32) 1996; 101
SK Bhangu (36461_CR26) 2018; 20
X Huang (36461_CR39) 2022; 18
R Li (36461_CR23) 2021; 33
K Chang (36461_CR48) 2019; 112
C Zhang (36461_CR36) 2021; 1
Z Wang (36461_CR47) 2019; 7
S Neumann (36461_CR15) 2016; 7
Z Jiang (36461_CR25) 2019; 40
Y Chen (36461_CR53) 2020; 140
36461_CR43
X Wu (36461_CR49) 2020; 398
J Liu (36461_CR27) 2021; 31
JH Xu (36461_CR21) 2021; 60
B Krishnakumar (36461_CR14) 2020; 2
X Zhang (36461_CR12) 2021; 1
C Zou (36461_CR30) 2020; 59
H Guo (36461_CR9) 2020; 11
Y Yang (36461_CR5) 2019; 11
DL Taylor (36461_CR52) 2016; 28
J Wang (36461_CR22) 2021; 42
Y Wang (36461_CR50) 2018; 15
Y Liu (36461_CR18) 2020; 382
Y Ma (36461_CR29) 2020; 6
X Li (36461_CR24) 2022; 18
CH Li (36461_CR7) 2016; 8
Y Wang (36461_CR38) 2021; 12
Y Wang (36461_CR33) 2019; 29
J Cao (36461_CR10) 2019; 31
C He (36461_CR8) 2022; 16
36461_CR20
L Liu (36461_CR37) 2021; 33
36461_CR4
T Yamashita (36461_CR31) 2008; 254
R Li (36461_CR44) 2020; 8
Q Guo (36461_CR11) 2019; 6
P Song (36461_CR1) 2020; 32
References_xml – volume: 8
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR2
  article-title: Bioinspired multi-stimuli responsive actuators with synergistic color- and morphing-change abilities
  publication-title: Adv. Sci.
– volume: 31
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR27
  article-title: Multistage responsive materials for real-time, reversible, and sustainable light-writing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106673
– ident: CR4
– volume: 140
  start-page: 110047
  year: 2020
  ident: CR53
  article-title: Highly swelling, tough intelligent self-healing hydrogel with body temperature-response
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.110047
– volume: 398
  start-page: 125593
  year: 2020
  ident: CR49
  article-title: Readily self-healing polymers at subzero temperature enabled by dual cooperative crosslink strategy for smart paint
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125593
– volume: 7
  start-page: 2342
  year: 2016
  end-page: 2351
  ident: CR15
  article-title: Chelation-assisted CuAAC in star-shaped polymers enables fast self-healing at low temperatures
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01818H
– volume: 42
  start-page: 1
  year: 2021
  end-page: 5
  ident: CR22
  article-title: Ultra-stretchable, self-healing, conductive, and transparent PAA/DES ionic gel
  publication-title: Macromol. Rapid Commun.
– volume: 184
  start-page: 107647
  year: 2020
  ident: CR16
  article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107647
– volume: 8
  start-page: 5056
  year: 2020
  end-page: 5061
  ident: CR44
  article-title: Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00050G
– ident: CR35
– volume: 16
  start-page: 4981
  year: 2022
  end-page: 4988
  ident: CR8
  article-title: Nanotechnology in the Olympic winter games and beyond
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03346
– volume: 425
  start-page: 130665
  year: 2021
  ident: CR19
  article-title: Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metal–ligand interactions tailored for functional energetic composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130665
– volume: 101
  start-page: 36
  year: 1996
  end-page: 40
  ident: CR32
  article-title: Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2 spectra
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(96)00252-8
– volume: 1
  start-page: 105
  year: 2021
  end-page: 126
  ident: CR12
  article-title: Recent advances in functional fiber electronics
  publication-title: SusMat
  doi: 10.1002/sus2.1
– volume: 7
  start-page: 15933
  year: 2019
  end-page: 15943
  ident: CR47
  article-title: Dynamic covalent urea bonds and their potential for development of self-healing polymer materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02054C
– volume: 33
  start-page: 1
  year: 2021
  end-page: 37
  ident: CR13
  article-title: Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008052
– volume: 29
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR33
  article-title: Hierarchically structured self-healing actuators with superfast light- and magnetic-response
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906198
– volume: 6
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR29
  article-title: Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd2520
– volume: 32
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR1
  article-title: High-performance polymeric materials through hydrogen-bond cross-linking
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901244
– volume: 32
  start-page: 874
  year: 2020
  end-page: 881
  ident: CR45
  article-title: Autonomous self-healing, antifreezing, and transparent conductive elastomers
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04592
– volume: 257
  start-page: 116177
  year: 2019
  ident: CR17
  article-title: Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2019.116177
– volume: 33
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR37
  article-title: Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105829
– volume: 254
  start-page: 2441
  year: 2008
  end-page: 2449
  ident: CR31
  article-title: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.09.063
– volume: 18
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR24
  article-title: Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability
  publication-title: Small
– volume: 2
  start-page: 2726
  year: 2020
  end-page: 2730
  ident: CR14
  article-title: Disulfide exchange assisted self-healing epoxy/PDMS/graphene oxide nanocomposites
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00282H
– ident: CR43
– volume: 28
  start-page: 9060
  year: 2016
  end-page: 9093
  ident: CR52
  article-title: Self-healing hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601613
– volume: 60
  start-page: 7947
  year: 2021
  end-page: 7955
  ident: CR21
  article-title: A fast room-temperature self-healing glassy polyurethane
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/anie.202017303
– volume: 112
  start-page: 822
  year: 2019
  end-page: 831
  ident: CR48
  article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.11.005
– volume: 8
  start-page: 618
  year: 2016
  end-page: 624
  ident: CR7
  article-title: A highly stretchable autonomous self-healing elastomer
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2492
– volume: 15
  start-page: 77
  year: 2018
  end-page: 91
  ident: CR50
  article-title: Recent development and biomedical applications of self-healing hydrogels
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2017.1360865
– volume: 2
  start-page: 1
  year: 2015
  end-page: 21
  ident: CR3
  article-title: Recent progress in electronic skin
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500169
– volume: 11
  start-page: 3428
  year: 2019
  end-page: 3437
  ident: CR5
  article-title: Conductive organohydrogels with ultrastretchability, antifreezing, self-healing, and adhesive properties for motion detection and signal transmission
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17440
– volume: 12
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR38
  article-title: Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure
  publication-title: Nat. Commun.
– volume: 33
  start-page: 5189
  year: 2021
  end-page: 5196
  ident: CR23
  article-title: Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c01242
– volume: 398
  start-page: 125547
  year: 2020
  ident: CR46
  article-title: Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125547
– ident: CR40
– volume: 31
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR10
  article-title: Arbitrarily 3D configurable hygroscopic robots with a covalent–noncovalent interpenetrating network and self-healing ability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900042
– volume: 40
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR25
  article-title: Using synergistic multiple dynamic bonds to construct polymers with engineered properties
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900038
– volume: 382
  start-page: 122925
  year: 2020
  ident: CR18
  article-title: Underwater superoleophobic APTES-SiO2/PVA organohydrogel for low-temperature tolerant, self-healing, recoverable oil/water separation mesh
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122925
– volume: 59
  start-page: 395
  year: 2020
  end-page: 402
  ident: CR30
  article-title: Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/anie.201910002
– volume: 2
  start-page: 82
  year: 2019
  end-page: 87
  ident: CR42
  article-title: Aging behavior and lifetime prediction of PMMA under tensile stress and liquid scintillator conditions
  publication-title: Adv. Ind. Eng. Polym. Res.
– volume: 18
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR6
  article-title: Strong, healable, stimulus-responsive fluorescent elastomers based on assembled borate dynamic nanostructures
  publication-title: Small
  doi: 10.1002/smll.202107164
– volume: 17
  start-page: 8609
  year: 2015
  end-page: 8613
  ident: CR28
  article-title: Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00264H
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR9
  article-title: Universally autonomous self-healing elastomer with high stretchability
  publication-title: Nat. Commun.
– volume: 18
  start-page: 1
  year: 2022
  end-page: 9
  ident: CR39
  article-title: Ultrarobust photothermal materials via dynamic crosslinking for solar harvesting
  publication-title: Small
– volume: 5
  start-page: 948
  year: 2017
  end-page: 956
  ident: CR51
  article-title: One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02279
– volume: 1
  start-page: 127
  year: 2021
  end-page: 147
  ident: CR36
  article-title: Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices
  publication-title: SusMat
  doi: 10.1002/sus2.11
– ident: CR34
– volume: 20
  start-page: 816
  year: 2018
  end-page: 821
  ident: CR26
  article-title: Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies
  publication-title: Green Chem.
  doi: 10.1039/C7GC03163G
– ident: CR41
– volume: 6
  start-page: 996
  year: 2019
  end-page: 1004
  ident: CR11
  article-title: A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01624K
– ident: CR20
– ident: 36461_CR41
– volume: 31
  start-page: 1
  year: 2021
  ident: 36461_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106673
– volume: 60
  start-page: 7947
  year: 2021
  ident: 36461_CR21
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/anie.202017303
– volume: 382
  start-page: 122925
  year: 2020
  ident: 36461_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122925
– volume: 7
  start-page: 15933
  year: 2019
  ident: 36461_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02054C
– volume: 6
  start-page: 1
  year: 2020
  ident: 36461_CR29
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd2520
– volume: 6
  start-page: 996
  year: 2019
  ident: 36461_CR11
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01624K
– volume: 1
  start-page: 105
  year: 2021
  ident: 36461_CR12
  publication-title: SusMat
  doi: 10.1002/sus2.1
– ident: 36461_CR4
  doi: 10.1007/s40843-021-2018-y
– volume: 2
  start-page: 2726
  year: 2020
  ident: 36461_CR14
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00282H
– ident: 36461_CR40
  doi: 10.1021/acs.nanolett.2c01375
– volume: 8
  start-page: 5056
  year: 2020
  ident: 36461_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00050G
– volume: 101
  start-page: 36
  year: 1996
  ident: 36461_CR32
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(96)00252-8
– volume: 18
  start-page: 1
  year: 2022
  ident: 36461_CR39
  publication-title: Small
– volume: 1
  start-page: 127
  year: 2021
  ident: 36461_CR36
  publication-title: SusMat
  doi: 10.1002/sus2.11
– volume: 59
  start-page: 395
  year: 2020
  ident: 36461_CR30
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/anie.201910002
– ident: 36461_CR34
  doi: 10.1021/acsnano.2c05518
– volume: 254
  start-page: 2441
  year: 2008
  ident: 36461_CR31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.09.063
– volume: 398
  start-page: 125547
  year: 2020
  ident: 36461_CR46
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125547
– volume: 8
  start-page: 1
  year: 2021
  ident: 36461_CR2
  publication-title: Adv. Sci.
– volume: 5
  start-page: 948
  year: 2017
  ident: 36461_CR51
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02279
– volume: 40
  start-page: 1
  year: 2019
  ident: 36461_CR25
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900038
– volume: 18
  start-page: 1
  year: 2022
  ident: 36461_CR24
  publication-title: Small
– ident: 36461_CR43
  doi: 10.1038/s41467-021-24382-4
– volume: 425
  start-page: 130665
  year: 2021
  ident: 36461_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130665
– volume: 184
  start-page: 107647
  year: 2020
  ident: 36461_CR16
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107647
– volume: 16
  start-page: 4981
  year: 2022
  ident: 36461_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03346
– volume: 33
  start-page: 1
  year: 2021
  ident: 36461_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105829
– volume: 8
  start-page: 618
  year: 2016
  ident: 36461_CR7
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2492
– volume: 12
  start-page: 1
  year: 2021
  ident: 36461_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 257
  start-page: 116177
  year: 2019
  ident: 36461_CR17
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2019.116177
– volume: 17
  start-page: 8609
  year: 2015
  ident: 36461_CR28
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00264H
– volume: 31
  start-page: 1
  year: 2019
  ident: 36461_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900042
– volume: 42
  start-page: 1
  year: 2021
  ident: 36461_CR22
  publication-title: Macromol. Rapid Commun.
– volume: 28
  start-page: 9060
  year: 2016
  ident: 36461_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601613
– volume: 11
  start-page: 1
  year: 2020
  ident: 36461_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 29
  start-page: 1
  year: 2019
  ident: 36461_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906198
– volume: 32
  start-page: 874
  year: 2020
  ident: 36461_CR45
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04592
– volume: 398
  start-page: 125593
  year: 2020
  ident: 36461_CR49
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125593
– volume: 11
  start-page: 3428
  year: 2019
  ident: 36461_CR5
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17440
– volume: 2
  start-page: 82
  year: 2019
  ident: 36461_CR42
  publication-title: Adv. Ind. Eng. Polym. Res.
– ident: 36461_CR35
  doi: 10.1038/s41565-022-01133-0
– volume: 2
  start-page: 1
  year: 2015
  ident: 36461_CR3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500169
– volume: 18
  start-page: 1
  year: 2022
  ident: 36461_CR6
  publication-title: Small
  doi: 10.1002/smll.202107164
– volume: 140
  start-page: 110047
  year: 2020
  ident: 36461_CR53
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.110047
– volume: 20
  start-page: 816
  year: 2018
  ident: 36461_CR26
  publication-title: Green Chem.
  doi: 10.1039/C7GC03163G
– volume: 15
  start-page: 77
  year: 2018
  ident: 36461_CR50
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1080/17425247.2017.1360865
– ident: 36461_CR20
  doi: 10.1073/pnas.2000001117
– volume: 7
  start-page: 2342
  year: 2016
  ident: 36461_CR15
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01818H
– volume: 32
  start-page: 1
  year: 2020
  ident: 36461_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901244
– volume: 33
  start-page: 1
  year: 2021
  ident: 36461_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008052
– volume: 33
  start-page: 5189
  year: 2021
  ident: 36461_CR23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c01242
– volume: 112
  start-page: 822
  year: 2019
  ident: 36461_CR48
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.11.005
SSID ssj0000391844
Score 2.6717105
Snippet Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing...
Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 814
SubjectTerms 140/125
140/133
140/146
147/143
147/3
639/301/1005/1009
639/301/1023/1025
639/301/357/341
639/301/357/354
Artificial muscles
Assemblies
Biomimetics
Crosslinking
Elastomers
Electronics
Humanities and Social Sciences
Low temperature
Mechanical properties
multidisciplinary
Muscles
Polymerization
Polymers
Robots
Science
Science (multidisciplinary)
Self healing materials
Soft robotics
Solvents
Subzero temperature
Wearable technology
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqSki9IKAFQgsyUm9gNbGd2D4Coqoq2lNX6s3yVwTSklTN7mH59Z1xstsunxeusaM4z2PPe7JnhpBjzo0uWx9Y5arAZB1apqWPzHMMXBZRpRpjhy8um7OZPL-urx-U-sI7YWN64BG4E6CzpuGhgi8lkC7Kcee0CcoHYPo-ZGoEPu-BmMp7sDAgXeQUJVMKfTLIvCeAi2KikU3FzJYnygn7f8cyf70s-dOJaXZEp0_I44lB0g_jyJ-SndQ9I4_GmpKrffJlNsdI-t4vhwUdlv5Huu0p0kGMkaLAT0eToykHTUXqV_Smn6_wqlc_p53regZ8On33QE6HAzI7_Xz16YxNJRNYACWyYC3wkTp6B7_Io4maeyG4CrVSzkWdwFlrpcAtltybEJPQKenGt6CSko5R1OI52e36Lr0kFBOHBcF9iJJL3TotkCyWIH8qznVbF6Raw2fDlE8cy1rMbT7XFtqOkFuA3GbIrSnIu807N2M2jb_2_oizsumJmbDzA7APO9mH_Zd9FORoPad2Wp6D5QpkksLNrSBvN82wsPC0xHWpX-Y-WCa-kWVBXowmsBmJABdf6QYwUFvGsTXU7Zbu29ecvNsYlHi8IO_XZnQ_rD9D8ep_QHFI9jjaP5azEUdkd3G7TK-BUi38m7x67gDRwRzc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKs-GFhQkbmA1sZ3YOSFALBUCTqzUm-VXAGlJtpvdw_bXd8bxploevcaOZI9nPN94XoS8YqxRRWsdLU3pqKhcS5WwnlqGicvcy1Bh7vDXb_XZXHw-r87Tg9uQwip3d2K8qH3v8I38lElAthL58e3ygmLXKPSuphYat8mdEjQNhnSp2afpjQWrnyshUq5MwdXpIOLNAIqK8lrUJW329FEs2_8vrPl3yOQfftOojmaH5H7Ckfm78eAfkFuhe0jujp0lt4_Il_kC8-l7uxnW-bCxl2HV5wgKMVMqB5Q6Ml4eYuqUz-02X_aLLQZ89Yu8M11PAVWH3xYg6vCYzGcfv384o6lxAnVgj6xpC6ik8tbAFplvvGKWcyZdJaUxXgVQ2UBJUI4Fs43zgasQVG1bsJWC8p5X_Ak56PouHJEcy4c5zqzzggnVGsURMhZgBJWMqbbKSLkjn3apqjg2t1jo6N3mSo8k10ByHUmum4y8nv5ZjjU1bpz9Hk9lmon1sOOHfvVDJ_HSYPQ0NXMl8GMAA1caZoxqnLQO7EHrTEZOdmeqk5AO-pqlMvJyGgbxQp-J6UK_iXOwWXwtiow8HVlgWgkHRV-qGmgg95hjb6n7I92vn7GEd9Ogoccy8mbHRtfL-j8pnt28i2NyjyFnY7safkIO1qtNeA6QaW1fRLm4AqmyE5A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4rfVUyr4psE2SZvkcRWPY1FfdOHeQr6qwl57bHcf1r_emfRDVk_B13YC08kk85sm8xtCXjKmVdE4T0tbeioq31AlXKCOYeEyDzJWWDv88VN9vhLLi-riiLCpFiZd2k-Ulmmbnm6HvelFWtIQYSivRV1SfYOcIFU7-PbJYrH8vJz_rCDnuRJirJApuLpm8EEUSmT91yHMPy9K_nZamoLQ2R1ye0SP-WLQ9y45iu09cnPoJ7m_Tz6s1lhF37ldv837nfsRN12OUBDro3LApoO75TEVTIXc7fOrbr3Ha17dOm9t21HA0vHSATDtH5DV2fsv787p2C6BeshCtrQBLFIFZ-ETWdBBMcc5k76S0tqgIgRqJSWExII57UPkKkZVuwYypKhC4BV_SI7bro2PSY6kYZ4z54NgQjVWcQSKBaQ-JWOqqTJSTuYzfuQSx5YWa5POtLkyg8kNmNwkkxudkVfzmKuBSeOf0m9xVmZJZMFOD7rNVzN6hYFUR9fMl-CFEdJaaZm1SnvpPGSBztuMnE5zasal2RsmIUWSuLFl5MX8GhYVnpTYNna7JIMt4mtRZOTR4AKzJhzCe6lqsIE8cI4DVQ_ftN-_JeJurTG9Yxl5PbnRL7X-boon_yf-lNxi6OnYtIafkuPtZhefAXDauufjSvkJh_4StQ
  priority: 102
  providerName: Springer Nature
Title Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies
URI https://link.springer.com/article/10.1038/s41467-023-36461-9
https://www.ncbi.nlm.nih.gov/pubmed/36781865
https://www.proquest.com/docview/2775877301
https://www.proquest.com/docview/2776515640
https://pubmed.ncbi.nlm.nih.gov/PMC9925762
https://doaj.org/article/585962c1ccae4467a2aa89c7bc716bca
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC72geBFfBtdhwjetHXSnaS7DyKzw47L4C6iDswt9CsqxGSdBzj-eqs7ycjo6MlLAkkHOl-qUt-XTlUBPKVUimGpDUlUYkiamZKIVFuiqU9cZpa7zOcOX1zm57N0Os_mB9C3O-oAXO6Vdr6f1GxRvfj-bfMaHf5VmzIuXi7T4O4YfQjL0zwh8hCOMTJx39HgoqP74c3MJAqatMud2X_pTnwKZfz3cc8_f6H8bR01hKfJTbjR8cp41BrCLThw9W241naa3NyBt7PK59c3er1cxcu1_uEWTexJos-cipG1toYYu5BKZWO9ia-aauN_AGuquFZ1Q5Blu68aKevyLswmZx_H56RrpEAM6pMVKRGKzGqFt0ittIJqxig3GedKWeEwhAvOMVgOqZbGOiacE7kuUTs5YS3L2D04qpvaPYDYlxMzjGpjU5qKUgnmKeQQRVFCqSizCJIevsJ0VcZ9s4uqCKvdTBQt5AVCXgTICxnBs-01V22NjX-OPvVPZTvS18cOB5rFp6JztwJFkMypSdA-HQperqhSQhquDepDbVQEJ_0zLXqbKyhH8cT9Ky-CJ9vT6G5-DUXVrlmHMb55fJ4OI7jfmsB2JgwDfyJyxIDvGMfOVHfP1F8-h5LeUnrhRyN43pvRr2n9HYqH_wOKR3Cdevv3TW7YCRytFmv3GInWSg_gkM85bsXkzQCOR6PphynuT88u373Ho-N8PAifMAbBy34C0mAq6g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAgSDBCawmtpM4B4R4LVu67akr9Wb8CiAtybLZFVp-FL-RGSfZann01mvsKM7488w3tmeGkKeMlTKpjKWpTi0Vma2oFMZRwzBwmbvCZxg7fHScj6fi42l2ukN-DbEweK1y0IlBUbvG4h75PiuA2RaIx1fz7xSrRuHp6lBCo4PFoV__AJetfXnwDub3GWOj9ydvx7SvKkAtkPUlrcBkZ85oDszblU4ywzkrbFYUWjvpwZ7BZ8ByJMyU1nkuvZe5qcCR8NK5UCUCVP4lwcGSY2T66MNmTwezrUsh-tichMv9VgRNBIaRwvfylJZb9i-UCfgXt_37iuYf57TB_I2uk2s9b41fd0C7QXZ8fZNc7ipZrm-RyXSG8fuNWbXLuF2Zn37RxEhCMTIrBlbcAT32IVTLxWYdz5vZGi-YNbO41nVDgcX7bwYocXubTC9EpHfIbt3U_h6JMV2Z5cxYJ5iQlZYcKWoCTlfKmKyyiKSD-JTts5hjMY2ZCqfpXKpO5ApEroLIVRmR55t35l0Oj3N7v8FZ2fTE_NvhQbP4rPrlrMDJKnNmU8C_B4e60ExrWdrCWPA_jdUR2RvmVPVKoVVnEI7Ik00zLGc8o9G1b1ahDxanz0USkbsdBDYj4UAsUpmDDIotcGwNdbul_volpAwvS3QsWUReDDA6G9b_RXH__L94TK6MT44manJwfPiAXGWIciyVw_fI7nKx8g-Bri3No7BGYvLpohflb4ShUTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEG8CBYIEJ7A2sfNwDghR2lVLy6pCrNSb8StQaZssm12h5afx65hxkq2WR2-9Jo7ijL-Z-Sb2zBDygrFCRKU2NFaxoUlqSioSbalmmLjMbe5SzB3-OM4OJsmH0_R0i_zqc2HwWGVvE72htrXBf-RDlgOzzRGPw7I7FnGyN3o7-06xgxTutPbtNFqIHLnVDwjfmjeHe7DWLxkb7X9-f0C7DgPUAHFf0BLcd2q14sDCbWEF05yz3KR5rpQVDnwbvBK8SMR0YazjwjmR6RKCCies9R0jwPxv5xgVDcj27v745NP6Dw_WXhdJ0mXqRFwMm8TbJXCTFN6YxbTY8Ia-acC_mO7fBzb_2LX1znB0i9zsWGz4roXdbbLlqjvkWtvXcnWXHE-mmM1f62WzCJul_unmdYiUFPO0QuDILexD5xO3bKhX4ayervC4WT0NK1XVFDi9O9dAkJt7ZHIlQr1PBlVduYckxOJlhjNtbMISUSrBkbBGEILFjIkyDUjci0-arqY5ttaYSr-3zoVsRS5B5NKLXBYBebV-ZtZW9Lh09C6uynokVuP2F-r5V9kpt4SQq8iYiUEbHITXuWJKicLk2kA0qo0KyE6_prIzEY28AHRAnq9vg3Ljjo2qXL30Y7BVfZZEAXnQQmA9Ew40IxYZyCDfAMfGVDfvVGfffAHxosAwkwXkdQ-ji2n9XxSPLv-KZ-Q6KKQ8PhwfPSY3GIIc--bwHTJYzJfuCXC3hX7aKUlIvly1Xv4G5xtWwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrarobust+subzero+healable+materials+enabled+by+polyphenol+nano-assemblies&rft.jtitle=Nature+communications&rft.au=Nan+Wang&rft.au=Xin+Yang&rft.au=Xinxing+Zhang&rft.date=2023-02-13&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-023-36461-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_585962c1ccae4467a2aa89c7bc716bca
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon