Ultrarobust subzero healable materials enabled by polyphenol nano-assemblies

Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segmen...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 814 - 10
Main Authors Wang, Nan, Yang, Xin, Zhang, Xinxing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bio-inspired self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots, etc. However, self-healing at subzero temperatures remains a great challenge because the reconstruction of interactions will experience resistance of the frozen segments. Here, we present an ultrarobust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers. The combination of multiple dynamic bonds and rapid secondary relaxations with low activation energy barrier provides a promising method to overcome the limited self-healing ability of glassy polymers, which can rarely be achieved by conventional dynamic cross-linking. The resulted material exhibits remarkably improved adhesion force at low temperature (promotes 30 times), excellent mechanical properties (30.6 MPa) and desired subzero healing efficiencies (85.7% at −20 °C). We further demonstrated that the material also possesses reliable cryogenic strain-sensing and functional-healing ability. This work provides a viable approach to fabricate ultrarobust subzero healable glassy polymers that are applicable for winter sports wearable devices, subzero temperature-suitable robots and artificial muscles. Self-healing materials hold great promise for applications in wearable electronics, artificial muscles and soft robots but selfhealing at subzero temperatures remains a great challenge. Here, the authors present a robust subzero healable glassy polymer by incorporating polyphenol nano-assemblies with a large number of end groups into polymerizable deep eutectic solvent elastomers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-36461-9